
Blockchain and Docker Assisted Secure

Automated Parking Garage System

 Group 4:

 Luan Tran - lmt185

 Khanh Nguyen - ktn31

 Shalini Choudhury - sc1822

 Tan Ngo - ttn64

 Duc Nguyen - dhn25

 Zhouyang Xiao - zx150

 Nainil Patel - npp71

Project blog : https://sites.google.com/scarletmail.rutgers.edu/ruparking/main?authuser=1

https://sites.google.com/scarletmail.rutgers.edu/ruparking/main?authuser=1

Table of Contents

Table of Contents 2

Contribution breakdown: 5

1. Customer Statement 6

2. Glossary of Terms 10

3. System Requirements 12
Functional Requirements 12
Non-Functional Requirements 15
User-interface requirement 16

4. Functional Requirement Specification 18
Stakeholders 18
Actors and Goals 18
Use Cases 20

Casual Description 20
Traceability Matrix 21
Fully Dressed Description and Sequence Diagram 22

Object Constraint Language: 25

5. Effort Estimation using Use Case Points: 28
Actor: 28
Use case: 29

6. Domain Model Analysis 32
Domain Model 32
Domain Model Derivation 33
Concept Definitions (D-doing; K-knowing; N-neither) 34
Association Definitions 35
Attribute Definitions 37
Traceability Matrix 39
Mathematical Modeling 40

7. Interaction Diagram 43
Online Registration 43
Login 44
Arrival 46
Reservation 48

Departure 51

8. Class Diagram and Interface Specification: 54
Class Diagram: 54
Data Types and Operation Signatures: 54
Traceability matrix 59
Design Patterns: 62
Object Constraint Language: 64

9. System Architecture and System Design: 66
Architectural Styles 66
Identifying Subsystem 67
Mapping Subsystems To Hardware 68
Persistent Data Storage 69
Network Protocol: 69
Global Control Flow 70
Hardware Requirements: 71

10. Algorithm and Data Structure: 73
Algorithms 73
Data Structures 79

11. User Interface and Implementation: 81
Sign up - UC1: 81
Home page: 82
Sign In Page: 85
Walk-in page: 86
Online Customer Reservation page: 87
Payment page: 88

12. Design of Tests: 89
Website: 89
Database: 91
Plate Recognition System: 91
Blockchain: 92

13. History of work, Current Status, and Future Work: 93
History of work, current status: 93
Future Work: 94

14. Project Management: 95
Gantt Chart 95

Task Phase Description 95
Product Ownership 97

15. References: 99

Contribution breakdown:
Task Shalini Duc Luan Tan Khanh Nainil Zhuoyang

Customer Statement 70% 15% 15%

Glossary of Terms 30% 70%

System Requirements 40% 60%

Functional Requirement Specification 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3%

Effort Estimation(Use case points) 80% 20%

Domain Model Analysis 15% 40%

Interaction Diagram 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3%

Class Diagram & Interface
Specification

 40% 30% 10% 20%

System Architecture & System Design 20% 10% 10% 20% 25% 15%

Algorithm & Data Structure 16.7% 16.7% 16.7% 50%

User Interface and Implementation 100%

Design of Tests 50% 25% 25%

History of work, Current status,
Future works

50% 50%

Project Management 100%

1. Customer Statement
Parking lots, garages and on-street parking spaces are often sources of anxiety for drivers,

and currently there are not many ways to address these problems. Parking garages either use an

attendant or a toll gate before entering a lot, making the process of entry and leaving the parking

lot extremely slow and cumbersome, assuming that the parking lot even has space available; if it

doesn’t, then the driver has to back out, in potentially high traffic, causing undue stress. If the

driver happens to get in to the lot, he has to take the extra time to find a parking spot and on

finding one it might not be suitable for the type of vehicle he wants to garage. Another issue with

parking is that the driver has no idea as to how much time he has remaining on his meter and

usually overshoots or undershoots his target time, resulting in either a ticket or a waste of money

spent on extra time. Finally, security is a major concern for all the customers since according to

the Federal Bureau of Justice Statistics, more than 11 percent [1] of U.S. property crimes occur

in parking garages and lots. Hence the parking garages are not secure and also the personal

information of the customers ,i.e., the credential and payment details may be compromised.

To address the aforementioned problems this work proposes blockchain and docker

assisted secure automated parking garage system.

With the aim to provide our customers with a streamlined process of easy and flexible

parking. This project would implement enhanced automated garaging system to enable

customers to view and securely reserve suitable spots for parking their vehicles. Customers

through the user interface hosted on our website will be able to reserve a parking spot from the

time of check-in and then extend the timing if required from the web interface by login into their

account. The same slot will be updated in the parking spot availability list as soon as the

customer reservation time expires and he does not renew. This work creates an intuitive way for

users to quickly locate available parking spots in a busy community, while also incentivizing

users to only park during their designated time and not use the buffer period before being

charged extra.

For an efficient automated garaging system multiple novel ideas has been included which

brings in great assistance to both the customer and the parking garage manager. The new

customers are provisioned with one time registration with their credentials and hence, the

returning customers will have the benefit of just signing in, providing vehicle type and reserving

slots according to their convenience and suitable for the car size (choose from the available

vacant slots). Also, for walk-in customers the real-time dimension detection of the customer’s

vehicle, alots suitable slot type to choose from. In this work we will be detecting black listed cars

from the amber alerts sent out by law-enforcement agencies and blacklisted car website [2]

together with broadcasters, and transportation agencies to activate an urgent bulletin for crime

related cases. Our detection algorithm would match all incoming cars with the stored information

of the black listed vehicles and immediately send push update to the garage manager through the

management user interface such that further action can be initiated. Through the push update

technology, the information will be sent to the management even without querying the server for

any updates. This feature will provide promptness in reacting to crime related situations.

Alongside our license plate recognition system is equipped with the accuracy level of the license

plate number detection, which means the image frames from the video are processed multiple

times until the algorithm reaches the confidence level of 85% and above to ensure correctness of

the information. This accuracy in detection is very important to verify whether the plates have

been stolen, the registration status, and any notifications of the vehicle being reported stolen.

Besides using license plate scanning, it is also possible to use the ETC (Electronic Toll

Collection) system. Through the special short-range communication between the on-board

electronic tag installed on the windshield of the vehicle and the microwave antenna on the ETC

entrance of the toll gate, the computer network technology is used to perform background

settlement processing with the bank. In this way, the no-stop parking charge would be achieved.

More importantly, the customers could also recharge their ETC cards from the bank transfer or

by going to the given top-up sites. So that there is no need for the customers to link their bank

card or credit card on another website, which can definitely reduce the hazard for the personal

information leaked or property stolen.

Another novel idea that has been included in this project is blockchain-assisted payment

system. Data privacy protection concerns are driving new regulations around the world. As they

act to protect data privacy online and improve personal data protection, our mechanism of data

protection would go beyond just complying with all the new requirements and will build trust

with consumers and users and stand out from other competitors in the business. Since encryption

is central to block chain, a smart blockchain based application will improve data integrity and

will have no single point of failure since the data is distributed and decentralized. This brings in a

feature where a consumer has the right to instruct a business not to sell personal information to a

third party, meaning that a business that tries to sell a blockchain network will have a harder time

removing individual blocks from each chain.

The docker based containerization of information is another feature which adds novelty

to this work. This method of decentralized information exchange will act as a backbone to

support the infrastructure of automated parking garage. In order to maintain automation in

parking and eliminating any manual assistance, a system has to be built where data/information

access and exchange has to be done without complicated and cumbersome means and with

robust support. Some parking companies like Icon Quik Park own 300 garages around New York

City, require infrastructure which would enable scalability by providing adequate data

management and exchange and also a platform for hosting applications. To comply with this

requirement for adequate management of available parking spots and combined pricing across

multiple garaging location, containerized information exchange between multiple garaging

locations is executed. This method of data exchange is real-time and for better assisting the

customers, information is instantaneously available regarding in which garaging location more

spots or preferred spots are available as well as pricing in different location and also crime

related incident detection. If a customer decides to use different garage locations under the same

management throughout the day for their convenience, then combined pricing will be charged

once when the customer finally checks out for the day. This provides great flexibility to the

customer since there will be only one time charge and no recurrent payment every time the

customer checks in to a garage location managed by the same owner. The combined pricing will

be charged depending upon the parking rate in a given location at a particular time of the day,

hence this is dependent on the dynamic pricing of a garage location. This feature is also

supported by docker assisted container migration for information accessibility.

As can be seen from the above discussion that to coordinate availability of parking,

pricing and exchange of crime alerts and black listed car information, between different garaging

location it is extensively important to host these data/state in a lightweight virtual software

entity which can be exchanged between different garaging locations further apart such that all the

garaging related information are available at all the same owner administered parking facility.

All the parking management applications and its dependencies will also be supported in the

container. Containers, also are generally less resource-demanding and faster to instantiate at the

destination location that it is offloaded to.

Fully automated parking service theoretically eliminate the need for parking attendants.

In addition to this, it is only necessary to register at the first time and then the vehicles’

information of the customers will be automatically recorded, which makes the entry and exit of

parking more rapid. At the same time, it has also a more reasonable toll system and more

convenient search system of parking spots, and can deal with sudden cases like the amber alerts.

So, as long as the customer’s privacy is guaranteed, this will be a comprehensive upgrade

compared to the traditional parking.

2. Glossary of Terms
Blacklisted plates: The plates which are announced by the law enforcement for being

involved in any crime.

Buffer time: The extra time to allow the customer to check out from the spot

allotted to them.

Confirmed Reservations: Reserved single use parking spots that are paid

for ahead of time. Done by visiting the website.

Containerization: Containerization involves bundling an application and data together

with all of its related configuration files, libraries and dependencies required for it to run in an

efficient way across different computing environments.

Customer: Person who enters the garage with either a parking reservation or

looking to make a walk-in reservation.

Database: Hosted on the website, used to store customer data and parking information.

Decentralized: In a decentralised system lower level components operate on local

information to accomplish global goals.

ETC (Electronic Toll Collection): It is the system aims to avoid the delay on toll

roads, HOV lanes, toll bridges and toll tunnels by collecting tolls without cash and without

requiring cars to stop.

Encryption: In cryptography, encryption is the process of encoding a message or

information in such a way that only authorized parties can access it.

Extension: Customers are allowed to increase the amount of time their car is in

the garage, as long as there is available time slots once their time is over.

License plate scanning: It is going to be a scanner at a checkpoint that will

record the license plate number of the vehicle and store it into the systems database.

Manager’s account: It is the account which the admin of the parking garage

has access to. The manager account keeps track of the dynamic pricing, customer

details, slots availability. The manager account have access to information related to

other parking locations owned by the same company.

No-Show: The act of missing a reservation. The manager will still collect the

payment due to paying upon reservation.

Online Reservations: An online reservation system is a web interface you can

use for reservation management.

Overstay: An unavailable spot that may impede future reservations due to the

customer not returning within the allotted reserved time.

Registration: The customer sign-up with their credentials and these

information are available in the company database. When registering before reserving,

the customer is asked to input their name, genders, phone number/email, credit card

number, address, driver's license number and date of birth. By registering, it allows the

customer to reserve parking spots.

Servers: Server is a device that provides functionality for other computer programs or

Devices.

Understay: A newly vacant spot due to a customer leaving before the

conclusion of their reserved time.

User Interface: The user interface (UI) is the point of human-computer interaction and

communication in a device.

Walk-ins: Parking customers who walked into the garage without a reservation.

3. System Requirements

Functional Requirements

Req PW Description

REQ-01 6 The system create accounts for customers.

REG-02 6 The system allow the customer to log in

REQ-03 6 The system allows customers to view and reserve their suitable parking

spots.

REQ-04 7 The system allow walk-in customers to make on-spot reservation.

