
Rutgers University

Auto Park

Parking Garage Automation

Group 3

Final Report

Author:
Chunhua Deng
Corey Chen
Jonathan Garner
Ridhima Sakhuja
Siddharth Musale
Siyu Liao
Xianglong Feng

Email:
chunhua.deng@rutgers.edu
cc1437@scarletmail.rutgers.edu
jonathan.garner@rutgers.edu
rs1425@rutgers.edu
siddharth.musale@rutgers.edu
siyu.liao@rutgers.edu
xianglongchunyi@gmail.com

December 9, 2018



Contents

1 Summary of Changes 5

2 Customer Statement of Requirements 6
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Glossary of Terms 12

4 System Requirement 14
4.1 Enumerated Functional Requirements . . . . . . . . . . . . . . 14
4.2 Enumerated Non-Functional Requirements . . . . . . . . . . . 15
4.3 On Screen Appearance Requirements . . . . . . . . . . . . . . 17
4.4 Smart Pricing Requirements . . . . . . . . . . . . . . . . . . . 18

5 Functional Requirements Specification 18
5.1 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Actors and Goals . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3.1 Casual Description . . . . . . . . . . . . . . . . . . . . 20
5.3.2 Use Case Diagram . . . . . . . . . . . . . . . . . . . . 21
5.3.3 Traceability Matrix . . . . . . . . . . . . . . . . . . . . 23
5.3.4 Fully Dressed Description & Sequence Diagram . . . . 24

6 Effort Estimation 31
6.1 Actor Classification . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Use Case Classification . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Sequence Diagrams for UCs . . . . . . . . . . . . . . . . . . . 34

6.3.1 UC-1: Register . . . . . . . . . . . . . . . . . . . . . . 34
6.3.2 UC-3: Reservation . . . . . . . . . . . . . . . . . . . . 34
6.3.3 UC-4: Adhoc . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.4 UC-14:Payment . . . . . . . . . . . . . . . . . . . . . . 35

6.4 Technical Complexity Factors (TCFs) . . . . . . . . . . . . . . 36

7 Domain Analysis 38
7.1 Domain Model Derivation . . . . . . . . . . . . . . . . . . . . 38
7.2 Tracebility Matrix . . . . . . . . . . . . . . . . . . . . . . . . 39

1



7.3 Concept Definitions . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 System Operation Contracts . . . . . . . . . . . . . . . . . . . 41

8 Interaction Diagrams 43
8.1 Use Case 1: Register . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 Use Case 3: Reservation . . . . . . . . . . . . . . . . . . . . . 44
8.3 Use Case 4: Ad-hoc . . . . . . . . . . . . . . . . . . . . . . . . 45
8.4 Use Case 14: Payment . . . . . . . . . . . . . . . . . . . . . . 46

9 Class Diagram and Interface Specification 48
9.1 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.2 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.3 Object Constraint Language . . . . . . . . . . . . . . . . . . . 49
9.4 Data Types and Operation Signatures . . . . . . . . . . . . . 49
9.5 Traceability Matrix . . . . . . . . . . . . . . . . . . . . . . . . 52

10 System Architecture and System Design 55
10.1 Architectural Style . . . . . . . . . . . . . . . . . . . . . . . . 55
10.2 Identifying Subsystems . . . . . . . . . . . . . . . . . . . . . . 56
10.3 Mapping Subsystems to Hardware . . . . . . . . . . . . . . . . 56
10.4 Persistent Data Storage . . . . . . . . . . . . . . . . . . . . . 57
10.5 Network Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.6 Global Flow Control . . . . . . . . . . . . . . . . . . . . . . . 58

10.6.1 Execution Orderness . . . . . . . . . . . . . . . . . . . 58
10.6.2 Time Dependency . . . . . . . . . . . . . . . . . . . . . 59
10.6.3 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . 59

10.7 Hardware Requirements . . . . . . . . . . . . . . . . . . . . . 59

11 Algorithm and Data Structure 60
11.1 Demand Function . . . . . . . . . . . . . . . . . . . . . . . . . 60
11.2 Price Optimization . . . . . . . . . . . . . . . . . . . . . . . . 61
11.3 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 61

12 User Interface Design and Implementation 61
12.1 UC-1: Register . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.2 UC-3: Reservation . . . . . . . . . . . . . . . . . . . . . . . . 63
12.3 UC-3: Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2



13 Design of Test 65
13.1 Web Form Test Cases . . . . . . . . . . . . . . . . . . . . . . . 65
13.2 Garage Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 66

13.2.1 Entrance gate . . . . . . . . . . . . . . . . . . . . . . . 66
13.2.2 AuthCode . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.2.3 Billing . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.2.4 Elevator . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.2.5 Notifications . . . . . . . . . . . . . . . . . . . . . . . . 68
13.2.6 TrafficManagement . . . . . . . . . . . . . . . . . . . . 68
13.2.7 ExitGate . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.2.8 Spot Verification . . . . . . . . . . . . . . . . . . . . . 69

14 History of Work, Current Status, and Future Work 70
14.1 History of Work and Current Status . . . . . . . . . . . . . . . 70
14.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

15 Project Management 71
15.1 Merging the Contributions from Individual Team Members . . 71
15.2 Project Coordination and Progress Report . . . . . . . . . . . 71
15.3 Breakdown of Responsibilities . . . . . . . . . . . . . . . . . . 71

16 Dynamic Pricing for AutoParking 74
16.1 Dynamic Pricing Related Work . . . . . . . . . . . . . . . . . 75
16.2 Requirement of Dynamic Pricing . . . . . . . . . . . . . . . . 76
16.3 Parking Records of Seattle . . . . . . . . . . . . . . . . . . . . 76
16.4 Parking Demand Analysis . . . . . . . . . . . . . . . . . . . . 77
16.5 Parking Demand Curve Fitting . . . . . . . . . . . . . . . . . 79

16.5.1 Model selection . . . . . . . . . . . . . . . . . . . . . . 79
16.5.2 Linear least squares regression . . . . . . . . . . . . . . 80

16.6 Fitting Curve Result . . . . . . . . . . . . . . . . . . . . . . . 81
16.7 Reservation Based Model . . . . . . . . . . . . . . . . . . . . . 83
16.8 Our proposed model: Multi-models based dynamic pricing . . 85

16.8.1 5 modules based pricing system for parking in a day . . 86
16.9 Price based Demand function for each parts . . . . . . . . . . 86

16.9.1 The price-based demand function for Peak time . . . . 87
16.9.2 The final demand function for Peak time . . . . . . . . 87
16.9.3 The price-based demand function for Adjustable time . 88
16.9.4 The final demand function for Adjustable time . . . . . 89

3



16.10The final demand function for a day . . . . . . . . . . . . . . . 92
16.11The final benefits for a day . . . . . . . . . . . . . . . . . . . . 93
16.12Dynamic Pricing Conclusion . . . . . . . . . . . . . . . . . . . 94

List of Figures

1 Customer use case. . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Owner use case. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Traceability matrix. . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Register sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Reserve sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Ad-hoc parking sequence. . . . . . . . . . . . . . . . . . . . . 29
7 Leave and payment sequence. . . . . . . . . . . . . . . . . . . 31
8 The Whole Domain model. . . . . . . . . . . . . . . . . . . . . 38
9 The tracebility matrix of domain model. . . . . . . . . . . . . 39
10 Sequence Diagrams for Use Case 1. . . . . . . . . . . . . . . . 43
11 Sequence Diagrams for Use Case 3. . . . . . . . . . . . . . . . 45
12 Sequence Diagrams for Use Case 4. . . . . . . . . . . . . . . . 46
13 Sequence Diagrams for Use Case 14. . . . . . . . . . . . . . . 47
14 Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
15 Traceability Matrix . . . . . . . . . . . . . . . . . . . . . . . . 53
16 Subsystems in our System. . . . . . . . . . . . . . . . . . . . . 57
17 An Overview of the Spark Structure [1]. . . . . . . . . . . . . 58
18 Register system. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
19 Register Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
20 Register Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
21 Welcome Page. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
22 Login Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
23 Example of On-street Parking Data in Seattle . . . . . . . . . 77
24 Hourly Parking Demand of the Seattle City . . . . . . . . . . 78
25 Daily Parking Demand of the Seattle City . . . . . . . . . . . 78
26 Weekly Parking Demand of the Seattle City . . . . . . . . . . 79
27 Monthly Parking Demand of the Seattle City . . . . . . . . . . 79
28 Curve Fitting for Hourly Parking Demand . . . . . . . . . . . 82
29 Curve Fitting for Weekly Parking Demand . . . . . . . . . . . 82
30 Reservation based Model Revenue . . . . . . . . . . . . . . . . 85
31 Price-based demand for Peak time . . . . . . . . . . . . . . . . 88

4



32 Modified Parking Demand in Peak Time . . . . . . . . . . . . 89
33 Price-based demand for Adjustable time . . . . . . . . . . . . 90
34 Modified Parking Demand in Adjustable Time (earlier) . . . . 91
35 Modified Parking Demand in Adjustable Time (Later) . . . . 91
36 Modified price:[Please insert into preamble]X axis is the 24

hours in a day, y axis is the new price . . . . . . . . . . . . . . 92
37 Modified Parking Demand based in Time:[Please insert into

preamble]X axis is the 24 hours in a day, y axis is the demand
forb parking garage . . . . . . . . . . . . . . . . . . . . . . . . 93

38 Modified and Original benefits[Please insert into preamble]X
axis is the 24 hours in a day, y axis is the benefits obtained
from the parking garage . . . . . . . . . . . . . . . . . . . . . 94

1 Summary of Changes

• Dynamic update method for single price-based demand function

• 5-Modules based dynamic pricing algorithm

• Ease out quart function for price-based demand function in peak time

• Ease out quart function for price-based demand function in adjustable
time

• New demand function optimization base on time and price

• Final benefits optimization.

• Included the transition matrix in Section 9 that was missing from Re-
port 2

• Wrote explanations about the fields required for each class in Section
9.3

• Elaborated more on the component-based architectural style in Section
10.1

• Updated the UI images in Section 12

5



2 Customer Statement of Requirements

2.1 Problem Statement

The majority of modern parking garages have inherent flaws that cause them
to be less efficient than what they could be. A recent study indicates that
drivers spend an average of 17 hours per year looking for parking and ap-
proximately $97 per driver1. This situation is only exacerbated during peak
hours, when a high influx of cars causes congestion in parking garages, re-
sulting in more time and money wasted on looking for parking. Many drivers
are also unsatisfied with the flat rate pricing system, where they are charged
a fixed hourly rate regardless of the time of day. Additionally, a majority of
parking garages do not have a system that lets their customer keeps track
of how long their car has been parked for and how much they will have to
pay when they leave. Along with this, parking garages also lack a security
system that helps ensure the safety of the customers’ cars. In metropolitan
cities, parking garages are often located in unsafe areas, where anyone can
enter and leave the garage regardless of whether they are a paying customer
of not. This smart-garage proposal contains ideas to improve customer ex-
perience of the parking garage, save wasted time in the garage by looking for
empty spots, and boost revenue for the garage.

2.2 Proposed Solution

In order to provide a more streamlined process for our customers, our plan
is to implement an automated system that will allow customers to view and
reserve available spots using a visual interface hosted on a website. This will
give customers a simplified view of available parking spaces that is easily
accessible on both computers and mobile devices, and allow them to reserve
or change spots at any time. Customers will be able to reserve spots for a
specified check in time and reservations for an occupied spot will open once
the parked patron leaves the spot. There will be long term term parking as
well as short term reservations which will allow customers with a variety of
needs to utilize the parking garage.

Our proposed system includes multiple novel ideas that have not yet been
implemented in previous automated parking garage projects. The first of
these is a visual display on the website that will allow customers to view and
select spots on a simplified map in order to check which spots are currently

6



open or to place reservations. This feature will primarily be available to
customers who come in off the street for ad-hoc parking through the use of
a screen at the check-in area of the garage that will display available spots
and allow customers to select the spot they want. Another new idea is our
smart pricing system, which will continuously update the cost of spots based
on multiple factors (time of day, amount of reservations, etc). Along with
these, we are proposing a traffic monitoring system that keeps track of how
many cars are driving to their spots on each level of the garage and limits
the number of active cars per floor in order to cut down on traffic within the
garage. Another newly proposed feature is an improved security system that
will limit garage access to parked customers only in an effort to increase the
feeling of safety within our customers. A final feature we are proposing is
the use of a unique alphanumeric security codes that customers receive either
via email or SMS in order to enter or exit the garage. This guarantees that
only customers with security codes can re-enter the building, protecting the
customers’ vehicles from non-customers. All the features mentioned above
are further elaborated on down below.

