
Software Engineering

14:332:452

Group #11

Project URL: https://sites.google.com/site/softwareengineeringspring2012/

Restaurant Automation

Report 3

May 4, 2012

Jazmin Garcia
Greg Paton
Eric Gilbert

Andrew Rapport
Vishal Shah

Damon Chow

  2 

Team Contributions 
 
 
All team members contributed equally.

  3 

Summary of Changes

 In terms of changes, the project objective changes throughout the course of the project.
Our team had numerous ideas we wished to implement, but we ultimately decided to only
implement a few so as to show some key features that were fully functioning instead of many that
did not work that well.

Our use case descriptions changed drastically from the beginning in that in the First
Report, we had a total of 12 formal use cases that we hoped to focus on. We quickly learned that
that was much too high of a number. We limited the number of use cases to focus on for the
continuation of our progress to almost half of our initially planned 12.

From the First Report, our group learned that we needed to focus on providing much
more detail to the reports and that the project was not focused on simply coding. The key to
success to the project was to focus on a small amount of use cases and provide a large amount of
detail.

Initially, we had hoped to have a delivery boy actor. In the end, we chose to eliminate
that actor and focus on the other main actors. Our group considered the delivery boy to be an
addition to our project but not necessary. Much of what is included in the Future Work is part of
our First Report. For example, implementing a table layout for the hostess and waiter interface so
as to allow the hostess to have a dynamic view of the restaurant as well as move tables when
necessary. Due to the issue of time, we eliminated some of our goals as well as use cases.

  4 

TABLE OF CONTENTS

I. CUSTOMER STATEMENT OF REQUIREMENTS
A. PROBLEM STATEMENT…………………………………………………6
B. GLOSSARY OF TERMS………………………………………………….10

II. SYSTEM REQUIREMENTS
A. ENUMERATED FUNCTIONAL REQUIREMENTS……………………..11
B. ENUMERATED NON-FUNCTIONAL REQUIREMENTS………………13
C. ON-SCREEN APPEARANCE REQUIREMENTS………………………..17

III. FUNCTIONAL REQUIREMENTS SPECIFICATION
A. STAKEHOLDERS………………………………………………………….19
B. ACTORS AND GOALS…………………………………………………….19
C. USE CASES

I. CASUAL DESCRIPTION………..…….……………………………21
II. USE CASE DIAGRAM………..…….………………………………24

III. FULLY DRESSED DESCRIPTION………..…….…………………25
IV. TRACEABILITY MATRIX………..…….……………………...……30

D. SYSTEM SEQUENCE DIAGRAMS………..…….……………………..…31
IV. USER INTERFACE SPECIFICATION

A. DESIGN………..…….………………………………………………………37
B. USER EFFORT

ESTIMATION………..…….……………………..…………………………45
C. EFFORT ESTIMATION USING USE CASE POINTS………..…….…..…48

V. DOMAIN ANALYSIS
A. DOMAIN MODEL………..…………………………………………..…..…49

I. CONCEPT DEFINITIONS…..……………...………………..…..…53
II. ASSOCIATION DEFINITIONS…..…….…...………………..…..…54

III. ATTRIBUTE DEFINITIONS…..…….…...………………..…..……56
IV. TRACEABILITY MATRIX…..…….…...………………..…..………58

B. SYSTEM OPERATION CONTRACTS…..…….…...………………..…….59
C. MATHEMATICAL MODEL…..…….…...………………..……………….62

VI. BUSINESS POLICIES…..…….……………..………………..……………….63
VII. INTERACTION DIAGRAMS…..…….……………..………………..……….65
VIII. CLASS DIAGRAM AND INTERFACE SPECIFICATION

A. CLASS DIAGRAM…..…….……………..………………..………….…….71
B. DATA TYPES AND OPERATION SIGNATURES…..…….………..…….75
C. TRACEABILITY MATRIX…..…….………………………………….…….83
D. DESIGN PATTERNS…..…….………………………………….……….….85
E. OBJECT CONSTRAINT LANGUAGE (OCL) CONTRACTS…..……...….87

IX. SYSTEM ARCHITECTURE AND SYSTEM DESIGN
A. ARCHITECTURE STYLES…..…….…………………………………….….88
B. IDENTIFYING SUBSYSTEMS…………………………………….………..89
C. MAPPING SUBSYSTEMS TO HARDWARE………………………………90
D. PERSISTENT DATA STORAGE……………………………………………91

  5 

E. NETWORK PROTOCOL……………………………………………………92
F. GLOBAL CONTROL FLOW………………………………………………..93
G. MINIMUM HARDWARE REQUIREMENTS……………………….……..94

X. ALGORITHMS AND DATA STRUCTURES
A. ALGORITHMS…………………………………………………..…………..96
B. DATA STRUCTURES…………………………………………………..…..97

XI. DESIGN OF TESTS
A. TEST CASES…………………………………………………..…………….99
B. UNIT TESTS…………………………………………………..……………107
C. INTEGRATION TESTING…………………………………………………112

XII. HISTORY OF WORK, CURRENT STATUS, AND FUTURE WORK……113
XIII. INTERVIEW QUESTIONS…………………………………………………...115
XIV. REFERENCES………………………………………………………………....117

 

  6 

I. CUSTOMER STATEMENT OF REQUIREMENTS
A. Problem Statement

Running a restaurant incurs a great deal of overhead. Anyone looking to open and run a 
successful restaurant in today’s economy needs to minimize cost to stay competitive. 
Therefore, a modern system could be implemented that would automate tasks that were 
once heavily time consuming and thus would increase efficiency and reduce operating costs. 
An example of how the restaurant would become more efficient is through the minimization 
of customer order time, which would consequently increase the average frequency of 
customer turnovers. Customer turnover frequency is defined as the number of parties that 
come and leave the restaurant.  

More specifically, there will exist Touch Screen Monitors with which customers will 
have the option of placing orders on. The monitors will assist in decreasing order placement 
time as mentioned previously. Another option will be Wireless Order Placement. Using a 
wireless iOS Device, a waiter will be able to place an order in the situation that a customer 
does not wish to make the order him or herself. Through these two options, we give the 
customer the ability of choice.  

The business policies of the company are listed in the VI section.  

 

Figure 1: iOS or Android Compatibility 

 

 

 

  7 

System Network

 

Figure 2 System Network

 

  8 

System Actors’ Roles

Management

 The system will give the manager access to statistical analysis tools such as the graphical
and numerical breakdown of customer dining time, menu item popularity, the current stock of
ingredients, and many more. Additionally, the system will give only management permission to
do several tasks. Some of the tasks available to only the manager are listed below.

Employee management permissions:
o Add/Remove employees
o Customize employee permissions
o Create/Customize employee schedules
o Update restaurant floor plan layout
o Access/Modify database records

Host

 The hostess is the first person a customer sees when they enter the restaurant. Being one
of the most important assets to the restaurant in that the hostess is responsible for sitting the
customer in a timely manner, there will be methods in the system that will assist the hostess. By
having the ability to sit customers quickly and efficiently, the restaurant will be able to generate
more revenue since there will be a high table turnover meaning that there is a high frequency of
customers dining and leaving. Some of the abilities of the hostess are listed below.

• View the status of the tables in the restaurant
• Assign guests to a particular table given the number in the party
• Be able to give a wait time for the number of guests in the party
• Schedule reservations for customers

Waiter

 The waiter will be the next person who the customer encounters with during the
restaurant experience. The waiter will be assigned certain tables in the restaurant. This means that
guests who sit in that particular section will be assigned to that waiter. The waiter will be
responsible for taking orders for the guests in the situation that the guests do not wish to place the
orders themselves via the computer system. Additionally, tables in the restaurant will have a
status such as occupied, clean, or dirty. The hostess will be responsible for updating this status as
well as being able to view the current status of the tables. Some of the abilities of the waiter are
listed below.

• View/Update status of tables the server is assigned to
• Place/Edit/Remove order for specific tables

Bartender

• Place/Edit/Remove orders
• Receive drink orders placed by waiter/waitress

  9 

Chef

 Once an order is placed either by the customer or by the waiter, the chef will be
responsible for cooking the order. As soon as a chef has completed a particular order, the chef
will press a button signifying that the order has been completed. A screen will be present,
particularly for the chefs, which will display a maximum of 10 current uncompleted orders in the
restaurant. When there are more than 10 open orders in the restaurant, the way the display will
handle this is that once the first order is completed, the next order after the previous 10 will be
moved to be displayed on the screen.

• View all present uncompleted order placed by waiter
• Update completion of order

Customer

 The customer, as an actor, will have the option of placing an order. If the customers do
not wish to place the order themselves, the customer can have the waiter place the order via the
mobile application.

The Old System vs The New System

While the old pen and paper system may be suitable for smaller operations, any
restaurant that receives a large throughput of customers can’t be run using these outdated
methods. The updated computer system increases efficiency, giving the restaurant a competitive
edge by reducing overhead. By the use of this computer system, the table turnover rate will be
drastically increased since placing an order via the system we will implement is much faster than
the standard way of taking an order. When taking an order, a server is required to write down the
order, walk to the computer terminal only available to employees (with the hope of not being
interrupted on the way there), and then placing the order into the computer. The use of paper, in
this system, is virtually eliminated. In conjunction with the ability of base ordering of ingredients
on the computer via the analysis of stock and item popularity, operating costs are reduced. This
system also allows the proprietor the option of running a “no waiter” restaurant that allows the
customer to place their own order on devices embedded in the tables, reducing the number of
employees and lowering cost. Efficiency is also seen with the hostess. Normally in a restaurant, a
hostess to find where a party could be accommodated has to walk around the entire restaurant.
With the new system, a hostess will be capable of viewing the status of all the tables in the
restaurant; thus, reducing the amount of time guests must wait to be seated. Overall,
implementing a computer system for a restaurant will result in higher efficiency and higher
profits.

  10 

B. Glossary of Terms

• Busboy – Employee responsible for cleaning tables when a party leaves. Able to change 
table status from dirty to clean upon completion using the main terminal. 

• Chef – Employee responsible for preparing food. Able to update the food order status 
using the kitchen terminal. 

• Customer – A patron of the restaurant using the system.  
• Database – Storage of pertinent restaurant data located on the server. 
• Host/Hostess – Used interchangeably. Employee responsible for seating customers in a 

timely fashion. Able to change table status from clean to occupied using the main 
terminal. 

• Kitchen Terminal – Touch screen computer located in the kitchen that updated the 
chef with orders. Also allows chef to update current orders. 

• Main Terminal – Touch screen computer located in a central location in the restaurant. 
Available to all employees for clocking in/out. 

• Manager – Employee responsible for running the restaurant. Given full permissions in 
the system. Has exclusive ability to view restaurant statistics, edit menu items, edit 
employee information, etc. 

• Manager’s Terminal – Computer located in the manager’s office. 
• Menu – A detailed list of all food items sold at the restaurant. 
• Mobile Device – Touch screen, portable device used by waiters to place orders. May 

also be used my customer to place order and view order progress. 
• Party – A group of customers seated together in the restaurant. 
• Payroll – Hours worked by employees and hourly rate. Used to calculate salary. 
• Server – Computer (located locally or at an external location) used to store the database 

and run various scripts. 
• Stock – Amount of ingredients currently in the restaurants inventory. 
• Waiter – Employee responsible for taking customer orders. Places orders using a 

mobile device, as well as handles payment from customer. 

  11 

II. SYSTEM REQUIREMENTS
A. Enumerated Functional Requirements

 Rank Description

REQ1 5

The system shall allow managers to control the payroll. This portion of the system should
be accessible only by management via the web application. The payroll portion of the
system should allow managers to add employees, remove employees, and update
employee information in the database that is storing employee information. It should also
allow managers to pay employees (discussed in more detail in REQ7). Please refer to the
Business Policies in which employee removal is discussed further.

REQ2 3

The system should allow managers to view statistics showing the overall performance of
the restaurant. This will include a display that allows managers to query about how much
a particular employee has worked, figures showing the state of the inventory, what items
are on the menu and how much of them have been sold, and overall financial figures on
either a weekly or monthly basis. The statistical analysis will only be available to
managers through the web application.

REQ3 2

The system shall have an inventory list that specifies what items are in stock, out of
stock, and close to being out of stock. The inventory system shall be populated by the
manager initially and whenever new items are delivered to the restaurant. It should then
be automatically updated to reflect any changes to the menu that have been made. For
example, if an order is placed, the inventory required to create that order should be taken
into account and consequently update the inventory. Items will be removed from the
menu when stock runs low. Additionally, the managers should have the capability to
adjust inventory at the end of the day or week to reflect spoiled food or other unforeseen
circumstances. Please reference the Mathematical Model section.

REQ4 4

The system shall allow the manager to alter menu items via the web application. When a
menu item is added, the item should not be made available until all the components
required to make the item is checked by management to be readily available. Once the
inventory to create the new item is accounted for, the item will appear on the menu for
the waiter mobile application as well as the customer desktop application.

REQ5 4

The system shall allow personnel to view the layout of the restaurant as a 2D diagram
that mimics an aerial view of the floor. The layout will show tables and their
configuration, and the tables will be colored to show the their status. Green will indicated
an open table, yellow will indicate a vacant table that must be cleaned and preperad for
another customer, and red will indicate and table currently in use. The host will be
capable of marking a table red via her terminal application. The server will be capable of
marking the table yellow via his mobile application. The busboy will be capable for
marking a table green via his terminal application. The system will allow alteration of the
floor plan by managers via a web application and a hostess via the hostess terminal
application.

  12 

REQ6 2
The system shall allow managers, waiters, and hostesses to both physically move the
tables in the restaurant and change the diagram showing table layout through their
respective devices describe in the table layout application requirement.

REQ7 5

The system shall allow managers to record the time an employee has worked via the
system. Employees shall be able to clock in and out of the system, with the time of work
being logged. If an employee fails to clock out of the system after a maximum threshold
is crossed, he will automatically be logged out. The maximum threshold will be the time
that the particular employee was to work till. Any time past the threshold will require a
manager to approve the overtime. This threshold, along with hourly pay and overtime
pay, will be stored in a database along with the name, address, and social security
number of the employee. The payroll should allow the manager to release payment
calculated through hours logged and employee information once every two weeks via the
web application. Upon payment, the employee hours shall be populated into a database
for statistical analysis.

REQ8 5

The system shall allow both customers and waiters to place orders which will then be
sent directly to the screens of the chef terminal in the kitchen. Customers will be capable
of ordering through a computer terminal located at their table, while waiters will be able
to place an order through the mobile device they carry on their person at all times.
Alcoholic drink orders cannot be placed via the customer application. Servers must check
for identification at the table prior to the successful order of alcohol.