REQ-05 6 The system allows the reservation to be canceled before the agreed time.

REQ-06 8 The system allows the customer to change the reservation time based on

their demands

REQ-07 8 The system allows the customer to edit their information

REQ-08 5 The system allows the customer to see the past transactions.

REQ-09 6 The system shows the remaining reservation time to customers.

REQ-10 7 The system allows parking time extension on the website.

REQ-11 5 The system updates the parking slot availability list as soon as the last

customer leaves the parking spot.

REQ-12 5 The system update the parking slot availability list as soon as one

customer reserves the parking spot.

REQ-13 9 The system provides suitable parking spots based on the size of the

customers’ vehicles.

REQ-14 5 The system provides customers with a road map to go to the reserved

parking spot.

REQ-15 7 The system scan license plates.

REQ-16 8 The system shall recognize registered customers via plate number.

REQ-17 7 The system shall detect the frequent of customers via plate number and
address the type of members based on the frequently use of the customer.

REQ-18 6 The system updates the list of blacklisted car from the website

periodically

REQ-19 7 The system detects blacklisted cars from the amber alerts for all

incoming cars.

REQ-20 9 The system exchanges the data between multiple garaging locations

regarding the customers and blacklisted car

REQ-21 5 The system informs the manager about the blacklist-car warning.

REQ-22 4 The system detects the license plate number with accuracy/confidence

level.

REQ-23 7 The system allows combined pricing across multiple garaging locations

REQ-24 6 The system provides dynamic pricing of garaging locations.

REQ-25 7 The system provides a reasonable charging standard on the basis of the

peak time of the day.

REQ-26 5 The system allows the customer 5 mins buffer time before being

charged for the next time slot.

REQ-27 8 The system allows online payment through user interface.

REQ-28 7 The system allows pre and post payments. (by bank cards or cash)

REQ-29 6 The system shall allow the changes of payment methods.

REQ-30 5 The system shall mail or message customers in case of an emergency.

REQ-31 9 The system protects the personal information of customers.

REQ-32 7 The system will ask if their are another reservation under the same user

at the same time in order to make sure and reduce the cost.

REQ-33 6 The user data or information will be input to the database and stored in

the main database.

REQ-34 4 The system will automatically charge for the cancellation fees.

REQ-35 8 The system will connect all the garages owned by the same admin and

exchange local information at other garaging location

REQ-36 5 The system will notify the manager the available slot in order to update

the parking lot spaces.

REQ-37 4 The system will back-up and encrypt customer information for privacy

and evade hackers.

REG-38 6 The system will send code to customers confirming the reservation.

Non-Functional Requirements

Req PW Description

REQ-39 4 The online reservation requires internet connectivity

REQ-40 7 The customers can check the transaction history.

REQ-41 9 The customers can edit or cancel reservation 2 hours in advance. After 2

hours, the customer is charged a cancellation fee.

REQ-42 6 When registration completes, the customers need to confirm their email

REQ-43 4 Recovery time will not exceed over 5 minutes

REQ-44 8 When the customer complete the payment, the money transaction will be

transferred to the owner and based on the contract to receive the fee when

applying our system

REQ-45 9 The system will be equipped with exchanging information between

different garaging locations

REQ-46 7 The system will be tested in order to check for the potential bugs and then

debugged.

REQ-47 9 The system will be simulated in order to check the license plate and

check if the customer is registered and the data information will be

transmitted to the database with the notification system.

REQ-48 6 The system will be periodically updated without affecting the stored

information.

REQ-49 7 Any damage to customers property in the garaging area will be

compensated by the garage owner.

REQ-50 8 The system is modeled in a way that it is implementable for any

automated garage type and the architecture can be altered as per the

garage admin requirements.

User-interface requirement

Req PW Description

REQ-51 5 In order to create an account, customers need to have a mobile device or

state-of-the-art technologies that could use any radio access technologies

and establish connectivity for accessing our website and create an

account. When registering the account, customers need to input their

information such as last name, first name, email, mobile number, date of

birth, licence plate number.

REQ-52 8 To log in to the customer’s account, the customer needs to put the

adequate email and password.

REG-53 5 If the customer forgets the password, the UI will show the reset password

features in the login page

REG-54 5 If the customer hasn’t registered the account on our page, the UI will

show the unregistered features in the login page and lead to the signup

page

REQ-55 9 To update and edit the customer’s information, the customers need to log

into their account and update or edit their information

REQ-56 9 To make an online reservation through web, customers need to log in to

their account, choosing the hours which is suitable for them and choosing

the slots based on the dimension of the car; lastly,choose their payment

method and make a submission. Then the system will receive the data and

return confirmation code to the customer’s email.

REQ-57 7 To update and edit the customer’s reservation, the customer need to log

into their account and update or edit or cancel their reservation (for online

customer)

REQ-58 7 To change or cancel reservation, the customers needs to access their

account, choose reservation and input the confirmation ID. The user then

selects change reservation or cancelation by choosing yes or no option.

4. Functional Requirement Specification

Stakeholders

Stakeholders are the people interested in the success of the organization. They are

classified as primary and secondary stakeholders. In our case, the primary stakeholders are the

garage owner and managers, who will be directly utilizing the system to increase efficiency and

profit of the organization. Another set of stakeholders will be the customers, who will also use

our system to have a better and systematic garaging experience.

Actors and Goals

Actors Goals Use Cases

 Parking User Interface To display the available parking slots on the website

and allow online payment. On payment confirmation

reserve slots depending on customers slot selection in

the garage location of customers convenience. Also

allow reservation cancellation within a time window.

UC3, UC4, UC5,

UC7, UC8, UC18,

UC19, UC22, UC23

Parking Interface To display the empty slots for the walk-in customers

and allow them to park when entering the garage

UC3, UC4, UC5,

UC6, UC8, UC18,

UC19, UC23

System Update customer’s information, reservation and

payment method

UC24

System Update the parking information, the time elapses,

time left and available slots if the customer wants to

extend the slot reservation time.

UC11, UC12,

UC13, UC14, U23

Security System To protect customer information UC21

Security To ensure that customers reserving the slots on the UC20

website and the customers arriving for availing

parking service are the same.

Camera Detect blacklisted car UC17

Garage Owner To fix slot price for regular and peak hour. UC8

Garage Owner To keep track of the available/unavailable parking-

slot, and time before reservation for each slot elapses.

UC11, UC12,

UC15,

Garage Owner To receive push updates on black listed car detection UC17

Customer To register and log in on the website UC1, UC2

Customer To modify or update their information or payment

method on the website

UC24,UC25

Customer Choosing paying online or on the spot (walk-ins) UC25

Customer To check for the available slots and reserve with the

help of online payment through the UI.

UC3, UC4, UC5,

UC8, UC9, UC10,

UC18

Customer To check for the available slots and and assign the

customer a spot with on spot payment.

UC3, UC4, UC5,

UC6, UC18, UC19

Customer Arriving at the garage UC15

Customer Exit the garage and pay for the parking hours. UC9, UC10, UC16

Customer Receive confirmation code and reservation details

through email

UC11, UC12,

UC13, UC23

Customer Cancel the reservation on the website UC7

Customer Paying for the parking hours UC9, UC10

Use Cases

Casual Description

UC1: Sign Up - Customer create an account on our website

UC2: Log In - Customer use their registered credential to access the website

UC3: Slot Availability - Check if slots are available for parking

UC4: Slot Preference - Select from the available parking slots as per choice

UC5: Adaptive Parking - Allotment of slots according to the size of the vehicle

UC6: Walk-In - Customers without advanced reservations

UC7: Reservation Cancelation Or Editing - Cancel reservation before showing up

UC8: Dynamic Pricing - Charging customer depending on the time of the day when the

 demand if high/low

UC9: Payment - Charge your customers at the end of parking tenure

UC10: Combined Payment - Let customers use multiple parking locations and be

 charged once finally when he leaves.

UC11: Time elapse - To keep an account of time elapsed since parking.

UC12: Time update - Send customer update about the time left before reservation expiry

UC13: Extra Parking Time - Bonus time alloted to the customer before they are charged

 for the next time slot

UC14: Reservation Extension - Extend current reservation time from website

UC15: Arrival - Customer entering the garage

UC16: Departure - Customer exit the garage

UC17: Blacklisted Car Alert - Inform garage manager about blacklisted car detection

UC18: Suitable Garage Location - Choose the preferable parking location

UC19: Comparative Price Parking - Park at the location which offers least price

 UC20: Parking Security - Send QR-code to the customer when making online

 reservations or offline, when the customer gets to the desire-slot, to get into the

 slots, the customer needs to give the code to the system and then the system will

 allow the customer to get in.

UC21: Information Privacy - Encrypt customer information for secure transaction

UC22: Email Updates - Send pay amount, security code, time elapsed and start of buffer

 time.

 UC23: Reservation- To reserve a slot in 2 hours

 Traceability Matrix

REQUIREMENT CASE Register

Online

Log-In

Online

Make

Reservation

Online

Walk-

in

Enter Depart

Create a New

Account

 X X

View or Reserve

Parking Spots

 X X

Change or Cancel

Reservations

 X

Update Spot

Availability

 X X

Provide Real-Time

Pricing

 X X

Allow Payment X X

Scan License

Plates

 X X

Recognize

Customers

 X X

Detect Blacklisted

Cars

 X X

Give Internal

Directions

 X X

View or Extend

Remaining Time

 X

Send Email X X X

Edit Profile Data X

View Profile

History

 X

Share Data

between Garages

 X X X X

Fully Dressed Description and Sequence Diagram

Use Case UC-17: Blacklisted Car Alert

Related Requirements: REQ-03, REQ-14, REQ-17, REQ-18, REQ-19, REQ-20, REQ-21

Initiating Actor: Garage Owner

Actor’s Goal: To being notify if there is a blacklisted car in his/her garage.

Participating Actors: Garage Owner ,Customer, System

Preconditions: The garage owner is able to access blacklisted car data from the law

enforcement

Postconditions: The customer is allowed to park either the plate is in the blacklist or not.

Flow of Events for Main Success Scenario:

->1. The garage owner updates the blacklist plate.

->2. Customer accesses the garage throughout the main gate and the camera scans the plate

<-3. The system compares the plate with the blacklisted car data

a. If the plate is in the blacklist, notify the garage owner.

<-4. Allow the customer to access.

Figure 4-1 Sequence diagram of UC-17

Use Case UC-10: Combined Payment

Related Requirements: REQ-02, REQ-08, REQ-19, REQ-22, REQ-38, REQ-39

Initiating Actor: Customer

Actor’s Goal: To have the ability to continue the parking time in other locations in the system

Participating Actors: Customer, System

Preconditions: The customer is required to have an account in the system.

Postconditions: The customers are required to pay more if their parking time is over.

Flow of Events for Main Success Scenario:

->1. The customer makes payment on our website.

<-2. The system sends verification email.

->3. The system enters a loop and the exit condition is when time elapses is equal to the paid

parking duration .

a. If the customer check-in, time elapses starts counting.

b. If the customer check-out, time elapses stops counting.

Figure 4-2 Sequence diagram of UC-10

Use Case UC-8: Dynamic Pricing

Related Requirements: REQ-5, REQ-8, REQ-12, REQ-19, REQ-22

Initiating Actor: Customer

Actor’s Goal:To charge customers based on the time making reservation on a day.

Participating Actors: Customer, System

Preconditions: The customer is required to have an account in the system and make advanced

reservation.

Postconditions: The customers are required to pay more if their parking time is over.

Flow of Events for Main Success Scenario:

->1.Customers log in to the website and make reservations.

<-2. System calculates the price based on the time making reservation.

->3. Customers make payment.

--4. Customers arrive at the parking lot.

