RUTGERS UNIVERSITY

AUTO PARK

PARKING GARAGE AUTOMATION

Report 2

Author: Email:

Chunhua Deng chunhua.deng@rutgers.edu
Corey Chen ccl437@scarletmail.rutgers.edu
Jonathan Garner jonathan.garner@rutgers.edu
Ridhima Sakhuja rs1425Qrutgers.edu

Siddharth Musale siddharth.musale@Qrutgers.edu
Siyu Liao siyu.liao@rutgers.edu
Xianglong Feng xianglongchunyi@gmail.com

November 11, 2018

Contents

1 Interaction Diagrams

1.1 Use Case 1: Register
1.2 Use Case 3: Reservation
1.3 Use Case 4: Ad-hoc
1.4 Use Case 14: Payment
2 Class Diagram and Interface Specification
2.1 Class Diagram
2.2 Data Types and Operation Signatures
2.3 Traceability Matrix oL

3 System Architecture and System Design

3.1 Architectural Style L.
3.2 Identifying Subsystems
3.3 Mapping Subsystems to Hardware
3.4 Persistent Data Storage
3.5 Network Protocol
3.6 Global Flow Control

3.6.1 Execution Orderness

3.6.2 Time Dependency

3.6.3 Concurrency
3.7 Hardware Requirements

4 Algorithm and Data Structure

4.1 Curve Fittingo
4.1.1 Linear least squares regression
4.1.2 Cublic spline interpolation

4.2 Demand Function

4.3 Price Optimization

4.4 Data Structure Lo

5 User Interface Design and Implementation

5.1 UC-1: Register
5.2 UC-3: Reservation
5.3 UC-3: Login

6 Design of Test 25

6.1 Web Form Test Cases 25
6.2 Garage Test Cases 25
6.2.1 Entrance gate oL 25
6.2.2 AuthCode 26
6.2.3 Billing 27
6.2.4 Elevator 27
6.2.5 Notifications 27
6.2.6 TrafficManagement 27
6.2.7 ExitGate. oo 28
6.2.8 Spot Verification L. 28

7 Project Management 29
7.1 Merging the Contributions from Individual Team Members . . 29
7.2 Project Coordination and Progress Report 30
7.3 Planof Work 30
7.4 Breakdown of Responsibilities 31

List of Figures

O 1O Ul i W N

10
11
12
13
14

Sequence Diagrams for Use Case 1. 3
Sequence Diagrams for Use Case 3. 4
Sequence Diagrams for Use Case 4. 5t
Sequence Diagrams for Use Case 14. 6
Class Diagram. 7
Subsystems in our System. 13
An Overview of the Spark Structure [1]. 14

Example of Runge phenomenon. The red curve is the desired
function. The blue curve is that interpolated with 5-th polyno-
mial, while the blue curve is interpolated with 9-th polynomial. 20

Register system. oL 21
Register Page.o oo 22
Register Page.o oo 22
Welcome Page. 23
Login Page. 24
Our development plan. 31

1 Interaction Diagrams

1.1 Use Case 1: Register

We decided to assign the responsibility to register to the website (system),
as the website is the main interface through which the customer can make
parking reservations. The website has the responsibility of allowing cus-
tomers to login and make reservations, which ensures that the website has
focused specialty and does not have too many responsibilities assigned to it.
Even though the customer interacts with the system to for logging in and
making reservations, we assigned the database the responsibility to verify
and store the data that is being received. In this way the database can easily
access information about customer when it is needed for parking.

C CUSTOMER 2
CLICKREGISTER()

REDIRECT(REGISTERPAGE)

ENTER{USERINFORMATION)
VERIFY(DATA)

STOREDATA{SUCCESSIFAILURE)

NOTIFY(SUCCESSIFAILURE)
NOTIFY(SUCCESS/FAILURE)

Figure 1: Sequence Diagrams for Use Case 1.

1.2 Use Case 3: Reservation

When a customer attempts to place a reservation, the system attempts to
verify their account by querying the database for the correct account info.
In this use case, the database’s main responsibilities are keeping track of and
reporting account information and reservation/spot information. This data
is then given back to the system, which is responsible for passing information
from the customer to the database and displaying relevant information from

3

the database to the customer in an easy to understand format. The system
is also responsible for processing the customer’s action on the website, such
as redirecting the customer to different pages on the website based on their
requests.

CUSTOMER

LOGIN{)

-] * -
VERIFY()
-
LOOP()M
= LOGIN{SUCCESS) OR LOGIN{FAILURE)
-] = LOGINFAILURE])
- REDIRECT{USERPAGE)
RESERVE() L
- REDIRECT(RESERVATIONPAGE)
CHOOSE(TIME) "
CHECKAVAILABLESPOTS(TIME)
-
- LIST{AVAILABLESPOTS)
- DISPLAYUIAVAILABLESPOTS)
SELECTSPOT(SPOT)

STORE(RESERVATION)

MOTIFY(SUCCESS)

Figure 2: Sequence Diagrams for Use Case 3.