REQ9 4

The system should populate delivery orders on the screens of the chef terminal and the
deliveryman mobile application. The chefs can then remove the order from their screen
once it has been prepared, and the deliveryman can remove the order from his mobile
application when it has been delivered. If the order does not make it to the customer, he
or she can call to complain or submit a complaint online via the web application.

REQ10 3

The system should allow customers to beckon a waiter via the computer terminal located
at their table. To limit the complexity of the system and opportunity for customer
tampering, the customer beckoning will simply show up on the table layout diagram as a
dot layered on top of the red table. This can be viewed by anyone with access to the table
layout diagram through the devices described in that requirement.

REQ11 5
The system shall have a menu screen on the computer terminal of customers for customer
ordering. The menu screen should allow the customer to place their order through the
customer computer terminal.

REQ12 1

The system should allow reservation to be made online via the web application. Online
reservations will only be allowed if the reservation is placed 24 hours in advance of the
time requested. Otherwise, the customer can call the host and the system should allow the
host to input the reservation if it is available via the host terminal application. Regardless
of online or phone reservation, the system shall prompt the customer or host respectively
for name and phone number. If the customer is logged in via the web application, this
information will be retained.

REQ13 1

The system should allow accounts to be made for future login by the same customer.
This feature is predominantly for delivery order, so that customer information such as
name, phone number, address, and credit card information can be retained. Thus, the
customer won't be forced to re-enter information each time an order is placed.

  13 

REQ14 5

The system should allow customers to pay for their check at the table via their computer
terminal. Payment information should be entered via a prompt on the screen. Only
electronic payment will be allowed via the customer mobile application. The customer
can alert the server either through the mobile application or personally if another
payment method is desired. The server can make payment through the server mobile
application (credit cards only) or terminal (all acceptable forms of payments).

REQ15 2

The system should allow the customer to create an order change within a particular time
period. This time period is defined as the time up until the chefs begins making the order.
The manager is the only person that could approve order cancelations. Please refer to the
Business Policy section for more details on order cancelation.

REQ16 4

The system shall provide the host with the tools and information to seat patrons in a
reasonable amount. A reasonable amount of time will be dependent on the current status
of the restaurant. When it is busy, the wait time will be much longer than if it were slow.
The system will allow the host to be able to see the current status of tables in the
restaurant for a much faster and accurate seating time.

REQ17 5

The system shall have screens (controlled by a computer terminal) in the kitchen for
chefs. On the screens will be the orders listed in the order that they came in. The screens
will be run by the chef terminal application located on the computer. 10 orders will be
able to fit on a screen.

B. Enumerated Non-Functional Requirements

Non-functional requirements are those requirements that articulate the goals of the software
development beyond the core necessities of the project. Such pieces of information work to
explain how choices have been made to best allow the program to make the jump from a testing
environment into the wild. The five categories of non-functional requirements are functionality,
usability, reliability, performance, and supportability.

1. Functionality
a. Compartmentalization of the different roles of restaurant operations to provide

targeted solutions to each employee
i. Mobile application used for roles requiring movement, such as serving,

delivering, and ordering food
ii. Terminal application used for roles that don’t necessitate mobile

technology solutions and offer backup to the mobile app
1. Statistical package that interfaces with payroll, table

management, and inventory to facilitate management decisions
2. Interactive table layout manager for flexibility and better

visualization of restaurant state
 3. Manager options.

  14 

b. System scalable and flexible enough to accommodate restaurants with different
sizes, layouts, strategies, etc.

c. Strong and well-implemented software design to limit exposure to electronic
attacks

d. Strong log-in procedures to prevent tampering and misuse of software
e. Limited access to parts of the system for each particular user

3. Usability
 . Clean and intuitive user interfaces that requires only a small amount of hands-on

training to use proficiently
a. Exciting graphical and technological experience to enhance dining and employee

satisfaction
b. Limited reliance upon human inputs such as writing or changing orders
c. Minimal “clicks” to accomplish the necessary task
d. Well-documented analysis, design, and code to teach, improve, or expand the

system
 Reliability

 . Goal is for the capability to operate the restaurant under all foreseeable
conditions, including internet outage, power outage, or partial system failure (due
to circumstances other than software issues)

a. Server located on-site at restaurant to ensure ongoing operations in the face of
internet outages

b. On-site servers could connect to an even more centralized server for computing
requirements and backup capabilities

c. Terminals provide an interface to all employees in the event the web or mobile
applications are not available

d. [TERMINALS CACHE DAILY ACTIVITY IN ADDITION TO PINGING
THE SERVER TO PROVIDE LOCAL BACKUP IN THE CASE OF
OUTAGES OR VIRUSES]

e. Backup pen and paper always available for unlikely events such as total power
outage to maintain order and proper book-keeping until normal operations
resume

 Performance
 . Easily navigable interface, well-written code, and the current processing power

of recommended hardware will ensure system speed
a. Interface will also limit number of clicks and integrate different parts of the

system to make for efficient but powerful interaction with the software
b. Resource requirements slightly higher than that for standard restaurants. This

includes computing power for the mobile applications to be used by servers and
customers.

c. Excellent design and code implementation will ensure a responsive system for all
parties.

d. System will utilize a wireless network connection to provide adequate throughput
of data to the server. All employees working at one time will be capable of

  15 

interacting with the system simultaneously(usually 5-10 servers at one time).
This exceeds the requirements of even a large restaurant.

e. System availability will depend upon user in question.
i. Mobile applications available to servers only when they have clocked in

to a terminal for work
ii. Terminals available during working hours of the restaurant

iii. Server available all times except maintenance (> 99%)
f. System updates to occur when restaurant opens/closes, reservation made,

employees logs in/out, table opens/closes, customer order placed/changed, and
payroll release.

g. User interface provides confirmation screens and limited human input to increase
accuracy of system. Solid design and implementation ensure data integrity in
producing payroll reports, statistical analysis, or managing inventory.

 Supportability
0. Testability: unit tests will be written as the software is developed to allow the

testing process to accommodate changes in code.
1. Extensibility: the design and implementation of the code will be executed with

readability and extensibility in mind.
2. Adaptability/compatibility: the technologies [MYSQL, JAVA, iOS] are nearly

ubiquitous and can port to a multitude of systems.
3. Maintainability: the design and implementation of the code will allow for it to be

easily read and updated. The software stack has also been chosen as one that will
most likely be supported very well in the long term. Patches could be deployed
via dynamically linked libraries.

4. Configurability: to be completed on an ad hoc basis by the developers
5. Portability: the system will not be designed with portability in mind. Because of

the technologies chosen, however, it could potentially be ported to other
operating systems. For now, it will be assumed that the restaurant computers will
run [WINDOWS], whether by the native operating system or by virtual machine.

 Rank Description
Functionality

REQ18 3 The system should be designed is such as way that it could be extended to a different
restaurant with a different business model in less than a month

REQ19 3
The system should utilize technology that is flexible enough to work on various platforms
and new hardware. In the event that the software does not work on a particular piece of
hardware, it should take no more than a month to port the software to the different
hardware configuration.

Usability

REQ19 4 The various interfaces of the host terminal (table layout, reservation, waitlist) will be
available in one click from the root host menu

  16 

REQ21 5
The UI of the chef terminal should always show the current order queue. The chef should
be able to notify the server that food is ready in 1 click. The order queue should update
automatically on the placement of an order or the completion of notification of food
completion.

REQ22 5 The screens of the chef terminal should be in view of the chefs and text should be large
enough to read from 10 ft. away.

REQ23 4 There should be enough server terminals such that it doesn't take a server longer than 15
seconds to reach his terminal from the farthest table he is serving.

REQ24 2 The manager should be capable of adding, removing, or updating employee information in
less than 3 minutes.

REQ25 2 The manager should be capable of viewing pay information and releasing payment to
employees in less than 3 minutes.

REQ26 5
The user interfaces shall be aesthetically pleasing both to customers and to employees.
Aesthetically pleasing will be generally defined as having a favorable appearance to 80%
of 10 customers and 10 employees asked about the appearance of the program at random.

Reliability

REQ27 4 The hostess terminal shall be reliable to the extent that it does not crash more than once
every 2 months.

REQ28 5 The chef terminal shall be reliable to the extent that it does not crash more than once every
2 months

REQ29 5
The customer mobile application should reliable to the extent that it does not crash more
than once every 6 months. Because the customer application will connect to a local
wireless router, lack of internet access should not serve as an impediment to the customer
mobile application.

REQ30 3 The web application should be reliable to the extent that it does not crash more than once
per month.

REQ31 5
The system shall function in the absence of an internet connection. While the web
application would not function in such a case, all the standard operations of the restaurant
could occur. Once internet access is restored, the manager could update any necessary parts
of the system.

REQ32 2 The server shall have the built-in capability such that networking it with a central server or
backing up any data on it would take less than 3 days.

REQ33 1 The server shall have the capability of updating code dynamically to keep uptime above
99% in the event that updates or fixes are required.

Performance

REQ34 4
There should be a delay of no longer than 400ms for all operations on all devices except for
statistical queries run from the web application on the database. A 1 second delay is
acceptable for database queries with mathematical calculations.

Supportability

REQ35 3 The system design and implementation should be documented and simple to the extent that
a capable IT company could perform updates and fixes within 3 days

  17 

C. On-Screen Appearance Requirements

Since our project is a multi-platform design (android-based, computer terminal-based,
and web-based), we will have many on screen requirements we have to handle. Designing in just
android brings up many requirements. Being that android is a multi-device platform, we will have
to design our UI in a way that will accommodate all different types of devices. For example, there
are android devices in the form of tablets and phones that can be used with our system. Both
android tablets and phones comes in a wide variety of screen sizes and pixel densities. Since it
easy to port an Android app to run on a PC(and thus a web interface) using porting programs such
as "YouWave" , we will only focus on the on screen requirements for Android devices. As well
as hardware requirements, we also have to address usability requirements. Our system should not
only have a clean and polished look, but also be extremely easy to use for experienced users and
new users alike.

Android suggests making three different versions of your UI to accommodate screens that
are “Low Density”, “Medium Density”, and “Large Density”. But what about the different sized
screens within these categories? The best way to deal with this problem is so design “Fluid”
layouts, meaning that no matter what size screen one has, the program will automatically re-size
the UI to fit the screen. Luckily, the Android framework has this feature built-in. There are
various kind of layouts available (LinearLayout, FrameLayout etc.) that will gracefully fit images
based on screen resolution of the device.

To accommodate on screen usability requirements, we will design a UI that will require a
minimal amount of button presses to get to important features (5 or less), an intuitive design flow,
big buttons that can be ready from a distance of at least 2 feet away, and buttons that have icons
that show what the feature does in the case that someone that is not using the system does not
speak English as their first language.

Below is a table with a prioritized table of on screen requirements:

Identifier Priority Requirement

UIREQ-36 5 The UI shall be able to re-size itself to be able to fit on different sized
screens and devices.

UIREQ-37 5 The UI shall have multiple sized versions for different screen densities.

UIREQ-38 5 The UI shall be designed in a way that is easily ported to a PC and web-
based application.

UIREQ-39 4 The UI shall take no more than 5 button presses (besides typing
characters to log in) to reach desired program features.

UIREQ-40 3 The UI should have buttons that can be seen from at least 2 feet away

UIREQ-41 4 The UI shall have buttons with icons that easily describe program

  18 

features to users that do not speak English as a primary language.

UIREQ-42 3 The UI shall have an intuitive flow that can be easily used by new users
as well as experienced users.

UIREQ-43 1 The UI should have a version in English as well as Spanish.

Below are some screen shots showing designs on how we plan on overcoming UIREQ-2,
UIREQ-4, and UIREQ-5. These images depict a UI that has big, easily read buttons, a navigation
path that only take 3 button presses to choose a feature from the options menu, and multiple sized
screens to accommodate a phone and a table android device.

  19 

III. FUNCTIONAL REQUIREMENTS SPECIFICATION
A. Stakeholders

Usually, programming projects have five main stakeholders: the project managers,
software testers, program architects and developers, system analysts, and lastly clients. Clients are
defined as both employees as well as the company that will purchase the system. For the purpose
of this project, our group as a whole will assume the role of project managers, software testers,
program architects and developers and system analysts. Thus, the main focus for our stakeholders
will be the clients.

Our stakeholders are divided into two main categories:

1. Actors
This includes all of our program actors: customer, waiter, hostess, manager, and
delivery boy. These actors will be interacting directly with our system.

2. The Company that will purchase the system
This would include the head of the restaurant/restaurant chain. These people
generally will not be interacting directly with our system.

B. Actors and Goals

Initiating Actors:

1. Customer
a. This actor places a new order through the system at the table. The order that is

placed is relayed to the kitchen (UC-4: PlaceOrder)
b. This actor can edit a current order as long as the order has not been completed

(UC-5: EditOrder)
c. This actor can request a reservation (UC-1: MakeReservation)
d. This actor, after have eaten meal, can pay their bill (UC-7: PayBill)

2. Chef
a. This actor clocks in and clocks out when entering/leaving work (UC-25: ClockIn,

UC-26: ClockOut)
b. This actor has access to the statistics of the inventory of the restaurant (UC-16:

ViewStockStats)
c. This actor completes the order placed by the customer (UC-8: CookOrder)

3. Waiter
a. This actor clocks in and clocks out when entering/leaving work (UC-25: ClockIn,

UC-26: ClockOut)
b. This actor logs into the system to their specific interface (UC-31:

AuthenticateUser)
c. This actor adds/removes items from an order (UC-5: EditOrder)
d. This actor places orders for customers when a customer is having difficulty (UC-

4: PlaceOrder)

  20 

e. This actor collects payment from guests at a table when the guests are ready to
pay their bill (UC-7: PayBill)

f. This actor can change the status of a table when a table is either occupied or
empty (UC-11: TableOccupied, UC-12: TableClean, UC-13: TableDirty)

4. Host
a. This actor clocks in and clocks out when entering/leaving work (UC-25: ClockIn,

UC-26: ClockOut)
b. This actor logs into the system to their specific interface (UC-31:

AuthenticateUser)
c. This actor seats a Customer at a table when requested by the customer (UC-28:

SeatCustomer)
d. This actor can alter the floor plan of the restaurant for situations such as large

parties (EditLayout)
e. This actor can view the current status of tables in the restaurant and see whether

they are occupied, dirty, or clean (UC-2: CheckTableStatus)

5. Manager
a. This actor clocks in and clocks out when entering/leaving work (UC-25: ClockIn,

UC-26: ClockOut)
b. This actor logs into the system to their specific interface (UC-31:

AuthenticateUser)
c. This actor adds/removes employees from the database as well as updating an

employee’s information (UC-22: AddEmployee, UC-23: RemoveEmployee, UC-
24: UpdateEmployee)

d. This actor updates the menu by adding/removing items (UC-18: AddtoMenu,
UC-19: DeleteFromMenu)

e. This actor has access to the statistics of the inventory of the restaurant (UC-16:
ViewStockStatus)

f. This actor can view the restaurant statistics, which includes financial statistics
(UC-17: ViewStats)

g. This actor can alter the floor plan of the restaurant for situations such as large
parties (UC-3: EditLayout)

h. This actor can issue payment to employees (UC-20, ReleasePayment)
6. Delivery Boy

a. This actor clocks in and clocks out when entering/leaving work (UC-25: ClockIn,
UC-26: ClockOut)

b. This actor logs into the system to their specific interface (UC-31:
AuthenticateUser)

c. This actor notifies the system when a delivery has been completed (UC-21:
CompletedDelivery)

  21 

Participating Actors:

1. Chef:
a. Once the order of a customer has been placed, the order shall be placed on a

queue consisting of all current open orders. This actor will prepare the food that
is currently on the queue with those that have been placed first being prepared
first.

