

Software Engineering Course Project

Parking Garage/Lot

Project designed by Ivan Marsic

Department of Electrical and Computer Engineering

Rutgers University

Project website: http://www.ece.rutgers.edu/~marsic/books/SE/projects/

This project develops a computerized system to manage parking usage and online reservations in
a parking garage. It is intended to be done by a team of 4-6 undergraduate students during an
academic semester, in conjunction with lectures and other class activities. Other related projects
and a software engineering textbook are available for download at this website:
http://www.ece.rutgers.edu/~marsic/books/SE/

1. Project Description

The purpose of this project is to track and manage occupancy of a parking garage and allow
customers to find and reserve available parking places.

The system-as-is can be described as follows. The parking garage currently operates without any
computerized system. The management has concerns about inefficiencies of sub-optimal usage of
parking space (lost opportunity/profit). Congestion inside the garage is often caused by drivers
searching for vacant spots. In addition, it is well known that a great deal of traffic congestion in
cities generally is caused by drivers looking for a parking space. Currently, the management
monitors the garage occupancy by having employees walk around the decks to inspect the
occupancy of individual spots. Some parking garages already monitor the occupancy using a

PP

Ivan Marsic Rutgers University 2

sensor system which keeps tally of the vehicle entrance and exit events that occur in the parking
structures. Our customer garage decided to develop a more advanced system, called “Park-a-lot,”
as described next.

The parking garage will be remodeled so that the parking decks above the ground level will be
accessible only using an elevator that will lift the vehicles to different decks. There will be no
other way to reach the upper decks. All vehicles will depart the garage by descending down the
designated exit pathway to the ground level. Only passenger vehicles can be parked in this
parking garage. That is, large trucks, busses, etc., cannot enter this parking garage. The ground
level will be reserved for walk-in customers. All other levels will be reserved for registered
customers that made advance reservation. The parking garage will not distribute special
electronic tags or markings for customer vehicle identification. Instead, the garage will use
camera-based license-plate recognition systems.

Customers will register at the company website in advance of using the parking garage. At the
registration time, the customer will provide demographic information and a valid email and his or

Software Engineering Course Project Parking Lot/Garage 3

her credit card number. The customer may provide the license plate numbers for his or her
vehicle(s), but this is not required to allow registration of customers who do not own vehicles, but
will use a borrowed or rented vehicle. The same vehicle may appear under several customers, for
example different family members, or vehicle borrowed from a friend, or rented from a rental
agency. In case of a borrowed or rented vehicle, the customer will specify the registration plate
number at the time of making a parking reservation. If the specified registration number is
different from the number in the customer’s profile, the software-to-be will create a temporary
association of the number to this customer, and the association will be deleted after the parking
garage is used during the requested interval.

The registration software may also support guaranteed reservations, which allow customers to
make a (monthly) contract with the parking garage for a parking spot. For example, commuters
going regularly to work need parking on a daily basis during a predetermined period. Another
example is corporate customers who wish to keep permanently reserved parking space for their
personnel and visitors. Such customers are desirable because they can provide predictable and
steady income.

The following devices will be installed inside the parking garage (see Figure 1):

S1 & S2. The garage will have installed two license-plate readers: one at the lift platform and the
other at the end of the exit pathway. The reader will use a digital camera and a license-plate
recognition system widely used in toll stations in road-tolling systems. When a vehicle drives up
on to the lift platform, the license-plate reader will read the vehicle registration number. The other
reader will record the registration number of the departing vehicles.

S3. Every parking spot has installed a sensor that senses the occupancy of the spot by a vehicle.
The sensor could be based on visible or infra-red light, ultrasound, or a similar sensing technique.

D1. There will be a digital display installed on the ground floor that will indicate available
vacancies for the walk-in customers without reservations. This display will also indicate if the
ground-level parking area is full.

D2. There will be a digital display installed in the vehicle elevator to display various messages.
Other messages will include information for non-registered customers of a denied access to upper
decks, or information for registered customers of changes in their reservation.

D3. An entrance console will be installed in the vehicle elevator. If the vehicle registration
number is not recognized by the license-plate reader (e.g., because this is a borrowed or rented
vehicle and the customer did not know the license plate number at the time he or she made the
parking reservation), then the system will display the message for and offer the driver option to
enter the reservation confirmation number on the console installed in the vehicle elevator.

To prevent the drivers from entering the upper decks via the exit driveway, there will be a one-
way barrier installed at the endpoint of the exit driveway.

1.1 Business Policies for the System-to-be

The company has decided to adopt the following business policies for the system-to-be:

Ivan Marsic Rutgers University 4

P1. If the license-plate recognition system does not recognize the vehicle registration number as
associated with a registered customer (e.g., a walk-in customer drives on to the lift platform by
mistake), the platform will remain motionless and the display board will notify the driver that the
registration number is not recognized, and request to enter their reservation confirmation number
or membership number (as per the business policy (P2) described next) on the console installed in
the vehicle elevator, or back away from the platform and park on the ground level. Vehicles with
a missing license plate will be treated the same as those with an unrecognized registration
number.

P2. A registered customer may be allowed to walk-in without a reservation if there are currently
available parking spots. If the vehicle registration number is recognized, but the system cannot
find an existing reservation associated with the customer who owns this vehicle, then the
customer will be offered to specify the expected duration of parking or departure time using the
console installed in the vehicle elevator. If the vehicle registration number is not recognized, the
customer will be offered to type in their membership number and the expected parking duration.
If the membership number is not recognized, the customer will be asked to back away.

P3. If a customer does not show up at the start of their reserved interval, the parking spot will be
held reserved for a given “grace period” (e.g., one-half hour) after the start of the reserved

Exit camera

Occupancy photosensor

S2.

S3.

D3.

D2.

Elevator display

Elevator console

Elevator camera

S1.

Figure 1: Parking garage system-to-be: sensors, displays, and other devices.