Figure 4-3 Sequence diagram of UC-8

 Object Constraint Language:

Classes Invariant Precondition Postcondition

Account Context account

inv:self.useraccess

pre:self.useraccess=true Post:self.userAccess=

self.webaccess

Manager Context manager

inv:self.salary

Context manager ::

(s:integer)

Pre:self.salary=0

Context

manager::(S:integer)

Post:self.salary= h*w

Garage Context garage inv:spots Context

garage::(g:integer)

Pre:

self.spots=vacantSpots

self.spots

=self.spots-

self.spotnum

Camera Context camera inv:

String: self.licenseplate

Context camera inv:

String:self.blacklistlicen

se

Context camera inv:

String:self.shapeofcar

Context camera inv:

String:Price

Context camera inv:

Integer:Spot

Context camera:

(p: string)

self.licenseplate=0

Context camera:

(z: string)

self.blacklistlicense=onli

neblakclistcar

Context camera:

(m: string)

self.shapeofcar=0

If self.licenseplate

=self.blacklistcar,

return false

else if

shapeofcar(car):

return Price,Spot

Reservation Context reservation

inv:self.reserve

Context reservation

inv:self.spotnum

Context

reservation::(r:integer)

Pre:self.spotnum=true(sp

ot is available)

If self.spotnum=true

then

self.spotnum=self.spo

tnum-1(spot is

reserved and there is

one less spot)

else

return false

Price Context price inv :

self.hour

Context price inv :

self.month

Context price ::

(h:integer)

Pre.selfhour=0

Context price::

(m:integer)

Pre.selfmonth=0

Post:total = self.hour

+ self.month

Notification

System

Context notification inv:

String: self.email

Context notification inv:

String self.cost

Context notification:

(l: False)

Pre.hasreservation= True

Context notification:

Post:

If self.reservation=

True and

self.timereservation!=

Context notification inv:

String: self.timestart

Context notification inv:

String self.timeend

Context notification inv:

String self.qrcode

(n.False)

Pre.selftimereservation=0

expire,

sendemail(self.email)

return self.cost,

self.qr code,

self.timestart,self.cost

self.timeend

5. Effort Estimation using Use Case Points:

Actor:

UAW: 3(15) + 3(10) + 1(5) = 80.

The complexity of the unadjusted actor weights is determined by the amount of work, and

the weights are based on the complexity.

Actor Description of relevant characteristics Complexity Weight

Parking

Interface

The website will display the parking interface to

provide information about parking for

customers.

Complex 3

Plate

Recognition

The scanner interacts through a camera device

and software API that allows license plates to be

read.

Average 2

Database Database stores all customers information,

garages and blacklist plate. The database also

links to multiple subsystems.

Complex 3

Customer Customer can interact with the system via

website to view available spot and make

reservation.

Average 2

Shape

Recognition

System use camera to detect the shape of the

vehicle to charge the customer

Average 2

Garage Owner Garage owner can interact with the system via

website to adjust parking prices and manage

blacklist plate .

Simple 1

Use case:

UUCP: 6(15) + 9(10) + 7(5) = 215.

The complexity of the use cases is determined by the number of participating actors and

the number of steps it takes to get to the success scenario. The higher the number of participating

actors, the higher the complexity. The weights are based off the complexity.

Use case Description of relevant characteristics Complexity Weight

UC1: Sign Up Simple user interface. 2 Participating actors. Average 10

UC2: Log In Simple user interface. 2 Participating actors. Average 10

UC3: Slot

Availability

Graphical interface. 2 Participating actors. Average 10

UC4: Slot

Preference

Graphical interface. 3 Participating actors. Complex 15

UC5: Adaptive

Parking

Simple user interface. 3 Participating actors. Complex 15

UC6: Walk-In Simple user interface. 3 Participating actors. Complex 15

UC7: Reservation

Cancelation Or

Editting

Simple user interface. 3 Participating actors. Simple 5

UC8: Dynamic

Pricing

Simple user interface. 2 Participating actors. Simple 5

UC9: Payment Simple user interface. 2 Participating actors. Average 10

UC10: Combined

Payment

Simple user interface. 3 Participating actors. Complex 15

UC11: Time

elapse

No user interface. 2 Participating actors. Average 10

UC12: Time

update

Simple user interface. 2 Participating actors. Simple 5

UC13: Extra

Parking Time

Simple user interface. 2 Participating actors. Simple 5

UC14: Reservation

Extension

Graphical interface. 2 Participating actors. Simple 5

UC15: Arrival No user interface. 2 Participating actors. Average 10

UC16: Departure No user interface. 2 Participating actors. Average 10

UC17: Blacklisted

Car Alert

No user interface. 3 Participating actors. Average 10

UC18: Suitable

Garage Location

Simple user interface. 2 Participating actors. Simple 5

UC19:Comparative

Price Parking

Simple user interface. 2 Participating actors. Simple 5

UC20: Parking

Security

Simple user interface. 2 Participating actors. Average 10

UC21: Information

Privacy

No user interface. 2 Participating actors. Complex 15

UC22: Email

Updates

Simple user interface. 2 Participating actors. Simple 5

UC23: Reservation Simple user interface. 3 Participating actors. Complex 15

6. Domain Model Analysis

Domain Model

Figure 6-1 Domain model

Domain Model Derivation

The following domain model is derived from the use cases and functional requirements

with the highest priorities. The system with each use case allows the customer to register on the

website (UC-1) and log in when complete registration (UC-2), then reserving for the desire slot

(UC-4); on the other hand, regarding the walk-in customer which have the same concept as the

web-register customer but reserving offline (UC-4) . Additionally, after reserving, the customer

will park their car with the designed ID code (UC-20), keep track of the remaining time of the

parking and pay for their bill or extend their duration time if the parking slot is available for that

time. (UC-8, UC-9, UC-11, UC-12, UC-14, UC-18, UC-22,U-23)

There are four concepts that play a main role in the system: the camera system which

having the license plate reader function which could define whether that is the customer which

had reserved or the crime license plate and having the size detected function ; the visual or user

interface that allows the customer to reserve and entering/exiting when reserving is complete and

helping the customer to get into the desired slot; the notification system which sends the warning

when detecting the crime license plate(for the manager) or sending the duration of time,the ID

code,the reservation (for the customer); the pricing based on the user demands or the combined

price when parking at multiple places in continuous time.

The four main procedures of the system

● The camera system: When the customer enters the garage, at first sight the camera with

the license plate reader will read the license plate and compare with the license plate in

the database to check if the customer had reserved on the internet or not in terms of web-

register customer and apply both when checking for the exit.

● The visual and user interface: When registering on the internet or reserving with the

visual interface, the customer’s information will be stored in the database and retrieving

the data when implementing the license plate reader function. Moreover, the customer

can register, log in and see the available slot at a given time to make,edit or cancel the

reservations ; these actions will be saved in the system or in other words, the database.

● The notification system: When the registration is complete, the system will send an ID

code, the slot and the hour parking for the customer to park in the right place and when

entering the slot, the customer will need to show the ID code to acquire the lot.

Moreover, during the parking time, the customer will receive the email notify the

remaining time to make sure that the customer can take the car in time. And for the

manager, sending a warning to notify if the blacklist car is entering the parking lot in

order to increase the safety for the customer and for the owner. Moreover,to notify the

owner if a slot is available when the customer leaves the parking lot.

● The pricing system: When completing the registration, a price will be shown in the user

interface and the price will depend on if the hour is rush hour or not, the adequate slot,

the shape of the slot, the customer can choose to pay there if they use the system once.

However, when the customer wants to park in continuous time, the customer can reserve

through user interface or visual interface and complete the payment which will be the

total price of each parking hour when leaving.

Concept Definitions (D-doing; K-knowing; N-neither)

Responsibility Description Type Concept Name

To check if the incoming customer has a reservation. K Gate Checking

To check if the incoming vehicle has a black-list plate. K Gate Checking

To estimate the size of the incoming vehicles. D Size Detecting Camera

To obtain the customer information and make sure the online

reservations.

N Visual/User Interface

To check if the exiting vehicles have finished the payment. K Gate Checking

To change or cancel the reservation before the desired time. D Website

To choose the payment methods by customers K Website

To manage customers and employee information and status. K Website

To record the history transaction. N Website

To send an email confirmation when reserving. D Notification (for customer)

To send an ID code for each parking. D Notification (for customer)

To notify customers if the parking is overtime. D Notification (for customer)

To show time remaining and real-time price to customers. N Notification (for customer)

To notify owners if there is any black-list car detected. D Notification (for owner)

To notify the number of available slots. D Notification

To obtain reservation information. K Database

To obtain parking slots information. K Database

To obtain ID code for incoming or reserving customers. K Database

Association Definitions

Concept Pair Association Description Association

Name

Gate

C hecking↔ D atabase

When vehicles entering, the gate checking checks the

reservation information, black-list related information and the

estimated size of the incoming vehicles, then sends the data to

the database. When vehicles exiting, the database sends the

vehicles’ remaining time, the parking charge and the payment

method to the gate checking.

Sending data

G ate C hecking↔ V isual

Interface

The gate checking would check if the customers is entering or

exiting the parking gate, if entering, the customers need to

choose a slot from the visual interface.

Entering &

Exiting

Visual

Interface↔ D atabase

The visual interface send the information of the customers

combined the chosen slots to the database.

Sending data

W ebsite↔ D atabase The customers could make a reservation or change/cancel the

reservation on the website. They can also choose their

payment method on the website as well. When the reservation

status is changed, the information will be sent to the database

and the data there will be updated. Also, the database sends

the history transaction data to the website.

Reservation/Pay

ment status

changes

G ate

C hecking↔ N otification

(for owner)

When doing the gate checking, if a black-list car is checked,

then the owner will get a notification from the gate checking.

The gate checking will also notify the owner if there is no

parking slot left.

Alarm

notification

Notification (for

customer)↔ D atabase

After reserving, the customers will receive an email

confirmation and an ID code from the database. In the

meanwhile, if the customer is parking overtime, the database

will generate an overtime notification to remind the customer.

Sending ID code

& overtime alert

D atabase↔ M ain

D atabase

All the data in the every-garage database has an interaction

with the main database.

Sending data

Attribute Definitions

Concept Attribute Attribute Description

Gate Checking Check License Plate Check if the incoming vehicle is reserved and

black-listed.

Entering/Exiting Check if the vehicle is entering or exiting the

gate.

Payment Check the parking charge to be paid and also

the payment method.

Visual Interface Customer Info Gather the customers’ information.

Choose a slot Choose an available slot for the customer on

the basis of the size of the vehicle.

Website Make a reservation Make a reservation on the website.

Customer Info Gather the customers’ information.

Change/Cancel Change/Cancel the reservation.

Payment Method Choose/Change the payment method.

History Transaction The history of transaction could be checked

on the website.

Member Registration The customer could register a member card

on the website for the parking discount,etc.

Member Status The members can check their member status

on the website and check the members’

privilege.

Type of car The information of the type of the car can be

uploaded on the website for a better

reservation.

Notification (for owners) Detecting black-lisk car The owner will get a notification if there is a

black-list car detected. (from amber alert or

crime alert,etc.)

Available slot The owner will receive a notification if there

are a few parking slots left. The owner can

also change their charging standard based on

the number of available slots.

Notification (for

customers)

Email confirmation The customers will get a confirmation email

after the reservation to make sure the

security.

ID code Every vehicle has a unique ID code for

corresponding its own parking information.

Parking Info The parking information like the place of the

selected slot, the parking charge, etc.

Overtime/Time left The customers will receive a notification if

the parking time is over the desired time.

They may also be notified if there is, for

example, five minutes left for their parking.

(Main) Database Reservation Info Store the information that if the customers

have already a reservation and the desired

parking time and parking garage.

Parking slot Info Store the information that if a specific slot is

used or not. Also store the information of

how many slots are being used at that time.

Customer Data Store the customers’ information.