1.3 Use Case 4: Ad-hoc

When an Ad-Hoc user enters the garage, they will interact with a user in-
terface that will be placed at the front of the parking garage. The user
interface(denoted as system in the interaction diagram) will be responsible
for showing the ad hoc customers all the available parking spots and for

requesting and verifying user information so that the users can enter the
garage. Since the user interface is the first system that ad-hoc users interact
with upon entering the garage, we decided to assign the previously men-
tioned responsibilities to the the system as both responsibilities should be
completed before the user enters the parking garage.

CUSTOMER

ADHOC_REQUEST(LICENSE_PLATE)

FIND_USER(LICENSE_PLATE)

\i

CheckErr
PLATE CHECK_ERR()

-« -«

REQUEST_ID_PLACE()

ENTER_USR_ID()

FIND_USER(LICENSE_PLATE)

PLACE_CHECK_SUCCEED(VACENT_SPOT) SUCCEED

DISPLAY_SPOT(VACANT_SPOT)

SELECT_A_SPOT(SPOT_ID)

SELECT_A_SPOT(SPOT_ID)

SPOT_SELECT_SUCCEED()

SPOT_SELECT_SUCCEED()

Figure 3: Sequence Diagrams for Use Case 4.

1.4 Use Case 14: Payment

After a user has completed their parking (reservation or adhoc) they will
move to the exit. They will interact with the system and request to pay and
leave. The system will read the license plate and request parking informa-
tion from the database. Total cost will be computed and then the system
will check the database to see if this is a registered user or not. If the user
is a registered user then the credit card associated with the account will be
charged and the person will be allowed to leave. If the account is not reg-

istered then payment information and billing information will be requested.
Upon verification of payment method, the user will be allowed to leave.

Customer System £ Security
System

FinishAndPay() CheckTheCost()

ReturnTheCost()

VerifyPayment()
-

PrintTheReceipt()

SendPayment()

OpenTheGate()

Figure 4: Sequence Diagrams for Use Case 14.

2 Class Diagram and Interface Specification

2.1 Class Diagram

2.2 Data Types and Operation Signatures
1. Manager

(a) Attributes

e int customer_id

e string first_name

e string last_name

e string email

e string phone number

e string password

'

— Database

Dynamic Pricing System

double timeOfDay; Manager
double occupancy;

Updates Hourly Ratesis

string userName

calculateHourlyRare) ~#——manually update prices as a result of extemal factors————————— g oo
check customer info updatePrice()
sased on ligense plate manualUpdate()
Sends list of free Spots—

manualUpdate()

Ad-hac Parking

}

int resenvation_time_end

— queries database to check or update values
Parking interface Garage
‘r: SpﬂlNi:m N —\iewing interface))
string customenName 5
int cunrentrime POt chosen—e it vacaniSpats
int filledSpots

selectParkingSpot() displayFreeSpots() int reservedSpots
selectParkingSpot() e

trafficController()

Reservation Parking Enter or Exit Gates
——customer goes to garage

int reservation_time_start string cade A
int reservation_time_end string useriame Account
int spothum f— customer parks
ebsi
string customerName .1.; Reservations on Site getCode() ST
string userName open() IS d
close() siring passuvor
displayinfol
s:l:ciiie:e[r)vnuun'ﬁme() sendinfo() String emod
i) siring phaneNum
confirmResenation(it contlthim
Notification Systam
siring contactinfo Erngiciadtlcay)
siring securityCode
Camera ——————update security code siring licensePlate

getinfo() [

var picture; preferredContaciMethod()
sendCode()

takePicture() MLEY

storePicture() CELTI)

e deleteAccount()
end piciwe updateAccount()
\J tche it info-
icensePlateReader f
L register
var picture:

getCustomerinto()
readLicensePlate

Figure 5: Class Diagram.

date dob
string creditcardno

string csv

string securitycode
date dob
enum Type(‘Membership’, ‘Ad-hoc’)

(b) Operation: (all operations attach customer to any created objects)

e Register(): Creates a new user and inserts the user info into
database.

e addCar() : creates a car and inserts into database
e addCreditCard() : creates a credit card and inserts into database

e newReservation() : creates a reservation and inserts into database
2. Camera

(a) Attributes

e var picture

(b) Operation: (all operations attach customer to any created objects)

e getCustomerlnfo(): check the customer information from the
database

e readLicensePlate(): Read the license plate.
3. PriceSystem

(a) Attributes
e int currentTime
(b) Operation: (all operations attach customer to any created objects)

e calculateHourlyRate(): calculate the hourly based price
e updatePrice(): update the price to the database
e manualUpdate():manually update the price to database

4. Ad-hoc Parking

(a) Attributes

e int reservation_time_end
e int spotNum

e string customerName
(b) Operation: (all operations attach customer to any created objects)
e selectParkingSpot(): select the Parking Spot with spot id
spotNum