2. Server
a. This actor brings food and drinks to a table when these products are ready for the

customer.
b. This actor also responds to Customer’s calls which occurs when a Customer

would prefer to place the order with the server.
3. Busboy

a. This actor is responsible for cleaning tables at the restaurant once the server
marks the table as dirty.

C. Use Cases
I. CASUAL DESCRIPTION

USE CASE DESCRIPTION

MakeReservation (UC-1) Allows a customer/hostess to place a reservation.

CheckTableStatus (UC-2) Allows all personnel to see whether a restaurant table is
occupied, clean or dirty.

EditLayout (UC-3) Allows the hostess/manager to change the layout of restaurant
tables, including the combination of several tables into one to
accommodate larger groups.

PlaceOrder (UC-4) The waiter may place an order through the mobile application
system for their respective tables.

EditOrder (UC-5) Allows a customer/waiter to add/modify an order that has
been placed depending on whether or not the order has been
placed.

CancelOrder (UC-6) A waiter cancels an order that has already been placed
depending on whether or not the order has been placed.

  22 

PayBill (UC-7) Allows a customer to beckon the waiter for a check/receipt.

CookOrder (UC-8) The chef prepares the food according the customers’ orders.

(UC-9) Intentionally omitted to preserve numbering system

(UC-10) Intentionally omitted to preserve numbering system

TableOccupied (UC-11) Allows the hostess to denote a table occupied.

TableClean (UC-12) Allows the hostess/busboy to change the table status to clean
to denote a clean table ready for new customers.

TableDirty (UC-13) Allows the hostess/waiter to change the table status to dirty
and notify the busboy.

NewItem (UC-14) Allows the manager to create a new inventory item.

DeleteItem (UC-15) Allows the manager to delete an item from the inventory.

ViewStockStats (UC-16) Allows the chef/manager to check the current inventory in the
restaurant.

ViewStats (UC-17) Allows the manager to see the financial and ordering
statistics.

AddtoMenu (UC-18) Allows the manager to add an item to the restaurant menu.

DeleteFromMenu (UC-19) Allows the manager to delete an item from the restaurant
menu.

ReleasePayment (UC-20) Outputs the pay of restaurant personnel on a monthly basis,
resetting hours worked back to 0 after payout.

CompletedDelivery (UC-21) Once the delivery boy finishes a delivery, the order is removed
from the list of queued items.

  23 

AddEmployee (UC-22) Allows the manager to create a new employee account and
place it in the database.

RemoveEmployee (UC-23) Allows the manager to delete an employee account from the
database.

UpdateEmployee (UC-24) All the manager to update employee information in the
database

ClockIn (UC-25) The restaurant personnel notify the system of when they
started working.

ClockOut (UC-26) The restaurant personnel notify the system of their departure
time and adds the total hours clocked that day to their monthly
totals.

RequestTable (UC-27) The customer asks to be seated at a certain table or for an open
table.

SeatCustomer (UC-28) The hostess assigns a table to the customer.

GetPartySize (UC-29) Notifies the hostess of the number of people to arrive or be
seated with a customer’s request.

CleanTable (UC-30) The busboy is responsible for cleaning a particular table when
a party gets up and leaves the restaurant.

AuthenticateUser (UC-31) The hostess, waiter, and manager will be verified that they
have the authorization to enter a particular interface.

  24 

II. USE CASE DIAGRAM

The use case diagram displays the relationships between the various actors in the system
and the use cases. The use cases are connected to any characters that they require as well as other
use cases that are necessary for their completion. The manager is able to perform all of the use
cases. However, to simplify the appearance of the diagram, an arrow structure was used to show
that the manager is capable of performing any of the abilities the other employees can perform.
This kept a cleaner appearance while still conveying the dynamic of the system.

 

Figure 3 Use Case Diagram

  25 

III. FULLY DRESSED DESCRIPTION

Use Case UC-17 ViewStockStats

Related Requirements: REQ1, REQ2, REQ3, REQ4, REQ7

Initiating Actor: Any of: Manager, Chef

Actor’s Goal: To be able to view the statistics of individual menu
items. Specifically, how much of each item is used
when it is ordered as well as the amount of each item
currently available to the restaurant.

Participating Actors: Any of: Manager, Chef

Precondition: There must be items on the menu for which to view
the current stock of the ingredients that make up the
menu items.

Postcondition: The statistics of the inventory are successfully viewed,
and all the inventory are stocked.

Flow of Events for Main Success
Scenario:

→ 1. Manager logs in to system
 2. include::AuthenticateUser
→ 3. Manager chooses from menu “View Restaraunt
Statistics”
← 4. System displays a list of the current available
inventory of the restaurant.
→ 5. Manager chooses an inventory item from the list
 to view more detailed information.

Flow of Events for Extensions
(Alternate Scenarios):

2a. AuthenticateUser unsuccessful.
 → 1. System signals AuthenticateUser unsuccessful.
 ← 2. Manager re-enters password.
5a. A particular inventory item from the list states that
the item is out of stock.
 ← 1. Manager orders more of the stock item through
the system.

  26 

Use Case UC-4 PlaceOrder

Related Requirements: REQ8, REQ17

Initiating Actor: Any of: Customer, Waiter

Actor’s Goal: To record the orders of guests to be relayed to the kitchen for
preparation.

Participating Actors: Any of: Chef

Precondition: The table has been designated as occupied as well as having
the specified number of guests at the table.

Postcondition: An order is placed, and the chef is notified.

Flow of Events for Main
Success Scenario:

→ 1. Customer/Waiter selects “Add Item” on system
interface.
 2. include::AuthenticateUser
← 3. System provides the actor with an electronic
menu.
→ 4. Customer/Waiter selects an item on the menu.
← 5. System provides the option of editing the details
of the particular item.
→ 6. Customer/Waiter placed the order, and the item
is added to the bill under the particular guest that ordered the
item.
← 7. System notifies the Chef that the order is
placed.

Flow of Events for Extensions
(Alternate Scenarios):

3a. Customer asks Waiter for help on ordering
→ 1. Waiter orders for customer on a portable
interface.
← 2. System relays the ordered item to the
kitchen/Chef.
 3. Same as step 6 above.

6a. Item is out of stock.
← 1. System notifies actor that item is unavailable
 and shows the main menu so that the customer can choose a

  27 

different menu item.
→ 2. Customer/Waiter selects “Add Item” on system
interface.
 3. Same as step 4.

6b. Customer/Waiter cancels order prior to the chef
beginning to prepare the item.
← 1. System updates the bill of the guests so that the order
canceled is now removed.
← 2. System returns to the main menu.
→ 3. Customer/Waiter selects “Add Item” on the system
interface to choose a different menu item.
 4. Same as step 4.

  28 

Use Case UC-2 CheckTablesStatus

Related Requirements: REQ5, REQ6

Initiating Actor: Any of: Hostess

Actor’s Goal: Determine what tables are clean, occupied, dirty, or
reserved.

Participating Actors: Any of: Waiter

Precondition: There are available tables in the restaurant.

Postcondition: System returned status on a particular table.

Flow of Events for Main Success
Scenario:

→ 1. Customer requests a table by walking into the
restaurant.
 2. include::RequestTable
→ 3. Hostess checks the status of the tables in the
restaurant.
 4. include::AuthenticateUser
← 5. System returns the status of the tables in the
restaurant.
 6. include::SitCustomer

Flow of Events for Extensions
(Alternate Scenarios):

5a. System returns that there are no tables currently
available.
→ 1. Hostess waits a period of 5 to 10 minutes to
check the table status of the tables in the restaurant.
 2. Same as 3.

  29 

Use Case UC-7 PayBill

Related Requirements: REQ14

Initiating Actor: Any of: Customer, Waiter

Actor’s Goal: Allows the customer to pay for their total bill.

Participating Actors: Any of: Waiter

Precondition: The bill correctly corresponds to the correct table.

Postcondition: The bill has been successfully and precisely paid.

Flow of Events for Main Success
Scenario:

→ 1. Customer has reviewed the bill’s accuracy and now
wishes to pay the bill.
→ 2. If paying by cash, the waiter makes sure it is the
correct amount. If paying by debit or credit, the waiter
makes sure the transaction is successful.
 3. include::AuthenticateUser
← 4. System asks Waiter to input the table the bill
corresponds to as well as the method of payment.

Flow of Events for Extensions
(Alternate Scenarios):

2a. The transaction done by debit/credit was
unsuccessful.
← 1. System asks the Waiter to try again or use a
different method of payment.
 2. Same as 4.

  30 

IV. TRACEABILITY MATRIX

R

eq

PW

U
C

-1

U
C

-2

U
C

-3

U
C

-4

U
C

-5

U
C

-6

U
C

-7

U
C

-8

U
C

-9

U
C

-1
0

U
C

-1
1

U
C

-1
2

U
C

-1
3

U
C

-1
4

U
C

-1
5

U
C

-1
6

U
C

-1
7

U
C

-1
8

U
C

-1
9

U
C

-2
0

U
C

-2
1

U
C

-2
2

U
C

-2
3

U
C

-2
4

U
C

-2
5

1 5 X X X X X X X
2 3 X X X
3 2 X X X X X X X
4 4 X X X X
5 5 X X X X X
6 5 X X X X
7 2 X X X X X X
8 4 X X X X X
9 5 X X X

  31 

D. SYSTEM SEQUENCE DIAGRAMS

Authenticate User
 The following diagram displays the sequence for the main success scenario of the
use case AuthenticateUser. This includes the usage from all restaurant personnel to
initially login with a designated username and password to be checked with the stored
information in the database via an “AuthenticationRequest.” The alternate scenario for
this use case would have all the same sequence of steps with the exception of the final
return message from the system being an indication of a failed login attempt. As a result,
the alternate scenario is a rather trivial case with the main success scenario given below
and will not be diagramed below.

Figure 4.1: Authenticate User system sequence diagram of the main success scenario.

  32 

Place Order
 The following diagram exhibits the main success scenario for placing orders into
at the restaurant. The mobile application will be implementing this method for the
waiters. The featured menu will displayed for the user, in this case the waiters, to select
from the available foods, beverages, and other items to order. Once the selections are
done, the order is submitted to the chef’s interface to be prepared. Alternate scenarios
will have a similar sequence of events as below. However, instead of the indication of
success returned from the system, a message indicating the failed attempt to place an
order will be returned.

Figure 4.2: System sequence diagram for successfully placing an order(s).

Edit Menu Items

  33 

 The following diagram shows the possible flow of successful events when
editing the menu, which involves the addition and deletion of menu items along with
editing existing menu items. Only the manager is given the privileges to make changes to
the menu by entering the “EditMenuItems” interface. From here, the current menu list is
displayed to allow for the deletion or editing of existing items when selected. To add
items, new information must be typed into the provided text fields. The alternate
scenarios will be similar to the diagram below with the system returning an error rather
than an updated menu.

Figure 4.3: System Sequence diagram for changing the menu.

Edit Employees

  34 

 The following system sequence diagram shows the series successful of events that can be
taken when using editing the employees. This can only be done by the manager, so the diagram
shows only the actor Manager with the system. Here, the manager is allowed to edit the
employees with updated information including wages, remove any existing employees that are
fired or laid off, and add new employees to that have just been hired. For the alternate scenarios,
the system will either not allow changes to be made or return an error message to the manager.

Figure 4.4: EditEmployee system sequence diagram of successful events.

Edit Inventory/Stock

  35 

 The following system sequence diagram shows the sequence of events on the
restaurant’s inventory, only allowed by the manager. The only possible exception to
privileges is the automatic reduction in stock item quantities when orders are cooked. The
manager is allowed to add and remove stock items as well as change the current
quantities available.

Figure 4.5: EditInventory diagram of system sequences.

Clock In / Clock Out

  36 

 The following system sequence diagram describes the actions taken during a
successful scenario of events. All restaurant personnel need to clock in and clock out to
record into the system how long they have worked. The difference between the clock in
and clock out times are then saved to the database as total time worked.

Figure 4.6: Diagram of system sequences involving hours clocked.

  37 

IV. USER INTERFACE SPECIFICATION

A. DESIGN

Our interface is specifically designed to be user friendly. Firstly, we tried to create an aesthetically 
pleasing environment. This should create a feeling that doing their job is more enjoyable.We specifically 
made the interface have a dominant blue color. According to physiological studies about color, “Seeing 
the color blue actually causes the body to release chemicals that produce a calming effect...People tend to 
be more productive when around a blue environment because they are more calm and focused at the task 
at hand.” This is obviously something that a restaurant, an environment that can at times be very busy 
and stressful, would want. Also, we have implemented big buttons with clear icons and labels. This 
feature makes it easy for employees to use the touch screen in a expedient manner. Our user interface is 
also designed to have an intuitive flow, which allows for an almost zero learning curve for a new hire. The 
desktop interface is as follows. 

When one opens our system they are met with a welcome screen that prompts them to log in. 

     

 

 

 

 

 

 

 
 

This Log‐in procedure not only allows the system to verify who is using the system, but also allows it to 
know what system feature privileges to give to the user.  For examples, when a manager logs in, our 
system will know it is a manager and thus display the manager options screen.    

                       
                         
                         
                         
                         
                         
                         
                         
                         

  38 

                         
                 

The “View Stock” button allows the manager to view the status of all the restaurants ingredients(low 
stock, high stock, etc).The “Restaurant Stats” button shows the manager various restaurant statistics such 
as what items are selling the best, business reports, and more.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  39 

 

   

The “Timeclock” button lets the user clock in or out of their shift. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The “Table Status” button lets the user view and edit the status of a table; “Dirty”, “Occupied”, or “Clean”. 