ID Code Every vehicle has a unique ID code for

corresponding its own parking information.

Store and generate the ID code.

Time/Date reservation Store the exact time and date of the

reservation for customers.

Traceability Matrix

Mathematical Modeling

An average transfer of data between any two actors has a man-in-the-middle risk, where a

third bad actor can tap the message midway and see what is inside. To make such attempts at

theft meaningless, we will use asymmetric encryption to secure various forms of transactions

between us and our customers; this will protect key customer information by making any records

unreadable and virtually uncrackable.

We will accomplish this by using the following mathematical technique:

1. We will give the customer a public key, which is the left side of the equivalency:

𝑚𝑚𝐸𝐸 𝑚𝑚𝑚𝑚𝑑𝑑 𝑁𝑁 ≡ 𝑐𝑐

2. The customer will replace “m” with their intended message using a padding scheme and

send us back the encrypted message “c”.

3. We will decrypt the message using our private key and use the content of the message.

The message could be the license plate number of the customer’s car, for example.

4. Following the example in step 3, we would then record this transaction in our entry/exit

ledger (in its encrypted form).

5. In the event of the theft of this ledger, the customer’s privacy would be safe and their

travel history will not be exposed. This is due to the fact that the bad actor does not have

the private key required to make actual meaning of all the data in the ledger.

6. Any bad actor who decides to brute-force decrypt the data would be stuck solving the

puzzle for decades or longer.

The determination of the perfect private key is where the largest amount of mathematical

modeling is required. We have to make sure that even if the public key is known, the private key

cannot be cracked using it. We also have to make sure that the private key cannot be easily

cracked. In order to achieve these objectives, we would have to pick the right values for “N”, “E”

and a third letter “D”, which will be used to undo the effects of “E”.

“E” can be any small number greater than 1 of our choosing, with the only condition

being that it cannot share any factors with 𝜙𝜙(𝑁𝑁), which is something we’ll explore soon.

To find “N”, we will pick any two really large, preferably 100 digits or more, prime

numbers and multiply them together:

𝑁𝑁 = 𝑃𝑃1 ∗ 𝑃𝑃2

 To understand why this is the best idea, we will first have to define something called the

breakability of a number “X”. The breakability of a number is the amount of numbers ≤X, but

greater than 1, that do not share any common factor with X.

The best “X” to pick therefore is a prime number. This is because a prime number cannot

be broken up more than twice, once with a factor of 1 and another with a factor of itself. This

property makes it so that there will be no ambiguities in future calculations.

Here is the formal definition, when X is a prime number:

 𝜙𝜙(𝑋𝑋) = 𝑋𝑋 − 1

The following property is also valid for the multiplication of two prime numbers :

𝜙𝜙(𝐴𝐴 ∗ 𝐵𝐵) = 𝜙𝜙(𝐴𝐴) ∗ 𝜙𝜙(𝐵𝐵)

We can then port this information with “N” this way:

𝜙𝜙(𝐴𝐴 ∗ 𝐵𝐵) = 𝜙𝜙(𝐴𝐴) ∗ 𝜙𝜙(𝐵𝐵)

𝜙𝜙(𝑃𝑃1 ∗ 𝑃𝑃2) = 𝜙𝜙(𝑃𝑃1) ∗ 𝜙𝜙(𝑃𝑃2)

𝜙𝜙(𝑁𝑁) = (𝑃𝑃1 − 1) ∗ (𝑃𝑃2 − 1)

This part is extremely difficult to do in the other direction and is the reason, why we

would want to keep it 𝜙𝜙(𝑁𝑁)secret.

The number “D” is another number we would want to keep secret. Why? Because as we

will see, this number is really the one that will unlock the encrypted message easily and in one

calculation. This is our private key code.

To begin to find “D” we must define Euler’s Theorem. This theorem utilizes 𝜙𝜙(𝑁𝑁), the

breakability of N, that we found from a previous part in its definition.

Here is how the Theorem is defined, using our variables:

𝑚𝑚𝜙𝜙(𝑁𝑁) ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Using this and some properties of modulus mathematics, we can logically deduce the

following:

 𝑚𝑚𝑘𝑘∗𝜙𝜙(𝑁𝑁) ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁; because 1𝑘𝑘 always equals 1, not matter the k.

 𝑚𝑚 ∗𝑚𝑚𝑘𝑘∗𝜙𝜙(𝑁𝑁) ≡ 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁; because any number times 1 equals itself.

 𝑚𝑚𝑘𝑘∗𝜙𝜙(𝑁𝑁)+1 ≡ 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁; using basic rules of exponents

We can use this definition on the original public key: 𝑚𝑚𝐸𝐸 𝑚𝑚𝑚𝑚𝑑𝑑 𝑁𝑁 ≡ 𝑐𝑐 , and find the

following, assuming that we’re looking for a “D” that depends on 𝜙𝜙(𝑁𝑁):

 𝑚𝑚𝐷𝐷∗𝐸𝐸 = 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Then, 𝐷𝐷 = (𝑘𝑘 ∗ 𝜙𝜙(𝑁𝑁) + 1)/𝐸𝐸

All this means is that our secret 𝜙𝜙(𝑁𝑁)factorization has been utilized in a way that

incorporates the non-secret parts E and N. We can now use D to transform the encrypted “c”

message to the decrypted message “m”.

In conclusion, by incorporating all the steps, we will have an extremely strong encryption

system. This will put the customer’s mind at ease, knowing that even if ledger data is leaked,

their information is safe.

7. Interaction Diagram

Online Registration

Use Case UC-1: Sign Up

Related Requirements: REQ-01, REQ-06,REQ-15, REQ-17, REQ-38, REQ-51

Initiating Actor: User

Actor’s Goal: To enter their information to create a new account.

Participating Actors: Website and Database.

Preconditions: User has a car, driver’s license, email address and a payment method and has a

connection to the Internet.

Postconditions: Account is created successfully.

Flowchart of Registering:

1. If the user decides to Register:

a) They will click “Sign Up”

b) They will be Redirected to the Sign-Up page.

c) They will enter their name, license number, plate number, payment method, and

email address.

d) The database will store their information.

e) They will redirected briefly to the confirmation page.

f) They will be redirected to the login page. They can now Log-In.

Figure 7-1 Interaction diagram of online registration

We decided to assign the responsibility to register to the website (system), as the website
is the main interface through which the customer can make parking reservations. The website has
the responsibility of allowing customers to login and make reservations, which ensures that the
website has focused specialty and does not have too many responsibilities assigned to it.

Even though the customer interacts with the system to for logging in and making
reservations, we assigned the database the responsibility to verify and store the data that is being
received. In this way the database can easily access information about customers when it is
needed for parking. We use the Publisher-Subscriber design pattern to improve this use case’s
design. In this case, the customer is the subscriber while the garage itself is the publisher.
Once the subscribers input valid information, the publisher releases information of interest to the
subscriber(that their account has been created). On the other hand, if the subscriber inputs invalid
information, the publisher shows an error message showing no registered account.

Login

Use Case UC-2: Log In

Related Requirements: REQ-02, REQ-06,REQ-07, REQ-09

Initiating Actor: User

Actor’s Goal: To gain access to their account on website

Participating Actors: Website, Database

Preconditions: User already has an account on our database

Postconditions: User login successfully

Flowchart of login:

1. If user decide to login

a) They try to input their username and password

b) Click login

c) Website will send the data to verify

d) The database send back the result

e) If the user id and password match in the system, website redirect user to homepage

with their account login

Else repeat step a)

2. If user click forget password

a) Redirect to forget webpage to input email

b) Send request to database

c) Database send new password to user’s email

d) Then user starts login process

Figure 7-2 Interaction diagram of log-in

The users access the RU parking website inputs the credentials: user id and password.

They then click the login tab and wait to be authenticated by the database. After this verification

if the response if positive the user is allowed to login and redirected to the home page, however

if the authentication verification is negative then the user repeats the input of userid and

password for maximum 5 times. When the trials exceeds 5 attempts the user is redirected to

forget password page and prompted to enter the registered email where the password change link

is sent.

Arrival

Use Case:

1. UC6: Walk-In - Customers without advanced reservations

2. UC15: Arrival - Customer entering the garage

Related Requirements: REQ-01, REQ-02, REQ-03,REQ-11,REQ-12, REQ-13, REQ-

14,REQ-15,REQ-18, REQ-21, REQ-23,REQ-40, REQ-45

Initiating Actor: Garage

Actor’s Goal: Allow customers to enter the garage.

Participating Actors: User, Detect System(Camera), Visual Interface, Database

Preconditions: User has made a reservation on the website or just a walk-in customer.

Postconditions: User enters the garage and finds a desired parking slot.

Flowchart of Arrival:

If user decides to enter the parking lot, the camera will check the license plate

1. If the license plate does not belong to the black list.

1) If this license plate has already made an online reservation

a) The user should make a confirmation from the visual interface.

b) The car can enter the garage.

2) If this license plate has not made an online reservation

a) The user will make a new reservation with his/her information in the

visual interface.

b) The visual interface will send an ID code to the user.

c) The new reservation data will be sent to the database.

d) The car can enter the garage.

2. If the license plate belongs to the black list.

1) The detect system will inform the manager with a warning alert.

2) The car with this license plate can not enter the garage.

Figure 7-3 Interaction diagram of arrival

The user comes in and the License plate is detected by the camera and the corresponding
reservation is looked up. A loop is run continuously where in a check is done whether the license
plate detected already has a reservation and if it is blacklisted license plate or not. For a given
license plate if a reservation is found and the car is not blacklisted then the customer reservation
is confirmed. In case when no reservation is found and the license plate is not blacklisted then
the customer falls under the category of walk-in clients. His reservation is done on spot by quick
signup method. While when license plate matches the blacklisted cars list then an alert is sent to
the manager irrespective of whether a corresponding reservation is found or not. Similarly to the
above use cases, the subscriber is the customer and The publisher(garage control) will lookup the
corresponding reservation in DB and authenticate the subscriber to park the car in the already
assigned slot.

Reservation

Use Case:

1. UC3: Slot Availability - Check if slots are available for parking

2. UC4: Slot Preference - Select from the available parking slots as per choice

3. UC5: Adaptive Parking - Allotment of slots according to the size of the vehicle

4. UC14: Reservation Extension - Extend current reservation time from website

5. UC23: Reservation- To reserve a slot in 2 hours

Related Requirements: REQ-02, REQ-05, REQ-09, REQ-11, REQ-12, REQ-13, REQ-26,

REQ-28, REQ-40, REQ-54

Initiating Actor: User

Actor’s Goal: User will successfully reserve for the parking slot

Participating Actors: Website, Database

Preconditions: User already has an account on our database and login successfully

Postconditions: Reservation is saved in database and the reserved slot will be marked as

not available. The system will send confirmation email and charge money.

Flowchart of reservation:

1. If user decides to make a new reservation:

a) They try to log in and access to the website

b) They will enter the type of vehicle (size of vehicle)

c) Database will match the type of vehicle and return the map related to it to the

website

d) The website will display the map with all slots including available and unavailable

e) They will check available time

f) Website will display time after grabbing data from database

g) User will choose the time

h) Website will send the data to database for reservation

i) Then database will be updated

j) Database return confirmation and prices to website for displaying

k) If user want to change time => repeat step 1e

l) Else user will press Confirm and the reservation will be saved in database

m) Then the email confirmation will be sent to the user

2. Else => User just wants to extend the time:

a) They try to log in and access to the website

b) They will check available time

c) Website will display time after grabbing data from database

d) User will choose the time

e) Website will send the data to database for reservation

f) Then database will be updated

g) Database return confirmation and prices to website for displaying

h) If user want to change time => repeat step 2a

i) Else user will press Confirm and the reservation will be saved in database

j) Then the email confirmation will be sent to the user

Figure 7-4 Interaction diagram of reservation

When the customer plan to make a (online) reservation, he/she needs to first go to the

website and fill in the desired date and time of the parking. Then the database will get the request

from the website and query all the available parking slots which meet the demand of the

customers. When it finished, the customers will get the information about the available parking

from the website and make a choice for the specific parking slot. The database will get a request

of creating the confirmation and sent a corresponding confirmation instruction back. After that,

the customers will receive a confirmation (e-mail) from the website. If the customers make the

confirmation, this reserving information will be automatically saved in the database. Comparing

with the last version (report 2), some parts of this interaction diagram are deleted for the reason

that they are redundant at the current situation or they are already achieved in the formal step

(like the registration step). For this use case, the Publisher-Subscriber design pattern was applied

to improve the use case’s design. The subscriber is the customers while the publisher is the

website. So that in this use case, the publisher gives the subscriber the information of the

available parking slots or notify the customers there is no free slots for the desired parking time

of the customers.