Software Engineering Course Project Parking Lot/Garage 5

interval. If the customer arrives within the holding period, he or she shall park on their reserved
spot and will be billed for the full reserved period. The customer will be offered to pay an
additional fee to hold the reservation beyond the regular grace period.

P4. If the customer arrives any time after the grace period after the start of the reserved interval,
he or she will be asked for how long he or she plans to stay. If there are vacant and unreserved
spots during the desired interval, the customer will be offered to park. The customer will be billed
from the start of their original reservation until the end of their newly reserved interval.

P5. If the customer does not arrive during their reserved interval, he or she will be billed for the
entire duration of their reserved interval.

P6. If a customer departs before their reserved period expires (“understay”), he or she will be
billed for the full reserved period. The spot’s status in the database will be changed to “vacant”
immediately as the sensor detects that the vehicle has left, and the spot will be made available to
other customers for use.

P7. The customer is allowed to extend an existing reservation one-half hour prior to the scheduled
expiration if only if there are available (not reserved or occupied spots) for the desired period.
The reservation may be extended unlimited number of times if the extension is requested one-half
hour prior to the scheduled expiration if only if there are available for the desired period.

P8. If a customer fails to depart as scheduled after their reserved period expires, he or she will be
billed for the duration of their reserved period at a regular rate and at a higher rate for the duration
of their overstay. The rate will be increased progressively with the duration of overstay. A
notification will be sent to the customer about these actions.

P9. Each customer is allowed to have multiple standing reservations on his or her names, but
these reservations cannot be contiguous. A minimum of one hour gap is imposed between any
consecutive reservations, and a maximum of three outstanding reservations is allowed. If a
customer tries to make contiguous reservations, he or she should be offered to merge the
contiguous reservations into a single one, or to cancel or modify some of the contiguous
reservations.

P10. If a customer arrives and his or her reserved spot is still occupied by a previous customer
who failed to depart as scheduled, but there are other available spots, the arriving customer will
be offered to park on an available spot. The message will be displayed on the display inside the
vehicle elevator.

P11. The system may overbook the parking space reservations. The overbooking mechanism will
be described below.

P12. If a customer arrives on a full parking garage, because of overbooking or some customers
failed to depart as scheduled, the customer will be asked to leave without
parking, and will be given a rain check.

P13. The registered customer is billed once a month by emailing a
monthly statement, which includes parking fees or penalty fees, if any.

P14. If the recognized vehicle registration number is associated with a
single registered customer, the garage usage will be billed to this customer.
If the vehicle is currently associated with more than one registered

Ivan Marsic Rutgers University 6

customer, the vehicle will be billed to the customer with the current temporal association with this
vehicle number, which is created at the time of the parking reservation request.

he practice of overbooking (policy (P11))—accepting reservations for more spots than are
available by forecasting the number of no-show reservations, overstays, understays, and

walk-ins, with the goal of attaining 100 percent occupancy—is common in many service
industries, such as airlines and hotels. For example, the book Hotel Front Office Management (by
James A. Bardi, 4th Edition, John Wiley & Sons, Inc., Hoboken, NJ, 2007) describes how
overbooking works in the hotel industry.

The operator always wants to minimize the financial loss due to no-shows and other issues. The
occupancy management policy is based on management of the occupancy categories into which
customers are placed: those with confirmed reservations, those with guaranteed reservations,
overstays, understays, and walk-ins. The reservation is guaranteed with a credit card number on
record in the customer’s profile, to ensure the customer’s intent of arrival and thus guarantee
payment for parking services. Here is a (partial) glossary of terms used in overbooking decisions:

Confirmed reservations represent registered customers who make reservations as the need
arises. These reservations are honored until a specified time (including the grace period after the
start of the reserved interval). Such customers represent the critical element in no-shows.

Guaranteed reservations represent the registered customers who made a contract with the
parking garage for a parking spot, such as commuters going to work who need parking on a daily
basis during a predetermined period. Such customers represent a less volatile group because they
need to show up for their work.

Overstays are currently parked customers who wish to extend their stay beyond the time for
which they made reservations.

Understays are customers who arrive on time but decide to leave before their predicted time of
departure.

Walk-ins are registered customers who arrive to the parking garage without a contract or
reservation. They are welcome because they can enhance the garage occupancy percentages (if
there are available parking spaces).

The following occupancy management formula considers confirmed reservations, guaranteed
reservations, no-show factors for these two types of reservations, predicted overstays, predicted
understays, and predicted walk-ins to determine the number of additional parking reservations
needed to achieve 100 percent occupancy. No-show factors are based on prior experience with
customers with confirmed or guaranteed reservations who did not show up.

total number of parking spots available
 confirmed reservations no-show factor based on historical data
 guaranteed reservations no-show factor based on historical data
 predicted overstays (1)
 predicted understays
 predicted walk-ins

= number of additional parking spots available to achieve 100 % occupancy

T

Software Engineering Course Project Parking Lot/Garage 7

1.2 Assumptions about the System-to-be

We identified the following assumptions about the parking garage system-to-be:

A1. The license-plate recognition system works correctly 100 % of time, with no errors because
of dirty or scratched license plates. If the registration number cannot be recognized, the software-
to-be will assume that this vehicle does not belong to a registered customer.

A2. If the license-plate recognition system cannot recognize the vehicle registration
number and the customer does not provide a valid confirmation number or membership
number, the customer will be asked (display message) to back away from the vehicle
elevator (business policies (P1) and (P2)). We assume that the customer will always
obey and depart. If we suspect otherwise, we may manage this risk by having the system
to notify the garage security personnel. We also need an additional sensor to sense a
vehicle presence in the elevator and assumptions about its correct operation. (Perhaps
the license-plate recognition camera can serve this purpose?)

A3. The spot-occupancy recognition system works correctly 100 % of time, with no
errors because of sensor malfunctioning or incorrect sensing. If the sensor positively
detects occupancy, we assume that this result is only due to a vehicle, and no other
object occupying the spot. For example, if the sensor is based on visible light, we assume that
“dark” is sensed is only because a vehicle is present above the sensor, rather than because of
lighting outage or some other condition; similarly, “light” is sensed is only because of a vacant
spot and not because of another accidental light source.