 

 

 

 

 

         

 

 

 

  40 

 

The “Payroll” button allows the manager to add and delete employees, as well as alter employee time 
cards in case   of a mistake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The “Edit Menu” button lets the manager make changes to the restaurant menu.  

 

 

 

 

 

 

 

 

 

  41 

 

To compliment the desktop interface, we created a mobile interface to be used for actually placing orders 
either by the waiter or the customers themselves if they choose to do so.  When the mobile app is first 
launched, you are shown “User‐Mode” screen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If a waiter is taking orders for a table, they would choose the “Waiter” option. If the restaurant is 
employing embedded devices for the customer to take the order themselves, they would choose 
“Customer”. This then takes you to the Log‐in screen and then the prompt to start taking orders. 

 

 

 

 

 

 

 

  42 

 

After the waiter presses the “Place Order” button, they must choose which table they are taking orders 
for. 

 

 

 

 

 

 

 

 

 

 

 

 

Once the waiter chooses the table, they are met with the “Orders” screen. This screen will show the 
waiter what the current order is for that table, as well as the option to “Sumbit” the order and “Pay Bill”. 

 

 

 

 

 

 

 

 

 

 

  43 

The waiter then presses the “+” button to show the menu and start taking orders for each individual 
customer at the table. This menu is dynamic and can instantly be altered if the manager makes changes 
on the desktop application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If in the “Customer Mode”, after they submit their order they are shown the “Order Status” screen. This 
screen shows progress of their order set by the Chef. 

 

 

 

 

 

 

 

 

  44 

If in “Waiter Mode” after the order is submitted, cooked, and eaten, the waiter can then hit the 
“Pay Bill” button. This button does a few different things. First, it shows the total price for the tables 
order. Once the waiter hits “Accept” it will then set that tables status to “dirty” so the bus boy knows it 
needs to be cleaned. Lastly, it launches the Square Credit Card Reader application to finalize the 
transaction. This application allows the restaurant to take payments easily and efficiently. The card 
reader plugs in to the headphone jack of the iOS device and allows the customer to swipe their 
credit/debit card to pay for their meal. They can sign their name with their finger and choose to have 
their receipt either emailed or texted to them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

  45 

B. USER EFFORT ESTIMATION 

The most used and typical usage scenario is the log in of the restaurant personnel. This requires
input of information for authentication by the system. As a result, there is little to no navigational
input requirements as seen below.

Logging In (Applies to all restaurant personnel)

1. Navigational: total 1 mouse click as follows [after completing data entry as shown below]
a. Click “Login” button to log into the system

2. Data Entry: total 2 mouse clicks and a maximum of 50 keystrokes as follows
a. Click the “Username” text field
b. Enter a user name for the restaurant personnel
c. Click the “Password” text field
d. Enter a corresponding password to the entered user name

Customer

The customer user interface (UI) will include 3 prominant options in the main menu for ease-of-
use and reduced complexity. This includes a “Menu” button for ordering food, a “Request Check”
button to ask for a check and receipt once dining is finished, and a “Call Waiter” button for
further assistance or beckoning a waiter to order for the table instead. A “Home” button will bring
the customer back to the main menu after visiting 1 of the three menus.

As a result, this user interface is more demanding of clerical data entry for menu orders as shown
below.

Placing an Order

1. Navigation: total 3 mouse clicks as follows
a. Click “Menu” button [after completing data entry as shown below]
b. Click “Submit Order” button to place order

2. Data Entry: total 3 mouse clicks as follows
a. Click drop-down menu under order wanted
b. Click option from drop-down menu
c. Click “Add to Order” button

Chef

The user effort for the chefs’ user interface will be simplified for quick and efficient use in the
kitchen setting. The buttons for progress are made large and made to appear in sequence with
only one progress status update on the screen at a time. This allows for more concentration and
time for cooking an order well than spending time updating the progress of cooking.

Given this layout, there is little navigational input needed compared to clerical data entry for
updating the food completion status.

  46 

Updating Order Progress

1. Navigation: total 1 mouse click as follows
a. Click “Order Progress” button [after completing data entry as shown below]
b. Click “Exit” button to finish

2. Data Entry: total 5 mouse clicks as follows
a. Click drop-down menu for table orders
b. Click order to edit from drop-down menu
c. Click “Prepping” button
d. Click “Cooking” button
e. Click “Order Ready” button

Busboy

The busboy mainly needs to check the table status. Therefore, the prominent functionality allows
the busboy to know which tables need cleaning as efficiently as possible.

The navigational input required is minimized here, with more clerical data entry for changing
table statuses.

Viewing Table Status / Cleaning Tables

1. Navigation: total 2 mouse clicks as follows
a. Click “Table Status” button [after completing data entry as shown below --
b. Click “Exit” button to return to main menu

2. Data Entry: total 3 mouse clicks as follows [after cleaning a dirty table]
a. Click “Edit” tab
b. Click on the table just cleaned
c. Click “Clean” to change status to clean

Hostess

Aside from checking the table status to know which table to direct to customers to, the hostess
will also be allowed to make reservations. As a result, most of the inputs will be within the
clerical data entry.

A majority of the inputs for the hostess are for recording a reservation into the system, which is
demands more clerical data entry than navigation.

Make a Reservation

1. Navigation: total 2 mouse clicks as follows
a. Click “Reservations” button [after completing data entry as shown below]
b. Click “Create Reservation” to make a reservation

  47 

2. Data Entry: total 7 mouse clicks and a maximum of 25 keystrokes as follows
a. Click the “Customer Name” text field
b. Enter customer’s name
c. Click the “Date” drop-down menu
d. Click the specified date of the reservation
e. Click the “Time” drop-down menu
f. Click the time of day the reservation was made
g. Click the “Party Size” drop-down menu
h. Click the quantity that applies

Manager

Since the manager overlooks most, if not all of the restaurant operations, he/she will have the
greatest number of menu options. There is a greater navigational effort for the manager to view
restaurant statistics and operations. Some functionalities will have more emphasis on data entry,
including changes to menu options and employee/payroll statuses.

The following only requires navigational input, which has been minimized for ease-of-access.

Viewing Popularity of Menu Options

1. Navigation: total 3 mouse clicks as follows
a. Click “Restaurant Stats” button
b. Click “Item History” Tab
c. Click “Exit” button to return to main menu

2. Data Entry: no data entry required

 

  48 

C. EFFORT ESTIMATION USING USE CASE POINTS

Using the formulas from the notes on Use Case Estimation, we formulate the following
calculations.

Actors Weight
Waiter 2
Hostess 2
Manager 3
Chef 1
Busboy 1

The number 1 is associated with Simple, 2 is associated with average, and the 3 is associated with
Complex. Below is the UAW calculation which is the unadjusted actor weight.

UAW - (1*2)+(2*2)+(3*1)=9

For the use cases, we find the below calculations.

Use Cases Weights
ViewStockStats 2
PlaceOrder 2
CheckTableStatus 1
PayBill 1

UUCW = (1*1)+(5*2) + (1*2) = 13

  49 

V. DOMAIN ANALYSIS
A. DOMAIN MODEL

Inventory Domain

  50 

Menu Domain

Employee Domain

  51 

Clocking Domain

  52 

Payroll Domain

PayBill Domain

All of the domain models are linked by the controller, which is the main hub of the program’s
operation.

I. CONCEPT DEFINITIONS

  53 

Responsibility Description Type Concept Name
Container holding FoodItems that customers order. K Order
Coordinate actions of the ordering sub-system and delegate the
work to other concepts.

D OrderController

Archive a request in the database in the appropriate table. D OrderArchiver
Form specifying the order a customer places that is placed in the
database.

D OrderRequest

Form specifying a status update of an order that is placed in the
database.

D FoodProgressUpdateRequest

Returns the current status of a specified order that is present in
the database.

D OrderStatusRequest

Archive a request in the database in the appropriate table. D EmployeeArchiver
Verify user credentials that were entered with those in the profile
of a specific employee.

D AuthenticateUser

Coordinate actions of the employee sub-system and delegate the
work to other concepts.

D EmployeeController

Form specifying changes to an employee profile that is updated in
the database.

D EditEmployeeRequest

Container holding contact and payroll information about
employees.

K EmployeeProfile

Container holding information about food that can be served. K FoodItem
Container holding a list of FoodItems. K Menu
Coordinate actions of the menu sub-system and delegate the work
to other concepts.

D MenuController

Archive a request in the database in the appropriate table. D MenuArchiver
Form specifying changes to the list of items and the items that is
updated and saved in the database.

D EditMenuRequest

Container holding information about food items in inventory. D InventoryItem
Archive a request in the database in the appropriate table. D InventoryArchiver
Coordinate actions of the inventory sub-system and delegate the
work to other concepts.

D InventoryController

Form specifying changes to inventory that are saved in the
database.

D EditInventoryRequest

Container holding information about the tables in the
establishment.

K Table

Archive a request in the database in the appropriate table. D TableArchiver
Coordinate actions of the table sub-system and delegate the work
to other concepts.

D TableController

Returns the current status of a specified table that is present in the
database.

D CheckTableStatusRequest

Form specifying changes to the status of a specified table that is
currently in the database.

D EditTableStatusRequest

Form specifying changes to the physical layout of the tables in D EditTableLayoutRequest

  54 

the establishment.
Form specifying log in credentials that is later verified. D AuthenticationRequest
Form that shows actor current context, the actions that can be
done, and the outcomes of previous actions.

K InterfacePage

Coordinate actions of the entire system and delegate the work to
other concepts.

D MainController

Form specifying modification and calculation of payroll. D PayrollRequest
Form specifying a reservation for a certain date and time. D ReservationRequest

II. ASSOCIATION DEFINITIONS

Concept Pair Association Description Association
Name

OrderController <-> OrderArchiver OrderController conveys request to
OrderArchiver to send data to the
database.

conveys request

OrderController <-> OrderRequest OrderController receives order from
OrderRequest and sends order to
OrderArchiver

receives

OrderController <->
OrderStatusRequest

OrderController receives request
from OrderStatusRequest and returns
status of order from databse.

receives

OrderController <->
FoodProgressUpdateRequest

OrderController receives request
from FoodProgressUpdateRequest
and sends the modified data to
OrderArchiver.

receives

OrderController <->
DatabaseConnection

OrderController conveys request to
DatabaseConnection and receives
requested data.

conveys request

OrderController <-> MainController MainController conveys request to
OrderController, which delegates
task to other concepts.

conveys request

EmployeeController <->
PayrollRequest

EmployeeController receives a
request from PayrollRequest, which
is then processed and sent to the
database.

receives

EmployeeController <->
EditEmployeeRequest

EmployeeController receives a
request from EditEmployeeRequest
and sends data to EmployeeArchiver.

receives

EmployeeController <->
AuthenticateUser

EmployeeController conveys request
to AuthenticationUser and receives
validity of authentication.

conveys request

EmployeeController<-> EmployeeController conveys request conveys request

  55 

EmployeeArchiver to EmployeeArchiver to send data to
the database.

EmployeeController <->
DatabaseConnection

EmployeeController conveys request
to DatabaseConnection and receives
requested data.

conveys request

EmployeeController <->
MainController

MainController conveys request to
EmployeeController, which
delegates task to other concepts.

conveys request

TableController <->
EditTableLayoutRequest

TableController receives request
from EditTableLayoutRequest and
sends data to TableArchiver

receives

TableController <->
EditTableStatusRequest

TableController receives request
from EditTableStatusRequest and
sends data to TableArchiver

receives

TableController <->
CheckTableStatusRequest

TableController receives request
from CheckTableStatusRequest and
returns status.

receives

TableController <-> TableArchiver TableController conveys request to
TableArchiver to send data to the
database.

conveys request

TableController <->
DatabaseConnection

TableController conveys request to
DatabaseConnection and receives
requested data.

conveys request

TableController <-> MainController MainController conveys request to
TableController, which delegates
task to other concepts.

conveys request

InventoryController <->
EditInventoryRequest

InventoryController receives request
from EditInventoryRequest and
sends data to InventoryArchiver

receives

InventoryController <->
InventoryArchiver

InventoryController conveys request
to InventoryArchiver to send data to
the database.

conveys request

InventoryController <->
DatabaseConnection

InventoryController conveys request
to DatabaseConnection and receives
requested data.

conveys request

InventoryController <->
MainController

MainController conveys request to
InventoryController, which delegates
task to other concepts.

conveys request

MenuController <->
EditMenuRequest

MenuController receives request
from EditMenuRequest and sends
data to MenuArchiver.

receives

MenuController <-> MenuArchiver MenuController conveys request to
MenuArchiver to send data to the

conveys request

  56 

database.
MenuController <->
DatabaseConnection

MenuController conveys request to
DatabaseConnection and receives
requested data.

conveys request

MenuConroller <-> MainController MainController conveys request to
MenuController, which delegates
task to other concepts.

conveys request

MainController <-> InterfacePage MainController displays
InterfacePage based on actor’s
position.

display

MainController <->
ReservationRequest

MainController receives request
from ReservationRequest and returns
feedback of reservation.

receives

III. ATTRIBUTE DEFINITIONS

Concept Attributes Attribute Description

Name Used to determine the name of the employee for
convenient search and reference.

ID Holds the identification number of the employee to
specify a unique employee.

Position Used to determine the employee’s position in the
infrastructure of the establishment and determine the
interface the user is authorized to view.

Address Used in order to determine the address at which
information will be sent to the user.

Wage Used to determine the payment that will be made
during payroll calculation.

Username Unique phrase used by the user as the log in name and
half of the authentication protocol.

Password Unique phrase used in conjunction with Username to
validate user into system.

EmployeeProfile

HoursWorked Holds the total time the user is clocked in.

Name Used to determine the name of an item for convenient
reference.

FoodItems

ID Number Holds the identification number for an item in order to

  57 

distinguish unique items.

Price Used to determine the cost of an order including an
item.

Description Holds the detailed information about a menu option.

Order FoodItem Holds the menu option chosen to be prepared.

Name Used to determine the name of an item in stock within
the inventory.

ID Number Holds the identification number to determine specific
items and organizing.

Quantity Holds the amount of an item remaining.

InventoryItem

Description Holds detailed information on an item.

Username Unique phrase stored in the system to match with
corresponding entered log in information.

AuthenticationRequest

Password Unique phrase corresponding to a Username stored
for matching with entered keystrokes.

Date Holds the month, day, and year. ReservationRequest

Time Holds the time of day.

ID Number Holds the identification number to distinguish
between different tables.

Table

Location Holds information of the physical placement of tables
in the restaurant.