Departure

Use Case UC-16: Departure

Related Requirements: REQ-03,REQ8, REQ-14, REQ-17, REQ-18, REQ-19, REQ-21, REQ-

22,

Initiating Actor: Garage

Actor’s Goal: Allow customers to exit the garage

Participating Actors: Customers, Camera, Database

Preconditions: Customer’s vehicle is in the parking lot

Postconditions: Credit card information to make payment

Flow of Events for Main Success Scenario:

1) if customers choose single parking on website, they do not need to pay when exit

because they have been charged when they made reservation on website.

 a)Garage opens gate

 b)Customers exit

 c)Camera scan exiting vehicle’s plate and stores it in database, as long as leaving time.

 2)If customers choose combined payment on website

 a)Garage opens gate

 b)Customers exit

 c) Camera scan exiting vehicle’s plate and stores it in database, as long as leaving time.

 d) System will base on arriving and leaving time of that vehicle to calculate price.

 e)Customers do payments

After leaving garage, customers will get confirmation email.

Figure 7-5 Interaction diagram of departure

When the customers want to exit the parking garage, the camera of the gate will scan the

license plate of the vehicles and query this vehicle’s parking information in the database. While

the database found the corresponding information (including using the single or combined

parking garage), it will be sent to the garage to make the price calculated. Then the garage will

charge the payment for the customers. When the customers complete the payment, the database

will receive a confirmation from the garage and then update the payment status. After that, the

customers will be allowed to exit. Comparing with the old version (report 2), this interaction

diagram made some simplifications. The single-garage case and combined-garage case were

made in one diagram here for the reason that this step will be finished in the “send parking data”

step. For this use case, the Publisher-Subscriber design pattern was applied to improve the use

case’s design. The subscriber is the customers while the publisher is the garage. So that in this

use case, the publisher will present the subscriber with the total parking charge and the

subscribers will pay the noted price before exit the garages.

8. Class Diagram and Interface Specification:

Class Diagram:

Data Types and Operation Signatures:

1. Walk-in: the purpose of this class is for walk-in customer register immediately

● Attributes:

- int reservation_time: indicate reservation time walk-in customers want to

park in the garage

- int spotNumber: indicate the spot number walk-in customers park in the

garage

- String LastName: last name of walk-in customers

- String FirstName: first name of walk-in customers

- int driver_license_num: driver's license number of walk-in customers

● Operations:

- select_reservation_time(): walk-in will choose reservation time

- select_spot(): walk-in will choose the spot for parking

- get_driverLicense(): walk-in display customer information to the monitor

- confirmReservation(): walk-in will confirm reservation information

- Receive_code(): receive the code to enter the lot of the garage

2. Visual User Interface:

● Attributes:

- Int customer_reservation_time: walk-in customer reservation time

- Int spot_customer: walk-in customer choosing lot

- Int Phone_number: the walk-in customer phone number

● Operations:

- Display_info():display the info of the customer after reserving to confirm

- Customer_reservation():display the complete screen after reserving

 3. Account:

● Attributes:

- String lastname: last name of the customer

- String firstname: first name of the customer

- String username: the username of the customer

- String password: the password of the customer

- String email: email of the customer

- String address: address of the customer

- Int phone_number: the phone number of the customer

- Int credit_card_number: the credit card number of the customer

- Int cvv: cvv number of the credit card

- Int drive_license_number: license plate of the customer

- Date credit_expiration: the date expiration of the credit card

- Date Date_of_Birth: date of birth of the customer

● Operations:

- Register(): User can register to save their information to the database

- Edit_account(): User can edit the information of them to the account

- Delete_account(): User can delete the account

- Update_account(): Update the code to enter the lot of the garage

 4. Website: this class is used for customer to sign in, reservation, register

● Attributes:

- String Username: after logging in ,the customer will show the username.

● Operations:

- Receive_Info(): receive information of users from reservation

- Send_Info(): send information to database to store.

 5. Log-In: this class is used for logging in users

● Attributes:

- String userName: user name of customers when they register

- String password: password of customers when they register

● Operations:

- takeLogin_info(): get username and password of customers.

- verifyInfo(): verify username and password of customers with database.

 6. Reservation: this class is used for both online-customer and walk-in customer to

make a reservation

● Attributes:

- int reservation_time_start: the start time to make a reservation

- int reservation_time_end: the time to end a reservation

- int spotNum: choose the spot number and reserve

- string customer_name:

- String code: getting code after reservation

- Fast track check-in for walkin customers

● Operations:

- Display_info(): display the info of the customer after reserving to confirm

- Select_reservation_time(): The reservation is selected by the customer

- Confirm_reservation(): display the complete screen after reserving

- Receive_code: send the ID code to the customer in order to get in the

right reservation lot

 7. Camera: this class will be used for camera in order to take and store image of

plates

● Operations:

- takeImage(): take plate images from car of customers

- storeImage(): store plate images of customers

 8. License Plate Detection: this class will be used for detecting plate numbers

● Attributes:

- var image: this is an image of plate numbers taken from cars of customers

● Operations:

- detectLicensePlate(): detect License Plate from cars of customers

- getCustomerInfo(): after detect the Plate it will verify with database and

get customer information belongs to that plate

9. Garage: this class will show what spots have been reserved and what spots have not

reserved yet.

● Attributes:

- int vacant_spots: numbers of spot have not been reserved

- int reserved_spots: numbers of spot have been reserved

- String code: the ID code to enter the lot

● Operations:

- add_reservedSpot(): add spots that have been reserved by customers

- remove_reservedSpot(): remove spots when customers leave or cancel

reservation.

- getCode(): the lot of the garage will need the customer Code to let them

enter the lot.

- Opening: open when customer enters

- Close: close when customer exits

10. Notification System: this class will notify customers by sending code to them.

● Attributes:

- String contactInfo: this variable is email of customers

● Operations:

- getInfo(): get information of customers from database

- preferredContactMethod(): use email for sending information and code for

parking slots

- sendCode(): send code to email of users to notify them.

 11. Manager: this class is for the manager to update the price

● Attributes:

- String username: the username of the manager

- String password: the password of the manager

● Operations:

- Manual_update: the manager can update the price based on the average

market price

 12. Price:

● Attributes:

- Double TimeofDay: time of the day to determine whether it is rush hour,

morning,night,...

- Double Occupancy: the remaining spot in the manager garage

● Operations:

- calculatehourate(): by multiplying the hour with the price per hour to

calculate

- updatePrice(): update the price after the manager is sending the updated

price

- manualUpdate():updating the parking hour and price after each hour

passes

Traceability matrix

All the Domain Model in this part is taken from section 4.1 in our report 1. The

functionality is based on the diagram above.

REQUIREMENT CASE Register

Online

Log-In

Online

Make

Reservation

Online

Walk-in Enter Depart

Create a New

Account

 X X

View or Reserve

Parking Spots

 X X

Change or Cancel

Reservations

 X

Update Spot

Availability

 X X

Provide Real-Time

Pricing

 X X

Allow Payment X X

Scan License Plates X

Recognize

Customers

 X

Detect Blacklisted

Cars

 X

Give Internal

Directions

 X

View or Extend

Remaining Time

 X

Send Email X X X

Edit Profile Data X

View Profile

History

 X

Share Data between

Garages

 X X X

1. Database:

● Responsibility: this is treated as a single database for each garage(because one of

our goals for this project is to help users parking at multiple locations). It stores:

 - Reservation information

 - Empty and reserved parking lot

 - Customer’s Data

 - Time and date of the reservation

● Classes:

- store()

- write()

- update()

2. Main database:

● Responsibility: this main database works as a combination of all single databases

above. Also, to keep track of customers who park at multiple locations.

3. Website:

● Responsibility:

 - sign_up

 - sign_in

 - make reservation

 - cancel reservation

 - change reservation

 - view history transaction/parking time

 - declare type of car of the customer

● Classes:

 - send_infor()

 - retrieve_infor()

 4. Gate checking:

● Responsibility:

 - check License plate, compare with registered plate

 - Allow entering/exiting prior to completed payment

● Classes:

 - detectLicencePlate()

 - open()

 - close()

 5. Notification for customer

● Responsibility:

 - Send confirmation email about: reservation/payment/entering status/ exiting

status

 - Send alerts about overstay status

 - Send ID code for confirmation

● Classes:

 - sendInformation()

 - sendCode()

 6. Notification for owner:

● Responsibility: to help the garage owner to stay awake when blacklist cars are

recognized.

● Classes:

 - retrieveDataFromMainDB()

 - sendInfoToOwner()

Design Patterns:

Design patterns are put into use to help us adapt to any unexpected software changes. The

presence of design patterns keeps us flexible and helps us change things systematically in order

to not break the entire project due to any minor change.

A decorator design pattern is used in our project. Our entire website design uses the

decorator design pattern. This is proven by the fact that even if we get rid of any graphics, fancy

buttons, colors, backgrounds, fancy text boxes, scroll features, or any other fancy “eye candy”,

the underlying HTML code still ensures the entire website functions no matter what. Even if any

of the graphical elements fails or faces some sort of change, the decorator design pattern ensures

that all the main features, such as logging in, making a reservation, entering info, all still work.

Due to this design pattern, continuity of service remains unaffected.

Another major design pattern that we have used is the proxy design pattern. Proxies are

especially useful in our project due to the fact that a lot of things have to be simulated. Proxies

ensure that any code written using a simulated device, for example, doesn’t affect the rest of the

code when the actual device is reintroduced to the project. Specifically, when reading license

plates to let customers in or to check for blacklisted cars, we use a simulated camera, something

that just scans the pixels of any .jpg or .png file. Keeping the proxy design pattern in mind, we

have ensured that the rest of the code will not be affected when we delete the “fake” camera and

introduce a real one. All the functions that are attached to this program will all read the same and

will all receive the same kind of data with the same usage.

A final major design pattern that we have used is the command design pattern. This

command pattern is especially useful when we have multiple uses for a single feature. Speaking

in examples, instead of using our readPlate() function to activate the camera, we use the camera

to trigger the readPlate() function instead. This is a better way to do it because our camera can

trigger a series of events using an if-else function rather than having to keep on running the

readPlate() function in an infinite loop and also we do not have to go in and repeat cumbersome

code in every place the camera is needed. This way of triggering saves us a huge amount of

headaches if we were to ever change what camera we use to read plates. With a command design

pattern, we can simply just change the underlying code of the camera and in the end, still end up

with the same “true” value coming out of interface. The rest of the code will understand that

command and all will continue as it should; all this without having to mess with any part of the

project other than the affected interface.