A4. The vehicle elevator will lift the vehicle to the appropriate deck, and will never stop on a
wrong deck by mistake.

A5. In the case of the business policy (P10), we assume that the customer will always accept the
offered parking spot and will never wish to opt out and leave the parking garage without parking
his or her vehicle.

A6. We assume that the customer will always park at their assigned spot, and will never park at
an arbitrary vacant spot. We assume that the garage currently does not have installed sensors for
continuous tracking of customers from the vehicle elevator to their assigned spot. This is a strong
assumption (and we know that people are unpredictable!), but the accuracy of the parking
reservations table depends on this assumption. If a customer parks on a wrong spot (e.g., spot B),
and the system thinks that the customer is parked correctly on spot A, then the system will direct
future customers to an already occupied spot B (or accept reservations for B), and meanwhile the
system will consider spot A as occupied, while it is actually available.

A7. If the license-plate reader successfully recognizes the vehicle registration number, the system
assumes that the driver is a registered customer. The system-to-be will not consider separately
scenarios where the driver is a non-registered customer who borrowed the vehicle from a friend
who is a registered customer, or if the vehicle was stolen from a registered customer. The
customer to be billed for the parking garage use will be decided as per the business policy (P14).

A8. It is possible that the customer is an organization with multiple individuals (rather than an
individual person).

Ivan Marsic Rutgers University 8

A9. We assume that the customer has access to email and a mobile phone with SMS
texting capabilities. We do not assume that the customer will regularly check his or her
email or will always be able to receive instantaneously SMS messages. For example,
the customer may be in a meeting with the phone turned off. Also, we do not assume
that the customer has access to a computer or smartphone while driving.

he above description of the system is only preliminary, provided as a reference
example. The student developers team may add, drop, or modify any of the statements as

deemed appropriate. Also, the team should consider how will the system functioning be affected
by scenarios in which the above assumptions are not satisfied.

1.3 Statement of Requirements for User Interaction

The architecture of the envisioned parking garage computer system is shown in Figure 2. A
relational database is maintained at the server. The database contains various information,
including:

 Information about the registered customers

 The occupancy state of each parking spot: “available,” “reserved,” or “occupied”

 Current parking reservations

 The record of transactions for each customer, such as past reservations, garage usages,
whether the customer showed-up late, or failed to show up during their reserved period,
etc.

 Various statistics about the garage usage

The garage operator should be able to view but not edit the profiles of registered customers. The
operator should also be able to set the prices for different services, such as parking fee within the
reserved period, parking fee during overstays, and the fee for no-shows.

T

(customers,
occupancies,
reservations,
transactions, …)

Database

Internet

Server software:
- parking occupancy monitoring
- garage access control
- user reservation management
- system administration

Remote client

Garage
(with sensors
and displays)

Figure 2: The architecture of the parking garage computer system.

Software Engineering Course Project Parking Lot/Garage 9

The customer should be able to check the parking space availability by specifying the desired
date and time interval, using a client device such as Web browser or a smart phone app. If the
system responds stating that there are available spots, the customer should be able to make the
parking reservation. Upon successful reservation, the customer is issued a reservation
confirmation number.

The customer should be able to modify their existing reservation(s) before the starting time of a
particular reservation.

The customer should be able to extend their current occupancy of a parking space (in case they
realized they cannot depart as scheduled).

The customer should be notified about the identifier (e.g., number) of their specific parking spot.
Because the parking does not have installed a driver-guidance system, the customer will use this
identifier to locate their parking spot in the garage.

If the license-plate recognition system in the vehicle elevator does not recognize the car’s
registration number, the customer should be able to type in their reservation confirmation number
and enter the parking garage.

User Interface Design Issues

If the remote client is run on a smartphone or another small device, the interface should be simple
for quick and easy interaction. This is particularly true because the user may be engaged in some
other activity, such as driving. Therefore, the number of data entries required by the user should
be kept at a minimum that is required to support the given functionality.

Notice that the business policy (P10) is ambiguous about whether the customer can reserve a
specific spot, and how the assigned spot can be changed under certain conditions. We have two
options to consider. One option during the reservation process is to show the the availability map
of the entire parking garage, and allow the user to see the state of each parking spot: “available,”
“reserved,” or “occupied.” The user would be able to select and book a specific available spot.
Allowing the customer to select the desired spot at the reservation time may appear as a useful
feature. However, if unanticipated events happen (e.g., previous customer overstayed), then the
system needs to modify the reservation and notify the customer about the changes in the spot
assignment. We cannot do this notification before the customer arrives, so unexpected changes at
the arrival may annoy the customer. Given that it is possible that the customer may need to be
relocated because the previous customer overstayed, or to optimize the parking space utilization,
the relocation may occur frequently enough to make it annoying for customers who made specific
reservation. The downside of allowing manual spot selection is that the system may appear to be
flaky and unreliable. Finally, the benefits of giving the customer the choice of the parking spot
are not clear. It is not clear that allowing the user the choice would somehow increase user
convenience or user satisfaction, or contribute in some other way.

Another option is not to allow specific choices. The customer would not know his or her assigned
spot until they arrive to the garage, and only at the arrival time the system would inform the
customer about his or her assigned spot number. Automatic spot selection has an advantage of
simplifying the user interface, because there is no need to show the availability map and support
the spot selection. This simplification makes the interface easy to develop as well as easy to use,

Ivan Marsic Rutgers University 10

which is important for customers who may try making parking reservation while driving. A
simple user interface may even support voice-based reservations, making it easy to make
reservation while driving.

The developer team should consider the above options and explain their arguments for the design
that they will eventually choose.

The developer(s) should count the number of clicks/keystrokes that are necessary to accomplish
individual tasks. This is particularly important for the remote client interface that allows making
the reservations. The customer may need to make a reservation in hurry, perhaps even while
driving. Make every effort to reduce the number of clicks/keystrokes in the system interaction,
while not compromising functionality and security.