5. Reservation Parking

(a) Attributes

e int reservation_time_start

e int reservation_time_end

int spotNum

e string customerName
(b) Operation: (all operations attach customer to any created objects)

e displayInfo(): display the vacant parking spots to customers
e selectReservationTime(): let customers to select the time spots

e confirmReservation(): confirm the customers’ revervation

8

6. Parking Interface

(a) Attributes
e int currentTime
(b) Operation: (all operations attach customer to any created objects)

e displayFreeSpots(): display the vacant parking spots to cus-
tomers

e selectParkingSpot(): let the customers select the parking spot
7. Garage

(a) Attributes

e int vacantSpots
e int filledSpots

e int reservedSpots

(b) Operation: (all operations attach customer to any created objects)
e clevator(): go to the floors where the selected parking spot on
e trafficController(): allow only one car entering one floor

8. Website

(a) Attributes
e string userName
(b) Operation: (all operations attach customer to any created objects)

e sendInfo(): send registering user information to customer mod-
ule

e receivelnfo(): receive registered user information from cus-
tomer module

9. NotificationSystem

(a) Attributes
e string contactinfo
(b) Operation: (all operations attach customer to any created objects)

e getInfo(): get user information from the dataset

e preferredContactMethod(): check the emailphone informa-
tion
e sendCode(): generate the info and send it to user

10. Elevator

(a) Attributes

e string code

e string username
(b) Operation: (all operations attach customer to any created objects)

e getCode():get the verify code from user and check the code
e open(): Open the gate
e close(): close the gate

2.3 Traceability Matrix

The domain concepts were taken from part 5.4 in Report 1. The responsibil-
ities for each of the domain concepts are taken from the class diagram. The
classes for each of the domain concepts derived from their responsibilities.

1. Database

(a) Responsibilities
e Store customer and reservation information
e Check to see if incoming customer has a reservation

e Update hourly rates for dynamic pricing system
2. Dynamic Pricing System

(a) Responsibilities
e Set prices for customers based on various conditions
(b) Classes

e calculateHourlyRate(): calculate rate per hour for garage park-
ing
e updatePrice(): update the current price

e manualUpdate(): in case of system failure, manually update
prices

10

3. Website

(a) Responsibilities
e Collect customer information
e Allows customers to make/update reservations
(b) Classes
e sendInfo(): collects customer info from website and sends it
to database
e receivelnfo(): receives responses from the system and possibly

display it
4. Notification System

(a) Responsibilities
e Notify the customer when they have successfully parked

e Send alphanumeric security code to customer which they will
use to enter and exit the garage

(b) Classes

e getInfo(): receive customer information

e preferredContactMethod(): store customer’s preferred con-
tact method (ie. phone or email)

e sendCode(): send alphanumeric/confirmation code to cus-
tomer

5. License Plate Reader

(a) Responsibilities

e Scan license plate to gather customer information on incoming
customer

(b) Classes

e readlicensePlate(): query database with license plate to check
for customer information

e getCustomerInfo(): gather info about customer from license
plate

6. Visual Interface (Parking Interface)

11

(a) Responsibilities
e Allow walk-in customers to choose parking spot

e Collect walk-in customers’ information
e Allow for manual input in case of system failure

(b) Classes

e displayFreeSpots(): show all available parking spots on visual
interface

e selectParkingSpots(): select parking spot

3 System Architecture and System Design

3.1 Architectural Style

In terms of structure of the garage logic modules, the Auto Park system
follows a component-based design style. Each task that must be completed
within the system is performed by a module dedicated to that task (the no-
tification system handles the sending of messages to customers, the traffic
control system handles the amount of cars driving on each floor, etc). Since
there are many unique functions which must operate in parallel with one an-
other and process the same information, each component of the system must
be able to communicate with the relevant other subsystems. Every compo-
nent is responsible for independently executing its primary functions while
also coordinating with the other components to ensure smooth operation.

As for memory and data sharing, the system uses a database-centric ar-
chitecture. All information relating to user accounts, parking space status,
reservations, and payments are saved in databases which are accessible by
the other modules in the system. This database design allows the various
components of Auto Park to access, view, and edit the same data, allowing
for easier communication between components in many cases.

The direct communication between components in the garage is also heav-
ily based around an event-driven architecture. Each primary function in the
system must happen at a specific step during a normal use case. For ex-
ample, the security system waits for a customer to park their car correctly
before generating a code, and the notification system waits for this code to
be generated before sending it to the customer. Each step in the system’s

12

R Trer—r—rr————
Fresenaon Loyer LY

Cala Lager '\

KySGL D2 K

— Checks

Figure 6: Subsystems in our System.

process is triggered by the completion or progress of a previous step, which
is the main philosophy behind an event-driven messaging style.

3.2 Identifying Subsystems

Figure 6 shows all subsystems designed in our system.