Object Constraint Language:

Classes Invariant Precondition Postcondition

Account Context account

inv:self.useraccess

pre:self.useraccess=true Post:self.userAccess=

self.webaccess

Manager Context manager

inv:self.salary

Context manager ::

(s:integer)

Pre:self.salary=0

Context

manager::(S:integer)

Post:self.salary= h*w

Garage Context garage inv:spots Context

garage::(g:integer)

Pre:

self.spots=vacantSpots

self.spots=self.spots-

self.spotnum

Camera Context camera inv:

String: self.licenseplate

Context camera inv:

String:self.blacklistlicen

se

Context camera inv:

String:self.shapeofcar

Context camera inv:

String:Price

Context camera inv:

Integer:Spot

Context camera:

(p: string)

self.licenseplate=0

Context camera:

(z: string)

self.blacklistlicense=onli

neblakclistcar

Context camera:

(m: string)

self.shapeofcar=0

If self.licenseplate

=self.blacklistcar,

return false

else if

shapeofcar(car):

return Price,Spot

Reservation Context reservation

inv:self.reserve

Context reservation

inv:self.spotnum

Context

reservation::(r:integer)

Pre:self.spotnum=true(sp

ot is available)

If self.spotnum=true

then

self.spotnum=self.spo

tnum-1(spot is

reserved and there is

one less spot)

else

return false

Price Context price inv :

self.hour

Context price inv :

self.month

Context price ::

(h:integer)

Pre.selfhour=0

Context price::

(m:integer)

Pre.selfmonth=0

Post:total = self.hour

+ self.month

Notification

System

Context notification inv:

String: self.email

Context notification inv:

String self.cost

Context notification inv:

String: self.timestart

Context notification inv:

String self.timeend

Context notification inv:

String self.qrcode

Context notification:

(l: False)

Pre.hasreservation= True

Context notification:

(n.False)

Pre.selftimereservation=0

Post:

If self.reservation=

True and

self.timereservation!=

expire,

sendemail(self.email)

return self.cost,

self.qr code,

self.timestart,self.cost

self.timeend

9. System Architecture and System Design:

Architectural Styles

As to the structure of the garage logic models, the Automated Parking Garage system

follows the Component-Based Development(CBD) design style. In the CBD design style, one

component can be configured independently, but it is also restricted by others. In order words, all

the processes of the system can be divided and put into each of the component, so that the

designer can work on each component respectively. However, the designed component must be

made on the basis of the communication with other components. That communication is called

as the interface. For instance, in the Automated Parking Garage system, the scanning system

handles recognizing the personal information combined with vehicle’s license plates. So that the

designer can design the scanning system with the processes like: requirements specification,

component analysis, requirement modification, system design with reuse, development and

integration, and system validation. Since the information read from license plates is related to the

customers personal information and their status of reservation, the scanning system is definitely

made based on the component of users’ accounts and parking reservations.

Besides CBD design style, the project also applies a Database-centric design style. Since

all the data such as user accounts with personal information, reservation status, real-time parking

price, available parking slot, remaining parking time and even the payments information are

stored within the database. The database links different components of the Automated Parking

Garage system, and helps to achieve their functions.

What is more, this system is also heavily based on the event-driven design style. This

design style means that one step in the system processes is triggered by the completion of the

previous step. For example, the scanning system can recognize the information of incoming

customers only if they have already created an web-account. Or, the registered customers can

only enter the garage once they have made an online reservation.

Identifying Subsystem

The subsystems of our System Architectures comprises of the:

● For the Garage Model

- Entrance Gate

- Exit Gate

- Spot Verify

- Notify User

- Plate Recognition

● For the Input Layer

- User Interface

- Camera

● For the Data Layer

- My SQL Data

- Web Server

The User Interface is a place where user can input their personal information via

register, login and make payment as well as reservation. All of those information will be

stored in Data Layer.

The Blacklist Car subsystem in Data Layer will send the list of stolen or wanted

cars to the Plate Recognition subsystem and combine with the real-time live-stream from

the Camera, it can make the comparison with the user’s plate and it will send notification

to the garage owner if the plate is in the blacklist.

When the car enters the garage, the time elapsed starts counting and the garage

will send the time elapsed to the database to calculate the remaining time of the user

when the car leaves the garage.

Mapping Subsystems To Hardware

The docker function can apply to all the garage that cooperates with our services and

connecting the database with each other. Our web services and system will be able to work on

multiple devices. Specifically, our system can be able to communicate with Visual User

Interface. And the Visual User Interface can handle and transmit the data which is registered by

the customer and the data which is provided by Camera,License Plate Detector to the

Information Database. The main objective was to make sure that the data collected from the

garage is valid when compared to the data in the database regarding online reservation customer

and can be stored regarding walk-in customer after implementing the blacklist license plate

recognition system.

Persistent Data Storage

Most data collected by the system will be stored in a mySQL database and some data

from there will be stored on the blockchain. In both cases, the storage drives used to save this

data will be persistent. Persistent storage simply means that our saved data will not be lost nor

will it be irretrievable if our hosting machine ever shuts off or fails.

Using a mySQL database, we can store information such as the name or credit card

number of the customer, as well as real-time information such as open parking spots. This data is

persistent yet mutable because it can be changed. For example, customers can change their credit

card numbers or the availability of a parking spot can change. Here, once some data is

overwritten, it is gone. That is fine for some applications, however, other applications require

data stored to be immutable.

Such a requirement can be satisfied using a blockchain. We can store key data such as

transactions, user IDs, and payment method charges in a permanent, immutable manner. This is

possible because the blockchain has a feature built-in that makes it so that no data stored on it

can be overwritten, ever. Moreover, the data on the blockchain is distributed among lots of

different computers called “nodes”. This adds another layer of persistence because even if one

machine fails, the other machines (nodes) on the chain will still have the data saved on their

respective storage drives. This way, the data is always available and can never be changed.

Network Protocol:

Since we have multiple servers requirements in the project we also need a protocol for

communication between the servers. Each of these servers with be hosting containers which will

be migrated between the garage locations for distributed information exchange. The migration

procedure includes the integration of the target network with the legacy routing, to provide a

gradual path for enabling data exchanges. In the initial stage, the network connected data centers

through legacy nodes using External/Internal Border Gateway Protocol (BGP) and ISIS routing.

Note that, from the control plane point of view, only one TCP/BGP state is maintained per

session.

In the starting network, the Provider Edge (PE) router runs BGP with external BGP

speaking peers. Besides external peerings, the PE router also maintains internal peering sessions.

Typically, all BGP sessions as well as policies are configured manually using vendor specific

CLI.

It is the responsibility of the PE router to negotiate BGP session parameters with both

internal and external BGP speakers and maintain BGP and TCP state machine for each neighbor

session. The PE router typically peers with external neighbors using the connected subnet

address of the neighbor while for iBGP; neighbor relationship is established using loopback

addresses. For next-hop reachability, the PE router also runs an Interior Gateway Protocol (IGP).

Each PE router may receive more than one copy of the same prefix from different external peers

or route-reflectors. As a result, it calculates the best path for installation in the

routing/forwarding table while maintaining multiple copies of prefixes in the BGP database.

Figure 9-1 BGP Database

Global Control Flow

Time Dependency

There is time dependency in the system. The application involves real-time dependency

rather than event-based time dependency. When a customer decides to make a reservation, they

will be picking a real time of the day. The system will record this and keep that certain parking

spot blocked off for the reserved time. Even after the customer checks-in, the system will track

how much time the customer has remaining (all the calculations will still be based on real clock

time).

Execution Orderliness

There is linear execution in the system. Customers will sign-up for an account online,

enter their payment information, make a reservation online, have their car license plate number

read, have their reservation verified, be guided to their parking spot, have their remaining time

information be available, and in the end, be guided out of the parking lot. This will happen to

every customer, every time, even if a customer is walk-in. A walk-in customer will still be forced

to follow the same sequence of steps by the system; they will still have to sign-up and reserve

before being allowed to enter the lot.

Concurrency

There will be major concurrency in the system. Each car and parking spot will have

threads of their own. Each car will have driver data, license plate info and remaining time

information attached to it. Each parking spot will have next availability, spot size, location in lot

information attached to it. All the threads will be unique and will have to be handled on a case-

by-case basis.

Hardware Requirements:

1. Tablet 8GB(min): as the Visual User Interface

2. LED Display: for outside to show vacancy of the garage also inside elevator

3. Cameras: 10MP for security check

4. Driver’s License Reader: to quickly obtain information with one swipe

5. License Plate Reader: 10MB min to read the plate

6. Database: 100GB at least to store all the information.

7. Hard-drive: At least 50 GB of space. This disk will store only cached information. With

an expectation of supporting 1M users, we have the advantage of shutting down the

containers for storage availability.

8. Server: to process the information valet interface and the license plate reader

9. Network Bandwidth: to connect the garage system with the garage. (At least 2Mbps)

10. Algorithm and Data Structure:

Algorithms

 a. Garage

The mathematical model for the simulation for arrivals and departures will be tested in

order to check if the system operates normally. The algorithm will be closely described in the

following statements. This algorithm will execute in an infinite loop until the garage is full or

until the working hours has exceeded.

There will be an algorithm to arrange the slot in the garage. Each slot of the parking lot

will be assigned as an integer item of the array and each of the items in the array will be filled

when a car enters and will be removed when that car exits. However, the three critical for the

system would be the beginning time, ending time and the QR code when entering the garage.

There will be an algorithms to check if the car is exceeding the parking time to send a warning

message regarding that. Additionally, when the code is giving to the customer, there will be

another algorithm to check whether the QR code is fit with this slot or not.

Another important algorithm is to check whether the parking garage has slots or not, if

does, we assign the slot to each customer, if doesn’t, the system will show the minimum time to

wait for the current customer to leave or recommend another nearing parking lot that implements

our system.

● Enter the garage:

● Enter the slot of the garage

 b. Frequent Customer(Silver,Gold,Platinum)

There will be an algorithm to detect if the customer with that license plate is coming here

frequently or not in order to know each rank which should be assigned to each customer and

assigned a reduction in price for each rank respectively.

For Silver, a reduction in price will be 0.05 when customer comes in at the second time.

For Gold,a reduction in price will be 0.1 when customer comes in at the third time.

For Platinum,a reduction in price will be 0.15 when customer comes in at the fourth time.

 c. Encryption:

An average transfer of data between any two actors has a man-in-the-middle risk, where a

third bad actor can tap the message midway and see what is inside. To make such attempts at

theft meaningless, we will use asymmetric encryption to secure various forms of transactions

between us and the customers; this will protect key customer information by making any records

unreadable and virtually uncrackable.

We will accomplish this by using the following mathematical technique:

1. We will give the customer a public key, which is the left side of the equivalency:

𝑚𝑚𝐸𝐸 𝑚𝑚𝑚𝑚𝑑𝑑 𝑁𝑁 ≡ 𝑐𝑐

2. The customer will replace “m” with their intended message using a padding scheme and

send us back the encrypted message “c”.

3. We will decrypt the message using our private key and use the content of the message.

The message could be the license plate number of the customer’s car, for example.

4. Following the example in step 3, we would then record this transaction in our entry/exit

ledger (in its encrypted form).

5. In the event of the theft of this ledger, the customer’s privacy would be safe and their

travel history will not be exposed. This is due to the fact that the bad actor does not have

the private key required to make actual meaning of all the data in the ledger.

6. Any bad actor who decides to brute-force decrypt the data would be stuck solving the

puzzle for decades or longer.

The determination of the perfect private key is where the largest amount of mathematical

modeling is required. We have to make sure that even if the public key is known, the private key

cannot be cracked using it. We also have to make sure that the private key cannot be easily

cracked. In order to achieve these objectives, we would have to pick the right values for “N”, “E”

and a third letter “D”, which will be used to undo the effects of “E”.

“E” can be any small number greater than 1 of our choosing, with the only condition

being that it cannot share any factors with 𝜙𝜙(𝑁𝑁), which is something we’ll explore soon.