Due to the fact that ad-hoc parking is a major component of a parking
garage’s income, there will be a limited number of reservable spots. These
spots will be separated by floor or section in the garage. This means that
even if reservations are fully booked, patrons will be able to still drive up
and park if there are ad-hoc spaces available. The price of parking in these
spots will be determined by the smart pricing system (explained more below)
which will generate more revenue.

Another major component of streamlining the parking garage is reducing
traffic inside and allowing customers to easily find their spot and park. When
a customer enters the garage for ad-hoc parking, they will be shown the
same display that is available on the website via a monitor and prompted to
choose an available spot using the visual interface. This system will display
the relative location of the selected spot on the visual interface, which will
cut down on the time it takes for drivers to locate their spot. To further cut
down on traffic in the garage, drivers will have to get to their assigned floor
using a 1-car sized elevator. This elevator will scan the license plates of each
car that uses it and communicate with a system that will keep track of which
cars are currently on which floors, and whether or not they are parked. Each
spot also contains a sensor which can tell whether or not a car is occupying
the spot, and report that information back in order to tell whether or not the
car that is active on that floor has parked yet. As soon as it is determined

7



that the car on a specific floor has parked, the next car will be allowed in to
locate their spot and park. This system aims to improve a customer’s ability
to find their spot and park in it.

This proposal also includes a smart-pricing system that entices more cus-
tomers to use the garage. This pricing system we propose includes incentives
for customers to register for membership of the garage by offering special
deals such as reduced fees for longer term members. This pricing system
dynamically adjusts the hourly rate of parking so that the price of parking
spots goes up as the demand for them grows and diminishes as the parking
garage is utilized less. This is intended to help make more profit during
rush hours as well as maximizing customers during the other times of the
day. However, we also offer the fixed rate strategy for someone preferring
traditional parking billings. We can give fee estimations and save money for
customers by helping them choosing fixed rate or dynamic rate.

Our proposed system will also consist of a notification system that will
regularly update the customer regarding their status via text message or
email. Upon arrival, once the driver has parked their car at the designated
parking lot, this system will send a message confirming that they have parked
in the correct location and a ticket that will have a confirmation code that
will be required to leave and enter the parking garage. The ticket will also
include information such as the driver’s arrival time and the parking lot
number. After every hour, the notification system will send a text message
to the customer, letting them know how long it has been since they have
left their car at the parking garage. Not only will this allow customers to
keep track of their parking spot, but it also be useful in trying to ensure that
drivers with reservations do not overstay their allotted time.

Another concern of many customers is the security of their car when
parked inside a garage. In an effort to cut down on potential crime or theft
in the garage, a system will be put into place that will only allow verified
customers in and out of the garage on foot. When a customer parks their
car, they will be sent a notification through the previously mentioned system
containing a unique confirmation code. In order to unlock the pedestrian
doors and enter or exit the garage, users will be required to enter their
access code. This system aims to enforce a feeling of safety and security
in consumers. The main goal of this proposed project is to optimize our
current parking garage system and turn it into an automated, web-based
system. Doing so will allow us to cut down on many operating costs, such
as payroll for check-in area attendants who will no longer be of use. This

8



system will also allow us to view and change current reservations, as well
as adjust the pricing of spots manually in order to capitalize on rush hours
and bring in more revenue. However, these features will strictly be available
to administrative users. The typical customers who will be parking in the
automated garage will fall under two general categories: those who plan to
park long term (consumers who may be on vacations, business meetings, etc.)
and those who plan to park short term (visitors in the city, commuters, etc).
The customers we are targeting are those who are willing to possibly pay a
higher price for parking for the added convenience of being able to view and
reserve spots online. Many commuters in busy cities would be willing to pay
higher premiums for the security, efficiency, and convenience our automation
provides.

In terms of metrics that will measure the success of the automated garages,
we will be looking mostly at revenue brought in by the smart pricing system
and the average number of spots being used. In addition to these quantitative
metrics, we will also track the number of users who register for membership
on the website and how many users use the website reservation system in or-
der to show whether or not customers are taking advantage of the available
features.

There are three overarching goals that this system is trying to achieve.
Firstly, there will be a website that interacts with the database in order to
provide services to members and non-members. This will include reservation
services and deals for members of the garage as well as a user interface where
ad-hoc customers can select preferable spots to park. In addition, this system
will attempt to maximize profits through a dynamic, smart-pricing algorithm
based on the occupancy percentage of the garage and time of day. Lastly, the
system will also introduce another algorithm that minimizes traffic blockage
through the whole garage by bottle-necking the number of cars that are
searching for parking spaces on each floor.

Functional Features (Summary) - Users will be able to:

1. View and reserve spots online

2. Select spots for ad-hoc parking

3. Locate their spots using a visual interface

4. Cancel reservations or switch spots at will

9



5. Receive notifications such as warnings based on time spent parking or
confirmation of parking in the correct spot

6. Enter or exit the building using a unique confirmation code

2.3 Novelty

We investigated the report of previous works including the one in Spring 2012
and the one in Spring 2013. To have a clear overview of those works and to
distinguish ours contribution from existing works, we will give a summariza-
tion of those works and compare with them. Following are features listed in
the report of Spring 2012:

1. Place online reservation in the form of a website

2. Website Registration

3. Security guard helps customer pay bills and exit the garage

4. Notify user that they are not identified

5. Notify operator if sensors not working

6. Park with rented or borrowed vehicles

7. Garage remodeled such that an elevator can lift vehicles to different
decks

8. One-way entering and existing system to avoid congestions

9. camera based license plate recognition software to track vehicles as they
enter and exit the garage

10. the license plate must be recognizable for elevator to work

11. Allow walk-in customers

12. Support confirmed reservation (no credit card) and guaranteed reser-
vation (with credit card)

13. 1 hour grace period for customers not showing up, after which spots
will be unreserved

10



14. Floor sensors for detecting occupancy

15. Elevator will lift up vehicles to the correct spots

Besides, following are the features listed in the report of 2013.

1. It has an online reservation system.

2. It implements a license plate reader reader.

3. It allows customers to create accounts to store personal information for
fast parking

4. The system has three types of account, which is customer account,
manager account, and employee account

5. It can notify potential customers if there are available parkings spots
and for how long they can park

6. It broughts cars to a checkpoint and take pictures of the car before it
enters the garage and right as its about to leave for security reason.

7. It can automatically detect frequent customers by reading license plates.

8. It integrates a simulator to test the system

9. It deals with overstate problem.

10. It encrypts its user data

11. It backs up its account information, parking data and daily reports
once a day

When compared with existing works, the main novelty of this project are
listed as follows:

1. Smart Pricing System: We charge users accordingly in order to at-
tract users and provide for their convenience. For example, we charge
higher when less available spots and charge lower when more available
sports. We use both models from existing published paper [2]
and propose our model according to the real-world data from
Seattle government.

11



2. Spot viewing interface: This interface is primarily meant for the ad-hoc
customers of the garage. Instead of just assigning spots to a customer,
customers will be able to view an interface and select spots based on
their personal preference instead of getting forced into a spot they may
or may not want.

3. Different Congestion Control: Our system will work in a way such that
there will only be one vehicle parking in to its spot concurrently on
each floor. This reduces the amount of traffic on each floor and helps
us to ensure that people occupy their specified parking spaces.

4. Automatic Security: After customers park in their specified spots, they
will be sent an alphanumeric code via email or SMS that allows them
to access the parking garage. The code can be used to both enter
and exit the garage. This guarantees that only customers and people
travelling with customers can go in and out of the garage, guaranteeing
the security of their vehicles at least against non-customers.

3 Glossary of Terms

• Account - Holds all of a member’s information, such as username and
contact information

• Ad-Hoc Customers - Customers who drive in off the street for un-
planned or unreserved parking

• Administrative User - A high-level user who will have permissions on
the website to log-in and view or change management information such
as reservations, pricing, etc.

• Check-In Area - The first area customers encounter upon entry into
the garage with gates for entry

• Confirmation Code - Code sent to verified customers after parking to
allow exit and reentry into the parking garage

• Customer - Person who enters the garage with the intent of parking in
a spot (with or without reservation)

12



• Drivers - Customers in cars that are currently parking or driving in the
parking garage

• Elevator - Platform used to raise cars to upper floors

• License Plate Scanner - Device which reads the license plate of a car
waiting to enter the elevator

• Member - Customer who has registered on the website and is now a
member with login information Notification - Alert or message sent
through text or email to a customer

• Occupied Spot - Parking spot which currently has a car parked in it

• Parking Spot Number - Unique number which identifies a spot and
its relative location Pedestrian Doors - Allow foot traffic in and out
of the parking garage; can only be unlocked and used with a valid
confirmation code

• Registration - The process by which a customer becomes a member

• Reservation - An agreement that the garage will hold a spot for a
customer who intends to park there

• Reserved Spot - Spot which a customer has reserved with the intention
of parking in it

• Sensor - Device in each parking spot that determines the presence of a
car in that spot

• Smart Pricing System - Automatically determines the prices of reser-
vations and ad-hoc parking spaces based on an algorithm and relevant
information

• Ticket - Document containing a customer’s parking and reservation
information

• Traffic Control System - Keeps track of which floor has active drivers,
and the spots in which these drivers belong in order to confirm that
customers park in the correct location

13



• Username - Unique identifier created by a customer for themselves dur-
ing the registration process

• Vacant Spot - A spot not currently occupied by a car and not currently
reserved

• Verified Customer - Customer who has parked their car in the correct
spot, as determined by the sensors and traffic control system

• Visual Interface - Graphical interface in the form of a simple map that
displays the location of parking spots and whether or not they are
occupied

• Website - Used by administrative users to view information and by
customers to view spots and make reservations

4 System Requirement

4.1 Enumerated Functional Requirements

Identifier P.W. Description
REQ-01 3 The system will scan license plates
REQ-02 3 The system will use the license plate number to recog-

nize customers
REQ-03 5 The system will show a real-time, visual display of the

number of vacant, occupied, and reserved spots in the
parking garage.

REQ-04 5 The system will keep track of the number of occupied
and vacant spots in the garage at all times.

REQ-05 4 The system will allow customers to create an account
on the website and register with their information.

REQ-06 4 The system will allow members to make reservations for
a specified time block at the parking garage.

REQ-07 5 The system will allow ad-hoc customers to choose their
parking spot.

REQ-08 5 The system will implement a smart pricing system to
charge the customers accordingly.

14



REQ-09 4 The system will send a notification to the customer once
the customer has parked to letting them know if they
have parked in the correct spot

REQ-10 4 The system will also send a ticket to the customer with
the customer’s parking time, parking spot number, and
an alphanumeric confirmation code.

REQ-11 3 The system will regularly notify the customers of how
much time has elapsed since they parked in the garage.

REQ-12 3 The system will allow customers to extend their stay if
there is enough space in the parking spot.

REQ-13 4 The system will allow customers with reservations to
pay for their extensions via mobile

REQ-14 2 The system will allow employees to manually input in-
formation in case of system failure

REQ-15 4 The system will check for reservations via the license
plate number

REQ-16 5 The system will allow customers to input the confirma-
tion code when they come back to the garage in order
to gain entry to their car

REQ-17 3 The system will not allow any other car to enter the
floor if there is a car driving on that floor.

REQ-18 5 The system will send a notification via text or email
confirming a registered customer’s reservation.

REQ-19 2 The system will not allow more than 50 reservations to
be made a time.

REQ-20 2 The system will charge the customers cancel fee if they
cancel within one hour

REQ-21 5 The system charge according to different time and park-
ing demand

REQ-22 4 The system list details of pricing for different time slots

4.2 Enumerated Non-Functional Requirements

Identifier P.W. Description

15



REQ-23 3 An elevator system will be used to take customers up
to their designated floor. The elevator will only allow
the customer to get on the designated floor if there is no
other car driving around on that floor.

REQ-24 5 In order to register, the customer will have to give their
first name, last name, license plate number, a cell phone
number, email address and credit card information.

REQ-25 4 Customers will also need to create a password for their
account.

REQ-26 4 Customers will need to input an username and password
to login and access a preexisting account.

REQ-27 4 Members will be allowed to update their account infor-
mation and add an unlimited number of credit cards and
license plates to the account.

REQ-28 5 Sensors will be placed on each floor to ensure that the
customers have parked in their designated spot.

REQ-29 3 The confirmation code customers receive once they have
parked will allow them to enter and exit the parking
garage to ensure safety of the cars.

REQ-30 4 Members with reservations may make changes to their
reservations up to 12 hours prior to their reserved time.

REQ-31 4 Each time a customer makes a change to their reserva-
tion, a confirmation email should be sent out to them
via their preferred method of communication.

REQ-32 4 During registration, the customers should be asked if
they prefer to receive emails or text messages. What-
ever method they choose will be the main method of
communication while they are in the parking garage as
well.

REQ-33 5 Ad-hoc customers will be allowed to choose their parking
spot through the real-time visual display of the parking
garage.