3.3 Mapping Subsystems to Hardware

Our website runs using typical server client technology. The server handles
all request sent out from clients, which could be cellphone, laptop or anything
that can run a browser. Apart from this, our data processing runs on the
spark platform. It’s configurable for users to run over single machine, several

13

Worker Node

Executor | Cache

/,./_"D
Driver Program Task
g T /

!
A

Task
SparkContext » Cluster Manager
L - \ Worker Node
¥ Executor | cache
~

Figure 7: An Overview of the Spark Structure [1].

machines and even hundreds of machines if necessary. The main structure of
spark is shown in Figure 7.

We launch the data processing job through the driver program, which
creates the sparkcontext according to the configurations. It will convert the
job into multiple tasks and schedule them over different executors through
cluster manager. Executors starts together when sparkcontext is created.
When finishing the task, executors will send results back to cluster manager.
In our project, we run the data processing using 32 executors with driver
memory 20GB and executor memory 80GB.

3.4 Persistent Data Storage

A MySQL database was used to store the data acquired by the system. The
database stores information about the customer’s contact/payment informa-
tion as well as information (ie. date, time, reserved parking spot) about any
reservations they may have at the parking garage.In this way, the database is
also used to determine if an incoming customer has a reservation or is an ad
hoc customer. If a customer has parked in the parking garage, the customer’s
parking spot location is also stored in the database.

3.5 Network Protocol

For communication between client and server and for the structure of the
web applications, our system uses Node.JS. Using node allows the server

14

to load scripts inline with the web pages and redirect the user to different
pages via routes based on requests they send to the server. This way the
web page displays as a normal HTML page would, but the server is always
“listening” for requests from the user. Using node also allows for many
different packages to be utilized in the web applications, such as code which
can securely handle and encrypt passwords or code which can be used to
display the visual interface of parking spots.

3.6 Global Flow Control

3.6.1 Execution Orderness

The parking garage system is both event driven and procedure driven. The
system is procedure driven because when the customer arrives at the parking
garage, a sensor will read the car’s license plate number and check to see
if there is already a pre-existing reservation under that customer’s name.
Additionally, there are sensors on each floor to ensure that no more than
one car is moving on each floor at a time and that each car is parked in its
designated spot. The system is event driven because if a customer does not
have a reservation, they will be required to input their contact information
and choose a parking spot before entering the garage.

3.6.2 Time Dependency

The system uses timers to record the duration of a reservation/parking. The
timers will be real time as they will be used to ensure that customers are not
staying past their reservations. For reserved customers, the system will also
give them a one hour grace period during which the customer can come to
the garage to park at anytime with their reservation.

3.6.3 Concurrency

Each car that is currently at the parking garage will have its own thread.

3.7 Hardware Requirements

1. Website Hosting Server

e 33 MB disk space

15

e 100 Kb/s connection speed
2. Database Hosting
e 10 GB disk space

e 80 GB memory for spark processing

e 100 Kb/s connection speed
3. Garage Hardware

e Camera (for license plate scanner)
e Sensor for each parking spot
e Keypad for security at each pedestrian entrance/exit

e Tablet for entrance gate display

4 Algorithm and Data Structure

In the smart pricing system, we collected the data from the government.
Those data cover the usage of the parking lots in Seattle from 2012 to 2017.
We first analyze the parking lots usage, tying to use logic regression methods
to estimate the usage over time (hour, day, month). This could help us define
the time based demand function, which represents how the demand varies
with the time (hourly, daily, monthly). There are other methods to model
the time-based demand function, such as the neural network. However, based
on our collected data, we found that the demand function is linear and the
polynomial could fit the curve. Then, we try to use linear least squares
regression and cubic spline interpolation to calculate the coefficient of the
polynomial for the time-based demand function.

Besides the time-based demand function, we also proposed several price-
based demand functions. The time-based demand function represents the
relation between the parking lot usage and the time. Heuristically, it shows
when the parking lot used most often and when the parking lot is used rarely.
To design a dynamic pricing system, the goal is using the price to adjust the
usage of the parking lot and make the most benefits on the fixed parking
lots. When there is huge demand for the parking lots, the price will increase
and demand should decrease. When there is small demand for the parking
lot, the price should decrease to the minimum. So, based on this fact, we

16

propose the price-based demand function. However, for different cases, the
demand function could be impacted by the price differently. So, we proposed
three demand models which is exponential, reciprocal and linear model for
different scenario. Finally, we would calculate the real demand function based
on the time and price. We calculate the total benefits by integral the demand
function over time and price. So the final benefits function is the function of
price over time. And, based on which, we could calculate the best price by
solving the optimization problem of maximizing the benefits function.

4.1 Curve Fitting

Given the collected parking lot data from the government, we try to use
polynomial to model the real data. Then, we leverage the linear least squares
regression and cubic spline interpolation to estimate the coefficient.