IV. TRACEABILITY MATRIX

  58 

B. SYSTEM OPERATION CONTRACTS

  59 

Name: CheckTableStatus

Responsibilities: Determines which tables are clean, dirty, occupied, or reserved

Cross
References:

Use Cases: CheckTableStatus

Exceptions: None

Preconditions: There are tables.

Postconditions: The current conditions of the tables were updated and displayed.

Name: PlaceOrder

Responsibilities: Records customers’ orders.

Cross
References:

Use Cases: PlaceOrder

Exceptions: None

Preconditions: There are menu items to order.

Postconditions: Orders were recorded by the system.

Name: AuthenticateUser

Responsibilities: Checks the user logging into the system is an employee.

Cross
References:

Use Cases: AuthenticateUser

Exceptions: None

Preconditions: There are users in the system database.

Postconditions: User was identified as either an employee or not.

Name: StockStats

Responsibilities: Returns the quantities of items in the inventory.

Cross Use Cases: StockStatcs

  60 

References:

Exceptions: None

Preconditions: There is a list of inventory items.

Postconditions: The amounts of each inventory item was displayed.

Name: ViewRestaurantStats

Responsibilities: Displays the popularity of menu items along with menu and restaurant
statistics.

Cross
References:

Use Cases: ViewRestaurantStats

Exceptions: None

Preconditions: There are menu items to be ordered.

Postconditions: The frequency of each menu item ordered was displayed.

Name: EditMenuItems

Responsibilities: Adds and/or deletes menu options.

Cross
References:

Use Cases: EditMenuItems

Exceptions: None

Preconditions: There are menu items already in the system.

Postconditions: The items to be added to the menu and deleted from the menu were added
and deleted.

Name: ClockIn

Responsibilities: Records the time an employee begins working.

Cross
References:

Use Cases: ClockIn

Exceptions: None

  61 

Preconditions: An employee is authenticated and logged in.

Postconditions: The time the employee clocked in was recorded in the system.

Name: ClockOut

Responsibilities: Records the time an employee ends a work shift.

Cross
References:

Use Cases: ClockOut

Exceptions: None

Preconditions: An employee is clocked in.

Postconditions: The employee’s working hours were adjusted to with the recorded clock out
time, with wages adjusted.

Name: AddEmployee

Responsibilities: Creates a new employee profile in the system.

Cross
References:

Use Cases: AddEmployee

Exceptions: None

Preconditions: The employee is not already in the system and the manager is logged in.

Postconditions: A new profile was added to the employee roster.

Name: RemoveEmployee

Responsibilities: Deletes an existing employee profile from the system.

Cross
References:

Use Cases: RemoveEmployee

Exceptions: None

Preconditions: The employee’s profile to be deleted is already in the system.

Postconditions: The employee’s profile was removed from the list of employees in the system

  62 

Name: UpdateEmployee

Responsibilities: Updates the information for the employee profiles in the system.

Cross
References:

Use Cases: UpdateEmployee

Exceptions: None

Preconditions: There are employee profiles in the system.

Postconditions: Old employee information was replaced by newer information.

Name: ReleasePayment

Responsibilities: Pays employees the amount earned and updates their payroll

Cross
References:

Use Cases: ReleasPayment

Exceptions: None

Preconditions: There are employees with wages and payroll information.

Postconditions: The payroll was reset after a payment to the respective employees and
statistics recorded.

B. MATHEMATICAL MODEL

The application requires some very basic algorithms in order to calculate various restaurant
statistics. Those are as follows.

Payroll

The system will calculate payroll statistics. The system will access the hours the employee
worked, multiply the number of hours by their hourly wage, and then record how much the
employee was paid and reset the employee’s hours to zero.

Check Statistics

The manager will be allowed to check the menu trend and most popular hours that that customers
visit the restaurant. The system will return the most popular food items by returning their sales
per week. Also, the system will return the average customers per hour on any given day.

  63 

Check Stock

The system will simply access the current amount of stock and return the values. It will also give
recommended amounts to order based on the trends in menu items and the ingredients they are
composed of.

V. BUSINESS POLICIES

Below, we will list a various number of situations as well as conditions to these situations. These
particular situations are relevant because they describe the conditions for several of our use cases.

1. An employee will be deleted from the system in various situations. One situation would be that
the employee was fired due to not following the company policies such as being continuously
being late or not showing up to work without having the shift covered. Another situation would
be if an employee has not worked for more than two months.

2. An employee may remove an item from a person’s bill in the following cases:

a. An employee ordered the incorrect item.
b. The item was delivered to the customer in an inappropriate manner such as not being
 properly cooked or unsanitary.
c. The item was delivered after an appropriate amount of wait time, and the customer
 complained. With the interview at Applebee’s, it was learned that an appropriate amount of
 time varies on whether or not it is busy. The waiter uses his discretion as to whether or not
 the time the guests had waited for food was appropriate.

3. A guest can make a reservation as long as a phone number is left. A condition for this is to
assure that a reservation is possible to be made. The amount of reservations that could be made is
dependent on the time. For the AM shift, there can be a high limit on the reservations such as 5
per hour due to the low frequency of customers. For the PM shift, we will allow 2 reservations
per hour. Once these reservations are made, tables that could accommodate the guests will be
reserved a half hour prior, similar to Applebee’s. If the guests do not arrive 15 minutes after the
time the reservation was for, then the table will be given up to another party if it is during a PM
shift. The guests that have made the reservation will be made aware of this policy. Also, it often
occurs that a table cannot be reserved half hour prior due to having a ‘full house’ or having all the
tables being occupied. Thus, there will potentially be a wait, and the guests will be made aware of
this fact.

4. A guest can cancel a reservation. There are no restrictions as to whether or not you could
cancel a reservation, but it is preferred if a reservation is canceled a half hour prior.

  64 

5. When a guest enters the restaurant, ideally the guest shall be sat in a short amount of time.
Again, this is dependent on the particular time of the day and week. The business policy will be
that if all tables are occupied, then the wait will begin at approximately 10 minutes for parties of a
size less than or equal to 6. Any guest after the first party will have a weight time 5 minutes
longer. Larger parties that consist of 7 or more guests will naturally have a longer wait due to the
greater number of guests that need to be accommodated.

VII. INTERACTION DIAGRAMS

  65 

The formatting of the figures will vary between interaction diagrams due to the use of different
software to compile them. Since some group members have Mac’s and other members have
PC’s, the software used by the PC’s did not contain a cross platform support for Mac’s.

CheckTablesStatus

This case’s main role is to check the status of the tables’ in the restaurant. The first role is
assigned to the Host and follows the Expert Doer Principle since the host is the first to learn the
information needed for this particular use case. The Database sends back information to the
DatabaseController. Then, the GUIController displays the TablesStatus. There exists high
cohesion in that most objects do not have many responsibilities. When the Database is asked for
the TableStatusRequest, there is a loop that checks all tables in the restaurant for the data (the
data being the status of each table). This particular sequence of call is the most responsibility an
object in this use case has.

Figure 5.1: CheckTableStatus interaction diagram.

PlaceOrder

  66 

This interaction exhibits high cohesion as no object has many responsibilities. The
Controller and has other functionalities when dealing in other use-cases and as a result it is not
tasked with the responsibility of the specialized object OrderArchiver or Order. The coupling in
this interaction is not low with respect to controller. It has the responsibility of communicating
with each other object. DatabaseConnection exhibits expert doer principle because it retrieves
data from the database; which is a system known only to this object.

The interaction for placing an order proceeds as followed:
User enter and order on the UserInterface which is then requested to be added through

AddOrderRequest, which creates an Order. Then the order is sent to the controller, which verifies
with that database that the order can be placed. At this point there are two scenarios. The first
scenario is that the order is valid and then a loop is run until the order can be saved by the
OrderArchiver. Finally, the Controller tells the UserInterface to prompt that the order was placed.
The second scenario is when the order is not valid. When this occurs the Controller tells the
UserInterface to prompt that the order was not placed.

Figure 5.2: PlaceOrder interaction diagram.

  67 

UpdateEmployee

A call is made from the payroll interface when the UpdateEmployee button is pushed.
The payroll controller would generate a form and receive an argument for the employee to be
updated. This information would be utilized to populate a database query. Depending upon the
search, the database will either return the employee object or notify the payroll controller of the
failed attempt. Included in the employee object will be current information for the manager
looking to update the information. This could include data such as name, address, phone number,
wage level, etc.

When the database successfully returns an employee object and a modifiable form is
generated by the Payroll controller, the user will then input the updated employee information. A
validation object will check this information to ensure that it is correct before allowing
modification of the actual employee object.

If validation is successful, the modified employee is passed back to the database. The
database connection will return either successfully or unsuccessfully. An unsuccessful return , as
is the case for unsuccessful employee data entry, results in a return back to the employee form.

Figure 5.3: UpdateEmployee interaction diagram.

  68 

EditMenu

The interactions involved in editing the menu will be rather bulky if not split into subsequent
interactions. With the principle of high cohesion, there is more focus on computational
responsibilities. The function call to add to the menu only has concerns with adding to the current
menu. Likewise, the delete function call only centers on the deletion of a menu item. As for the
objects themselves, a more expert doer principle applies with the “MenuController” object doing
most of the work in manipulating the information for changing the menu. However, this allows
for a loose coupling between the menu and the food items. This ensures a change to food items
does not drastically affect the menu itself.

Figure 5.4a: AddItem interaction diagram.

  69 

Figure 5.4b: DeleteItem interaction diagram.

  70 

CheckStats

This interaction diagram shows how the system distributes responsibility to various
software components. The Main Controller is used in various other interactions. The Stat
Controller keeps track of stats by reading and writing them to the database as well as analyzing
them for graphical display.

The interaction for checking the restaurant stats goes as follows: The user (manager)
requests to see the stats with GetRestaurantStats(s), s being the specific stat to be displayed (menu
item trend, customer trends, etc.). This is passed to the Main Controller with getStats(s), and
further goes to the Stat Controller through sendStatRequest. The Stat Controller performs a
database request to get the pertinent data. It is then returned to the Stat Controller for analysis
specific to the type of data requested. This then returns to the main controller where it gets
displayed to the user.

Figure 5.5: CheckStats interaction diagram.

  71 

VIII. CLASS DIAGRAM AND INTERFACE SPECIFICATION
A. CLASS DIAGRAM

  72 

 

 

 

 

 

  73 

  74 

  75 

The class diagrams that are presented above show first the overall class diagram with the class
names and the interaction between the classes. As seen above, the main hub of communication is
the MainControl class as well as the DBConnectionPool, which links to the DBConnection, from
which all of the data is stored and retrieved. The UserInterface is also a main hub from which
incoming requests from every other interface is transmitted to the MainControl and then
delegated to the specified controllers (ie. OrderControl, InventoryControl, EmployeeControl).

The subsequent class diagrams are split logically by specialization of operations where each
controller is specified within its own class diagram. There are also diagrams that were
incorporated to show logical connections between all of the classes. For example, there is a class
diagram that refers to all of the interfaces which links them to the MainControl, which is at the
center of the program.

The DBConnectionPool and the DBConnection were show in a separate class diagram because
they represent the design pattern of ObjectPool and DBConnection does not need to be re-iterated
in every class diagram.

 

B. DATA TYPES AND OPERATION SIGNATURES

MainController
Attributes:

Operations:

+manageEmployee(in employee:Employee, in time:string) : void
 //Control over employee profiles and their working hours
+manageStats(in data:StockStats) : void

//Control over the data for the restaurant’s food orders and customer actions
+managePayroll(in employee:Employee) : void

//Control of the financial aspects of each employee including payout and wages
+manageInterface(in employee:Employee, in type:string) : void
 //Control of the user interfaces of all restaurant personnel.
+manageTable(in table:Table, in action:string) : void
 //Control over all changes to table statuses, number, and location.
+manageOrder(in order:Order, in table:Table) : void
 //Control over all orders including order placement and cancellation
+manageInventory(in item:InventoryItem) : void
 //Control over all inventory items and quantities

DBConnection

Attributes:
-DatabaseUser:string
 //The username for all employee logins
-DatabasePassword:string
 //The password for all employee logins

  76 

-DatabaseURL:string
 //The location of the database

Operations:
+openConnection() : bool
 //Connects to the database
+closeConnection() : bool
 //Disconnections from the database
+queryDatabase(in query:string) : string
 //Sends a query to the database to retrieve information

Archiver
 Attributes:

-DBConnection:DBConnection
 //The connection with database

 Operations:
+storeData(in query:string) : bool
 //Stores data from query to the database

PayrollControl

Attributes:
-employee:Employee
 //The employee referred to for payroll

Operations:
+calculatePayment(in wage:int, in hours:int) : double
 //Determines the amount earned for the employee
+releasePayment() : bool
 //Pays the employee the amount earned and resets hours worked

Clock

Attributes:
-TimeWorked : double
 // amount of time an employee has worked

Operations:
+ClockIn(in time:string) : bool
 // records the time when an employee starts working
+ClockOut(in time:stirng) : bool
 //records the ending time of an employee’s work shift

EmployeeControl
Attribute:

  77 

Operations:

+addEmployee(in employee:Employee) : bool
 //Puts a new employee profile into the database
+removeEmployee(in employee:Employee) : bool
 //Deletes and existing employee profile from the database
+editEmployee(in employee:Employee) : bool
 //Changes the information in the employee profile in the database

Employee

Attributes:
-FirstName:string
 //Person’s first name
-LastName:string
 //Person’s last name
-Wage:double
 //The amount earned per hour worked
-Username:string
 //Username for logging in
-Password:string
 //Password for logging in
-Type:int
 //Occupational role in the restaurant
-SSN:int
 //Social Security Number
-EmployeeID:int
 //An identification number

Operations:
+getFirstName() : string
 //Returns the employee’s first name
+setFirstName(in fname:string)
 //Changes/makes first name to fname
+getLastName() : string
 //Returns the employee’s last name
+setLastName(in lname:string)
 //Changes/makes last name lname
+getWage() : double
 //returns the employee’s wage
+setWage(in wage:double)
 //Changes/makes the wage as specified
+getUsername() : string
 //Returns the employee’s username
+setUsername(in username:string)

  78 

 //Changes/makes the username as specified
+getPassword() : string
 //Returns the employee’s password
+setPassword(in password:string)
 //Changes/makes the password as specified
+getType() : int
 //Returns the employee’s occupational role
+setType(in type:int)
 //Changes/makes the employee’s occupational role as specified
+getSSN() : int
 //Returns the social security number of an employee
+setSSN(in ssn:int)
 //Changes/makes the social security number a 9 digit integer
+getEmployeeID() : int
 //Returns the employee’s identification number
+setEmployeeID(in id:int)
 //Changes/makes the employee’s identification number as specified.