REQ-34 3 Ad-hoc customers will be notified upon arrival if there
are any available parking spots.

REQ-35 5 The elevator system will have two elevators- one will
take customers up and one will take customers down.

16



REQ-36 3 Customers should receive all notifications about park-
ing, registration/reservation confirmations, etc. within
a minute.

REQ-37 2 The system will adjust to different parking garages with
different layouts.

REQ-38 5 A simulation/virtual parking garage will need to be cre-
ated in order to ensure that the system works effectively
under real world conditions. The simulation will test
that the customers can register for an account and login
properly, and will also test that they can make reserva-
tions via the website. The simulation will also need to
ensure that the features included to ensure safety and
traffic control are working properly as well.

REQ-39 5 The system will charge higher rates when there is higher
demand and fewer when lower demand.

4.3 On Screen Appearance Requirements

Identifier P.W. Description
REQ-36 3 Allow user to input their username and password to log

in to their account
REQ-37 4 Consumers will be able to do a guest log in for non

members by inputting an email and name
REQ-38 2 On account page, users will be able to click a button to

go to reservation page
REQ-39 2 On account page, users will be able to click a button to

go to account management page
REQ-40 2 On account page, users will be able to click a button to

go to reservation cancellation page
REQ-41 3 On account page there will be a list of nearby activities

and their locations
REQ-42 3 Spot management page will have map of garage to help

users pick and navigate to their spot
REQ-43 2 Users will be able to input calendar date and time for

reservations.
REQ-44 5 Users will be able to scroll through garage map pages.

17



4.4 Smart Pricing Requirements

Identifier P.W. Description
REQ-52 4 Support fixed-rate charging.
REQ-53 5 Support dynamic rate charging.
REQ-54 3 Extract hourly information from Seattle dataset.
REQ-55 3 Extract weekly information from Seattle dataset.
REQ-56 3 Extract monthly information from Seattle dataset.
REQ-57 3 Extract yearly information from Seattle dataset.
REQ-58 4 Discard useless information from Seattle dataset.
REQ-59 5 Get the average prices for different locations.
REQ-60 5 Interpolate the hourly information with LS algorithm.
REQ-61 5 Use demand-price functions to adjust the demands ac-

cording to different prices.
REQ-62 5 Decrease the peak-hour demands by increasing the

prices.
REQ-63 5 Support the manager overwrite the suggested prices.
REQ-64 5 Decrease the price of the daytime except the rush hours

to increase revenue.
REQ-65 5 Customers can get an estimated prices before parking.
REQ-66 5 Repeat the result of some papers to verify the smart

pricing system.
REQ-67 4 Large Data Volume Processing
REQ-68 4 Billing to the garage system
REQ-69 4 Dynamic Rate shown to user via web page

5 Functional Requirements Specification

5.1 Stakeholders

This system is primarily intended for implementation in current garages to
help garage owners increase efficiency and profits. This system will also be
beneficial towards people who can utilize or maintain the system. Below is
a list of possible stakeholders in the system.

• Parking Garage Owners

• Business Enterprises

18



• Customers: ad-hoc and walk-ins

5.2 Actors and Goals

Actors Goals Use Cases
Parking Inter-
face

To display for customers on the website to al-
low them to reserve spots in the garage ahead
of time

UC-2,UC-3,UC-
4,UC-6

Parking inter-
face

To display for ad-hoc customers to choose
vacant spots to park in once they enter the
garage

UC-2,UC-4,UC-
6, UC-16

License-Plate
Reader

To read the license plates of vehicles and
passes it to the system

UC-9,UC-10

System Update customer information and payment
data

UC-2,UC-
11,UC-14,
UC-15

System Update parking information in the garage UC-2,UC-
15,UC-16

Customer To register in the system UC-1
Customer To review the available parking lots UC-2
Customer To enter the garage UC-9
Customer To leave the garage on foot UC-8
Customer To leave the garage by car UC-10,UC-14
Customer To make reservations on the website. UC-1,UC-2,UC-

3
Customer To cancel his reservation UC-7
Customer To do Ad-hoc parking while choosing their

spot
UC-2, UC-4

Customer To update or modify account information UC-11
Customer To park in the garage UC-5 Customer
To receive notifi-
cations

UC-15

Garage Owner To choose a pricing strategy UC-13
Customer To pay bills for the parking service UC-14
Garage Owner To analyze statistics of the usage of the

garage
UC-1,UC-3,UC-
4, UC-13

19



Garage Owner To keep track of parking spots in garage UC-2,UC-15
Garage Owner To manually input information in case of sys-

tem failure
UC-13

Sensors To monitor traffic on each floor UC-5,UC-6
Sensors To check to make sure customers have parked

in the correct spot
UC-5,UC-6

Elevators To bring customers to their designated floors UC-5,UC-9
Elevators To bring customers to the ground floor once

they are leaving the garage
UC-9,UC-10

Security System To ensure only customers and the people
they are traveling with can enter or exit the
garage

UC-8, UC-9,UC-
10

Security System To send customers an alphanumeric code
they will need to enter the garage along with
periodic updates about time elapsed

UC-10,UC-15

5.3 Use Cases

5.3.1 Casual Description

• UC-1: Register- to register an account on the website

• UC-2: View Spots - to view available and unavailable spots in a selected
time window

• UC-3: Reservation - to save a spot reservation online ahead of time

• UC-4: Ad-Hoc - to select a spot at the garage with no reservation

• UC-5: Park - to park a driver’s car

• UC-6: Switch spots - to change a reserved or selected spot before park-
ing

• UC-7: Cancel reservation - to cancel a reservation before parking

• UC-8: Unlock door - to unlock and gain access to the pedestrian door
to exit or enter the garage on foot

• UC-9: Enter- for a driver to enter the garage in their car

20



• UC-10: Exit - for a driver to exit the garage in their car

• UC-11: Update information - to change account information on the
website

• UC-12: Set pricing - to override smart pricing options or set smart
pricing options

• UC-13: Manual Input - to input information directly in case of system
failure

• UC-14: Payment - to pay bill at the end of parking

• UC-15: Track Time- to track how much time has elapsed since parking

• UC-16: No Availability- to notify ad-hoc customers in case there is no
availability in the garage

5.3.2 Use Case Diagram

Customer:

Figure 1: Customer use case.

21



The following diagram shows how the previously stated use cases interact
with the customer and the actors. UC1,UC3, UC9 and UC11 are all first
tier use cases as they interact directly with the customer. Since customers
will be allowed to view all the available spots, UC2 (view spots) is directly
linked to the parking interface.Through reservations, the customer will also
be allowed to switch spots. Additionally, UC9 will be linked to license plate
reader as upon entrance, the licence plate reader takes a photo of the license
plate.

Once the customer has entered the garage, the customers will park in
their designated spot, which will be monitored by the sensors, and will leave
the garage. Entering and exiting the garage after the customer first parks will
be monitored by the security system, as the in order to be allowed to exit and
then reenter the garage, the customers will have to input the alphanumeric
code they had received into an interface. Customers will also be required to
pay for their spot once they have parked and the system keeps track of how
much time has elapsed. This ensures that customers are not going over their
allocated parking time.

Owner:

Figure 2: Owner use case.

22



The following use case diagram show the previously stated use cases in-
teract with the owner of the garage along with the participating actors. In
cases of system failure, the garage owner will have to manually update the
system to show all occupied spots and the current prices, which is why it
directly connects with UC13 (manual input) and UC2(view spots). For this
reason, UC13 directly interacts with the parking interface actor, sensors, and
security system. The view spots use case also connects to the reservation,
ad-hoc, and register use cases which directly interacts with the customer.

5.3.3 Traceability Matrix

Figure 3: Traceability matrix.

The following traceability matrix was derived from the use cases and the
functional requirements. The priority weights for each requirement and use
case was alloted based on the complexity of the requirement/use case and
how long it will take to implement it. The priority weights were given on a
scale of 1 to 5.

23



5.3.4 Fully Dressed Description & Sequence Diagram

Use Case UC-1: Register
Related Requirements: REQ-05, REQ-18, REQ-24, REQ-25, REQ-27,
REQ-32, REQ-38
Initiating Actor: Customer
Actor’s Goal: To register an account on the website
Participating Actors: Customer, System
Preconditions: The system will request the necessary information
from the customer on the registration page.
Postconditions: The customer’s account will be stored within the
database which will be backed up regularly
Flow of Events for Main Success Scenario:
− > 1. Customer accesses the website and chooses to “Register” an account
< −2. The system returns a page that requests the necessary fields
− >3. The customer enters information into the required data fields
< −4. The system checks the username and email against the database.
a. If the username or email is not unique, return to step 3 to alter
login information.
b. If the username and email are both unique, the system takes the
information and enters it into the database. the system notifies the user
for successful registration.

24



Figure 4: Register sequence.

25



Use Case UC-3: Reservation
Related Requirements: REQ-03, REQ-04, REQ-06, REQ-13, REQ-15, REQ-18,
REQ-19, REQ-30, REQ-36, REQ-38, REQ-40, REQ-43
Initiating Actor: Customer
Actor’s Goal: To reserve parking spots at the garage in advance
Participating Actors: Customer, System
Preconditions: The spots that are being reserved must be reserved
at least a day in advance.
Postconditions: The customer’s reservation will be stored in the database.
Flow of Events for Main Success Scenario:
− >1. Customer logs into his account and clicks “Reserve a Spot”.
a. As a result of a failed login, the customer repeats step 1.
b. If the login is successful, continue to step 2.
< −2. The system returns a page that requests the time block for the
customer’s reservation
− >3. The customer enters information into the required data fields
(date, time block)
< −4. The system checks the database of reserved spots during that time frame
a. If there are no available reservation spots during the specified time frame,
the system will inform the customer that there are no available spots to be
reserved. (no reservation is made: flow ends here)
b. If there are available spots during the desired time frame, the customer
will be presented with a UI of the available spots that they can select from.
(continue to step 5)
− >5. The customer selects a parking spot to reserve
< −6. The system enters the reservation into the reservation database. A
message is displayed to show that the reservation went through.

26



Figure 5: Reserve sequence.

27



Use Case UC-4: Ad-hoc
Related Requirements: REQ-03, REQ-04, REQ-07, REQ-09, REQ-24,
REQ-33, REQ-34
Initiating Actor: Customer
Actor’s Goal: To obtain a parking spot at the garage without any reservation
Participating Actors: Customer, System
Preconditions: N/A
Postconditions: The customer will be able to park in the garage
Flow of Events for Main Success Scenario:
− >1. The customer arrives at the parking garage and chooses the “Ad-hoc”
option of parking.
< −2. The system displays a real-time interface of the current parking situation
of the garage (vacant and occupied spots)
a. If there are no vacant spots, the customer has to leave
b. If there are vacant spots, the customer can continue to step 3.
− >3. The customer can select a vacant spot to park in.
< −4. The system requests some basic information from the customer (name,
license plate, contact information, and credit card information)
− >5. The customer enters all the necessary information.
< −6. The system checks the validity of the information.
a. If the information does not fit the requirements (specifically credit card
number), loop back to step 6.
b. If the information fits the requirements, the system enters the customer’s
information into the database. The customer’s spot now shows up as
“occupied” on the real-time interface, and the customer can proceed with
the parking process.

28



Figure 6: Ad-hoc parking sequence.

29



Use Case UC-14: Payment
Related Requirements: REQ-03, REQ-04, REQ-06, REQ-13, REQ-15, REQ-18,
REQ-19, REQ-30, REQ-36, REQ-38, REQ-40, REQ-43
Initiating Actor: Customer
Actor’s Goal: To pay the bill based on the system information.
Participating Actors: The security system
Preconditions: The customers registered and entered to park the car.
Postconditions: The security system will let the customers out.
Flow of Events for Main Success Scenario:
− >1. Customer logs into his account and clicks “Leave and Pay”.
a. As a result of a failed login, the customer repeats step 1.
b. If the login is successful, continue to step 2.
< −2. The system returns a page that shows the total money to be paid.
− >3. The customer enters information into the required data fields
(date, time block)
< −4. The system check the payment information and deduct it from the bank.
a. If failure, return to 2
b. If success, turn to 5.
− >5. The customer receives the receipt.
< −6. The secure system will let the customer out.

30



Figure 7: Leave and payment sequence.

6 Effort Estimation

6.1 Actor Classification

UAW: 3(3) + 3(2) + 3(1) = 18. The complexity of the unadjusted actor
weights is determined by user interface design, and the weights are based off
the complexity.

Actor Name Description of relevant characteristics ComplexityWeight
Parking Inter-
face

Customers interact with the parking inter-
face through a graphical display on the web-
site or the on-site monitor

Complex 3

31



License Plate
Reader

The scanner interacts through a camera de-
vice and software API that allows license
plates to be read

Simple 1

System Updates customer information and parking
information in their respective databases via
manual input by the user or automatic input
from other modules

Average 2

Customer Customer can interact with the system
through a graphical interface to view spots
and change options

Complex 3

Garage Owner Garage owner can also interact with the sys-
tem via the graphical interface, but most in-
teractions are simple text-based inputs

Average 2

Sensors Returns a value to determine whether or not
a car is parked in a respective spot

Simple 1

Elevators (Traf-
fic Control Sys-
tem)

Allows customers to reach the desired floor
in their cars, while also receiving data from
other modules to limit traffic within the
garage

Simple 1

Security System Creates and manages an authentication code
for customers and requires text-based input
from customers to use the doors

Average 2

Smart Pricing
System

Charge customers according to current de-
mand and learn to self-adjust future price

Complex 3

Table 6: Actor Classification

6.2 Use Case Classification

UUCP: 3(15) + 7(10) + 7(5) = 150.
The complexity of the use cases is determined by the number of partici-

pating actors and the number of steps it takes to get to the success scenario.
The higher the number of participating actors and number of steps, the
higher the complexity. The weights are based off the complexity.

Use Case Description of relevant characteristics ComplexityWeight

32



UC-1: Register Simple user interface. 2 Participating actors.
4 step success scenario

Average 10

UC-2: View
Spots

Graphical interface. 2 Participating actors.
2 step success scenario

Average 10

UC-3: Reserva-
tion

Graphical Interface. 3 Participating actors.
6 Step success scenario

Complex 15

UC-4: Ad-Hoc Graphical Interface. 3 Participating actors.
6 Step success scenario

Complex 15

UC-5: Park No interface. 2 Participating actors. 2 Step
success scenario

Simple 5

UC-6: Switch
spots

Graphical interface. 2 Participating actors.
3 Step success scenario

Simple 5

UC-7: Cancel
Reservation

Graphical interface. 2 Participating actors.
2 Step success scenario

Simple 5

UC-8: Unlock
Door

Text-based interface. 3 Participating actors.
6 Step success scenario

Average 10

UC-9: Enter Simple interface. 2 Participating actors. 3
Step success scenario

Simple 5

UC-10: Exit Simple interface. 2 Participating actors. 2
Step success scenario

Simple 5

UC-11: Update
Info

Text-based interface. 3 Participating actors.
6 Step success scenario

Average 10

UC-12: Set pric-
ing

Text-based interface. 3 Participating actors.
8 Step success scenario

Average 10

UC-13: Manual
Input

Text-based interface. 2 Participating actors.
6 Step success scenario

Simple 5

UC-14: Pay-
ment

Simple interface. 2 Participating actors. 6
Step success scenario

Average 10

UC-15: Track
Time

No interface. 2 Participating actors. 4 Step
success scenario

Simple 5

UC-16: No
Availability

Simple interface. 4 Participating Actors. 6
Step success scenario

Average 10

UC-17: Smart
Pricing

No interface. 2 Participating actors. 4 Step
success scenario

Complex 15

33



6.3 Sequence Diagrams for UCs

6.3.1 UC-1: Register

6.3.2 UC-3: Reservation

34



6.3.3 UC-4: Adhoc

6.3.4 UC-14:Payment

35



6.4 Technical Complexity Factors (TCFs)

Technical Factor Total: 44.

Technical
Factor

Description Weight Perceived
Complex-
ity

Factor
(W*PC)

T1 Distributed system: website and
database are separate entities that
must communicate with each other as
well as with garage modules

2 3 6

T2 Users expect good performance, slow
performance could result in increased
traffic/wait time and incorrect billing
for customers

1 4 4

T3 End-user expects efficiency but nothing
exceptional

1 3 3

T4 Calculation of dynamic pricing model
is very complex and requires heavy pro-
cessing

1 4 4

T5 Design is reusable and can be imple-
mented in any garage with the appro-
priate hardware modules

1 3 3

T6 Installation requires various prerequi-
sites and is not automatic; also re-
quires hardware installation in garage
but overall should not be too difficult

0.5 3 1.5

T7 Ease of use is very important; main
goal is to be easy for all customers to
use

0.5 5 2.5

T8 Website and database systems can be
easily moved to new machines, but
portability of garage hardware is not
important

2 0 0

T9 Easy to change and add modules to due
to modular design of components, min-
imally required

1 1 1

36



T10 Should concurrently support many
users (both in the garage and access-
ing the website)

1 4 4

T11 Special security features have been im-
plemented and are vital to the opera-
tion of the garage

1 3 3

T12 No direct 3rd party access 1 0 0
T13 Virtually no training required; system

is almost fully automated
1 0 0

T14 Learning parking demand from history
statistics is very difficult

2 3 6

T15 Proposing a dynamic pricing function
based on parking demand is compli-
cated

2 3 6

37



7 Domain Analysis

Figure 8: The Whole Domain model.

7.1 Domain Model Derivation

The following domain model was derived from the use cases and requirements
with the highest priorities. These use cases include allowing customers to
login and/or register for an account (UC-1) and make reservations (UC-3),
along with allowing both registered members and ad-hoc customers to view
spots, park their car, keep track of their parking duration, and pay for their
bill at the end (UC-2,UC-4,UC-5, UC-14, and UC-15).

The key boundary concepts of this system are the license plate reader,
the visual interface that the customers will interact with upon entering the
garage, the website, and the notification system. The key internal concepts
of this system are the databased and sensors.

The license plate reader is a camera system that takes a photo of the
license plate when the customer first enters the garage, and compares it to
the database entries to determine if the customer has an existing reserva-
tion. Based on that, the visual interface, which retrieves the data from the
database, either allows the customer to select a parking spot in the garage or
simply directs the customer to their reserved parking spot. The information

38



inputted from the visual interface is saved in the database. Customers also
have direct access to the website, where they can create accounts to make
reservations and track their account history. Customer data along with any
upcoming reservations are saved in the database. Along with this, on the
website, customers will be able to see a display of all the available parking
spots at a given time via the visual interface and database. The visual in-
terface for the current state of the parking lot is constantly maintained by
sensors placed throughout the parking garage. The notification system peri-
odically sends customers updates and notifications. Through the notification
system, the customers can track the time that has elapsed and will also re-
ceive an alphanumeric security code that will be required for them to enter
the garage. The notification system interacts with the database to retrieve
customer and parking information. There are also sensors in place to monitor
traffic activity in the garage and ensure that the the customers are parking
in the correct spot.

7.2 Tracebility Matrix

The following traceability matrix was derived from the use cases and the
concepts. For each use case, the different concepts that are involved to
implement the use case are shown, and the priority weights are given based
on how many concepts are involved in the implementation of the use case
and the complexity of the use case itself.

Figure 9: The tracebility matrix of domain model.

39



7.3 Concept Definitions

Responsibility Description Type Concept Name
To check if customer has a reservation K License Plate Reader

To collect information for ad-hoc customers D Visual Interface
To give real time display of all currently

available parking spots
N Visual Interface

To allow ad-hoc customers to pay for parking D Visual Interface
To give managers access to current situation in

parking spot
N Visual Interface

To collect user information and make
reservations

N Website

To give registered customers an alternate
payment method

D Website

To register new members N Website
To manage smart pricing system D Database
To hold customer/parking/license

plate/reservation info
N Database

To keep track of time elapsed D Database
To manage usage stats D Database

To extract reservation information for
incoming customers

K Database

To allow managers to edit pricing and access
customer info

K Database

To send customers periodic notifications
regarding time elapsed

D Notification System

To send customers parking confirmation and
alphanumeric security code

D Notification System

To manage traffic control N Sensors
To ensure that customers are parking in the

correct spots
K Sensors

To monitor occupancy of the garage N Sensors

Association definition:

40



Concept Pair Association Description
Association

Name

License Plate
Reader ←→

Database

License plate reader scans the plate of
cars and sends the plate number to the

database where it is stored to be accessed
later.

Store license

Visual Interface
←→ Database

Visual interface requests information on
the status of parking spots from the

database to be displayed to customers.

Get parking
info

Website ←→
Database

Website sends information about
reservations, users, and payment to the

database to be accessed by other systems.

Update user
info

Notification
System ←→

Database

Notification system accesses database for
customer information, such as phone

number/email and parking spot number

Get
notification

info
Security System
←→ Notification

System

Security system signals notification
system to send authentication codes to

customer

Allow
security code

Security System
←→ Database

Security system requests security
information stored in the database, such

as a customer’s unique security code

Get security
code

Sensors ↔
Database

The sensors constantly monitor traffic
control as well how occupied the garage

is at any given time. Based on the
occupancy and traffic, the database can

set a price for certain spots.

Set Price

7.4 System Operation Contracts

UC-1: Register

• Preconditions:

– Customer is not already a registered member

– Customer will enter a valid username, email address, and driver’s
license number

– Customer will create a password

41



• Postconditions:

– Customer’s account information is stored in the database

UC-3: Reservation

• Preconditions:

– Customer is logged into their account on the website

– Reservations must be made at least a day before requested reser-
vation time

– The selected spot is available for reservation at the requested time

• Postconditions:

– Customer’s reservation will be stored in the database

UC-4: Ad-Hoc

• Preconditions:

– Customer does not have a reservation for the current time

• Postconditions:

– Customer is able to park in the garage

– Customer will be registered for an account if they did not previ-
ously have one

UC-14: Payment

• Preconditions:

– Customer is done parking and has moved their car from their spot

– Customer had either parked by reservation or ad-hoc

• Postconditions:

– Customer will be charged for their stay based on agreed upon rates

– Security system will allow customer to leave

42



8 Interaction Diagrams

8.1 Use Case 1: Register

We decided to assign the responsibility to register to the website (system),
as the website is the main interface through which the customer can make
parking reservations. The website has the responsibility of allowing cus-
tomers to login and make reservations, which ensures that the website has
focused specialty and does not have too many responsibilities assigned to it.
Even though the customer interacts with the system to for logging in and
making reservations, we assigned the database the responsibility to verify
and store the data that is being received. In this way the database can easily
access information about customer when it is needed for parking. We use the
Publisher-Subscriber design pattern to improve this use case’s design. In this
case, the customer is the subscriber while the garage itself is the publisher.
Once the subscribers input valid information, the publisher releases informa-
tion of interest to the subscriber(that their account has been created). On
the other hand, if the subscriber inputs invalid information, the publisher
shows an error message showing no registered account.

Figure 10: Sequence Diagrams for Use Case 1.

43



8.2 Use Case 3: Reservation

When a customer attempts to place a reservation, the system attempts to
verify their account by querying the database for the correct account info.
In this use case, the database’s main responsibilities are keeping track of and
reporting account information and reservation/spot information. This data
is then given back to the system, which is responsible for passing information
from the customer to the database and displaying relevant information from
the database to the customer in an easy to understand format. The system
is also responsible for processing the customer’s action on the website, such
as redirecting the customer to different pages on the website based on their
requests. As stated above, we use the Publisher-Subscriber design pattern
to improve this use case’s design as well. Once the customer inputs a desired
time frame during which they want to reserve a parking spot, they receive
the status of the parking spots in the garage that they are able to reserve
a spot. In this test case, the publisher gives the subscriber the pertinent
information that the subscriber needs to reserve a free parking spot or to
notify the subscriber of no valid reservation spots .

44



Figure 11: Sequence Diagrams for Use Case 3.

8.3 Use Case 4: Ad-hoc

When an Ad-Hoc user enters the garage, they will interact with a user in-
terface that will be placed at the front of the parking garage. The user
interface(denoted as system in the interaction diagram) will be responsible
for showing the ad hoc customers all the available parking spots and for
requesting and verifying user information so that the users can enter the
garage. Since the user interface is the first system that ad-hoc users interact
with upon entering the garage, we decided to assign the previously men-
tioned responsibilities to the the system as both responsibilities should be
completed before the user enters the parking garage. Similarly to Use Cases
1 and 3, the subscriber is the customer who selects a parking spot to park

45



in at the entrance gate terminal. The publisher(garage control) will send
the subscriber a list of possible ad-hoc parking spots that the subscriber can
then choose from.

Figure 12: Sequence Diagrams for Use Case 4.

8.4 Use Case 14: Payment

After a user has completed their parking (reservation or ad-hoc) they will
move to the exit. They will interact with the system and request to pay and
leave. The system will read the license plate and request parking informa-
tion from the database. Total cost will be computed and then the system
will check the database to see if this is a registered user or not. If the user
is a registered user then the credit card associated with the account will be
charged and the person will be allowed to leave. If the account is not reg-
istered then payment information and billing information will be requested.
Upon verification of payment method, the user will be allowed to leave. This

46



Use Case uses the Publisher-Subscriber design pattern as well. When the
user reaches the exit gate, in order to leave the garage, the publisher will
present the subscriber with the total parking cost. The customer will pay
the noted price and will be allowed to leave the garage premises.

Figure 13: Sequence Diagrams for Use Case 14.

47



9 Class Diagram and Interface Specification

9.1 Class Diagram

Figure 14: Class Diagram.

9.2 Design Patterns

For the majority of our project, we use the Publisher-Subscriber Design Pat-
tern. As stated in Section 8 (Interaction Diagrams), when the subscriber
executes certain actions such as selects a time slot for reservation or tries
to leave the garage, the publisher will send the subscriber the pertinent in-
formation the they need to complete their actions. The publisher will send
the subscriber a GUI with free spots in the garage or a notify the subscriber
of the price they need to pay for their parking spot. This design pattern
improves our implementation of the project by making most of the transac-
tions based on request vs. event- based communication. This forms a line of
direct communication between the publisher and subscriber that streamlines
most of the transactions between the two as well as the interactions with the
database.

48



9.3 Object Constraint Language

For our classes, we have some simple preconditions for class and their opera-
tions. Ad-hoc Parking and reserved parking have the preconditions of signing
into the garage, the license plate of the driver, and the contact method. These
are then relayed to the database. The camera class has no preconditions be-
sides needing a vehicle to be in front of it to be able to sense the license
plate and send the data to the entrance gate. The notification system needs
the customer’s contact information so the security code can be sent to the
customer. For the account class, all the fields in the registration page must
be filled out in a valid format in order to be stored in the database. The
manager class needs the special login information to be able to manually
update the dynamic pricing system or values in the database.

9.4 Data Types and Operation Signatures

1. Manager

(a) Attributes

• int customer id: identification number of the customer

• string first name: customer’s first name

• string last name: customer’s last name

• string email: customer’s email address

• string phone number: customer’s phone number

• string password: customer’s password

• date dob: customer’s date of birth

• string creditcardno: customer’s credit care number

• string csv: credit card’s csv code

• string securitycode: security code sent to customer’s phone

• enum Type(‘Membership’, ‘Ad-hoc’)

(b) Operation: (all operations attach customer to any created objects)

• Register(): Creates a new user and inserts the user info into
database.

• addCar(): creates a car and inserts into database

• addCreditCard(): creates a credit card and inserts into database

• newReservation(): creates a reservation and inserts into database

49



2. Camera

(a) Attributes

• var picture : picture of the customer’s vehicle (to get the
license plate)

(b) Operation: (all operations attach customer to any created objects)

• getCustomerInfo(): check the customer information from the
database

• readLicensePlate(): Read the license plate with the picture
taken from the camera

3. PriceSystem

(a) Attributes

• int currentTime: the current time in the current time zone

(b) Operation: (all operations attach customer to any created objects)

• calculateHourlyRate(): calculate the hourly based price

• updatePrice(): update the price to the database

• manualUpdate(): manually update the price to database

4. Ad-hoc Parking

(a) Attributes

• int reservation time end: time that the customer leaves the
garage with their vehicle

• int spotNum: parking spot the customer parked in

• string customerName

(b) Operation: (all operations attach customer to any created objects)

• selectParkingSpot(): select the Parking Spot with spot id
spotNum

5. Reservation Parking

(a) Attributes

• int reservation time start: start of reservation time

• int reservation time end: end of reservation time

50



• int spotNum: spot that is reserved by the customer

• string customerName: name of customer

(b) Operation: (all operations attach customer to any created objects)

• displayInfo(): display the vacant parking spots to customers

• selectReservationTime(): let customers to select the time spots

• confirmReservation(): confirm the customers’ revervation

6. Parking Interface

(a) Attributes

• int currentTime: current time in current time zone

(b) Operation: (all operations attach customer to any created objects)

• displayFreeSpots(): display the vacant parking spots to cus-
tomers

• selectParkingSpot(): let the customers select the parking spot

7. Garage

(a) Attributes

• int vacantSpots: number of vacant spots in the garage

• int filledSpots: number of filled spots in the garage

• int reservedSpots: number of reserved spots in the garage

(b) Operation: (all operations attach customer to any created objects)

• elevator(): go to the floors where the selected parking spot on

• trafficController(): allow only one car entering one floor

8. Website

(a) Attributes

• string userName: customer’s username used to log in online
or at the terminal

(b) Operation: (all operations attach customer to any created objects)

• sendInfo(): send registering user information to customer mod-
ule

51



• receiveInfo(): receive registered user information from cus-
tomer module

9. NotificationSystem

(a) Attributes

• string contactinfo: email or phone number that customer can
be contacted at

(b) Operation: (all operations attach customer to any created objects)

• getInfo(): get user information from the dataset

• preferredContactMethod(): check the emailphone informa-
tion

• sendCode(): generate the info and send it to user

10. Elevator

(a) Attributes

• string code: security code that customer receives once they
park

• string username: username of customer

(b) Operation: (all operations attach customer to any created objects)

• getCode():get the verify code from user and check the code

• open(): Open the gate

• close(): close the gate

9.5 Traceability Matrix

1. Database

(a) Responsibilities

• Store customer and reservation information

• Check to see if incoming customer has a reservation

• Update hourly rates for dynamic pricing system

2. Website

(a) Responsibilities

52



Figure 15: Traceability Matrix

• Collect customer information

• Allows customers to make/update reservations

(b) Classes

• sendInfo(): collects customer info from website and sends it
to database

• receiveInfo(): receives responses from the system and possibly
display it

3. Dynamic Pricing System

(a) Responsibilities

• Set prices for customers based on various conditions

(b) Classes

53



• calculateHourlyRate(): calculate rate per hour for garage park-
ing

• updatePrice(): update the current price

• manualUpdate(): in case of system failure, manually update
prices

4. License Plate Reader

(a) Responsibilities

• Scan license plate to gather customer information on incoming
customer

(b) Classes

• readLicensePlate(): query database with license plate to check
for customer information

• getCustomerInfo(): gather info about customer from license
plate

5. Security System

(a) Responsibilities

• Notify the customer when they have successfully parked

• Send alphanumeric security code to customer which they will
use to enter and exit the garage

(b) Classes

• getInfo(): receive customer information

• preferredContactMethod(): store customer’s preferred con-
tact method (ie. phone or email)

• sendCode(): send alphanumeric/confirmation code to cus-
tomer

6. Traffic Control

(a) Responsibilities

• Control the amount of traffic congestion in the garage

• Uses sensors in the garage and cameras on each floor to gauge
vehicular movement on each floor

54



(b) Classes

• displayFreeSpots(): show all available parking spots on visual
interface

• selectParkingSpots(): select parking spot

7. Visual Interface (Parking Interface)

(a) Responsibilities

• Allow walk-in customers to choose parking spot

• Collect walk-in customers’ information

• Allow for manual input in case of system failure

(b) Classes

• displayFreeSpots(): show all available parking spots on visual
interface

• selectParkingSpots(): select parking spot

8. Manager

(a) Responsibilities

• Manually update values in the database

• Manually update price values for the dynamic pricing algo-
rithm

• View statistics and reservations of the garage

(b) Classes

• displayFreeSpots(): show all available parking spots on visual
interface

• selectParkingSpots(): select parking spot

10 System Architecture and System Design

10.1 Architectural Style

In terms of structure of the garage logic modules, the Auto Park system
follows a component-based design style. Each task that must be completed
within the system is performed by a module dedicated to that task (the no-
tification system handles the sending of messages to customers, the traffic

55



control system handles the amount of cars driving on each floor, etc). Since
there are many unique functions which must operate in parallel with one an-
other and process the same information, each component of the system must
be able to communicate with the relevant other subsystems. Every compo-
nent is responsible for independently executing its primary functions while
also coordinating with the other components to ensure smooth operation.

As for memory and data sharing, the system uses a database-centric ar-
chitecture. All information relating to user accounts, parking space status,
reservations, and payments are saved in databases which are accessible by
the other modules in the system. This database design allows the various
components of Auto Park to access, view, and edit the same data, allowing
for easier communication between components in many cases.

The direct communication between components in the garage is also heav-
ily based around an event-driven architecture. Each primary function in the
system must happen at a specific step during a normal use case. For ex-
ample, the security system waits for a customer to park their car correctly
before generating a code, and the notification system waits for this code to
be generated before sending it to the customer. Each step in the system’s
process is triggered by the completion or progress of a previous step, which
is the main philosophy behind an event-driven messaging style.

10.2 Identifying Subsystems

Figure 16 shows all subsystems designed in our system.

10.3 Mapping Subsystems to Hardware

Our website runs using typical server client technology. The server handles
all request sent out from clients, which could be cellphone, laptop or anything
that can run a browser. Apart from this, our data processing runs on the
spark platform. It’s configurable for users to run over single machine, several
machines and even hundreds of machines if necessary. The main structure of
spark is shown in Figure 17.

We launch the data processing job through the driver program, which
creates the sparkcontext according to the configurations. It will convert the
job into multiple tasks and schedule them over different executors through
cluster manager. Executors starts together when sparkcontext is created.
When finishing the task, executors will send results back to cluster manager.

56



Figure 16: Subsystems in our System.

In our project, we run the data processing using 32 executors with driver
memory 20GB and executor memory 80GB.

10.4 Persistent Data Storage

A MySQL database was used to store the data acquired by the system. The
database stores information about the customer’s contact/payment informa-
tion as well as information (ie. date, time, reserved parking spot) about any
reservations they may have at the parking garage.In this way, the database is
also used to determine if an incoming customer has a reservation or is an ad
hoc customer. If a customer has parked in the parking garage, the customer’s
parking spot location is also stored in the database.

57



Figure 17: An Overview of the Spark Structure [1].

10.5 Network Protocol

For communication between client and server and for the structure of the
web applications, our system uses Node.JS. Using node allows the server
to load scripts inline with the web pages and redirect the user to different
pages via routes based on requests they send to the server. This way the
web page displays as a normal HTML page would, but the server is always
“listening” for requests from the user. Using node also allows for many
different packages to be utilized in the web applications, such as code which
can securely handle and encrypt passwords or code which can be used to
display the visual interface of parking spots.

10.6 Global Flow Control

10.6.1 Execution Orderness

The parking garage system is both event driven and procedure driven. The
system is procedure driven because when the customer arrives at the parking
garage, a sensor will read the car’s license plate number and check to see
if there is already a pre-existing reservation under that customer’s name.
Additionally, there are sensors on each floor to ensure that no more than
one car is moving on each floor at a time and that each car is parked in its
designated spot. The system is event driven because if a customer does not
have a reservation, they will be required to input their contact information
and choose a parking spot before entering the garage.

58



10.6.2 Time Dependency

The system uses timers to record the duration of a reservation/parking. The
timers will be real time as they will be used to ensure that customers are
not staying past their reservations. For reserved customers, the system will
also give them a one hour grace period during which the customer can come
to the garage to park at anytime with their reservation. After this grace
period however, the parking spot will become unreserved and be open to
other reservations.

10.6.3 Concurrency

Each car that is currently at the parking garage will have its own thread.

10.7 Hardware Requirements

1. Website Hosting Server

• 33 MB disk space

• 100 Kb/s connection speed

2. Database Hosting

• 10 GB disk space

• 80 GB memory for spark processing

• 100 Kb/s connection speed

3. Garage Hardware

• Camera (for license plate scanner)

• Sensor for each parking spot

• Keypad for security at each pedestrian entrance/exit

• Tablet for entrance gate display

59



11 Algorithm and Data Structure

In the smart pricing system, we collected the data from the government.
Those data cover the usage of the parking lots in Seattle from 2012 to 2017.
We first analyze the parking lots usage, tying to use logic regression methods
to estimate the usage over time (hour, day, month). This could help us define
the time based demand function, which represents how the demand varies
with the time (hourly, daily, monthly). There are other methods to model
the time-based demand function, such as the neural network. However, based
on our collected data, we found that the demand function is linear and the
polynomial could fit the curve. Then, we try to use linear least squares
regression and cubic spline interpolation to calculate the coefficient of the
polynomial for the time-based demand function.

Besides the time-based demand function, we also proposed several price-
based demand functions. The time-based demand function represents the
relation between the parking lot usage and the time. Heuristically, it shows
when the parking lot used most often and when the parking lot is used rarely.
To design a dynamic pricing system, the goal is using the price to adjust the
usage of the parking lot and make the most benefits on the fixed parking
lots. When there is huge demand for the parking lots, the price will increase
and demand should decrease. When there is small demand for the parking
lot, the price should decrease to the minimum. So, based on this fact, we
propose the price-based demand function. However, for different cases, the
demand function could be impacted by the price differently. So, we proposed
three demand models which is exponential, reciprocal and linear model for
different scenario. Finally, we would calculate the real demand function based
on the time and price. We calculate the total benefits by integral the demand
function over time and price. So the final benefits function is the function of
price over time. And, based on which, we could calculate the best price by
solving the optimization problem of maximizing the benefits function.

11.1 Demand Function

Let f(t) represent the time based function learned from real world data,
where t indicates current time. Denote the price function at current time
as p(t). Although f(t) can indicate the overall parking demand, we need to
figure out the change of demand d(t) = h(p(t), f(t)) when given the dynamic
price p(t). This actually depends a lot on the driver’s strategy. For simplicity,

60



we are aimed at a simple relation such that lower price results in high parking
demand while higher price gets low parking demand. Here we list two types
of relations:

• Linear relation. d(t) = log10 f(t) − k ∗ p(t), where k is a constant
coefficient. The logarithm of f(t) is simply because that f(t) can be
very large values according to our fitted results.

• Expoential relation. d(t) = f(t) ∗ exp{−λp(t)}, where λ is a constant
coefficient. As p(t) increases, the d(t) decreases and vice versa.

11.2 Price Optimization

The profit gain is defined as a function g(T ) that means the profit gained
from the beginning to some time T , which could be described as an integral
process. The final objective function is as follows:

max
p(t)
{g(T )} = max

p(t)
{
∫ T

0

p(t)d(t)dt}, (1)

where we propose to solve by simply taking the ∂g(T )
∂p(t)

= 0 as in [2].

11.3 Data Structure

The system is not using any data structure. Instead, all of the information
regarding the user accounts on the website and information about the current
state of the parking garage is being stored in a mysql database.

12 User Interface Design and Implementa-

tion

12.1 UC-1: Register

Navigation: 1 total click from the main page (click the register button)
Data Entry: total is indeterminant as keystroke per user will be different,

7 clicks

• On Register page enter the follow fields and click to next field

61



Figure 18: Register system.

– Name

– Username

– Email

– Password

– Confirm Password

– Phone

• Select the submit button after all fields are entered

Figure 19: Register Page.

There have not been any significant changes we have made to this simple
registration process. It has already been implemented on our website.

62



12.2 UC-3: Reservation

Navigation: total 3 clicks, indeterminant keystrokes as follows

• Enter Login information as follows

– Enter Username

– Enter Password

• Click Login button (server sends user to account main page) shown
below figure

• On account page click Make a Reservation Page(user sent to make a
reservation page) shown below

Figure 20: Register Page.

Data Entry: total is 5 keystrokes, 2 - 7 clicks

• Select date of reservation by using calendar tool (number of clicks de-
pends on date)

• Enter time of reservation in 24 hour time (5 key strokes → xx:xx)

• Select parking spot choice from the parking garage spot map tool (pre-
liminary design shown below as the GUI has not been fully implemented
yet)

There have not been any significant changes to our plan of utilizing this
reservation GUI, but it has not been implemented yet. As of now, we have
a field where customers can enter a date and select an available spot from a
list of free spots (indeterminate keystrokes and 3 clicks to enter a time block

63



Figure 21: Welcome Page.

Figure 22: Login Page.

as well as confirm a spot to reserve). However, we plan on lessening the user
effort by having the user select a date (2 clicks: one for the date and one for
the month) and an available spot (2 clicks: one to select a spot and one to
confirm the reservation).

64



12.3 UC-3: Login

Navigation: total 2 clicks, indeterminant keystrokes as follows

• Enter Login information on homepage (shown above) as follows

– Enter Username

– Enter Password

• Click Login button (server sends user to account main page)

• On account page click Make a Reservation Page(user sent to make a
reservation page)

Data Entry: total is 5 keystrokes, 2 - 7 clicks

• Select date of reservation by using calendar tool (number of clicks de-
pends on date)

• Enter time of reservation in 24 hour time (5 key strokes → xx:xx)

• Select parking spot choice from the parking garage spot map tool

This login process part of the website is already up and running. There
have not been any significant changes besides ones intended to make the site
more aesthetically pleasing.

13 Design of Test

13.1 Web Form Test Cases

1. Login: A registered user can input their username and password to log
into their account

2. Registration: A new user can input their information and register for
an account. All the data must be collect via a web form. Testing can
be done via querying of database for the new user

3. Reservation: A logged in user can input time, day, and parking spot
into a web form to reserve a spot. Users cannot reserve a spot that is
already reserved for that same day. Testing can be done via querying
of database for new reservations with correct user, date, time, and spot
information

65



4. Cancel Reservation: A logged in user can cancel existing reservations.
Testing can be done by checking database and validating that that the
correct reservation has been cancelled

5. Update Information: A logged in user can update their user info via a
webform. Users have to make their changes and click save to update
their user info. Testing can be done via query of database and validat-
ing that the user data is up to date and the changes made via webform
are reflected in the database

13.2 Garage Test Cases

13.2.1 Entrance gate

1. Main: main execution loop, this method should be able to continually
accept customers coming in. Also it should send new and registered
users to the correct handling function (handleNew or handleExisting).
Testing can be done by hard coding a license string and testing to see
if the function sends the user with the associated license string to the
correct handling function

2. checkResTime: checks a list of reservations and determines if any are
within the acceptable checkIn times for a reservation. Testing can be
done via giving a list of reservations in the form of tuples (reserva-
tionID (int), userID (int), DateTime (datetime), CheckIn (boolean),
ParkingSpot (int)). Then, by inspecting the result and making sure
that either no reservation is returned in the case of no reservation check
in allowed at the current time or a reservation is returned if the user
has a reservation made for the current time

3. handleNew: handling function for new users. This function gets new
user data, inserts into db and allows the new user to select a spot
to do ad hoc parking. This function can be tested by sending in an
unregistered license string and starting the function. After input of
data the tester can query the database to see if the new user data has
been inputted. Also the test should check to see if the function sends
the correct spot based on user choice to the elevator handlePerson
function

66



4. handleExisting: handling function for registered users. This function
should allow users to choose adhoc or check in to a registration. The
test should have an existing user come in and try both adhoc and
reservation check in and see if the correct spot is sent to the elevator
handling function

5. scanPlate: This function reads the license.jpg file in the project folder
and determines the license plate. This function is easy to test as all
it does is return the license string with the highest confidence for the
machine learning algorithm. The test should have the function called
on many pictures and see if the license string return is correct

13.2.2 AuthCode

1. generateCode: This function just generates a random 8 character string.
It can be called and the output just has to be an 8 character string

13.2.3 Billing

1. Email: this function determines the amount of time parked and bills
the user likewise. The bill is sent as an email. The function takes in
user email and hours parked so the test should pass these values in.
The test can be considered successful if the email is sent successfully
with the correct charge

13.2.4 Elevator

1. handlePerson: this function takes in (spot, resID, plate) and extracts
the floor from the parking spot and “brings” the person to the floor
if the floor is ready. To test this we have to first send a floor that is
ready to be parked and see if the function calls the bringCar method to
the floor. Then, to test the waiting part, the function should be called
again while the first car is still parking and see if the wait functionality
is operating. If the first park is successful and the second is queued
then the function is operating correctly

2. Bringcar: this function spawns a thread to perform spot verifcation.
The only test required is to make sure this function spawns a thread
and then returns to the main

67



13.2.5 Notifications

1. sendAuth: This function send a text to the specified user phone with
the 8 character code. This function can be easily tested by supplying
a Twilio registered number and seeing if the function call results in a
text from the system

2. sendWrongSpot: This test is the same as the one above however the
message should just be different (“You are in the wrong spot”)

13.2.6 TrafficManagement

1. isFloorReady: this function just returns a boolean based on the global
list floorsReady. It can be easily tested by ensuring that the floor
(index) supplied is the correct value based on the floorsReady boolean
list

2. readyFloor: this function takes in a floor as a parameter and sets the
index in floorsReady for the specified floor to True. This can be easily
tested by checking the state of the floorsReady list after the function is
called. If the specified floor index is now true the function is successful

3. Unreadyfloor: this function takes in a floor as a parameter and sets the
index in floorsReady for the specified floor to False. This can be easily
tested by checking the state of the floorsReady list after the function is
called. If the specified floor index is now false the function is successful

13.2.7 ExitGate

1. scanPlate: same test as the function in entrancegate

2. Get datetime hours: this function queries the database and determines
how long a user has been parking for. It returns a double value rep-
resenting how many hours a user has parked. Testing this function is
a bit more complicated as it requires interactions with the database.
The function looks for the first occurrence in the ParkingHistory table
of the user’s license where the ending time is not specified yet. So to
test this the program code to test the function must generate some
synthetic start time for parking in the database and see if the function
returns the correct elapsed time.

68



3. Main: this function is the main execution loop and controls when the
user leaves the garage. It automatically bills registered users and asks
unregistered/new users for their email for digital receipt. To test this
function, new and registered user data has to be synthesized. To test
registered users allow the function to scan a registered license plate and
if the function sends the correct bill then the test is successful. To test
unregistered users, give an unregistered license plate string and enter
a valid email. If the function sends the correct bill then the test is
successful.

13.2.8 Spot Verification

1. checkParking: this function takes in (spot,resID,floor,plate) and checks
if the correct spot has been occupied. This function behaves differently
based on if the spot checking is adhoc or reservation. For adhoc the
function just determines where the person parked on the floor they
went to since adhoc users are allowed to park wherever they want to
park. For reservations it makes sure the user parks in the specified
spot and texts the user if the spot is not correct. There are 3 situations
to test: adhoc parking, reservation successful parking and reservations
unsuccessful parking. To test adhoc the occupy function in the simu-
lation file can be used to simulate a sensor so if the function correctly
watches a floor and determines that the adhoc user parked then the
test is successful. The reservation success works the same way. For
reservation unsuccessful the occupy function can be used to occupy the
wrong spot and if a wrong spot text is sent then the test is successful

2. getUnoccupiedList: this function takes in the floor and returns a list
of all unoccupied spots. This function is easily tested as the function
returns data straight from the database so the data can be validated
by comparing it to the database

3. unReserve: this function sets the reserved flag for a specified spot to 0.
This function can be tested by checking the database after the function
call

4. findSpotOccupied: this function takes two occupancy lists and deter-
mines what spot is occupied. It can be tested by sending occupancy
lists and seeing if the result is the missing element

69



5. getPhonefromPlate: this function returns a phone number string based
on the plate parameter. This function can be tested by a quick database
check

14 History of Work, Current Status, and Fu-

ture Work

14.1 History of Work and Current Status

As of now, we have created a website which allows users to register, log in to
their accounts and make a reservation for a parking spot at any given date
and time. Additionally, there is a license plate reader system in place that
will read the license plate number of a car entering the garage, as well as a
logic in place which allows users to switch spots if necessary. We have also
implemented a system that simulates entering and exiting the garage along
with a way to allow users to manually enter their license plate number in the
interface at the front of the garage in case of system failure. We also have a
notification system in place so that customers can be sent confirmation codes,
security codes, and payment information based on their preference of SMS
or email notification. Additionally, an algorithm has also been developed to
implement the dynamic pricing system, which we can then replace with the
flat pricing system we currently have in place.

14.2 Future Work

Future work for this project includes having to implement a GUI from which
customers can view a realtime display of the parking lot and select their
preferred spot. While the smart pricing system has been implemented, it
still needs to be integrated with the rest of the modules and database.

70



15 Project Management

15.1 Merging the Contributions from Individual Team
Members

In addition, we need to think about the uniformity of the diagrams in our
report in order to appear more professional. We also need to uniformize the
report formatting in order to maintain consistency between reports.

15.2 Project Coordination and Progress Report

Currently, we have implemented a website with basic functionality (register,
login, and reservation). We have implemented most of the garage logic except
for the user interface screen that customers see when they enter the garage.
We have a license plate reader system that is currently in place that can also
recognize ad-hoc users. Both ad-hoc users and registered users can park in
the garage and are also able to switch spots if necessary. There is also a
system in place that simulates entering and exiting the garage, as well as
a way to allow users to manually input their license plate number in the
interface at the front of the garage in case the license plate reader does not
work properly. We also have a notification system in place so that customers
can be sent confirmation codes, security codes, and payment information
based on their preference of SMS or email notification.

We currently have a flat-rate payment system in place; however, we are
working on implementing the dynamic pricing system we have completed a
lot of research on already. The algorithm will be based on demand and time
of day. In addition, we are working on implementing a manager account
for the garage so that owners or managers can manually input information
and alter some settings in the garage such as price for special circumstances.
We are also working on creating the visual interface that will allow users to
see all of the available spots in the parking garage. Even though we have a
system in place that allows users to enter and exit the parking garage and
switch spots, we are currently working on integrating and refining it.

15.3 Breakdown of Responsibilities

All members are contributed equally to the report.
Corey Chen:

71



• Database Functionalities

• CSS and HTML formatting for the website

• Login and Register modules

• Integration Testing

• Website Navigation

• Website/Database Communication

Chunhua Deng:

• Email notification module

• Exit garage module

• Cubic spline interpolation for fitting curve based on the data.

• Propose the price-based demand function.

• Total benefits Optimization.

• Final dynamic pricing system optimization

• Integration of the report

Jonathan Garner:

• SMS Notification Module

• Authentication Module

• Integration Testing

• Database Interactions

• Spot Status Module

• Parking Map Visual Interface

Siyu Liao:

• Data Retrieval Module

72



• Data Cleaning Module

• Data Processing Module

• Data visualization

• Calculate the price based demand function with multiple model.

• Profit optimization based on the demand function.

Siddharth Musale

• Database Creation and Management

• Entrance Gate

• Exit Gate

• Notification and Email module integrations

• Traffic Management

• Elevator

• Spot Verify

• Reservation page

• Open ALPR api integration

• Simulation

• All unit testing

Ridhima Sakhuja:

• Login and Registration (Website) Modules

• CSS and HTML formatting for website

• User info/password input validation

• Integration Testing

• Website Navigation/Database Communication

73



Xianglong Feng:

• Data cleaning

• Logic regression for fitting curve based on the data.

• Propose and design the price-based demand function.

• Proposed and design the multi-module based method for dynamic pric-
ing algorithm

• Proposed and design the dynamic updating method for price-based
demand function

• Propose and design the ease out quart function for price-based demand
function in peak time

• Propose the design the ease out quart function for price-based demand
function in adjustable time

• Design the solution to solve the optimized price based on time

• Total benefits Optimization.

• Final dynamic pricing system optimization

• Data Visualization for final results.

16 Dynamic Pricing for AutoParking

The dynamic pricing algorithm is the soul of this smart parking system. The
idea of using dynamic pricing algorithm is to 1) best leverage the parking
resource and make the best benefits; 2) make the parking resource convenient
for all user.

Like the flight tickets in holidays, the parking lot in the rush hour is quite
limited comparing with the need. The parking price for the rush hour should
increase to make the best benefits. And also, just like the flight tickets in the
other time when there are adequate number of tickets for so few traveller, the
manager of the parking garage should decrease the parking price to attract
users to increase the benefits and so they could better maintain the system.

74



However, currently due to the lack of real parking data and experiment
of dynamic pricing system, most of the parking lots in street and garage are
using fixed parking price. There are some parking system provides different
parking price based on the location (i.e., the parking price in the central of
the downtown is higher than that in the outsides of the downtown.). But in
the same parking slot, the price is the same for the whole day in a year.

The other advantage of the dynamic pricing system is making the limited
parking resources real convenient for all users. This part may be difficult to
understand. Take the flight tickets in the holiday for example, usually it’s
hard for someone to buy one tickets in such time. However, there may be
cases that someone really needs to take the flight for a surgery, international
conference and so on but can not get one. This is not real convenient because
of the one who real needs can’t get one. The dynamic pricing system will
leverage the price to find the people who really needs, and make sure that
anyone really need a parking slot could find one.

For the parking system, the case may be more complicated. In the peak
time, if the price increases, the people that want to use the parking garage
will decrease. If the price is very high, then, people will find alternative
way such as taking the subway, bus, taxi or even ride a bike. For some other
cases, such as business work, seeing doctor for patients who are inconvenient,
people still want to use the parking garage even the price is higher than the
taxi. For such cases, they could not find a parking lot in the rush hour if
the system uses a fixed pricing system. A good system should meet the need
and find the one who really need and make sure they could get the service.

16.1 Dynamic Pricing Related Work

The idea of dynamic pricing has been widely used in markets nowadays. In
the case of energy cost [3], dynamic pricing can reduce peak demand of a
city, and decrease resource cost, for example extra investment in handling
the peak hour, thereby improving social welfare. With such observation,
dynamic pricing strategy in the parking application has been investigated
in many studies. San Francisco Park (SFPark) [4] uses dynamic pricing for
traffic congestion control, where they adjust price proportional to the park-
ing resource utilization. iParker [5] aims at increasing parking utilization,
revenue and lowering drivers’ cost (searching and walking time). Assuming
drivers know how the price and parking occupancy change along time and
they would choose accordingly, [6] finds that the optimal charging results in

75



the balance between the cruising time and parking space convenience. Al-
though many existing works present their methods to achieve the optimum
solution, many of them give lots of theoretical assumptions and are lack of
tests over real world data. In this project, we aim at capturing parking de-
mand from real world data and use the temporal and spatial properties to
find the pricing strategy maximizing revenue.

16.2 Requirement of Dynamic Pricing

The dynamic pricing system could adjust the number of customers and make
the best benefits by changing the parking price based on the demand of the
parking spaces. Based on the real parking data, collected from the Seattle
government’s website, the demand is heavily depend on the time of a day. As
is shown in Figure [?], the parking lots reach the peak from 10:00 to 15:00,
and the parking lots are rarely used in the night.

The second factor that could impact the demand for parking lot is the
parking price. A lower parking price will attract more people to drive here
and park here while a higher parking price will force people find alternative
method to commute.

So, based on the two factors above, we can find that the demand for
parking lot is a function with both price and time. The demand function
varies based on the location along the time and price. For example, the
parking lot around the railway station shows a different demand function
based on time comparing the parking lot in the center of the city. In the
center of the city, the parking lot will reach its peak in the noon, while the
parking lot around the railway station is heavily depending on the time table
of the train.

As a result, given a parking garage, we should firstly collect enough park-
ing data and the parking variation on different prices. Then, we should use
logic regression to calculate the model for the price and time based demand
function, with which the system could modify the current price to best use
the parking resources and make the best benefits.

16.3 Parking Records of Seattle

There are public on-street parking records released by the City of Seattle
Department of Transportation (SDOT), which starts from January 2012 [7].
We take the data from January 2012 to September 2017, which is around

76



5.3GB with 62,327,970 records. Several records are shown in Figure 23 as
examples and corresponding data format is explained in Table 9.

Figure 23: Example of On-street Parking Data in Seattle

Table 9: Data Format for On-street Parking Data in Seattle

Name Type Description
TransactionId integer Unique identifier number for a record

TransactionDateTime timestamp Date and time of the record
TransactionDate timestamp Record date

timeStart string Parking starting time
timeExpired string Parking ending time

Duration mins integer Length of parking in minutes
Amount double Payment amount in dollars

PaymentMean string Payment in credit card, coin, phone, etc.
MeterCode integer Pay station identifier
ElementKey integer Street segment identifier

16.4 Parking Demand Analysis

We capture the parking demand of the Seattle city by counting number
of parking transactions that start in a pre-defined time range, which can
be hourly, daily, weekly and monthly. For example, in the case of hourly
parking demand, if a transaction started on 21:07, it is considered as one
parking request within 21:00 - 22:00. The total number of parking requests
of the time range is defined as the parking demand. Given the large data
volume, we get all the statistics using Spark [8] on Ubuntu 16.04 with 20GB
memory.

Figure 24 shows the hourly parking demand of the Seattle City. It can be
seen that the rush hour is around 7:00 - 8:00 when the demand peak appears.

77



Figure 24: Hourly Parking Demand of the Seattle City

However, after 15:00, parking demand significantly drops down. This can be
attributed to that people usually leave the city and drive to home at that
time, so there are much less parking demand.

Figure 25: Daily Parking Demand of the Seattle City

Figure 25 shows the parking demand of every day throughout a year.
It is found that every year remains the same parking demand for each day.
Moreover, there seems to be a line formed by dots in Figure 25, which can
be explained by Figure 26. There are almost none parking records tracked
on Sunday, which means that every Sunday our calculated parking demand
would be close to zero, as shown in Figure 25.

We also draw the monthly parking demand as in Figure 27. It is found
that every year the monthly parking demand remains the same. However,
there seems less parking demand in January, September and December. Since

78



Figure 26: Weekly Parking Demand of the Seattle City

Seattle is quite close to Canada and in the north, it may be the reason that
in winter people drive less than other seasons.

Figure 27: Monthly Parking Demand of the Seattle City

16.5 Parking Demand Curve Fitting

16.5.1 Model selection

There are several models for the collected parking data, such as the Gaussian
models, polynomial models, Poisson models and the neural network based
models.

79



The Gaussian and Poisson models heavily depended on the two or three
parameters to represent the sequence based progress. As we could observed
from our data, we found that the data is more like a linear system. Consid-
ering that the neural network works well for non-linear system, we try to use
polynomial models to estimate the time based demand function.

Given the parking data, we have several methods to estimate the param-
eters for the polynomial based model for the time-based demand function,
such as the linear least squares regression and cubic spline interpolation.
Here, in this project, we use the linear least squares regression to calculate
the coefficients of the polynomial based model for the time-based demand
function.

16.5.2 Linear least squares regression

In linear least squares regression, we got the real data as time (t) and the
demand (y). So we got several data point (t1, y1), (t2, y2)...(tn, yn). We are
seeking for the polynomial

y = a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g, (2)

which fit the data. In the other words, we want to minimize the error.
Let the real data be Y and the error is E = Y − y; The squared error

isE2 = (Y − y)2. The total error for all the data set is:

Q =
n∑

i=1

e2
i =

n∑
i=1

(Yi − yi)2 (3)

The goal is to minimize the error and so we will calculate the partial
derivative for a,b,c,d,e,f and g. Calculate the value by set the partial deriva-

80



tive equal to 0.

∂Q

∂a
= 2

n∑
i=1

(
Yi −

(
a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g

)
∗
(
−t6
))

(4)

∂Q

∂b
= 2

n∑
i=1

(
Yi −

(
a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g

)
∗
(
−t5
))

(5)

∂Q

∂c
= 2

n∑
i=1

(
Yi −

(
a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g

)
∗
(
−t4
))

(6)

∂Q

∂d
= 2

n∑
i=1

(
Yi −

(
a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g

)
∗
(
−t3
))

(7)

∂Q

∂e
= 2

n∑
i=1

(
Yi −

(
a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g

)
∗
(
−t2
))

(8)

∂Q

∂f
= 2

n∑
i=1

(
Yi −

(
a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g

)
∗
(
−t1
))

(9)

∂Q

∂g
= 2

n∑
i=1

(
Yi −

(
a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g

)
∗ (1)

)
(10)

16.6 Fitting Curve Result

The fitting curve for weekly and hourly parking data is shown in Figure 6
and Figure 7. As can be seen from the two pictures, the polynomial based
model can fit the parking data. The weekly parking data could be fitted
completely and the hourly parking data shows some small miss match which
will only introduce small impact.

We also calculate the fitting curve for the monthly data. So in total we
could obtain the fitting curve for monthly, weekly and hourly parking data.

81



Figure 28: Curve Fitting for Hourly Parking Demand

Figure 29: Curve Fitting for Weekly Parking Demand

For the monthly and weekly parking data, we will calculate the coefficient.
We will spend the most effort in solving the optimize problem based on
hourly parking data since the parking price will be calculated based on hour.
Assume the coefficient for weekly and monthly is Ew (w) and Em (m), the

82



final time-based demand function is shown below.

Dt (t) = Ew (w) ∗ Em (m) ∗Dh (t) (11)

16.7 Reservation Based Model

In [6], researchers assume that one driver only books one spot each time
and group reservation is not considered in this work. Drivers can request
reservation anytime during service. The reservation will be confirmed as
long as there are available spots, which follows the assumption as in [6] that
drivers care more about parking availability than spending time to figure out
how to save money. Furthermore, since drivers’ decision strategy is unknown
to us, this work won’t consider such factors and this handling strategy can
also be found in similar works like [6]. Given assumptions above, we would
like to adopt a mathematical model for our parking garage as presented in
[6] which is defined as follows.

Let C denote the number of parking spots and each spot can serve N
periods. X t is a N-dimensional vector containing number of available spots
for each period at booking time t, where 0 <= X t

i <= C and i = 1, . . . , N .
Number of vacant spots can be utilized to help determine the price. For
example, we could adjust to lower price when there are more available spots
while to higher price when there are less. Thus, It is natural to define the
N-dimensional pricing vector P t that relies on X t.

On the other hand, drivers’ demand can be easily affected by the price.
Let’s define a function Dt

[u,v](E[P t
[u,v]]) to represent the demand from u-th

period to v-th period at booking time t, which mainly relies on the corre-
sponding expected price. For simplicity, E[P t

[u,v]] =
∑v

i=u P
t
i /(v − u + 1) as

presented in the [6].
Assume that reservation can be modeled by a poisson process. The inten-

sity can be defined as λt[u,v](X
t, P t) = At

[u,v]D(X t, P t), where At
[u,v] is either

0 or 1 to indicate if there exists at least one available parking spot from u-th
period to v-th period at booking time t. Thus, the total reservation rate is
given by

Λ(X t, P t) =
N∑

u=1

min{N,u+n}∑
v=u

λt[u,v](X
t, P t), (12)

where the n means maximum periods that a driver can choose. If there is
not, it could be simply set as N . As a result, our objective function is defined

83



as following.

V (X t, t) = max
P t
{Q0V (X t, t−∆t)+Q1[

v∑
i=u

P t
i +V (X t−e[u,v], t−∆t)]}, (13)

where V is the maximum revenue from 0 to booking time t, ∆t is suffi-
cient small during which at most one booking reservation arrives, Q1 =
Λ(X t, P t)∆t means the probability of successfully booking, Q0 = 1 − Q1

then means the probability of not booking the spots, and e[u,v] is a zero vec-
tors with u-th entries to v-th entries as ones. By taking ∆t to the limit 0,
we have:

lim
∆t→0

V (X t, t)

∆t
= max

P t
{

N∑
u=1

v=min{N,u+v}∑
v=u

λt[u,v](X
t, P t)(

v∑
i=u

P t
i−V (X t, t)+V (X t−e[u,v], t))},

(14)
where we could solve the P t by taking the derivative as 0 and then use it to
express V (X t, t).

For example, the single period model in [6] assumes an exponential rela-
tion between demand and the price, which is expressed as λ(P t) = a exp{−P t}.
By setting the gradients as in 14 to zeros, we could solve the expression of
price function as

P (x, t) = 1 + V (x, t)− V (x− 1, t). (15)

Moreover, if we plug-in the price function, we achieve an equation as in [6]:

V ′(x, t)× expV (x, t) =
a

e
expV (x− t, 1), (16)

which has the solution as following given the boundary conditions ∀x, V (x0, 0) =
0 and ∀t, V (0, t) = 0:

V (x, t) = ln[
x∑

i=0

(
a

e
t)i

1

i!
]. (17)

We simulate the results by setting T ranging from 2 to 34, number of service
periods as 24, value of coefficient a as 8, which is the same as in the paper
[6]. We compare with the fixed pricing model as shown in the Fig 30. In
this experiment, dynamic pricing is slightly better than fixed pricing that
gains revenue linearly with book time. However, we also found that with
high settings of fixed price, dynamic pricing in this reservation based model
will be less effective as fixed price.

84



Figure 30: Reservation based Model Revenue

16.8 Our proposed model: Multi-models based dy-
namic pricing

Comparing the previous works, the main problem is that they want to use
one demand model for a general use case. This demand function will in-
cludes the price and time as the variables and calculate the price by solving
the optimal solutions. There are also several works that introduces several
demand functions to fit different use cases. However, for any one demand
function, the demand function will not be changed as long as it is chosen as
the demand function, which means the demand function will run forever to
calculate the price.

In real world scenario, there should be several demand functions. For
example, if one demand function works very well for many weeks but there
would be a football match next week, the demand function will definitely not
work for the next week.

By observing the user data and the real world use case, we proposed the
multi-models based dynamic pricing algorithm. In our algorithm, we assume
there are many demand function for many use cases and the system is build
with several models. In different day, different time period we could use
different demand function. The pricing system will be collecting the user
data all the time and changing the demand function in the real time.

In this paper, we use the hourly parking demo to show how our algorithm

85



works. For the model of the weekly and monthly, we will still calculate the
fitting model and calculate the coefficient to tune the hourly based pricing
system.

16.8.1 5 modules based pricing system for parking in a day

As shown in Figure 6, we can see that the parking lots reach its peak from
7:00 to 13:00 while it is rarely used in the night from 14:00 to 3:00 of the next
day. So we divide the parking into three part. The peak time, the adjustable
time and the Free time. In the peak time, the parking lot is very crowed
and people will have difficulty finding a parking lot. In the adjustable time,
we have adequate number of parking lots and people do not have difficulty
finding a parking lot. In the free time, there are huge number of the parking
lots available.

For the peak time, what we should do is increasing the parking price to
reduce the users, so that the people who real need to park will find a parking
lot and the traffic burden will decrease. In the adjustable time, we should
decrease the parking price to attract people. In the free time, it is the time
people leave and nothing could be done to change the situation.

So, in the end, we could divide the whole day into five parts which are
free time (0:00-3:00), adjustable time (3:00-7:00), peak time (7:00-13:00),
adjustable time (13:00-16:00) and the free time (16:00-24:00). In different
part, we will use different price based demand function to tune the final
demand function.

16.9 Price based Demand function for each parts

There is no real user data for price-based demand function. The price based
function is more complicated and could only be obtained by carrying out
experiments on real customers. However, since no dynamic pricing algorithm
has been implemented in real word, there is no data about the price impact,
and so we could not obtain the price based demand function based on real
data.

So in this project we could only proposed several price-based demand
function for readers to choose. Actually in a real system, we think the use
case should be the same which is that the system has several price-based
demand function and the system will dynamic update the demand function
it is using based on the current user data.

86



In general the demand should have a negative relation to the price. For
different use case, it could be different, such as the linear, exponential and
so on. Here we use the ease out quart function to simulate the price base
function.

16.9.1 The price-based demand function for Peak time

In this part, we will increase the price to decrease the number of user. And
we will use the ease out quart function to model the relationship between
the price and the parking lot user. The ease out quart function is described
as following:

Dp (p) = −C ∗

((
p

Max {P}

)K

− 1

)
+D (18)

For quart function K=4. Here we normalize the price to reduce the impact
of the price scale and make it more general. This function could be tuned
by C and D. So, once we collect data in real world, we could update those
parameters to fit the real price based demand function. Also, in this function,
K is also adjustable in order to fit the real data.

As can be seen in figure 8, the number of the parking lot user is decrease
as we increase the price. At the first stage, where the increasing coefficients
is not too high (less than 0.5) the number of the user does not decrease too
much. However, if the price coefficient increases too much, such as 0.8, the
number of the user could drop to a half. In the price based demand function,
we could also set the C to estimate the price that will make all users refuse
to use the parking lot.

16.9.2 The final demand function for Peak time

Given the time based demand function:

Dt (t) = a ∗ t6 + b ∗ t5 + c ∗ t4 + d ∗ t3 + e ∗ t2 + f ∗ t1 + g, (19)

We first select the the peak time period by setting a threshold (TS) as
the peak usage. The idea for this part is to use the price-based demand
function to calculate a new price that could decrease the parking usage to
an acceptable value (around TS) and maximum the benefits.

87



TS −∆ ≤ Dp (p) ∗Dt (t) ≤ TS + ∆ (20)

Max

{∫ T

t

Dp (p) ∗Dt (t) dt

}
(21)

Figure 31: Price-based demand for Peak time

As can be seen in Figure 8, by increasing the price, we could adjust the
number of parking lot user to an adjustable value. At the same time, we
could make sure that the final benefits will increase comparing with the fixed
price. For this part, we will prove our method in the conclusion section.

16.9.3 The price-based demand function for Adjustable time

In this part, the parking resource is not fully used. There is enough space
for more users. As a result, we could decrease the parking price to attract
more users to park in the parking garage. At the same time, we should also
make sure that we can have better benefits.

First to model the price-based demand function for the adjustable time
period, we still leverage the ease out quart function. The new function is
shown bellow:

88



Figure 32: Modified Parking Demand in Peak Time

Dp (p) = C ∗

((
1− p

Max {P}

)K

− 1

)
+D (22)

The price-based demand function for the adjustable time period curve is
shown in figure. It is very obvious that if we decrease the price little (i.e.,
fewer than 0.5), the increase of the user is also very few. If we decrease the
price with a huge amount, there will be an obvious increase in the demand
function.

Also by collecting the real data from the physical world, we could update
the parameters such as the K, C and D. If the demand is less sensitive witht
price, we could increase the K and decrease C.

16.9.4 The final demand function for Adjustable time

Reducing the parking price will introduce the risk of decreasing the final
benefits comparing with the fixed price. So, in this part we should make sure
that we could still increase benefits by increasing the parking lot users, while
at the same time we should make sure the number of the parking user will
not reach the peak threshold (TS). So the final price should be limited by
the following two equation.

89



Figure 33: Price-based demand for Adjustable time

TS ≤ Dp (p) ∗Dt (t) (23)

Max

{∫ T

t

Dp (p) ∗Dt (t) dt

}
(24)

In this system, there will be two time periods that belong to the adjustable
time. So we implement the price-based demand function in the two parts to
modify the original time-based demand function. The two modified function
curves are shown in figure 11, and figure 12.

As can be seen in the two pictures, for the earlier one, the original curve
shows little usage at the beginning and the increment percentage is huge,
and at the end of the curve, since the usage is almost reaches its peak time,
the increment will not increase. For the latter one, the usage is around the
peak at the beginning and so the increment is not that obvious while for
the later part the increment is much more since the usage is relative smaller
comparing with that of the beginning.

90



Figure 34: Modified Parking Demand in Adjustable Time (earlier)

Figure 35: Modified Parking Demand in Adjustable Time (Later)

91



16.10 The final demand function for a day

So, when we calculate the final demand function, we will divide it into 5 parts
as we described before. And we will calculate the new demand function after
we applied the price-based demand function. Then, in the last step, we will
connect the five parts together as our final demand function.

Figure 36: Modified price:[U+FF1A]X axis is the 24 hours in a day, y axis is
the new price

The figure 36 shows the new price we calculated by solving the previous
optimize problem. It can be seen that, in the free time, the night, we could
use the fixed price or we do not charge any fees. In the adjustable time, the
morning and the late afternoon, we decrease the price. And at the beginning,
the price is very low and it increases when the parking user increases. For
the peak time in the middle of the day, we increase the price.

As is shown in figure 14, the orange curve is the curve for the original
demand function by time. The green curve is the final curve modified by he
dynamic pricing algorithm. It is obvious that at the adjustable time periods,
the demand is increased comparing to the original one. At the peak time,
the demand is decreased by the dynamic pricing comparing to the original
one.

Based on the curve shown in Figure 37, our dynamic pricing algorithm
could adjust the amount of parking user, so that it will increase the number

92



of parking use at the spare time while reduce the number of parking user at
the peak time by dynamically changing the price.

Figure 37: Modified Parking Demand based in Time:[U+FF1A]X axis is the
24 hours in a day, y axis is the demand forb parking garage

16.11 The final benefits for a day

Another issue we concerned is the final benefits, because decreased parking
user and the decreased parking price will decrease the final benefits. In our
project, we can make sure we will increase the final benefits by solving the
optimal problem we discussed in section 7.

After we implement the price-based demand function for the five parts,
we will calculate the final benefits by integrating the parking data for a whole
day.

As can be seen in figure 14, the orange curve is the original benefits with a
fixed price while the green curve is the final benefits modified by the dynamic
pricing algorithm.

It is very obvious that our dynamic pricing algorithm will increase the
final benefits comparing with the fixed pricing. The increment at the ad-
justable time is limited but it increase a lot at the peak time, which is what
we expected at the beginning.

93



Figure 38: Modified and Original benefits[U+FF1A]X axis is the 24 hours in
a day, y axis is the benefits obtained from the parking garage

16.12 Dynamic Pricing Conclusion

By showing all the results, it is obvious that our dynamic pricing system
could adjust the parking user by changing the parking price, making more
people to park at the spare time and fewer people to park at the peak time.
And, more importantly, even we need to reduce the price or decrease the
number of parking user at some time, our results show that the parking
system still increase the final benefits.

To work with the parking system, the algorithm will calculate the esti-
mated parking price and show the price to the customer when there is cus-
tomer coming to park. The customer will pay with the current price. Then
after the pre-set time period, the pricing algorithm will collect the parking
user information from the data set. With these data, the pricing algorithm
will check the price-based demand function and update the parameters in
the demand function. So, the new customer will have different parking price
based on the coming time and current number of user.

94



References

[1] “Spark overview.” https://spark.apache.org/docs/latest/cluster-
overview.html. Accessed: Nov. 4, 2018.

[2] Q. Tian, L. Yang, C. Wang, and H.-J. Huang, “Dynamic pricing for
reservation-based parking system: A revenue management method,”
Transport Policy, vol. 71, pp. 36–44, 2018.

[3] A. Faruqui, “The ethics of dynamic pricing,” in Smart Grid, pp. 61–83,
Elsevier, 2012.

[4] “Sfpark.” http:// sfpark.org/. Accessed: Nov. 1, 2018.

[5] A. O. Kotb, Y.-C. Shen, X. Zhu, and Y. Huang, “iparker-a new smart
car-parking system based on dynamic resource allocation and pricing.,”
IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 9, pp. 2637–
2647, 2016.

[6] Z. S. Qian and R. Rajagopal, “Optimal dynamic parking pricing for
morning commute considering expected cruising time,” Transportation
Research Part C: Emerging Technologies, vol. 48, pp. 468–490, 2014.

[7] “Sdot parking records.” http://wwwqa.seattle.gov/Documents/Departments/SDOT/ParkingProgram/data/SeattlePaidTransactMetadata.pdf.
Accessed: Nov. 1, 2018.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.,” HotCloud, vol. 10, no. 10-
10, p. 95, 2010.

95