2. Parking Garage Simulator

This project relies on a parking garage simulator instead of working with a real parking garage.
The simulator program will simulate the physical garage with its sensors and displays. It will
allow the user to pretend entering the garage and parking the vehicle. The server-side software
shown in Figure 2 will include a provisional user interface that allows the user to enter data that
in a real system will be captured by physical sensors. The interface should look as shown in
Figure 3. The left-hand side (Figure 3(a)) shows how the future system-to-be would look like
once it is connected to an actual garage. The right-hand side (Figure 3(b)) shows a current
improvised system.

Our system shown in Figure 1 envisions two types of sensors: occupancy photosensors on each
individual spot and a camera for license-plate recognition. Instead of entering the occupancy state
for all spots, we will temporarily assume that customers will enter the garage one-at-a-time. As
shown in Figure 3(b), it is enough to have a single text field to input the spot ID and two radio-
buttons to specify the occupancy state of that spot. In addition, the user will enter the license-plate
that will normally be obtained from the camera-based recognition system.

The provisional solution in Figure 3(b) allows us to develop the software without having access
to an actual garage and its sensors. However, as illustrated in Figure 3, the rest of the software-
to-be should be developed so that it is easy to unplug the current provisional interface and
plug actual sensors, and deploy the system in a real garage.

The simulator does not consider “legacy” customers who use the garage in the old-fashioned way,
independently of the computerized reservation system. Recall that separate decks are reserved for
legacy customers and we assume that they will not interfere with computer-based customers.

The subsystems or modules of the software-to-be are illustrated in Figure 4 and described next.
(Module numbers are labeled in Figure 4.)

Software Engineering Course Project Parking Lot/Garage 11

Module-1: User Interaction

This module supports (a) registration of new customers, (b) requests for parking-space
reservation, and (c) general account management, such as allowing the user to see the list of
recent transactions with the parking garage. This module can be a server-side application, such as
PHP script, that accepts client connections over the Web and interacts with the relational database
to process the client requests.

This module implements the business policy (P11) and also enforces the policy (P9). To support
overbooking (policy (P11)), customer occupancy categories (defined in Section 1.1) need to be
tracked so that the parking operator can more accurately predict occupancy. The operator can
obtain the data for equation (1) by reviewing the statistics collected by Module-5. Also, the
operator should check local business events, sports events, and other special events.

There are several important issues to consider in the design of this module:

 We already mentioned that the number of data entries required by the user should be kept
at a minimum, because the remote client may be run on a smartphone or another small
device (vehicle dashboard?). We need to carefully determine what is required to support
the given functionality. Should we support only requests for parking-space reservation
from small devices, and require that the user uses a regular computer for all other
activities, such as registration of new customers and general account management?

Sensors Server system

(a) Envisioned Future System

Provisional interface
to enter sensory data

Server system

3017

SpotSpot--sensor inputsensor inputCamera inputCamera input

OccupiedOccupied

EmptyEmpty
Spot ID:Spot ID:

LicenseLicense
plate #:plate #: PAL-84J

(b) Current Improvised System

AlabamaState:

Figure 3: Improvised solution for the server side of the parking garage system.

Ivan Marsic Rutgers University 12

 To support requests for parking-space reservation, this module will query the relational
database and search for the available spots during the interval that the customer specified.
It is realistic to expect that the garage capacity will be less than 1,000 spots. However,
retrieving each record from the database and comparing it to the specified interval may be
too slow for a hurried customer. We need to look for an efficient algorithm for finding
available spots. This problem is further discussed in the Appendix of this document.

 Requests may be originated by multiple customers simultaneously, so the server needs to
support concurrent access. Web servers have a built-in capability to handle simultaneous
requests. If the developers will develop their own server, they will need to implement a
thread pool, so if simultaneous requests arrive, a thread from the pool is assigned to
handle each request.

Module-2: Garage Access Control

This module controls the access to the garage parking space. The functionality includes
processing the inputs from cameras for license-plate recognition, presenting information on

(customers,
occupancies,
reservations,
transactions,
statistics, …)

Interaction

Interaction with remote clients:
- Parking space reservation
- Modification, extension, etc.

Monitoring

- Occupancy monitoring
- Overstay monitoring
- Reassignment of spots

Access-control

Interaction with
arriving customers:

- Display the assigned spot
- Enter reserv. num. via keypad

Administration

- System administration
- Customer billing
- Setting prices for services
- News & special offers

Statistics

- Rate of reservations
- Rate of no-shows
- Rate of departures
- Duration of occupancy
- Available capacity

Remote client

Simulation

Simulation of other customers
arrivals and departures
(Poisson processes)

Database

1

2

3

4
5

6

Figure 4: Functional organization of the server side of the parking garage software-to-be.

Software Engineering Course Project Parking Lot/Garage 13

displays, and supporting entrance-console interaction for entering reservation confirmation
number (in case the vehicle registration number cannot be recognized).

This module implements the business policies (P1), (P10), and (P12).

Because this is a simulation of the physical process, we need to develop a separate interface to
support actual parking behavior. After making a reservation using a remote client, the customer
will use this new interface (different from the reservation interface) to simulate the parking
activity—to pretend entering the garage and parking his or her car at the reserved spot.

An example scenario for entering the garage could be as follows:

1. System shows two choices: “Arrive” and “Depart.”

2. User selects “Arrive.”

3. System asks the user to type in their vehicle registration number.

4. User types in their vehicle registration number. [Assume that the system does not recognize
the entered number.]

5. System informs the user that the number is not recognized and offers the user to try with their
reservation confirmation number.

6. User types in their reservation confirmation number.

7. System recognizes the reservation confirmation number as correct and informs the user about
the identifier of their parking spot.

8. User confirms that his or her vehicle is parked correctly. System changes the spot status to
“occupied” and starts billing the customer (see details below of how exactly this is done).

Similar scenarios can be imagined to simulate the departure activities.