MenuItem
Attributes:

-Name : string
 // Name of food on the menu
-FoodID : double
 // Identification number for food
-Price : double
 // Ordering price of the food
-Description : string
 // Describes the food item

Operations:

Order
Attributes:

-FoodItem : FoodItem
 //A food item from the menu
-Progress : FoodProgress
 //The state of progress of the ordered food

Operations:

OrderControl
Attributes:

-numOfOrders : double
 //Keeps track of how many orders there are

  79 

Operations:
+displayOrder()
 //Shows the orders to the chef and customer
+invalidOrder(in order:Order) : bool
 //Tells whether the order can be made depending on inventory stocks
+addOrder(in order:Order)
 //Adds an order from the menu to be cooked
+editOrder(in order:Order)
 //Edits the orders made to the customers needs (ex. Adding cheese)
+cancelOrder(in order:Order)
 //Cancels an order if made within 2 minutes of cancellation

FoodProgress

Attributes:
-OrderStatus : string

//variable that stores whether an order is started, being prepared, or finished

Operations:
+getOrderStatus()
 //Returns the whether an order is started, being prepared, or finished
+setOrderStatus(in status:string)
 //Makes an order with the status specified

StatsControl
Attributes:

-day : string
 //The day
-week : string
 //The week
-year : string
 //The year

Operations:
+showDailyStats(in date:string) : void
 //displays the financial statistics for every day starting with the inputted date
+showWeeklyStats(in date:string) : void
 //displays the financial statistics by weeks starting with the inputted date
+showMonthlyStats(in date:string) : void

//displays the financial statistics by months starting with the inputted date
+showYearlyStats(in date:string) : void

//displays the financial statistics by year starting with the inputted date

InventoryItem

Attributes:

  80 

-Name : string
 //name of food item in inventory
-StockID : double
 //identification number for food item in inventory
-Quantity : double
 //amount of the food item in the inventory

Operations:

InventoryControl

Attributes:

Operations:
+addInventoryItem(in item:string)
 //Adds an new item to the inventory
+removeInventoryItem(in item:string)
 //Deletes an item from the inventory
+addStock(in stock:int, in item:string)
 //Increases the quantity of an item in the inventory
+removeStock(in stock:int, in item:string)
 //Reduces the quantity of an item in the inventory

Reservation
 Attributes:

-date:string
 //The date of the reservation
-time:string
 //The time of reservation
-table:Table
 //The table to be reserved

 Operations:

Table
 Attributes:

-ID:int
 //Table number
-location:string
 //Coordinates of table in restaurant
-status:string
 //Table status (dirty, reserved, occupied, clean)

 Operations:

TableControl

  81 

 Attributes:
-table:Table
 //A table in the restaurant

 Operations:
+editTableStatus(in table:Table) : bool
 //Changes the status of a table
+editTableLayout(in table:Table) : bool
 //Moves a table to a different location
+getTableStatus(in table:Table) : string
 //Returns the status of a table
+getTableLayout() : Table
 //Returns the layout of the tables

Menu
 Attributes:

-item:MenuItem
 //An item on the menu

 Operations:

Menu Control
 Attributes:

 Operations:

+addMenuItem(in item:MenuItem) : bool
 //Adds an item to the menu
+removeMenuItem(in item:MenuItem) : bool
 //Removes an item from the menu

BusBoyInterface

Attributes:

Operations:
+editTableStatus(in table:Table, in status:string) : bool
 //Changes the table to clean
+viewTableStatus(in table:Table) : string
 //Returns the status of a table (dirty, reserved, occupied, clean)

CustomerInterface

Attributes:

Operations:
+placeOrder(in order:Order)
 //Make an order from the menu and submit it to the chef.
+makeReservation(in table:Table, in date:string)
 //Reserve a table(s) in the restaurant for a specified date.

  82 

+payBill(in bill:double, in amount:double, in type:string)
 //Pays the final bill with either cash or credit card.
+viewOrderStatus(in order:Order) : bool
 //Shows the progress of an order
+viewBill(in bill:string) : bool
 //Shows the final bill
+viewReservationList()
 //Shows all the reservations made

StatInterface

Attributes:
-day : string
 //The day
-month : string
 //The month
-year : string
 //The year

Operations:
+showStats(in date:string)
 //Displays the financial and customer statistics for the inputted date.

HostInterface

Attributes:
-table : Table
 //Represents an actual table in the restaurant.

Operations:
+editTableLayout(in table:Table) : bool
 //Moves the selected table to a specified new location.
+editTableStatus(in table:Table, in status:string) : bool
 //Denotes the selected table as dirty, reserved, occupied, or clean.
+showTableLayout() : bool
 //Displays the arrangement of tables in the restaurant
+showTableStatus(in table:Table) : string
 //Returns the status of a table

ManagerInterface

Attributes:

Operations:
+editEmployee(in employee:Employee, in time:string) : void
 //Add ore remove employees
+82ditable(in table:Table, in action:string) : void

  83 

 //Change all aspects of tables including location and status
+editOrder(in order:Order, in table:Table) : void
 //Change orders to add or remove items and cancel orders as needed.
+viewEmployeeInformation(in employee:Employee) : bool
 //Shows the profile of an employee
+viewPayrollInformation(in employee:Employee) : bool
 //Shows the payroll of an employee
+showTableLayout(in table:Table) : bool
 //Displays the arrangement of tables in the restaurant

UserInterface
Attributes:

Operations:

+renderInterface(in type:string)
 //Creates the screen for the user interfaces

C. TRACEABILITY MATRIX

Below is the traceability matrix showing all the classes that evolved from the domain concepts.
Because of the immensity of classes and concepts, the matrix has been divided and placed on
several pages.

The simplest changes from the concepts to the classes include the shortening of names, as seen
from the domain concept UpdateOrderStatusRequest and the class FoodProgress. Also, an
Archiver class is made to control all class actions to and from the database.

However, the major development to the software classes from the domain concepts is the idea of
an overview controller that oversees operations in many operations. In addition, there is a main
controller to handle all the other controller classes. This is the reason many classes take on the
responsibilities of several domain concepts. The controller classes include: MenuControl,
PayrollControl, StatsControl, OrderControl, EmployeeControl, InventoryControl, TableControl,
UserInterface, and MainControl.

Furthermore, some domain concepts are mapped out to more than one class. This is due to the use
of interface classes, which allow the respective users to do specific actions as needed, like
viewing a table’s status or viewing an employee’s profile information. As a result, there is a user
interface class for each actor, and an overall user interface class to render all the displays.

 

  84 

 Software Classes

Domain Concepts

Em
pl

oy
ee

C
lo

ck

Em
pl

oy
ee

C
on

tro
l

Pa
yr

ol
lC

on
tro

l

Fo
od

Ite
m

St
oc

kI
te

m

St
oc

kS
ta

ts

In
ve

nt
or

yC
on

tro
l

St
at

sC
on

tro
l

B
us

B
oy

In
te

rf
ac

e

C
us

to
m

er
In

te
rf

ac
e

Employee x

Clock x

ClockOutRequest x

ClockInRequest x

AddEmployeeRequest x

RemoveEmployeeRequest x

UpdateEmployeeRequest x

ReleasePayment x

MenuItem x

InventoryItem x

ViewInventoryRequest x

AddInventoryItemRequest x

RemoveInventoryItemRequest x

AddInventoryRequest x

RemoveInventoryRequest x

PayBillRequest x x

ViewBillRequest x

ViewPayrollRequest x

UserInterface x

Menu

AddMenuItemRequest

  85 

RemoveMenuItemRequest

Controller

DatabseConnection

Archiver

 

D. DESIGN PATTERNS

The system is fairly simple in its implementation and as a result many design patterns would
only complicate the implementation with little to no benefit.

In the case of Publisher-Subscriber, there is no object for which a change in the system would
need many other objects to be informed. The lack of necessity for many objects to be informed of
system changes is due to the implementation of the user interface, Java Swing. This interface, part
of the java.swing package, inherently does not require publisher-subscriber since all actions are
known by the interface package. In every case of implementation, there is only one object that
would subscribe to the actions of an object denoted as a publisher and as a result it is not
necessary to use this design pattern. Expansion is also not a viable reason for using the Publisher-
Subscriber pattern because of the flow of information.

The Proxy design pattern is used by the Java Database Connection (JDBC), which includes the
design pattern within it. Java’s implementation of JDBC interfaces the MySQL connection that
we are using and proxies it within the local client in order to protect the information that is being
sent to and from the remote server. As a result, through the use of the JDBC, the proxy design
pattern is thus implicitly used in our implementation.

The Object Pool pattern is used to implement the database connection. The connection to the
database is used often and constantly creates and destroys a connection object, which causes an
unnecessary overhead. When the functionality is expanded, an even larger overhead is caused due
to the sheer amount of connections that would need to be made. The object pool pattern is a set of
initialized objects that are kept within a pool and are called upon to be re-used. In essence, the
object pool is a form of the more generic Factory design pattern, where an object is tasked to
create objects. In this special case, an object has the task of returning the set of initialized objects
and holding a pool of these objects created for re-use, rather than constructing and destroying the
objects. The object pool provides greater efficiency in the case of our implementation because we
use a database connection often to retrieve and store data within the database. Accordingly, the
object pool allows for the management of the number of connection objects made.

The Flyweight pattern would have been used for our table implementation; however, this was
not possible due to the time constraint and the complexity of the design. The flyweight pattern
also is a specific type of the Factory pattern that allows for many objects that share similar states
and behavior to be easily supported. The flyweight pattern would be used because of all the
tables have certain states (clean, occupied, and dirty) in which they can be and the large amount

  86 

of tables present in the restaurant, which would use a lot of memory. The flyweight pattern solves
the memory usage issue because there would be a “flyweight” class that holds the extrinsic state
of the tables and would have methods that would change the extrinsic states that vary from object
to object. This pattern also allows for efficiency in creating tables and reusability of instances of
the classes as in the object pool pattern.

Due to time constrains and prior implementation of certain aspects of the project, many design
patterns could not be used. However, there may be some design patterns that were inherently used
in our program but not recognized.

  87 

E. OBJECT CONSTRAINT LANGUAGE (OCL) CONTRACTS

context EmployeeControl::addEmployee(in employee:Employee) : bool 

pre: Employee.oclIsUndefined() 

post: result = not Employee.oclIsUndefined() 

 

context EmployeeControl::removeEmployee(in employee:Employee) : bool 

pre: not Employee.oclIsUndefined() 

post: result = Employee.oclIsUndefined() 

 

context EmployeeControl::editEmployee(in employee:Employee) : bool 

pre: not Employee.oclIsUndefined() 

post: result = Employee.oclIsNew() 

inv: Employee.SSN  size() == 9 

inv: Employee.Password  size() >= 6 

 

context Clock 

inv: self.TimeWorked >= 0 

 

context FoodProgress 

inv: let status : string = {“Pending”, “Preparing”, “Cooking”, “Done”} in 

self.OrderStatus = status 

 

context InventoryControl::addInventory(in item:InventoryItem) : bool 

pre: InventoryItem.oclIsUndefined() 

post: result = not InventoryItem.oclIsUndefined() 

inv: InventoryItem.stock  size() >= 0 

  88 

 

context InventoryControl::removeInventoryItem(in item:InventoryItem) : bool 

pre: not InventoryItem.oclIsUndefined() 

post: result = InventoryItem.oclIsUndefined() 

inv: InventoryItem.stock  size() >= 0 

 

context InventoryControl::editInventoryItem(in item:InventoryItem) : bool 

pre: not InventoryItem.oclIsUndefined() 

post: result = InventoryItem.oclIsNew() 

inv: InventoryItem.stock  size() >= 0 

 

context InventoryItem 

inv: InventoryItem.name  size() >=0 

 

IX. SYSTEM ARCHITECTURE AND SYSTEM DESIGN
A. ARCHITECTURE STYLES

Depending on the details of a particular project, an architectural style must be chosen. One
type of architectural style is the Repository Architectural Style where subsystems access and
modify a central repository. All subsystems are independent and the only interaction that occurs
is through the central repository. For our particular project, this architectural style is not the best.
This architectural style is heavily dependent on the central repository. If something would lead
towards the central repository losing its data, the data of the whole system would be lost. Also,
changes that we would wish to create would be difficult to implement.

Another architecture style is the MVC (Model/View/Controller) Architectural Style. This
particular subsystem separates all the subsystem into three categories defined as the model
subsystems, view subsystems, and the controller subsystems. The model subsystems role is to
store the data of the application. The view subsystems display data to the user. The controller
subsystems manage the interactions between user and system. In our implementation, this is the
best architectural style. By using this style, we are able to make changes, and it would be easily
implemented.

Finally, there is the Three-Tier Architectural Style. The subsystems are separated into three
parts: the Interface Layer, the Application Logic Layer, and the Storage Layer. The Interface

  89 

layer is defined as the User Interface or the boundary that interacts with the user. The Application
Logic Layer has the task of controlling objects. Lastly, the Storage Layer constitutes as the
database. By dividing up the subsystems into parts, we are able to create changed that would not
affect the other parts.

B. IDENTIFYING SUBSYSTEMS

Figure 6: SubSystems 

 

 

 

 

 

 

 

 

 

 

  90 

C. MAPPING SUBSYSTEMS TO HARDWARE

 

Figure 7: Subsystems to Hardware 

 

 

 

 

 

 

 

 

 

  91 

D. PERSISTENT DATA STORAGE

The restaurant automation system will require storage and accessibility to the various parts of
the system at different times. The data will be organized via a relational MySQL database to
facilitate concurrent accessibility and ease of use. There is the potential that waiters, managers,
hosts, chefs, delivery-boys and busboys will interact with their respective subsystems
simultaneously, requiring reads and writes to the database concurrently. Thus, the database will
have to have procedures in place to handle such traffic. Additionally, storing the data in a
relational database will allow for efficient querying and manipulation of the data to the needs of
each particular client application. The persistent data objects are shown in the schema below:

Figure 8: Diagram showing how data is stored in the system.

  92 

The overall database system will have three different categories: payroll, inventory, and
operations. Each of these categories will allow for overall queries that support the functionality
for summary financial, inventory, operational, and payroll management. Below is a description of
the persistent data objects:

• Employee: stores information about each particular employee. Each employee can then
be identified by the system for payroll, work assignment, etc.

• Clock: facilitates payroll calculation.
• Food: stores a list of each food item that the restaurant keeps on site and provides each

item with an ID number. Orders, the menu, and inventory management will be driven by
the food items in stock and their quantities.

• Menu: keeps track of which particular food items are contained in each order and how
much of each is used in an order. This way, the inventory system can automatically
update when a customer orders a particular menu item.

• Table: keeps track of the status of a table.
• Order: keep track of everything involved with a particular table’s order.

E. NETWORK PROTOCOL

Multiple systems will communicate to a unified server; where all of the information will be
stored and the web client will be hosted.

The web client will make use of an apache web server, which will make use of the HTTP web
protocol. HTTP will be used because it falls under the client-server computing model, which
allows for simple access to the web-based system from any device that has HTTP compatibility;
which is almost universal for most devices. HTTP also allows for secure SSL encrypted
connections via HTTPS, which allows for sensitive data to be encrypted and sent to a client with
a smaller chance of a malicious program such as a listener being able to tap into the transmitting
information.

The desktop java application and the java based android application will utilize JDBC (Java
Database Connectivity). This protocol will be used because it supports execution and creation of
SQL database statements. JDBC allows for simple integration of SQL database coding with
streamline java coding, which will result in quick and efficient database queries and full
compatibility with the software system.

Every system will require IPv4 as the internet protocol because it is currently universal and
will allow for simple address ranges and domain mappings. The TCP/IP Model is going to be
used in our system because it is also universal and is integrated within our system.

  93 

Figure 9

F. GLOBAL CONTROL FLOW

Execution Orderness

Our system will follow the event-driven model control flow. If no action is taken, the system
will remain idle in a loop until a user initiates an event. Once a user causes an event through an
action, a certain procedure will be followed until the task is finished. At this point, the system will
again remain in the idle state, ready for more actions. With the immensity of a restaurant
automation system, actions invoked by multiple users will be processed alongside other actions
and events. This aspect is discussed below under concurrency.

Time Dependency

Our system contains timers mainly to keep track of restaurant statistics. These timers exist in
the clock in/clock out of all restaurant personnel to record the amount of time worked and as a
result, used in the calculation of payroll. In addition, the system includes a timer for the customer
turnover, allowing for statistics on customer wait times and a general overview of the restaurant
efficiency.

Since the uses for the timers record the amount of time that passes in accordance to the
amount of time that passes in the real world, our system is considered a real-time system.

Even when no events occur, the system continues to count the amount of time employees are
working. The only periodicity within this system as a real-time simulation is the maximum
number of working hours per day, which repeats for each day.

Concurrency

Since our system requires information to be accessed and changed at the same time as
due to the actions of several users, multiple threads are needed. The customers and waiters can

  94 

place orders at the same time, resulting in the need for concurrency. This situation is taken care of
by running the threads through a queue; storing and displaying all the orders for the chef. Also,
during this time, the manager may be checking the restaurant and stock statistics. In order to take
this situation into account, the system will give precedence to the manager before changing the
data to allow the manager to see all statistics at the time the manager requested to view the stats.
As a result, the cross between the commitment and timestamp ordering methods are used to
control the concurrency.

G. MINIMUM HARDWARE REQUIREMENTS

Server

Our application will be using a server for the database. We plan on using a SQL database
so we will make our hardware requirements as such. The following hardware requirements are
from Microsoft’s (owners of SQL) website.

Hardware Minimum Requirement

Processor 1 GHz

RAM 512 MB

Hard Drive Space 3.6 GB

Network 10/100/1000 NIC
Wifi 802.11n

Table 1.1: The minimum hardware requirements for the server.

Hand Held Devices

The application will make use of handheld Android phones and tablets. There is a wide
variety of different devices that an Android program can run on. These devices all have different
hardware. For our program, we will have a specific criterion for the hardware requirements. To
increase usability, productivity, and hardware longevity, we specifically need handheld hardware
that will allow our program to run without any lag or sluggish feeling. Also, the hand held
devices should have a screen that is big enough to be seen easily and that has a relatively high
screen resolution.

  95 

Hardware Minimum Requirement

Processor 1 GHz dual core

RAM 1 GB

Hard Drive Space 16 GB (most newer devices come with this standard)

Network 4g (HSDP+, WiMax, 4gLTE)
WIFI 802.11n

Screen size: 4.0’’
Resolution: WVGA(480x800)

Table 1.2: The minimum hardware requirements for hand held devices

Desktop Client

In addition to a server and hand held device, we will also implement a desktop client. The
minimum requirements for our desktop will not be as critical as for the handheld device because
we will just be running a java application. However, we should have a big enough screen so all
employees can view the screen easily.

Hardware Minimum Requirement

Processor 1 GHz

RAM 512 MB

Hard Drive Space 5 GB

Network 10/100/1000 NIC
Wifi 802.11n

Screen Size: 20”

  96 

Resolution: VGA(640x480)

Table 1.3: The minimum hardware requirements for the desktop client.

X. ALGORITHMS AND DATA STRUCTURES
A. ALGORITHMS

The algorithms used in the application are fairly simple. However, to make the process of
implementing said algorithms straight forward, they must be clearly stated to avoid possible
errors in the programming stage of development. There are two main tasks that require the use of
algorithms: Check Stats/Stock and Edit Layout. The algorithms will be implemented as follows:

Check Stats/Stock

• Check Stats pertains to the checking of the restaurant statistics, which are menu trends
(how well and item sells over a given period of time) and customer trends (how many
customers attend the restaurant at various times over a given time period).

Menu trends require the user (manager) to input a given time range and (optionally) a
given item(s). The request is checked to be valid, and if it is, the process continues.
Whenever an item is ordered, the stats database value under the current date and
under the subcategory of the specific item sold is incremented, so the system simply
queries the number under the category of the dates given and under the category of
the specified items. Once this data is retrieved, the information is plotted on a line
graph, the x axis being time (i.e. days of the week) and the y axis being the number of
units sold of said item(s) (i.e. hamburger, salad, etc.).
Customer trends are a very similar process. When a party of customers is seated the
stats database value under the current date and under the subcategory of the current
hour is increased by the number of customers in the seated party. The system
retrieves this information for a given time range and plots the data on a line graph,
the x axis corresponding to time and the y axis corresponding to number of
customers. The customer trends is given greater precision than menu trends (hours
vs. days, respectively) because it is more important to know specifically what times
of the day are busier than others. It is important to know how many items are sold in
a given day, but the extra precision (hours instead of days) is unnecessary and only
complicates the process.

• Check Stock simply retrieves the current amount of each item in the stock database and
displays it as a bar graph. The x axis shows ingredients and the y axis show amount.

  97 

Edit Layout
Edit layout is the algorithm for rendering the tables when the user (manager) visually
edits the restaurant layout. Each table object saves a value for its x and y coordinate. The
system renders the table on the screen at the given coordinates. When the user moves the
table, the x and y coordinates of the new placement will be received. These new values
are first verified. The system checks to see if the coordinates are within a given radius of
another table. The radius will depend on the size and orientation of the table. For a round
table, the radius is simply the table radius plus a defined amount to account for seating.
For a square table, the radius will be sqrt(2)/2*width plus the defined distance for seating.
A rectangular table will simply be a combination of square tables that uses the individual
validity checking of each table to see if its placement is valid. However, to avoid seeing
itself as an obstruction, the table object will be given a reference to the table objects it is
combined with so it knows to ignore them when checking if its placement is valid.

B. DATA STRUCTURES

 Our system focuses on two main types of data structures in particular: the queue and the
array.
 The queue data structure will be used for two particular situations. The first situation would
be customers waiting to be seated. When a party enters the door of the restaurant, that particular
group would be added to the queue. Consecutive parties that arrive after would be added to the
queue. The queue works as a first in first out data structure meaning that the first elements to
enter the queue will be the first to exit the queue. Such a structure is appropriate for customers
waiting to be seated since the first to arrive would be seated first. The queue offers the best
performance for this situation since it is quick in regard to adding and removing elements. Our
queue would be a set size due to safety standards in which only a certain amount of people would
be allowed to wait in the front of the house. Thus, the characteristic of the queue of having a
limited size is not an issue. The second situation is for receiving orders, the requests are put into a
queue, then returned in the order they were placed into the queue. With this setup, the first person
to order is the first to be served. However, the chef is given view of all orders simultaneously.
The queue simply allows these orders to be properly displayed in the sequence they came in. At
Applebee’s, the kitchen has a computer screen in which the orders are displayed in the sequence
they came in. Once the order is completed, a person on the GU line prints a ticket and places the
ticket on the plate. The order is now taken off the screen. The exact sequence in which the order
was placed is often not followed at Applebee’s, but in our restaurant we will be following the
precise sequence the order came in.
 The array data structure is useful for holding the status of all the tables in the restaurant. A
disadvantage often cited for arrays is that the size of an array is static, but with the restaurant
having a constant number of tables with each table being capable of holding a maximum amount
of guests, this disadvantage is not an issue. The array structure will hold all the tables. Each table
will be a data element with information such as the table status (clean, dirty, or occupied), the
maximum amount of people that could be sat at that table, the bill that is to be assigned to that
table, and the server to be assigned to that table. There will be various table sizes in the
restaurant. Specifically, our restaurant will be divided into sections with each section being

  98 

assigned to a particular server. There will be three section formats: one for the AM shift, one for
PM shift for Monday to Thursday, and one for the PM shift for Friday to Sunday. The restaurant
will consist of 15 tables that could accommodate 4, 11 booths that could accommodate 6, 6
booths that could accommodate 4, 1 booth that could accommodate 8, 1 table that could
accommodate 6, and 8 tables that could accommodate 2. The specifics have been taken directly
from the Applebee’s setup. Details as to how this information was acquired are mentioned in the
Interview section. Additionally, when a large party consisting of more than could be
accommodated at a single table or booth would require tables toe be moved accordingly. With an
array structure, we could loop through the entire array and see if there are contiguous tables
where the sum of the maximum amount of people that could be sat is equal or one to two less
than the party size. If we were to place two tables together to represent one party, we can simply
have these two tables be marked as occupied in the array as well as have both tables be allocated
to the same bill.

For seating customers, the request to be seated is taken by the hostess. However, due to
the various sizes of groups, it wouldn’t make sense to have to wait for a large group of customers
to be seated when there is a small group that can currently be seated. In order to maximize
customer throughput this situation must be avoided. The application solves this problem by using
an array of queues to handle seating requests. The array holds a predefined number of queues
corresponding to the number of customers in a group. The number of queues is determined by the
maximum group size defined by the restaurant. For example, say a group of five people and a
group of ten people request to be seated. The group of five is entered into the queue in the array
corresponding to five and the same is done for the group of ten with their respective queue.
 When a table opens for five people, the system checks the corresponding queue in the array and
notifies the hostess a table is available. The same is done when a table for ten is available.
Combing these two data structures allows the application to properly seat customers.

  99 

XI. DESIGN OF TESTS
A. TEST CASES

Table 2.1: AddOrder

Test-case Identifier: TC-2

Use Case Tested: UC-2, main success scenario

Pass/fail Criteria: The test passes if the user is successfully able to place an order where

the stock in the database shows equal to or greater quantities of
ingredients needed for the item.

Input Data: Food Item
Test Procedure: Expected Result:

Step 1. Select item to be ordered for which
stock does not exist.

Step 2. Select extras to add to the order.

Step 3. Submit order request.

Step 4. Select item to be order for which stock
exists.

Step 5. Select extras to add to the order for
which stock exists.

Step 6. Submit order request.

System displays ingredients and options of
additions to order.

System displays the order and the extras
requested.

System displays an error stating that the order
cannot be placed due to a lack of ingredients
and brings the user back to menu screen to
choose items.

System displays ingredients and options of
additions to order.

System displays the order and the extras
requested.

System displays a message stating that the
order has been placed and returns the user to
the menu.

  100 

Table 2.2: EditOrder

Test-case Identifier: TC-3

Use Case Tested: UC-3, main success scenario

Pass/fail Criteria: The test passes if the user is successfully able to edit an order before the

order has started being prepared.

Input Data: Food Item
Test Procedure: Expected Result:

Step 1. Select item that has been ordered and
has started to be prepared.

Step 2. Select edit order.

Step 3. Select item that has been ordered and
has not yet started to be prepared.

Step 4. Select edit order.

Step 5. Select options and submit

System displays information about the item
that was ordered.

System displays a message stating that the
order has started to be prepared and can no
longer be changed or canceled and returns user
to menu.

System displays information about the item
that was ordered.

System displays a menu to change the items
that were ordered.

System displays the changes to be made,
prompts the user that the changes have been
successfully made and returns the user to the
menu.

  101 

Table 2.3: PayBill

Test-case Identifier: TC-5

Use Case Tested: UC-8, main success scenario

Pass/fail Criteria: The test passes if the user is successfully able to complete a transaction

with a credit card or pays the bill completely with cash.

Input Data: Credit Card Information
Test Procedure: Expected Result:

Step 1. Select Pay Bill.

Step 2. Select credit as form of payment and
enter invalid credit card information and
submit.

Step 3. Select credit as form of payment and
enter valid credit card information for card
with less credit than bill and submit.

Step 4. Select credit as form of payment and
enter valid credit card information for card
with credit greater than or equal to bill and
submit.

Step 5. Select cash as form of payment.

System displays items ordered with prices and
the total bill.

System displays and error stating that
transaction could not be completed because
credit card information is invalid.

System displays and error stating that
transaction could not be completed because it
was declined by the credit company.

System displays message stating that the bill
was successfully paid.

System prompts user to wait to waiter.

  102 

Table 2.4: AddInventoryItem

Test-case Identifier: TC-6

Use Case Tested: UC-11, main success scenario

Pass/fail Criteria: The test passes if the user is successfully able to add an item to the

inventory

Input Data: Inventory Item, Stock
Test Procedure: Expected Result:

Step 1. Select manage inventory from main
menu.

Step 2. Enter new item name and negative
stock value.

Step 3. Select add item.

Step 4. Enter new item name and positive
stock value greater than 100000 units.

Step 5. Select add item.

Step 6. Enter new item name and positive
stock value less than 100000 units.

Step 7. Select add item

System displays a list of inventory items and
the current stock associated with the items.

System displays the entered information.

System displays message stating that the item
cannot be added because invalid stock value
was entered.

System displays the entered information.

System displays message stating that the item
cannot be added because invalid stock value
was entered.

System displays the entered information.

System stores the new item and stock value in
the database and displays a message stating the
entry has been added to the database.

  103 

Table 2.11: AddInventory

Test-case Identifier: TC-7

Use Case Tested: UC-13, main success scenario

Pass/fail Criteria: The test passes if the user is successfully able to add stock to an

inventory item that exists in the database.

Input Data: Inventory Item, Stock
Test Procedure: Expected Result:

Step 8. Select existing inventory item.

Step 9. Select add stock.

Step 10. Enter value greater than 100000 –
current stock and select submit.

Step 11. Enter value less than or equal to
100000 – current stock and select submit.

System prompts user to add stock, remove
stock, or cancel.

System prompts user to enter a value.

System prompts user that entered value is too
large and prompts user to enter another value.