To find “N”, we will pick any two really large, preferably 100 digits or more, prime

numbers and multiply them together:

𝑁𝑁 = 𝑃𝑃1 ∗ 𝑃𝑃2

To understand why this is the best idea, we will first have to define something called the

breakability of a number “X”. The breakability of a number is the amount of numbers ≤X, but

greater than 1, that do not share any common factor with X.

The best “X” to pick therefore is a prime number. This is because a prime number cannot

be broken up more than twice, once with a factor of 1 and another with a factor of itself. This

property makes it so that there will be no ambiguities in future calculations.

Here is the formal definition, when X is a prime number:

 𝜙𝜙(𝑋𝑋) = 𝑋𝑋 − 1

The following property is also valid for the multiplication of two prime numbers :

𝜙𝜙(𝐴𝐴 ∗ 𝐵𝐵) = 𝜙𝜙(𝐴𝐴) ∗ 𝜙𝜙(𝐵𝐵)

We can then port this information with “N” this way:

𝜙𝜙(𝐴𝐴 ∗ 𝐵𝐵) = 𝜙𝜙(𝐴𝐴) ∗ 𝜙𝜙(𝐵𝐵)

𝜙𝜙(𝑃𝑃1 ∗ 𝑃𝑃2) = 𝜙𝜙(𝑃𝑃1) ∗ 𝜙𝜙(𝑃𝑃2)

𝜙𝜙(𝑁𝑁) = (𝑃𝑃1 − 1) ∗ (𝑃𝑃2 − 1)

This part is extremely difficult to do in the other direction and is the reason, why we

would want to keep it 𝜙𝜙(𝑁𝑁)secret.

The number “D” is another number we would want to keep secret. Why? Because as we

will see, this number is really the one that will unlock the encrypted message easily and in one

calculation. This is our private key code.

To begin to find “D” we must define Euler’s Theorem. This theorem utilizes 𝜙𝜙(𝑁𝑁), the

breakability of N, that we found from a previous part in its definition.

Here is how the Theorem is defined, using our variables:

𝑚𝑚𝜙𝜙(𝑁𝑁) ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Using this and some properties of modulus mathematics, we can logically

deduce the following:

 𝑚𝑚𝑘𝑘∗𝜙𝜙(𝑁𝑁) ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁; because 1𝑘𝑘 always equals 1, not matter the k.

 𝑚𝑚 ∗𝑚𝑚𝑘𝑘∗𝜙𝜙(𝑁𝑁) ≡ 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁; because any number times 1 equals itself.

 𝑚𝑚𝑘𝑘∗𝜙𝜙(𝑁𝑁)+1 ≡ 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁; using basic rules of exponents

We can use this definition on the original public key: 𝑚𝑚𝐸𝐸 𝑚𝑚𝑚𝑚𝑑𝑑 𝑁𝑁 ≡ 𝑐𝑐 , and find the

following, assuming that we’re looking for a “D” that depends on 𝜙𝜙(𝑁𝑁):

 𝑚𝑚𝐷𝐷∗𝐸𝐸 = 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Then, 𝐷𝐷 = (𝑘𝑘 ∗ 𝜙𝜙(𝑁𝑁) + 1)/𝐸𝐸

All this means is that our secret 𝜙𝜙(𝑁𝑁)factorization has been utilized in a way that

incorporates the non-secret parts E and N. We can now use D to transform the encrypted “c”

message to the decrypted message “m”.

In conclusion, by incorporating all the steps, we will have an extremely strong encryption

system. This will put the customer’s mind at ease, knowing that even if ledger data is leaked,

their information is safe.

 d. Dynamic Pricing:

Price setting is one of the most important problems for any entrepreneur because any price

setting error directly results in lost profit. However, traditional price management methods

almost never achieve optimal pricing because they are designed for traditional environments,

where the frequency of price changes is inherently limited and the complexity of pricing models

is constrained by the capabilities of off-the-shelf tools and manual processes.

At the beginning of each time period the firm determines a selling price pt ∈ [pl ,

ph]. The prices 0 < pl < ph are the minimum and maximum price that are

acceptable to the firm. After setting the price, the firm observes a realization dt of

the demand Dt(pt), which is a random variable, and collects revenue pt · dt. We

assume that the inventory is sufficient to meet all demand, i.e. stock-outs do not

occur. The random variable Dt(pt) denotes the demand in period t, against selling

price pt. Given the selling prices, the demand in different time periods is

independent, and for each t ∈ N and pt = p ∈ [pl , ph], Dt(pt) is distributed as

D(p), for which we assume the following parametric model: E[D(p)] = h(a (0) 0 + a

(0) 1 p), (3.1) Var[D(p)] = σ 2 v(E[D(p)]). Here h : R+ → R+ and v : R+ → R++ are

both thrice continuously differentiable known functions, with h˙(x) = ∂h(x) ∂x > 0 for

all x ≥ 0. Furthermore, σ and a (0) = (a (0) 0 , a (0) 1) are unknown parameters with

σ > 0, a (0) 0 > 0, a (0) 1 < 0, and a (0) 0 + a (0) 1 ph ≥ 0. Write et = D(pt) −

E[D(pt) | p1, . . . , pt−1, d1, . . . , dt−1]. We make the technical assumption on the

demand that for some r > 3, sup t∈N E[|et| r | p1, . . . , pt−1, d1, . . . , dt−1] < ∞ .

The expected revenue collected in a single time period where price p is used, is

denoted by r(p) = p · h(a (0) 0 + a (0) 1 p); to emphasize the dependence on the

parameter values, we write r(p, a0, a1) = p · h(a0 + a1p) as a function of p and (a0,

a1). We assume that there is an open neighborhood U ⊂ R 2 of (a (0) 0 , a (0) 1)

such that for all (a0, a1) ∈ U, r(p, a0, a1) has a unique maximizer p(a0, a1) = arg

max pl 0 can easily be captured by replacing p by p − c. A pricing policy ψ is a

method that for each t generates a price pt ∈ [pl , ph], based on the previously

chosen prices p1, . . . , pt−1 and demand realizations d1, d2, . . . , dt−1. This pt may

be a random variable. The performance of a pricing policy is measured in terms of

regret, which is the expected revenue loss caused by not using the optimal price

popt. For a pricing policy ψ that generates prices p1, p2, . . . , pT , the regret after T

time periods is defined as Regret(T, ψ) = E "X T t=1 r(popt, a(0)) − r(pt, a(0)). The

objective of the seller is to find a pricing policy ψ that maximizes the total expected

revenue over a finite number of T time periods. This is equivalent to minimizing

Regret(T, ψ). Note however that the regret can not directly be used by the seller to

find an optimal policy, since its value depends on the unknown parameters a (0) .

Data Structures

Our system will indirectly use many data structures such as hash tables, linked lists and

bitmaps. Since we are storing huge amounts of data, data structures are a must if we want to

achieve high performance and efficiency.

Blockchains use something called a “hash pointer” combined with linked lists. A hash

pointer is used as the “previous” pointer in a linked list. The linked list in a blockchain is not like

a traditional linked list, where a block holds the data element and a “next” pointer. A blockchain

linked list still uses a block to hold data but instead of using a “next” pointer, it uses a “previous”

pointer. This is done in order to prevent any tampering. If a block is tampered with, the

“previous” pointer of the next block will have a completely different calculated value and that

data will be completely inaccessible and unreadable (as will all the blocks in the rest of the

chain). What is special about using a hash pointer is used as a previous pointer is that a hash

pointer hashes the data of the previous block all the way down to the first (“genesis”) block. This

means that in order for a bad actor to crack the data in the chain, he has to crack every single

block simultaneously. And even when he does, he cannot crack the genesis block because that

key is hand-created by the creator.

Another data structure our system is using is a bitmap. A bitmap is simply a two-

dimensional array that we can tweak to store objects. These objects would contain

11. User Interface and Implementation:

 Sign up - UC1:

A. Preliminary Design

Figure 11-1 Designed Sign up page

Sign in - UC2:

A. Preliminary Design:

Figure 11-2 Designed Sign in page

Home page:

Figure 11-3 Home page

- In the home page, we have designed new navigation bar so it will become friendlier with

users. We design it as fixed position so it will not disappear when users scroll down.

- We also created “Welcome to RU Parking” with animation so the home page will look

more fancy.

- We added 3 parking locations with the maps belong to each one. So that when we access

the home page. If they do not know where to go, they just need to click the map. (Total 1

click)

- When people want to sign in or sign up they just need to click on “Sign Up” or “Sign In”

button as shown in the picture. (Sign Up: Total 1 click, Sign In: Total 1 click)

- The main feature is reservation. There are 2 kinds: guest and customer. Guest is for walk-

in customers and “customer” is for users that have registered. When they click on

“Reservation” button it will show as below:

Figure 11-4 Reservation button

- If users are in rushed, they can choose “guest” so that I will jump directly to reservation

page for walk in (Walk-in: Total 2 clicks)

- If users want to create an account so that it helps them easier next time reservation, they

just need to click “customer” and it will jump to “Sign Up” page (Customer: Total 2

clicks)

 Sign Up Page:

Figure 11-5 Sign up Page

Data Entry: Total 1 click on Sign Up and 14 keystrokes as follow:

● First Name

● Last Name

● Email

● Mobile Number

● Username

● Password

● Confirm Password

● Address

● Credit Card Number

● CVV

● Driver License Number

● Date of Birth

● Gender

● Agreement

 2. Click button “Submit”

- This sign up page we only add 3 inputs: Username, Credit Card Number and CVV.

Because the customers will be charged via their credit card.

Sign In Page:

Figure 11-6 Sign in page

Data Entry: Total 1 click and 2 keystrokes as follows:

● Email (This is Username)

● Password

Then click button “Sign In”. However, if users accidentally click on the sign in page

when they have not signed up yet, they can click on “No account yet? Register instantly”, so that

with only 1 click it will bring user to sign up page.

Walk-in page:

Figure 11-7 Walk-in page

Data Entry: Total 1 click and 5 keystrokes as follows:

● Time and Date

● Slot Number

● License Plate Number

● Credit Card Number

● CVV

Then click button “Create Reservation”

This walk-in page is for walk-in customers, if they are in rushed they can reserve a slot

quickly, only 5 keystrokes so it will not take much time. The parking map is just a “prototype”

for the purpose of time. Therefore, in reality it will be bigger and more space.

Online Customer Reservation page:

Figure 11-8 Online customer reservation page

Data Entry: Total 1 click and 2 keystrokes as follows:

● Time and Date

Then click button “Create Reservation”

This walk-in page is for online customers. The parking map is just a “prototype” for the purpose

of time. Therefore, in reality it will be bigger and more space.

Payment page:

Figure 11-9 Payment

Data Entry: Total 1 click and 4 keystrokes as follows:

● Name on credit card

● Credit Card Number

● CVV number

● Expiry Date

 Then click button “Create Reservation”

12. Design of Tests:
 Each unit will be tested before merge into the system. The units that need to be tested are:

- Website

- Database

- Plate Recognition System

- Blockchain

Website:

Goal: The website is responsible for user to sign up, sign in and make reservation for

both frequency users and walk-in users. Even for the walk-in customers who have not made a

registration before, they can easily register an account with the help of managers. As a result, the

website is also a place where the garage manager can check the information about the reservation

and also do some necessary changes among different parking slots.

Test cases:

● Creating an account

- To check if the users can create a new account with the right personal

information.

● Making a reservation (by registered-customers)

- When there are some parking slots available, this step is to check if the registered-

customers (no matter walk-in customer or not) can make a reservation with: spot

number; mobile number; credit card number and CVV. This step also aims to

check if the registered-customers can choose each of the available slots they want.

- When there is no parking slot available, this step is to make sure that the

registered-customers cannot make a reservation in this situation.

- Also to check if the customers can log out when finishing the reservation.

● Making a reservation (by unregistered-customers)

- When there are some parking slots available, this step is to check if the walk-in

unregistered-customers can make a reservation (by the help of managers) with:

spot number; mobile number; credit card number and CVV. This step also aims to

check if the unregistered-customers can choose each of the available slots they

want.