In the Step 8 above, this module (Module-2) should not directly change the spot status in the
database. Instead, this module should invoke an operation in Module-3 (described next) to record
the occupancy, because Module-3 implements additional checks.

Module-3: Monitoring of Occupancy and Space Reassignment

Each parking spot has a record of its current state in the database: “available,” “reserved,” or
“occupied.” The state transition diagram for individual spot occupancy status is shown in Figure
5. This module should ensure that only the allowed state transitions will occur. However, the
system should continuously track the customer from the entry point to his or her assigned spot in
order to know whether the customer parked to the correct or wrong spot. Also see the discussion
in assumption (A6) and the Appendix.

Our current system will not be connected to a real garage and cannot track vehicles in real-time.
However, the interface in Figure 3(b)) allows the user to simulate what will happen if the
customer parks on a wrong spot. For example, assume that a customer arrives and is assigned the
spot number 3014 and the spot ID is shown on the elevator display in Figure 1. However, the
customer notices another spot, say number 3017, and parks there. The interface in Figure 3(b)
allows us to simulate this scenario and test that the rest of the software-to-be works correctly even

Ivan Marsic Rutgers University 14

if a customer parks on a wrong spot. See more discussion about the actions that need to be taken
for such scenarios in the Appendix.

In a real-world implementation, this module would receive the occupancy change event
notification from the occupancy sensor installed in each parking spot. Because we are
implementing a simulation, the occupancy event is detected by Module-2, as described above in
Step 8 of the garage-entering activity, when the user confirms that his or her vehicle is parked
correctly. For this reason, Module-3 should have a function for changing the occupancy state that
will be called by Module-2 when customers enter or depart the parking garage.

This module periodically queries the database for reservations and determines if some customers
did not arrive as scheduled by their reservation. Reservations are held for a limited “grace
period,” as per the business policy (P3). The reservation is released after the grace period expires
by changing the database status of the reserved spot to “Available,” unless the customer has paid
an additional fee to hold the reservation beyond the regular grace period. The system also applies
the business policies (P4) and (P5) for late-arriving or no-show customers. Each policy is applied
by recording the event, such as “arrived late,” or “no-show,” in the record of customer’s
transactions.

The module periodically queries the database for current occupancies and determines if some
customers failed to depart the garage as scheduled. The system applies the business policies (P6),
(P7), and (P8) accordingly, and records the customer’s transactions with the system, such as
extension of the reservation, overstay, etc.

This module uses the business policy (P14) when deciding how to attribute the transaction to a
particular customer.

Module-4: Simulation of Arrivals and Departures

Having a single customer at a time to park in the garage would not exhibit interesting behaviors.
On the other hand, it would be difficult to allow many users to simultaneously simulate the
parking activity. We would need to develop a server that can handle many simultaneous

Available

Occupied

Reserved

Start

cancel-reservation /

arrive-and-park /

depart /

reserve /

park-wrong-spot /

Figure 5: State diagram for an individual parking spot.

Software Engineering Course Project Parking Lot/Garage 15

interactions and recruit many people. Instead, in addition to the real customers who will interact
with the system and pretend to park using Module-2 in Figure 4, we will simulate many artificial
customers by using two Poisson processes. One process will simulate artificial customer arrivals:
customers will arrive one at a time and their arrivals will be modeled as a Poisson process. The
other process will simulate how artificial customers depart the garage, also one at a time.

For a Poisson process with average arrival rate , the probability of seeing n arrivals in the time
interval t equals:

!

)(
)Pr(

n

te
n

nt

 and tnE }{ (2)

Inter-arrival time t (time between successive arrivals) in a Poisson process follows exponential
distribution with parameter :

00

0
)Pr(

t

te
t

t
 and

1

}{ tE (3)

To generate exponentially distributed random numbers, generate a uniformly distributed random
number u on the unit interval [0, 1]. Then apply the following function to obtain an exponentially
distributed random number rx:

u
urx

ln
)(

 (4)

where ln() is the natural logarithm (using basis e). Let us assume that the unit interval is one
hour, so the parameter specifies the average number of arrivals per hour.

This module runs two threads in infinite loops as follows. The first thread simulates arrivals:

1. Query the database if there are currently any “Available” spots. If yes, select one randomly
and change its state to “Occupied.” If there are no available parking spaces, record this
attempt as an “Overbooked” event in the statistics table, maintained by Module-5 in Figure 4.

2. Generate an exponentially-distributed random number rx using equation (4). Convert the
number to the time scale, e.g., if rx=0.3, then t(rx)= 0.3 60minutes= 18minutes. This
number represents the time of the next arrival.

3. Suspend this thread to sleep for t(rx) time. When the thread wakes up, go to Step 1.

A similar thread runs the departures process. The departures thread selects a random
occupant/customer from the database for departure. We must be careful to allow dislodging of
only artificially generated customers, and not the real customers who checked in using Module-2
in Figure 4. For this purpose, each database record of spot occupancy should also have a tag for a
“real” or “artificial” occupant. Artificial customers are those generated by Poisson process
simulation and only artificial customers can be selected for a random departure.

A more realistic simulation would also simulate reservations and another Poisson process.
However, two processes for arrival and departures are sufficient as a starting point.

The developers should experiment using different values for the average arrival rate a and the
average departure rate d. Report any interesting behaviors or phenomena that you observe.

Visit http://en.wikipedia.org/wiki/Exponential_distribution for information about exponential probability distributionVisit http://en.wikipedia.org/wiki/Exponential_distribution for information about exponential probability distribution

Ivan Marsic Rutgers University 16

An important issue is how to generate customer identity for the artificial customers. This is
important for correct functioning of other modules of the system in Figure 4. One option is to
generate a pool of artificial customers with randomly generated names, vehicle registration
numbers, etc. We must ensure that the newly generated values are not already in use by another
(artificial) customer and that the values are such that can never interfere with the values for real
customers. Notice that the values for real customers cannot be known in advance, because the
system should allow registration of new customers at any time.

Module-5: Statistical Data Collection

This module periodically queries the database and collects the statistics about garage occupancy
over different periods (day, week, month, etc.), number of overbooked reservations, number of
customers who were turned away because of overbooking, number of customers who do not show
up, depart earlier than booked, or overstay, average duration of overstays, etc.

In addition to the statistics collected by this module, the operator should check local business
events, sports events, and other special events.

Module-6: System Administration

The parking operator should be able to configure the simulator with parameters such as:

 Total capacity of the parking space as well as configuration of the garage (number of
decks, number of spots per deck, etc.)

 Rates for parking usage as reserved

 Special fees for overstays

 Average arrival rate a and average departure rate d, that are used in Poisson processes
in Module-4 in Figure 4 (see the description above)

Implement a system for billing reserved occupancy time, extensions, overstays, and walk-ins.
Periodically (e.g., once a month), the system examines the list of transactions for all customers
and generates the monthly statement. Also, the operator may explicitly request the list of all
transactions for a given customer, in case of termination of the membership or similar scenarios.

The parking operator should be able to view various statistical charts about garage occupancy
over different periods (day, week, month, etc.), number of overbooked reservations, number of
customers who were turned away because of overbooking, number of customers who do not show
up, depart earlier than booked, or overstay, average duration of overstays, etc.

here is an important design issue to consider, that spans several modules in Figure 4. When
a customer makes reservation, we assume that Module-1 will select an available spot from

the database and change its status to “Reserved” during the reservation period requested by the
customer. Notice that the same spot may be in use by another customer before this customer’s
reserved period. When the customer arrives to park, Module-2 informs the customer about his or
her assigned spot. Module-3 monitors spot occupancies and changes “Reserved” to “Occupied”
when the customer parks. If at the time of the new customer arrival the spot state is still
“Occupied,” meaning that the previous customer did not depart as scheduled, one module needs
to automatically reassign another parking spot for the new customer (if any is available). The

T

Software Engineering Course Project Parking Lot/Garage 17

design issue to consider is: should this reassignment be done by Module-2 or Module-3. The
advantage of Module-2 is that it is already interacting with the customer and will display the
assigned spot. The advantage of Module-3 is that it must contain the logic for spot reassignment
in any case, because it performs monitoring of no-shows and releasing their reservations, as well
as the detection of overstays. Module-3 could simply perform the reassignment when it detects an
overstay. The developer team should carefully consider this issue before proposing a solution.

2.2 Domain Fieldwork

Visit local parking garage(s) and interview personnel to understand the current practice, what
problems they are facing, and identify the opportunities where introducing automation can help
increase customer satisfaction and operator’s profits. Discuss whether the business policies stated
above are realistic in terms of their business and economic merits. Discuss the policies for
compensating the customers who make advance reservation but find a full garage at the time of
their arrival, and policies for charging the customers who overstay their reservation or arrive late.
You may also find that more policies need to be formulated, in addition to those listed in
Section1.1. For example, how to handle the case where a customer with a valid reservation enters
the garage but then immediately decides to leave (e.g., because of receiving an urgent call)?
Should the customer be charged any fee, because the system may have rejected other reservation
requests and this customer’s spot will be left unused for some time?

The tradeoff is usually between the desire to maximize the profit and the degree of the customer
inconvenience. A high degree of customer inconvenience may negatively affect profits. For
example, the business policy (P8) states that the customer will be charged at a higher rate for
staying longer than booked in their reservation. This may be reasonable from the garage-
operator’s viewpoint, to encourage customers to keep their promises and to cause less
inconvenience for other customers. However, the current operator practice (system-as-is, without
any automation) allows the customers to park as long as they wish at the same rate, without
advance specifying their departure time. The customers may perceive the new policy (P8) as a
significant departure from the existing practices and complain. This is particularly problematic in
scenarios when the garage space is booked to the full capacity. If the operator tolerates overstays,
this policy will inconvenience other customers who will find the parking garage unavailable
although they previously successfully made a reservation. Should the operator charge higher rates
for overstays only if the garage space is booked to the full capacity? A key question for the
operator is, which kind of customer inconveniencing will have more negative effect on the
profits?

Customer-friendly policies should be preferred if they have minimal or no impact on the profit.
For example, allowing a grace period for late arrivals or departures may be a good policy if no
other customer will be turned away for the lack of parking space. Simulations using Module-4 in
Section 2 can quantify the impact on the profit (profit loss) by quantifying how many customers
(on average) will be turned away, multiplied by the lost income that could have been collected
from these lost customers. Perform an economic study to find optimal scheduling algorithms for
overbooking, and forecasting of vacancies.

Another unresolved issue is to specify how far ahead of time or into the future to accept
reservations. For example, should a customer be able make reservation one year ahead of actual

Ivan Marsic Rutgers University 18

use of the parking garage? Should the garage operator set the time limit and accept reservations
only for, say, the next ten days starting from the present moment?

Additionally, how long before the booked interval is the customer allowed to modify his or her
reservation. For example, the customer has booked a spot from 9 to 11 o’clock. However, at 8:50
they find out that they have another urgent engagement from 9 to 10 o’clock, and decide to
modify their existing parking reservation and specify a new interval from 10 to 12 o’clock.
Should this be allowed? Should the operator impose a limit and allow no modifications, say, one
half hour before the start of the booked interval? For example, hotels usually do not allow
reservation modifications within the last 24 hours.

The issue of modifying the existing reservations is more
complex than implied by the previous paragraph. If the
customer is currently using the parking garage and for some
reason cannot depart as scheduled by their reservation, the
customer may wish to extend their reservation. The
semantic difference between “modifying” and “extending”
needs to be clarified. The time constraints on the ability to
extend the existing occupancy need to be specified. Also,
how to deal with cases when the garage space is booked to
the full capacity and extensions will cause overbooking and
inconvenience for other customers?

Our assumption (A6) states that we assume that the customer will always park at their assigned
spot, and will never park at an arbitrary vacant spot. Of course, in reality this may not be true. If
the information in the database does not reflect the reality, this may create major problems. For
example, if a customer parks on a wrong spot, the system may direct future customers to an
already-occupied spot (or accept reservations for this spot), and meanwhile the system will
consider another spot as occupied, while it is actually available. How will the sensor check that
the right user is parking on a particular spot? A camera-based license-plate recognition system
may be too expensive to install on every spot. Perhaps the spot should have a “reserved” signal
turned on to deter other customers from trying to occupy a reserved spot? Or, perhaps the system
may perform some form of “virtual tracking” of vehicles from the vehicle elevator to the assigned
parking spot. We know that customers enter the garage one at a time, because the elevator can
carry only a single vehicle at a time. The system can use the time elapsed from the moment when
the vehicle leaves the elevator until one spot-occupancy sensor reports spot occupancy and some
average driving speed, to infer whether the parked spot is the one associated with this customer. If
the system suspects that the customer parked on a wrong spot, it needs to notify the customer and
request relocation. This requires a display or an audio announcement system, which may be too
expensive to install. Another option is to do nothing and charge the customer a penalty fee in a
monthly statement. However, the customer may dispute such charges and they may be difficult to
prove long time after the fact.

If the garage will have sensors installed that will be able to detect when a customer parks on a
wrong spot, then the system should rearrange the table of parking reservations. See more
discussion in the Appendix, Figure 7.

Software Engineering Course Project Parking Lot/Garage 19

3. Extensions

The above project description should be considered only as a reference. The student team should
customize it to accommodate for their knowledge of software development and ambition.

A more ambitious team could consider a scenario where the same operator operates several
garages at different locations in the city, or partners with other garage operators who will be using
the same system-to-be. The customer may request the nearest available garage, or the one closest
to his or her destination point.

The server may support priority-based reservations, e.g., based on organizational affiliation,
monthly membership fees, “guaranteed reservations” as defined earlier, etc.

The database-centered design in Figure 4 (Section 2) represents one possible software
architecture for the parking system (known as “Repository Architectural Style”). An extension is
to consider the merits of other architectural designs, which are not necessarily centered around a
relational database. For example, modules may be communicating directly (known as “Peer-to-
Peer Architectural Style”), instead of indirectly via the database.

Consider different pricing schemes, so prices during the peak-demand periods are significantly
higher than during the trough periods. Another option is to support auctions and allow customers
to bid for slots. The duration of the auction must be relatively short to make sense.

Design a touch-screen-based interface for an in-dashboard screen that the user can use with
minimum number of required inputs. Alternatively, design a reservation system based on voice
recognition.

The current version of Module-1 in Figure 4 will search for an exact match for the customer’s
reservation period. A more sophisticated the scheduling system would find a nearest match if it
cannot find and exact match. For example, the customer may request a reservation from 9:00 –
12:00 o’clock, but there may be no available spot during this period, and the nearest match could
be between 9:30 – 12:00. Design a nearest-matching algorithm and consider the issues of user
interface design to make reservation for nearest-match scenarios. Another option is for the system
to reshuffle the existing reservations to explore if it is possible to find an available period for the
current customer. For example, if spot X is available during period T1 and spot Y is available
during period T2, the system may be able to reassign the reservations for one of the spots and
create an available period of T1 T2 long. This problem is further considered in the Appendix
(see Figure 7).

An “intelligent” version of the parking system may offer a forecast of how long the customer
might need to wait until a spot will become vacant (for a walk-in customer), or what is the
likelihood that a spot will become available within the next, say, half-hour, for a desired
reservation period. Check the project website (given below) for links to the existing literature that
describes such forecasting systems.

Consider the assumptions listed in Section 1.2. Describe the risks to customer safety, operator
profits, etc., if some of the assumptions are not met in reality. Propose tactics for risk reduction.

We may consider imposing a “buffer time” between the successive reservations to account for
overstays. If departures are distributed according to a Poisson distribution, what is the probability

Visit http://en.wikipedia.org/wiki/Software_architecture for examples of architectural styles and patternsVisit http://en.wikipedia.org/wiki/Software_architecture for examples of architectural styles and patterns

Ivan Marsic Rutgers University 20

that a spot will be vacated if we introduce a “buffer time” between the successive reservations?
How does this intervention affect the profit?

Develop a system that automatically searches the Web for local business events, sports events,
and other special events. This information can be correlated with the parking occupancy statistics
collected by Module-5 in Figure 4 and used by the parking operator when making overbooking
decisions.

The current design of the garage building has some advantages and disadvantages. The advantage
of using the vehicle elevator is that it streamlines the access to the upper decks for the reserved
customers. It simplifies the design of the display board, the license-plate recognition system, and
the entrance console. However, it may also be a traffic bottleneck and expensive to maintain. An
alternative is to build instead an ascending driveway. The developer team may need to consider
what issues will be introduced if one or more driveways are built (with barriers to control the
access). Similarly, what issues will be introduced if multiple vehicle elevators are built? For
example, the module for assigning parking spots to the newly arriving customers must be careful
not to assign the same spot to two different customers that are using different vehicle elevators or
different entry driveways.

4. Additional Information

Additional information about this project can be found at the project website,
http://www.ece.rutgers.edu/~marsic/books/SE/projects/.

P

Software Engineering Course Project Parking Lot/Garage 21

5. Appendix: Efficient Finding of Free Spots

This appendix continues the discussion about the problem of efficient finding of free spots for the
period specified by the customer, mentioned in Section 2 for Module-1. This problem is similar to
the “Free space bitmap” problem (http://en.wikipedia.org/wiki/Free_space_bitmap). The way to
approach this problem would be to keep the complete information for all reservations in the
database and create a bitmap (binary table) of all parking spots where each cell indicates whether
the corresponding spot is reserved or available. This bitmap is equivalent to the "Free space
bitmap" and will allow quick finding of a free parking spot when a customer requests reservation.

Notice that our assumption (A6) states that we assume that the customer will always park at their
assigned spot, and will never park at an arbitrary vacant spot. If a customer parks on a wrong spot
and the system cannot detect this event (i.e., there are no physical sensors installed in the garage
that allow the system to detect if customer parked on a wrong spot), then the system will be
working with a reservations table that does not reflect the reality.