4.1.1 Linear least squares regression

In linear least squares regression, we got the real data as time (t) and the
demand (y). So we got several data point (t1,y1), (t2,y2)...(tn,yn). We want
the polynomial fit the data. In the other words, we want to minimus the
error.

The polynomial we assumed is y = axt+bxt® +cxt +dxt3 +ext?+ f+t1 4g.

6(;? =230 (Yi—(axtO+bxtd +extt+dxt3+ext? + fxt' +g)* (1))

Set the real data is Y. the error isE = Y — y; The squared error isE? =
(Y —y)*

The total error for all the data set is

Q= 2111 Z— (Y;_yz‘)Q

The goal is to minimus the error and so we will calculate the partial
derivative for a,b,c,d,e,f and g. Calculate the value by set the partial deriva-
tive equal to 0.

99 =23 (Yi—(axtS+bxt® +cxtt +d+t3 +ext? + fxth + g) x (—t))
W =25 (Yi—(axtC+bxt®+oxtt +dxt® +ext?+ fxtl + g)x (—1%))
%8—2211(5/; (@*t0 +bxt>+cxtt +d*t3+ext?>+ f*tl 4 g) x (—t1))
B =23 (Vi—(axtS+bxt® +oxtt+dxt® +ext® + fxtl + g) x (7))
90 =235 (YVi—(a*tS +bxt® +extt +dxt3+ext? + fxth +g) x (—t?))
%?—2211(3/; (axt®+bxtd+extt +d*xt3+ext?+ fxth+g)* (—t!))
%:221 LYi—(axt®+bxtd +ext* +dxt3+ext?+ fxtt +g) (1))

17

4.1.2 Cublic spline interpolation

In numerical interpolation, the Runge’s phenomenon is the oscillation at the
edge of intervals when higher-degree polynomials are used in interpolation. It
was first discovered by Carl David Tolmé Runge when he explored the behav-
ior of errors with polynomial interpolation to approximate certain functions
2]. Fig. 1 shows the example of Runge phenomenon [3], in which we can see
that the higher the polynomial, the larger the oscillation. This is why we use
cubic spline interpolation. The interpolation function is piece-wise smooth
function, which could avoid the global high-degree interpolation function.
The main idea behind cubic spline interpolation is that we utilize low-order
polynomials to approximate the function, and let the function be smooth at
the intersections, that is second-order derivatives continuous.

Let interval [a,b] has some interpolation points xg, 21, xg, ...z, Where a =
o < 1 < T9 < ... < x, = b, and each x corresponding a y. So we have
(0,Y0), (z1,91), (T2,Y2), ..., (Tn, yn) pairs of points. If function S(x) satisfies
the following three conditions:

e At each interval [x_q, x|, where k = 1,2,n, Si(z) is a polynomial
less then 3-order.

e At each interpolation point z;, S;(x;) = y;, where i=0,1,2,....n
e S;(z) is a second-order derivative continous function at interval [a,b].

We call function S(x) the spline function. If the function S(x) is three-order,
that is S;(z) = a;23 + bjw? + c;x + d;, it is called cubic spline function.

To solve the cubic spline interpolation, we need to substitute all the known
conditions into the problem to solve the linear equations. For example, we
need to fit a curve which pass (zo,v0), (21, %1), (2, y2) points. So we have
two spline functions with 8 independent variables to solve. The 8 equations

18

are:

So(zo) = vo
So(%) =l
51(531) =Y
51(352) =Y
So(w1) = S (1)
Sy (w1) = S, (1)
Sy (x0) =0
S (xy) =0

where the last two equations are boundary condition. Therefore, the 8 equa-
tions can solve the equation array with 8 independent variables.

4.2 Demand Function

Let f(t) represent the time based function learned from real world data,
where t indicates current time. Denote the price function at current time
as p(t). Although f(t) can indicate the overall parking demand, we need to
figure out the change of demand d(t) = h(p(t), f(t)) when given the dynamic
price p(t). This actually depends a lot on the driver’s strategy. For simplicity,
we are aimed at a simple relation such that lower price results in high parking
demand while higher price gets low parking demand. Here we list two types
of relations:

e Linear relation. d(t) = logy, f(t) — k % p(t), where k is a constant
coefficient. The logarithm of f(¢) is simply because that f(t) can be
very large values according to our fitted results.

e Expoential relation. d(t) = f(t) * exp{—Ap(t)}, where X is a constant

coefficient. As p(t) increases, the d(t) decreases and vice versa.

4.3 Price Optimization

The profit gain is defined as a function ¢g(7) that means the profit gained
from the beginning to some time 7', which could be described as an integral

19

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

1.0 05 0.0 0.5 1.0

Figure 8: Example of Runge phenomenon. The red curve is the desired
function. The blue curve is that interpolated with 5-th polynomial, while
the blue curve is interpolated with 9-th polynomial.

process. The final objective function is as follows:

macla(T)} = maxl [p(0)d(0)de), 1)

where we propose to solve by simply taking the %i) (({)) =0 as in [4].

4.4 Data Structure

The system is not using any data structure. Instead, all of the information
regarding the user accounts on the website and information about the current
state of the parking garage is being stored in a mysql database.

20

5 User Interface Design and Implementation

5.1 UC-1: Register

Navigation: 1 total click from the main page (click the register button)

Log In or Register Member Temporary Non Member Sign up
Username: .

Emaul:
tast

Password:
Name:

Log In

Log In

Figure 9: Register system.

Data Entry: total is indeterminant as keystroke per user will be different,
7 clicks

e On Register page enter the follow fields and click to next field

— Name

— Username

— Email

— Password

— Confirm Password
— Phone

e Select the submit button after all fields are entered

There have not been any significant changes we have made to this simple
registration process. It has already been implemented on our website.

5.2 UC-3: Reservation
Navigation: total 3 clicks, indeterminant keystrokes as follows
e Enter Login information as follows

— Enter Username

21

Registration Page
Please fill out all the fields below

Name John Doe

Email jd@gmail com

Phone 1234567890

Password seeeses

Confirm Password ssessssss
Submit

Figure 10: Register Page.

— Enter Password

e Click Login button (server sends user to account main page) shown
below figure

e On account page click Make a Reservation Page(user sent to make a
reservation page) shown below

Log In or Register Member Temporary Non Member Sign up
Username: -
Email:
fest
Password: .
[— Namse;
Log In
] Log In
Hegister

Figure 11: Register Page.

Data Entry: total is 5 keystrokes, 2 - 7 clicks

e Select date of reservation by using calendar tool (number of clicks de-
pends on date)

22

Hello Test User

Make a Reservation

Cancel a Reservation

Account Management | =

Figure 12: Welcome Page.

e Enter time of reservation in 24 hour time (5 key strokes — xx:xx)

e Select parking spot choice from the parking garage spot map tool (pre-
liminary design shown below as the GUI has not been fully implemented

yet)

There have not been any significant changes to our plan of utilizing this
reservation GUI, but it has not been implemented yet. As of now, we have
a field where customers can enter a date and select an available spot from a
list of free spots (indeterminate keystrokes and 3 clicks to enter a time block
as well as confirm a spot to reserve). However, we plan on lessening the user
effort by having the user select a date (2 clicks: one for the date and one for
the month) and an available spot (2 clicks: one to select a spot and one to
confirm the reservation).

5.3 UC-3: Login
Navigation: total 2 clicks, indeterminant keystrokes as follows

e Enter Login information on homepage (shown above) as follows

23

itguuqf.on prxv k(\S SPO% Sel eofion Pe\ae
o ==

Resevva fon

Seled Date
‘ 1

Mont\ny

T

X = et Taken [* Open Spot

Figure 13: Login Page.
— Enter Username
— Enter Password
e Click Login button (server sends user to account main page)

e On account page click Make a Reservation Page(user sent to make a
reservation page)

Data Entry: total is 5 keystrokes, 2 - 7 clicks

e Select date of reservation by using calendar tool (number of clicks de-
pends on date)

e Enter time of reservation in 24 hour time (5 key strokes — xx:xx)

24

e Select parking spot choice from the parking garage spot map tool

This login process part of the website is already up and running. There
have not been any significant changes besides ones intended to make the site
more aesthetically pleasing.

6

6.1

1.

6.2

Design of Test

Web Form Test Cases

Login: A registered user can input their username and password to log
into their account

Registration: A new user can input their information and register for
an account. All the data must be collect via a web form. Testing can
be done via querying of database for the new user

Reservation: A logged in user can input time, day, and parking spot
into a web form to reserve a spot. Users cannot reserve a spot that is
already reserved for that same day. Testing can be done via querying
of database for new reservations with correct user, date, time, and spot
information

Cancel Reservation: A logged in user can cancel existing reservations.
Testing can be done by checking database and validating that that the
correct reservation has been cancelled

Update Information: A logged in user can update their user info via a
webform. Users have to make their changes and click save to update
their user info. Testing can be done via query of database and validat-
ing that the user data is up to date and the changes made via webform
are reflected in the database

Garage Test Cases

6.2.1 Entrance gate

1.

Main: main execution loop, this method should be able to continually
accept customers coming in. Also it should send new and registered

25

users to the correct handling function (handleNew or handleExisting).
Testing can be done by hard coding a license string and testing to see
if the function sends the user with the associated license string to the
correct handling function

2. checkResTime: checks a list of reservations and determines if any are
within the acceptable checkIn times for a reservation. Testing can be
done via giving a list of reservations in the form of tuples (reserva-
tionID (int), userID (int), DateTime (datetime), CheckIn (boolean),
ParkingSpot (int)). Then, by inspecting the result and making sure
that either no reservation is returned in the case of no reservation check
in allowed at the current time or a reservation is returned if the user
has a reservation made for the current time

3. handleNew: handling function for new users. This function gets new
user data, inserts into db and allows the new user to select a spot
to do ad hoc parking. This function can be tested by sending in an
unregistered license string and starting the function. After input of
data the tester can query the database to see if the new user data has
been inputted. Also the test should check to see if the function sends
the correct spot based on user choice to the elevator handlePerson
function

4. handleExisting: handling function for registered users. This function
should allow users to choose adhoc or check in to a registration. The
test should have an existing user come in and try both adhoc and
reservation check in and see if the correct spot is sent to the elevator
handling function

5. scanPlate: This function reads the license.jpg file in the project folder
and determines the license plate. This function is easy to test as all
it does is return the license string with the highest confidence for the
machine learning algorithm. The test should have the function called
on many pictures and see if the license string return is correct

6.2.2 AuthCode

1. generateCode: This function just generates a random 8 character string.
It can be called and the output just has to be an 8 character string

26

6.2.3 Billing

1. Email: this function determines the amount of time parked and bills
the user likewise. The bill is sent as an email. The function takes in
user email and hours parked so the test should pass these values in.
The test can be considered successful if the email is sent successfully
with the correct charge

6.2.4 Elevator

1. handlePerson: this function takes in (spot, resID, plate) and extracts
the floor from the parking spot and “brings” the person to the floor
if the floor is ready. To test this we have to first send a floor that is
ready to be parked and see if the function calls the bringCar method to
the floor. Then, to test the waiting part, the function should be called
again while the first car is still parking and see if the wait functionality
is operating. If the first park is successful and the second is queued
then the function is operating correctly

2. Bringcar: this function spawns a thread to perform spot verifcation.
The only test required is to make sure this function spawns a thread
and then returns to the main

6.2.5 Notifications

1. sendAuth: This function send a text to the specified user phone with
the 8 character code. This function can be easily tested by supplying
a Twilio registered number and seeing if the function call results in a
text from the system

2. sendWrongSpot: This test is the same as the one above however the
message should just be different (“You are in the wrong spot”)

6.2.6 TrafficManagement

1. isFloorReady: this function just returns a boolean based on the global
list floorsReady. It can be easily tested by ensuring that the floor
(index) supplied is the correct value based on the floorsReady boolean
list

27

2. readyFloor: this function takes in a floor as a parameter and sets the
index in floorsReady for the specified floor to True. This can be easily
tested by checking the state of the floorsReady list after the function is
called. If the specified floor index is now true the function is successful

3. Unreadyfloor: this function takes in a floor as a parameter and sets the
index in floorsReady for the specified floor to False. This can be easily
tested by checking the state of the floorsReady list after the function is
called. If the specified floor index is now false the function is successful

6.2.7 ExitGate

1. scanPlate: same test as the function in entrancegate

2. Get_datetime_hours: this function queries the database and determines
how long a user has been parking for. It returns a double value rep-
resenting how many hours a user has parked. Testing this function is
a bit more complicated as it requires interactions with the database.
The function looks for the first occurrence in the ParkingHistory table
of the user’s license where the ending time is not specified yet. So to
test this the program code to test the function must generate some
synthetic start time for parking in the database and see if the function
returns the correct elapsed time.

3. Main: this function is the main execution loop and controls when the
user leaves the garage. It automatically bills registered users and asks
unregistered /new users for their email for digital receipt. To test this
function, new and registered user data has to be synthesized. To test
registered users allow the function to scan a registered license plate and
if the function sends the correct bill then the test is successful. To test
unregistered users, give an unregistered license plate string and enter
a valid email. If the function sends the correct bill then the test is
successful.

6.2.8 Spot Verification

1. checkParking: this function takes in (spot,resID,floor,plate) and checks
if the correct spot has been occupied. This function behaves differently
based on if the spot checking is adhoc or reservation. For adhoc the

28

7.1

function just determines where the person parked on the floor they
went to since adhoc users are allowed to park wherever they want to
park. For reservations it makes sure the user parks in the specified
spot and texts the user if the spot is not correct. There are 3 situations
to test: adhoc parking, reservation successful parking and reservations
unsuccessful parking. To test adhoc the occupy function in the simu-
lation file can be used to simulate a sensor so if the function correctly
watches a floor and determines that the adhoc user parked then the
test is successful. The reservation success works the same way. For
reservation unsuccessful the occupy function can be used to occupy the
wrong spot and if a wrong spot text is sent then the test is successful

. getUnoccupiedList: this function takes in the floor and returns a list

of all unoccupied spots. This function is easily tested as the function
returns data straight from the database so the data can be validated
by comparing it to the database

. unReserve: this function sets the reserved flag for a specified spot to 0.

This function can be tested by checking the database after the function
call

. findSpotOccupied: this function takes two occupancy lists and deter-

mines what spot is occupied. It can be tested by sending occupancy
lists and seeing if the result is the missing element

. getPhonefromPlate: this function returns a phone number string based

on the plate parameter. This function can be tested by a quick database
check

Project Management

Merging the Contributions from Individual Team
Members

Siyu Liao will work to format and compile the final version of Report 2.
He will utilize Latex to format the report into a cleaner version that we can
submit. In addition, we need to think about the uniformity of the diagrams in
our report in order to appear more professional. We also need to uniformize
the report formatting in order to maintain consistency between reports.

29

7.2 Project Coordination and Progress Report

Currently, we have implemented a website with basic functionality (register,
login, and reservation). We have implemented most of the garage logic except
for the user interface screen that customers see when they enter the garage.
We have a license plate reader system that is currently in place that can also
recognize ad-hoc users. Both ad-hoc users and registered users can park in
the garage and are also able to switch spots if necessary. There is also a
system in place that simulates entering and exiting the garage, as well as
a way to allow users to manually input their license plate number in the
interface at the front of the garage in case the license plate reader does not
work properly. We also have a notification system in place so that customers
can be sent confirmation codes, security codes, and payment information
based on their preference of SMS or email notification.

We currently have a flat-rate payment system in place; however, we are
working on implementing the dynamic pricing system we have completed a
lot of research on already. The algorithm will be based on demand and time
of day. In addition, we are working on implementing a manager account
for the garage so that owners or managers can manually input information
and alter some settings in the garage such as price for special circumstances.
We are also working on creating the visual interface that will allow users to
see all of the available spots in the parking garage. Even though we have a
system in place that allows users to enter and exit the parking garage and
switch spots, we are currently working on integrating and refining it.

7.3 Plan of Work

Below is a task list and Gantt diagram showing the estimated start date,
duration, and end date of the upcoming tasks for the project. It is obvious
that the task flow is heavily modeled off of the software development lifecycle.
Descriptions of each of the tasks are also listed below.

30

Task Start Date | Duration | End Date
Review Feedback 31-Oct 1 1-Nov
Redesign & Detail 1-Nov 4 5-Nov
Development 5-Nov 14 19-Nov
Testing 19-Nov 4 23-Nov
Final Development Cycle 1-Dec 7 8-Dec
Review & Bug Fixes 8-Dec 4 12-Dec
Demo?2 12-Dec 0 12-Dec
Review Feedback & Bug Fixes 12-Dec 3 15-Dec
7-0ct 17-Dcc 27-0ct 6-New 16-Nov 26-Nov 6-Dec
Preliminary Desgn
Design and Detail]
Protoype & Development []
Testing []
Review & Bug Fikes []
Demo
Review Feedback []
Redesign & Detail [
Development]
Testing []
Review & Bug Fikes []
Final Development Cycle I
Review & Bug Fixes |]
Demo 2
Review Feedback & Bug Fixes [|

7.4 Breakdown of Responsibilities

Figure 14: Our development plan.

All members are contributed equally to the report.

Corey Chen:

e Database Functionalities

31

CSS and HTML formatting for the website
Login and Register modules

Integration Testing

Website Navigation

Website/Database Communication

Chunhua Deng:

Email notification module

Exit garage module

Cubic spline interpolation for fitting curve based on the data.
Propose the price-based demand function.

Total benefits Optimization.

Final dynamic pricing system optimization

Integration of the report

Jonathan Garner:

SMS Notification Module
Authentication Module
Integration Testing

Database Interactions

Siyu Liao:

Data Retrieval Module
Data Cleaning Module
Data Processing Module

Data visualization

32

e (Calculate the price based demand function with multiple model.

e Profit optimization based on the demand function.

Siddharth Musale

e Database Creation and Management

e Entrance Gate

o Exit Gate

e Notification and Email module integrations

e Traffic Management

e Elevator

e Spot Verify

e Reservation page

e Open ALPR api integration

e Simulation

e All unit testing

Ridhima Sakhuja:

e Login and Registration (Website) Modules

e (CSS and HTML formatting for website

e User info/password input validation

e Integration Testing

e Website Navigation/Database Communication
Xianglong Feng:

e Data cleaning

e Logic regression for fitting curve based on the data.

33

e Propose the price-based demand function.
e Total benefits Optimization.

e Final dynamic pricing system optimization

References

[1] “Spark overview.” https://spark.apache.org/docs/latest /cluster-
overview.html. Accessed: Nov. 4, 2018.

2] C. Runge, “Uber empirische funktionen und die interpolation zwischen
aquidistanten ordinaten,” Zeitschrift fiir Mathematik und Physik, vol. 46,
no. 224-243, p. 20, 1901.

[3] Wikipedia contributors, “Runge’s phenomenon — Wikipedia, the free
encyclopedia,” 2018. [Online; accessed 12-November-2018].

[4] Q. Tian, L. Yang, C. Wang, and H.-J. Huang, “Dynamic pricing for
reservation-based parking system: A revenue management method,”
Transport Policy, vol. 71, pp. 3644, 2018.

34