System updates the stock value in the database
for the item chosen and returns user to screen
with inventory items.

Table 2.5: RemoveInventory

Test-case Identifier: TC-8

Use Case Tested: UC-14, main success scenario

Pass/fail Criteria: The test passes if the user is successfully able to remove stock from an

inventory item that exists in the database.

Input Data: Inventory Item, Stock
Test Procedure: Expected Result:

Step 12. Select existing inventory item.

Step 13. Select remove stock.

Step 14. Enter value greater than current stock
and select submit.

System prompts user to add stock, remove
stock, remove item, or cancel.

System prompts user to enter a value.

System prompts user that entered value is too
large and prompts user to enter another value

  104 

Step 15. Enter value less than current stock
and select submit.

System updates the stock value in the database
for the item chosen and returns user to screen
with inventory items.

Table 2.6: RemoveInventoryItem

Test-case Identifier: TC-9

Use Case Tested: UC-12, main success scenario

Pass/fail Criteria: The test passes if the user is successfully able to remove an existing

inventory item.

Input Data: Inventory Item
Test Procedure: Expected Result:

Table 2.7: UpdateEmployee

Test-case
Identifier:

TC -12

Use Case Tested: UC-22, main success scenario

Pass/fail Criteria: The test passes if the user inputs valid employee information.

Input Data: FirstName, LastName, Wage, Username, Password, Type, SSN
Test Procedure: Expected Result:

Step 1. Replace old FirstName and type in an
invalid new FirstName

Step 2. Replace old FirstName with a valid
new FirstName

Step 3. Replace old LastName with an invalid
new LastName

Step 4. Replace old LastName with an valid
new LastName

Step 5. Wage is changed to an invalid input.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

  105 

Step 6. Wage is changed to a positive number.

Step 7. Replace Username with an invalid new
Username.

Step 8. Replace Username with a valid new
Username

Step 9. Replace Password with an invalid new
Password

Step 10. Replace Password with a valid new
password.

Step 11. Change Type to an invalid
occupation.

Step 12. Change Type to a valid occupation.

Step 13. Change SSN to an invalid number.

Step 14. Change SSN to a valid number

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

System places a “” next to the text field.

Table 2.8: AddEmployee

Test-case Identifier: TC -13

Use Case Tested: UC-20, main success scenario

Pass/fail Criteria: The test passes if the user adds an employee that does not already exist in

the database.

Input Data: Employee
Test Procedure: Expected Result:

Step 1. Add an existing employee.

Step 2. Add a new employee.

System prompts user that the employee already
exists in the database.

System adds the new employee’s profile to the
database;
records successful addition of employee.

  106 

Table 2.9: RemoveEmployee

Test-case Identifier: TC -14

Use Case Tested: UC-21, main success scenario

Pass/fail Criteria: The test passes if the user deletes an employee already existing in the

database.

Input Data: Employee
Test Procedure: Expected Result:

Step 1. Delete an employee not currently in the
database

Step 2. Delete an employee currently in the
database.

System prompts user that the employee is not
in the system.

System removes employee from database;
records successful employee termination.

Table 2.10: AddMenuItem

Test-case Identifier: TC -15

Use Case Tested: UC-16, main success scenario

Pass/fail Criteria: The test passes if the user enters a valid food item that is not already on

the menu.

Input Data: FoodItem
Test Procedure: Expected Result:

Step 1. Type a FoodItem that already exists on
the menu and click Add

Step 2. Type a FoodItem that does not already
exist on the menu and click Add

System prompts user that the item is already on
the menu.

System adds item to the menu;
records successful addition of food item.

  107 

Table 2.11: RemoveMenuItem

Test-case Identifier: TC -16

Use Case Tested: UC-17, main success scenario

Pass/fail Criteria: The test passes if the user enters a valid food item that is an existing

menu item.

Input Data: FoodItem
Test Procedure: Expected Result:

Step 1. Type a FoodItem the does not already
exist on the menu and click Delete

Step 2. Type a FoodItem that is currently on the
menu and click Delete

System prompts user that the item is not on the
menu and therefore cannot be deleted.

System deletes the specified item from the
menu;
records successful addition of food item.

B. UNIT TESTS

1. Table

Figure 10.1: State diagram of the Table Class.

  108 

Method calls to test all states and transitions
Table A, B; // First tables are made.

editTableLayout(B.location(21,32));
editTableLayout(A.location(-1,-1));
editTableLayout(A.location(-1,15));
editTableLayout(A.location(15,-1));
editTableLayout(A.location(15,30));

The first method tests a valid location from the beginning. This will test the transition
from the initial state to the final state of moved. The methods afterward, done on table A, take all
possible invalid locations which are outside the boundary of the restaurant. This represents the
transition from the initial location of a table to the state of moving with a notification that the
table cannot be moved to the new location specified. On the last method, a valid location is
inputted, showing the transition from the state of moving to the state of Moved. The system then
notifies the user of the successful relocation of a table.

  109 

 2. FoodProgress

Figure 10.2: State diagram of the FoodProgress Class.

Method calls to test all states and transitions
Order O, F, N; //First an order is made
O.FoodItem(hamburger);
F.FoodItem(steak);
N.FoodItem(hotdog);

invalidOrder(O);
 //expected output True
invalidOrder(F);
 //expected output False; program automatically calls cancelOrder(F);
invalidOrder(N);
 //with no hotdogs in the inventory, this order is cancelled.
cancelOrder(O);
addOrder(O);
setOrderStatus(Cooking);
setOrderStatus(Finished);

First, all cancellations from a processing order are tested. This is done with the first
methods calls with invalidOrder. If the method returns true, then the order is valid. However, if
the ordered item is not a foodItem on the menu or if there is not enough stocks in the inventory to
make the ordered food, the order will be cancelled by the system and the waiter notified about the
situation. Also, if the customer decided to cancel an order, it will be allowed, since cooking the
order has not been started.

Once a foodItem is processed, the Order is added to the queue of foods for the chef to cook.
Once the chef gets to the specified food item, he/she changes the status of progress to cooking.
This is seen in the transition from processing to the state of cooking. When the chef is done
cooking, the order status is set to finished, representing the final state of cooked.

  110 

3. DBConnection

Figure 10.3: State diagram of the DBConnection class.

DBConnection.openConnection(); //Called to open a connection
DBConnection.closeConnection(); //Called to close a connection
DBconnection.queryDatabase(q); //Called to send a query, q, to the database

Initially, the state of the database connection is closed. The first test is connecting to the
database, which is transitioning from the state closed to open. The method openConnection is
called in order to do this. When this method is called the state goes to Opening. If the connection
is invalid, the method returns from the state Opening to Closed. If there is a failure contacting the
server, the method will allow maxNumOfTries tries to establish a connection and if a connection
is established the state will be Open, otherwise, the state will be Closed. Once a connection is
established requesting a query is tested with the method queryDatabase(q), which is going from
the state Open to Retrieving and back to Open. Whether a valid or invalid query is requested, the
state changes occur because querying a MySQL database will return the request no matter the
request. Then closing the connection is tested using the method closeConnection(), which will
move the state from Open to Closing to Closed. There are no alternate scenarios in closing a
connection because JDBC (Java Database Connection) allows for safe closing of connections and
the server closes a connection after a certain time of inactivity. As a result, the state will always
go from Closing to Closed.

  111 

4. Employee

Figure 10.4: State diagram of the Employee class.

Employee E; //Create a valid employee
Employee N; //Create an invalid employee

addEmployee(N); //expected output False; invalid information
addEmployee(E); //expected output True;
editEmployee(N); //expected output False; employee does not exist
editEmployee(E); //expected output True;
removeEmployee(N); //expected output False; employee does not exist
removeEmployee(E); //expected output True;

Initially the state of the employee is Pending because the employee is not yet in the
system. The method addEmployee(N) is called to test adding an employee with invalid
information and should return false because the employee cannot be added. Then the method
addEmployee(E) is called and the state goes from Pending to Employee because the employee is
successfully added to the system. Then the method editEmployee(N) is tested in order to test
editing the employee and the state transition from Employee to Validating to Updated. Since the
information is not valid the transition would go to validating and the request would time out.
Then the method editEmployee(E) is called and since the information is valid the transition is
from Employee to Updated. If there is a failure in signal, the state remains in Validating and then
times out; however, if a signal is established the state transitions to Updated. Then removing an
employee is tested using the method removeEmployee(N). The state transition is from Employee
to Validating; however, the request times out because the information is invalid and the state is

  112 

back to Employee. Then the method removeEmployee(E) is called which transitions from the
state Employee to Terminated. The state can go from Employee to Validating if there is a signal
failure and if a valid connection is established the state proceeds to Terminated.

C. INTEGRATION TESTING

The integration testing method to be used will follow the horizontal integration testing strategy
of bottom-up integration. Since our system contains many lower-level components put together
by controllers, bottom-up integration is suitable. By testing with the lowest levels of the
hierarchy, each unit can be tested separately since they do not depend on each other. Once these
“leaf” classes are tested, the testing continues to the next level of the hierarchy, including all
classes that contain the “leaf” classes. These navigable classes are tested with the lowest units.

Also, bottom-up integration reduces the need for test stubs and drivers saving time and
possible errors. If there is a error in a higher-level class, the bottom-up integration method allows
for locating the error more easily. Therefore, the final system will be integrated with uniformity,
unlike the vertical integration testing strategy, where each subsystem corresponding to different
user stories is made separately.

  113 

XII. HISTORY OF WORK, CURRENT STATUS, AND FUTURE WORK

At the beginning of this project, our team had high expectations in terms of what we

wished accomplish. And as the project progressed, we realized that not everything we wished to
complete could be completed within the time frame due to the reports. Our group learned that
before implementing, we would have to go through steps such as creating use cases as well as
requirements. Our goal became more realistic over time, but we kept our initial goals in mind.
Tasks were prioritized over the semester in terms of what was deemed important. Understanding
the concepts taught in class was an essential part of constructing the report. Actual coding only
took place only once we had finished Report One. The milestones and deadlines were not set to
be strict but to be reminders that we had a certain amount of days to accomplish a task. As the
project continued as well as other course work, dates were often edited. The plan of work from
the 1st report to the 2nd report varies slightly in dates. Below is the final Plan of Work that was
followed.

In terms of accomplishments, listed below are some of our groups:
• Applying real world situations to our system.
• Credit Card Reader that is iPhone compatible for customers to Pay Bills.
• Applying Software Engineering techniques to create a professional application.
• Creating a status of each individual table in the restaurant.
• Updating the customer continuously on the status of their order.
For future work, some features we would wish to implement are furthering the progress of

viewing the current status of the tables in the restaurant. Given more time, we would hope that
when a hostess wishes to view the status of the tables, a layout of the tables in the restaurant will
appear. Depending on the state of the table (occupied, dirty, clean), each table will be a different
color. Also, if a large party were to come into the restaurant such as a party of 20 for example,
tables would be able to be dragged on the system to connect and form one table. One paycheck
would be associated with this one table. Also, certain tables in the restaurant would be assigned to
particular waiters, similar to what occurs in restaurants today.
 Additionally, a more detailed menu would be implemented such that the user had options
for toppings or extras such as cheese, lettuce, onions, etc. An instant notification message system
for the waiter could also be created with which the waiter would be alerted when the Chef has
completed the order. Also, an interface specifically for the delivery boy could be implemented as
well. Another feature would be a “Happy Birthday” button that would automatically variations of
the Happy Birthday song to customers that are at the restaurant to celebrate their birthday.
 Our team would also hope to create a messaging system between the mobile and desktop
application. Also, an application dedicated solely for the delivery boy. That application would
have things such as a GPS as well as current orders that needed to be delivered. We would also
hope to make the mobile application Android compatible. Many of these ideas we had hoped to
accomplish but fell short with time.

  114 

  115 

XIII. INTERVIEW QUESTIONS
An interview was conducted with a hostess, waiter, and a manager at Applebee’s. The questions
are listed below.

Hostess
1. How do you go about sitting a guest when they come in?
It really depends on whether or not it’s busy. If it’s not busy then we sit the guests at the best
place according to the guest size. Each server that is working during that shift has a section so we
also try to rotate servers the best we can. You never want to double seat a server.

2. How do guests make a reservation?
Applebee’s actually does not take reservations. We call them ‘call aheads.’ You can call ahead of
time and say the number of guests as well as the time that you would like the reservation. We
make sure to let the guests know that we do not take reservations but we accept call aheads
meaning that we do not guarantee seating although we do try.

3. Can a guest cancel a reservation?
Yes. A guest would just need to call and let us know that they want to cancel their reservation.
Most of the time though when a party wants to cancel a reservation, they simply don’t show up.

4. How do you determine the time a guest has to wait?
If the restaurant is completely full, we are told to begin at a wait time of 10 minutes. Every guest
after that is an additional 5. Parties of lets say 25 would have a longer wait since tables would
need to be turned to accommodate them.

Server
1. When would an order be taken off the bill or when would a guest get a meal for free?
An order is taken off if the server had put in the system the wrong order or if the order comes out
incorrectly cooked. Some customers complain that their meal is cold so that would be another
situation. And sometimes if the wait for their food is too long. If it is the morning shift and a
customer is waiting an hour for a salad, and it isn’t busy then that would be a valid reason for a
meal to be comped.

Manager
1. When would an employee get taken off the system?
An employee is taken off the system automatically if the employee hasn’t worked for a month or
two. The system keeps asking us if we want to keep this employee in the system because their
account has been inactive. Another reason would obviously be the employee being fired.

2. Why would an employee get fired?
An employee would get fired if they weren’t following the policies of the company, which are
outlined in the employee handbook. Also, if an employee does not show up to work and does not
have proper coverage or medical note, that employee is automatically fired. Also, if an employee

  116 

is giving out free food or beverages without manager knowledge.

  117 

XIV. REFERENCES

1. "Concurrency Control." Wikipedia. Wikimedia Foundation, 03 Nov. 2012. Web. 12 Mar. 2012.

<http://en.wikipedia.org/wiki/Concurrency_control>.

2. "Hypertext Transfer Protocol." Wikipedia. Wikimedia Foundation, 03 Nov. 2012. Web.

12 Mar. 2012. <http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol>.

3. Marsic, Ivan. Software Engineering. 2012. PDF.

4. "Java Database Connectivity." Wikipedia. Wikimedia Foundation, 03 Nov. 2012. Web.

12 Mar. 2012. <http://en.wikipedia.org/wiki/Java_Database_Connectivity>.

5. "Real-time Simulation." Wikipedia. Wikimedia Foundation, 21 Jan. 2012. Web. 12 Mar. 2012.

<http://en.wikipedia.org/wiki/Real-time_Simulation>.

 

 

 