Given that reservations are restricted to be in increments of 15 (or 30) minutes and must be
aligned to one of the few points through the hour. With increments of 30 minutes, the reservations
must start either at the top of an hour or halfway through the hour; with 15-min increments, there
will be three 15-minute points within the hour. Then construct a bitmap for each day that has N
rows for time and M columns for parking spot identifiers. Assuming 15-minute increments, there
will be N = 4 24 = 96 rows (for 15 min increments during a 24-hour period). A garage with
2000 spots can be considered as large, so M = 2000.

Then the bitmap has N M = 96 2000 = 192,000 cells. Because we need only 1 bit per cell
(reserved/available), the bitmap size for each day is 192,000 8 = 24,000 bytes. This is
manageable for contemporary desktop computers or servers. A single copy of the whole bitmap
can be held in the working memory and updated by different threads that process simultaneous
reservations from multiple customers. If the bitmap is considered too large, it can be split into
several smaller ones by partitioning the garage by floors, and only one small bitmap will be
maintained in the working memory at any time.

There are two key issues:

1. How to keep the bitmap(s) consistent with the database information?

2. Where to store the bitmap?

For issue #1, the tread that processes the reservation should both update the bitmap and the
database record. In addition, the system could run a “demon” process during idle periods to check
that the bitmap is synchronized with the database.

For issue #2, for a large garage that allows reservations over a period of several days, it may not
be feasible to keep this bitmap in the working memory. Again, a solution may be to maintain
different bitmaps for different days as well as different floors of the garage. In addition, perhaps
some kind of smart caching could be applied?

Ivan Marsic Rutgers University 22

If the bitmap is too large for the working memory (in case of a large garage), we may try
compressing it. For example, we could maintain only two vectors for the sums of rows and
columns (Figure 6). The vector ReservPerTime[] contains the total number of reservations for
each time increment (15-minute or 30-minute). This vector would have N elements, e.g., 96 for
15-minute periods in the day. Each element would contain one value, the count of the number of
reservations active in that time period. The other vector in Figure 6, ReservPerSpot[], contains
the total number of reserved time increments per given parking spot.

When a new reservation is requested, the system first checks if any count in ReservPerTime[]
during the requested interval is equal to the maximum number of parking spaces in the garage. If
yes, the system declines the reservation request. If no, the system next checks ReservPerSpot[]
and considers only the spots for which the total count of reserved time increments is less than or
equal to the maximum number of time increments minus the requested number of increments. For
example, the system uses 15-minute increments and the customer requests the interval from 9:00
– 11:30 AM. Then the total number of 15-min increments for 24 hours is 96, and the number of
requested increments is 10 (for two and half hours). The system would then consider as candidate
spots only those for which the total count of reserved time increments is less than or equal
9610=86. As the last step, the database records for all candidate spots need to be examined in
detail to complete the reservation request. This approach may be useful to reduce the number of
candidate spots that need to be examined in detail. However, there may be many candidate spots
that are not are suitable. For the example in Figure 6, spots 101, 102, and 103, would all be
declared as candidate spots. However, a detailed examination would find that none of them is
available during the requested period. The first available spot in this example is 104. The problem
is that this simple approach with two vectors performs loses too much information in the process
of compressing the reservations bitmap.

Another approach is to use a lossless compression algorithm, such as LZW
(http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch) to make the bitmap small

Parking spot ID

T
im

e

Requested
interval

0

101
102 103 104 105 106 107

2

2

2

2

2

1

2

2

3

3

2

1

ReservPerTime[]
count of the number of reservations
active in a given time period

9 7 11 0 0 0 0

New
reservation

ReservPerSpot[]
count of the number of reserved
time increments per parking spot

Figure 6: A simple compression of the parking-reservations bitmap to two vectors.

Software Engineering Course Project Parking Lot/Garage 23

enough so it could be kept in the working memory. Then the key questions is, can the compressed
bitmap be used directly (as is, without decompression) for finding free spots? If not, it will need
to be decompressed and compressed frequently, so this approach would not be feasible.

We also need to consider the problem of inefficient use of parking spaces. This problem may
arise particularly if some of the existing reservations are canceled and random gaps are left in the
reservations bitmap. Another example scenario involves a customer who parks at an arbitrary
vacant spot, rather than at their assigned spot. If the garage has built-in sensors to detect this
event, then the system needs to rearrange the reservations table to reflect the reality. For example,
current customer X has a reservation from 9 – 11 o’clock and is assigned spot A, but parks at a
wrong spot B. The spot B is currently (at 9 o’clock) available but is reserved from 10 o’clock for
another customer Y. Then the system must mark the spot B ac “occupied” from 9 – 11 o’clock
move the reserved customer Y to another spot. It could be spot A, if it is available for the duration
of customer-Y reservation, or any other available spot.

Figure 7 illustrates how a free parking spot could be found by rearranging the existing
reservations. We assume that the customer is told his or her parking spot identifier only when
they arrive to the garage. Therefore, any rearrangements of existing reservations (illustrated in
Figure 7) are transparent to customers. This approach has two advantages: (1) for customer, it is
possible to find a free spot that otherwise could not be found; (2) for the operator, the parking
spaces are used more efficiently.

The problem of rearranging the reservations for efficient use resembles disk defragmentation
(http://en.wikipedia.org/wiki/Disk_defragmenter), but disk defragmentation algorithms probably cannot
be directly applied without modifications. The “reservation table defragmentation” could be run
as a demon process during idle periods or periods of low activity.

Parking spot ID

T
im

e

Requested
interval

Swapped
reservations

Current time

0

24

101
102 103 104 105 106 107

Currently
parked

Future
reservations

New
reservation

101
102 103 104 105 106 107

Figure 7: Illustration for the problem of creating a free parking spot by rearranging the
existing reservations.

Ivan Marsic Rutgers University 24