- When there is no parking slot available, the walk-in unregistered-customers

cannot enter the garages. For that reason, this situation does not need to be tested.

- Also to check if customers can log out when finishing the reservation.

● View reservation status

- To check if managers can view the reservation status of different parking slots.

● Walk-in registration

- To check if walk-in customers can have an immediate registration and

reservation.

● Edit information

- To check if customers can edit their personal information and reservation

information.

● Log-in

- To check if registered-customers can login successfully with their correct

username and password.

- Also to check if the website can report an error if the customers fill in a wrong

username or password.

● Dynamic parking price

- To check if there shows a dynamic parking price when opening the reservation

webpage.

● Payment

- To check if the customers’ can make a payment via the website with their bank

cards or mobile phones.

Database:

Goal: The database is responsible for storing user information and keeping track of the

time elapsed for each user within combination parking. The database is also responsible for

updating the available slots for customers to book.

Test cases:

● Calculating time remain

- To check if the database can receive the time elapsed of the customers’ parking

and make calculations about the remaining time for a next parking.

● Comparing license

- To check if the database can receive the data of the plate recognized from the

Plate Recognition system and make comparison with the plates from blacklisted

cars.

● Reservation

- To check if the data of the slots can be updated in real-time in order to help new-

coming customers to make a reservation and prevent them from booking the

reserved slots.

Plate Recognition System:

Goal: The plate recognition system aims to reduce the check-in time and increase the

security for the customers.

Test cases:

● Recognition

- To check if the system can detect the license via camera to capture the plate

instantly.

● Send data

- To check if the system can send data to the database immediately to start or end

the time elapsed of the customers’ parking and make comparison with the plates

from blacklist cars.

- To check how will the system handle it if there is no connection with the

database.

Blockchain:

Goal: The purpose of using blockchain is to make sure that the customers’ information is

secure from and unreadable by hackers.

Test cases:

● Unreadability

- To check if the Blockchain can be applied successfully in securing customer data

by making sure the data on the blockchain ledger and hashtable is encrypted and

therefore completely unreadable by any unintended party.

● Payment System

- To check whether or not the blockchain and it’s ledger are up-to-date with the

latest transactions. Transactions such as making a reservation online, walking-in

to the lot, canceling a reservation, editing a reservation, and staying overtime.

- To check whether or not the blockchain will accurately calculate the monetary

balance owed by each customer.

● Tamper-Proof

- To check whether or not the blockchain and it’s ledger can sustain any tampering

of the database such as deletion of any transactions or manual changes to cost of

service. To ensure that despite any tampering, the total balance owed by the

customer reflects reality.

- To check whether or not any direct tampering to the ledger will be accepted to the

blockchain or not. To test the strength of the system of hash-pointers, a feature

most prominent in blockchains.

13. History of work, Current Status, and Future Work:

History of work, current status:

In the report #1 and report #2, group 4 had set a bunch of goals for the project. With a

deeper understanding of the project, group 4 made some adjustment about the goals and worked

on them.

As for now, group 4 has already created a website for the RU parking. In the website,

customers can create their own account to start their RU parking. Once creating an account, the

customers just need to log in with the username and password and then make a reservation. For

the walk-in customers, they can also make a reservation by using first name, last name, email

and license number. The database in this project is used to contain the information of the

customers and make sure the safety of the customers’ information by using SQL Server

Authentication. What is more, the database also contains the information for every reservation of

the parking and it calculates the dynamic parking charge based the parking time and the size of

the parking slot (size of the vehicles). This work also includes blockchain method of data

privacy. Customers information is secured with the use of public and private keys. An

asymmetric cryptography is used to secure transactions between users. The public keys are

shared since they give away no data . Each user has an address that is derived from the public

key using a hash function. These addresses are used to send and receive assets on the blockchain,

with this technique the users can view past transactions and activity that has occured on the

blockchain. If the database is compromised by an attacker and information is deleted or

manipulated, even then the original data is available and stored in blockchain and hence the

owner is at no risk of being vulnerable to any form of malicious attacks. We have also included

the usage of docker migration assisted real-time information exchanges between garages for

systematic functioning of multiple garage locations and without having a single point of failure

of a database. Information such as combined payment, blacklisted car at a particular garage

location and slot availability information are exchanged between the garage locations via docker

migration such that the garages are aware of the status of the other locations.

Future Work:

For the future work, now this project only involves three parking garages. To make the

project more professional and scalable and make the test more trustworthy, the group will try to

involve more general parking garages in order to verify that our software product can support

huge scale emulation. Furthermore, when doing the detection for the size of the vehicles, this

project only use small, medium and large to describe the size. In order to make more specific and

more digitized description of the size, the group 4 will try to find other ways or improve the

current shape detection algorithm for specific dimension detection. Also the face recognition of

the customers is yet to be implemented for added security purposes which we would like to

implement in the next phase.

14. Project Management:
To develop the report all team members were independently developing their assigned

tasks of the report in one shared Google document for each part of the report. Once the two parts

of each report is completed, they will be merged into a full report, shared by all members in a

Google document.

Below is the gantt chart diagram which enlists detailed task breakdown and the

corresponding estimated start date and end date. It should be noted that demo 1 and demo 2 has

task duration of a day and hence has no visual bar. Description of each task is given below. All

the bugs of our software are tracked and fixed until we obtain our desired product with the

defined quality standards

Gantt Chart

Task Phase Description

 Design Discussion and Initial Design

● Basic UI design for sign up, sign in, registration and reservation page.

● Establish routes for each user case (determine which page goes to where)

● Preliminary ideas for blockchain assisted security of user information

● Determine the containerization technique for information exchanges

 Design Review and Detailed Design

● Finalize the UI (HTML & CSS)

● For each use case determine user page interaction flow

● Research and simulation of the analytical model for blockchain assisted

information privacy

● Blacklisted car detection

● Determine detailed module interaction and object finalization of each module

 Analysis of Implementable Tools

● Determine the tools that would be used in container deployment (docker, lxd,

kubernetes) and thoroughly understand the features of each of these platform-as-

a-service product.

 Develop and Integrate System Modules

● REQ1 and REQ2

● Car detection at the entrance and customer entry after reservation confirmation

● Depending on the spot choice bring the customer to the correct level

● Verify if the vehicle is parked in the reserved slot

● Offer slot choices to walk-in customers

● Email notification with reservation ID to the customer

● Charge customers depending upon dynamic pricing

● Encrypt customer payment and information details

● Depending upon customers parking history for the day provision combined

pricing

● Provide information to the customer about parking slot availability at other garage

location

 System Testing

● Code is implemented completely and checked against our requirements whether it

is addressing our needs which are gathered in the design and analysis phase or

not.

● All the bugs of our software are tracked and fixed until we obtain our desired

product with the defined quality standards.

 Deployment

● Our product will be deployed for beta testing for finding bugs

● Depending on the users feedback the our system can be improved

Product Ownership

Member Done

Shalini & Khanh Initial container
configuration
Creating containers
Pushing files into the
container
Car number plate
detection

Number plate
recognition from
video streaming

Running the automatic
number plate detection app
in the container
Storing pricing and slots
availability information in
the container
Migrating the container
from one node to another
(for information
availability at other garage
locations)

Luan, Zhuoyang Creating website contains
the main page with sign
up page, sign in page.

Coding the map
for parking lot and
create reserve
page (reserve
form), mark the
lots that have been
reserved. Adding
well designed web
page layout for
user friendly
experience

Create confirmation page
and successful reservation
notification, log out
features. Create pages for
admin. Add more
animations to make
website more fancy.
Integrating all the modules

Khanh, Duc, Tan Doing research about
database, back-end
technology.

Building a
Database using
MongoDB to store
key information
for all parts of the
project.

Using Node.js to deal with
back-end. Process
database.
Connecting the database
with the finished website
and plate recognition
systems.

Nainil Creating the barebones of
the post-sign page, where
payments and reservations
will be made.

Building an
encryption system
to protect
customer data.

Building a fully-
functioning blockchain to
update and maintain the
ledger of all transactions.
Building solutions to keep
the ledger secure,
immutable & tamper
proof.
Connect blockchain to the
database.

15. References:
1) Blacklisted car webpage: https://www.stolencar.com/Report/Search

2) Parking lot offences: https://www.bjs.gov/index.cfm?ty=tp&tid=44

Books:

● https://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

 Reports:

● Group#3_2018_project

● Group#5_2013_project

Web Resources:

● https://www.devteam.space/blog/how-to-integrate-a-blockchain-technology-into-

your-project/

● https://www.redhat.com/en/blog/container-migration-around-world

● https://www.netapp.com/us/info/what-are-containers.aspx

● https://lxd.readthedocs.io/en/latest/

● https://ssd.eff.org/en/module/deep-dive-end-end-encryption-how-do-public-key-

encryption-systems-work

● https://fortune.com/2018/06/27/facebook-data-privacy-blockchain/

UML Design:

● https://www.draw.io/

https://www.stolencar.com/Report/Search
https://www.bjs.gov/index.cfm?ty=tp&tid=44
https://www.ece.rutgers.edu/%7Emarsic/books/SE/book-SE_marsic.pdf
http://group/#3_2018_project
https://www.ece.rutgers.edu/%7Emarsic/books/SE/projects/ParkingLot/2013-g5-report3.pdf
https://www.devteam.space/blog/how-to-integrate-a-blockchain-technology-into-your-project/
https://www.devteam.space/blog/how-to-integrate-a-blockchain-technology-into-your-project/
https://www.redhat.com/en/blog/container-migration-around-world
https://www.netapp.com/us/info/what-are-containers.aspx
https://lxd.readthedocs.io/en/latest/
https://ssd.eff.org/en/module/deep-dive-end-end-encryption-how-do-public-key-encryption-systems-work
https://ssd.eff.org/en/module/deep-dive-end-end-encryption-how-do-public-key-encryption-systems-work
https://fortune.com/2018/06/27/facebook-data-privacy-blockchain/
https://www.draw.io/

	Table of Contents
	Contribution breakdown:
	1. Customer Statement
	2. Glossary of Terms
	3. System Requirements
	Functional Requirements
	Non-Functional Requirements
	User-interface requirement

	4. Functional Requirement Specification
	Stakeholders
	Actors and Goals
	Use Cases
	Casual Description
	Traceability Matrix
	Fully Dressed Description and Sequence Diagram

	Object Constraint Language:

	5. Effort Estimation using Use Case Points:
	Actor:
	Use case:

	6. Domain Model Analysis
	Domain Model
	Domain Model Derivation
	Concept Definitions (D-doing; K-knowing; N-neither)
	Association Definitions
	Attribute Definitions
	Traceability Matrix
	Mathematical Modeling

	7. Interaction Diagram
	Online Registration
	Login
	Arrival
	Reservation
	Departure

	8. Class Diagram and Interface Specification:
	Class Diagram:
	Data Types and Operation Signatures:
	Traceability matrix
	Design Patterns:
	Object Constraint Language:

	9. System Architecture and System Design:
	Architectural Styles
	Identifying Subsystem
	Mapping Subsystems To Hardware
	Persistent Data Storage
	Network Protocol:
	Global Control Flow
	Hardware Requirements:

	10. Algorithm and Data Structure:
	Algorithms
	Data Structures

	11. User Interface and Implementation:
	Sign up - UC1:
	Home page:
	Sign In Page:
	Walk-in page:
	Online Customer Reservation page:
	Payment page:

	12. Design of Tests:
	Website:
	Database:
	Plate Recognition System:
	Blockchain:

	13. History of work, Current Status, and Future Work:
	History of work, current status:
	Future Work:

	14. Project Management:
	Gantt Chart
	Task Phase Description
	Product Ownership

	15. References:

