

Parking Garage Automation:

Reserve Your Spot!

Software Engineering – 14:332:452

Group #3:
Bartosz Agas, Christoper Tran, Marvin Germar, Michael Genderen, Justin
Levatino, Tarun Katikaneni

URL(s):
www.reserve-your-spot.com (Actual Website)

www.sites.google.com/site/ece452parkinggarage (Project Tracking Site)

Submission Date:
May 3, 2012

Effort Breakdown

All team members contributed equally

Table of Contents

Summary of Changes...………………………………………………………………………………..

 Revisions to Report One…………………………………………………………………..

 Revisions to Report Two……………………………………………………………….…

Customer Statement of Requirements…...…………………………………………………….

 Goals…………………………………………………………………………………………….…

 Problem Statement………………………………………………………………………..…

 Proposed Solution……………………………………………………………………………

Glossary of Terms..………………………………………………………………………………………

System Requirements..…………...………………………………………………………………..…..

 Enumerated Functional Requirements………………………………………………

 Enumerated Nonfunctional Requirements…………………………………………

 FURPS Table…………………………………………………………………………………….

Functional Requirements Specification.………………………………………………………..

 Stakeholders…………………………………………………………………………………….

 Actors and Goals………………………………………………………………………………

 Casual Description……………………………………………………………………………

 Use Case Diagrams……………………………………………………………………………

 Full Dressed Descriptions…………………………………………………………………

 Traceability Matrix……………………………………………………………………………

 Sequence Diagrams…………………………………………………………………………..

Effort Estimation using Use Case Points…………………………………….……..…………..

Domain Analysis………………………………………………………..…………..……………………

 Domain Models…………………………………………………………………………………

Interaction Diagrams……………………………………………………...………...…………………

Class Diagram and Interface Specification……………………………………………………

 Class Diagrams…………………………………………………………………………………

 Data Types and Operation Signatures………………………………………………..

Traceability Matrix Details………………………………………………………………..

Object Constraint Language (OCL) Contracts………...………………...…………

System Architecture and System Design.………………………………………..….…………

 Architectural Styles…………………………………………………………………………..

 Identifying Subsystems………………………………………………………………….…

 Mapping Subsystems to Hardware……………………………………………………

 Persistent Data Storage……………………………………………………………………

 Network Protocol……………………………………………………………………………

 Global Control Flow…………………………………………………………………………

 Hardware Requirements…………………………………………………………………

1

1

1

2

2

2

2

6

8

8

9

9

10

10

11

12

12

14

17

18

19

21

21

26

32

32

35

37

38

39

39

40

41

42

44

44

45

Algorithms and Data Structures………………………………………………….…………...…..

 Algorithms………………………………………………………………………………………..

Data Structures…………………………………………………………………………………

User Interface Design and Implementation..………………………………………...……….

 Home Page……………………………………………………………………………………….

 Registration……………………………………………………………………………………..

 My Account………………………………………………………………………………………

 View Garage…………………………………………………………………………………….

 View All Reservations………………………………………………………………………

 Reservations……………………………………………………………………………………

 Entrance Camera………………………………………………………………………………

 Exit Camera………………………………………………………………………………………

 Spot Sensor………………………………………………………………………………………

Design of Tests…………………………………………………………………………………………….

 Test Cases………………………………………………………………………………………..

 Unit Testing……………………………………………………………………………………..

History of Work, Current Status, and Future Work………………………………...……..

 History of Work……………………………………………………………………………..…

 Current Status……………………………………………………………………………….…

 Future Work……………………………………………………………………………………

 Conclusion…………………………………………………………………………………….…

 Breakdown of Responsibilities……………………………………………………….…

References………………………………...…………………………….…………..…………………..…

46

46

48

49

49

50

51

52

53

54

55

58

59

60

60

65

66

66

66

67

68

69

70

1

Summary of Changes

Revisions to Report One

 Built upon the description of the system mentioned at the beginning of the report

 Glossary – Clarified certain items mentioned

 Stakeholders – Updated to identify the proper people interested in this system

 Customer Statement of Requirements – Provided additional requirements to meet the

business policies and cases required to uphold the system

 Domain Model – Modified the domain model to account for all the objects

communicating within the system and explained the attributes and concepts used in

the highlighted use cases

Revision to Report Two

 Clarified section numbers, enumerated references, and numbered figures

 Interaction Diagrams – Added design principles to each diagram

 Class Diagrams – Added additional descriptions to the class diagrams.

 Traceability Matrix – Provided an up to date traceability matrix to account for the

addition of several new user requirements

 Identifying Subsystems – Provided a more in depth description to help better

understand the client/server relationship established for the system

 Hardware Requirements – Modified the descriptions to be more specific

 User Interface – Displayed all the basic screen shots of the main page of the

completed web site

 Design of Tests – Added specific test cases and state diagrams

2

Customer Statement of Requirements

Goals

The objective is to design a sophisticated system which will seek to maximize occupancy

and profit while allowing the customer quick and easy access to his vehicle.

Problem Statement

At the moment, the garage is not equipped with any computerized system. Additionally, the

current system involves the employees to walk around inspecting the occupancy of parking

spots. Due to the lack of a computerized system, congestion inside the garage is rampant.

The current system is not well designed; during peak times the garage could have free

spots but would have no way of checking instantly, this would discourage customers from

wanting to park in the garage thereby robbing the garage of additional income. The

management has taken note of the situation and has requested the designing and

implementation of software that would increase their efficiency, thereby increasing their

profit.

Proposed Solution

In order to fix the mentioned problems, the management has requested us to design

a system that would make their garage more efficient thereby increasing its occupancy and

profit.

The new system will include a website or mobile application that will allow

customer to place online reservations. The reservation would include date, time and

duration of stay. Each customer will be required to register on the website; at registration

time, the customer is not compelled to enter in a license plate number for their vehicle, this

is allowed so that customers are not tied down to one vehicle. The system allows for

customers to be able to park even with rented or borrowed vehicles, it does this by creating

a temporary association to the new license plate to the customer. This was done so that the

garage is accessible by more customers, which would bring in more income to the garage.

3

The garage is also being remodeled such that the parking decks above ground level

will be accessible only by an elevator that will lift vehicles to different decks. One of the

major problems of the garage before the implementation of the new software was rampant

congestion caused by drivers searching for parking spots. To alleviate this problem, the

management has devised one-way entering and exiting systems. As we have already

discussed, the elevator is the only way for vehicles entering the garage to get to their

parking spaces; but in addition to that, the management has also constructed a ramp that

connects all the floors to the ground floor. The customers will use this ramp to exit the

parking garage; as there is no two-way traffic on the ramp, there is a very little chance of

accidents and such there is no way congestion can form while customers enter and leave

the garage.

The proposed system will not depend on employees to check if spots are available;
instead, the garage relies on camera based license plate recognition software to track
vehicles as they enter and exit the garage. Additionally, the garage also employs sensors on
the parking spots to recognize which spots have been taken and which are open. This
capability reduces the chance of mistakes by the employees there by making the garage
more efficient in assigning parking spots to customers. Each time a vehicle enters the
garage, the tracking software quickly takes reads the license plate and refers to the
database.

If the software cannot recall the necessary information or if the license plate

recognition software is not able to read the license plate, the elevator will not function and

the software would prompt the customer to manually input their membership number at

the terminal next to the vehicle elevator for it to proceed. The system is designed to

account all possibilities, such that if the vehicle does not have a front license plate, the

software would alert the customer to do the same thing. As we have mentioned earlier, if

the software cannot recall a certain license plate then the customer can register that license

plate to his account as well.

If a registered customer forgets to make a reservation and decides to use the garage

then he may be allowed to take a walk-in parking spot without a registration if there are

any available spots. These types of customers are known as walk-in customers. If the

software recognizes the vehicle registration number but cannot find an existing reservation

to the customer who owns the vehicle, then the customer will have to specify the expected

duration and time of departure using the terminal at the vehicle elevator. If the vehicle

registration number is not recognized then the software will prompt the customer to type

in their membership number and their estimated parking duration.

4

In order to restrict people from making reservations they cannot meet, the system

has broken down reservations into two groups, confirmed and guaranteed. A confirmed

reservation is when a registered used places a reservation, but does not have a credit card

on file. A guaranteed reservation is when a registered customer has done the same, but has

a credit card on file and uses it when placing their reservation. These two types of

reservations differ when the customer shows up late to the garage for their reservation.

If a customer with a confirmed reservation fails to show up after reserving a spot,

the spot will be held reserved for a 30-minute grace period, during which the customer can

park on his reserved spot and be billed for the full reserved period. If the customer does

not show up to claim his spot during the grace period then the parking spot will be marked

unreserved. With a guaranteed reservation, the customer can arrive to their spot anytime

during the requested interval and will be charged to their card for that interval. As

registered customers they will be charged a registered price per hour during the time of

their interval. Any customer who stays past their requested reservation time will be

charged a registered price for the reserved time and an unregistered price the amount of

time gone over. If any customer arrives and their spot is still occupied by a previous

customer who overstayed then the garage will direct him to another parking spot, however

if there are no vacant parking spots, then the customer is given a rain check.

With so many machines working at the same time, there can be cases where things

can go wrong. One of the most important machines in the garage is the camera based

license-plate recognition software. Without the software, the elevator would not function

and the garage would not know if a customer has exited. The importance of the cameras

are so great that there are several fail-safe's built into the system; firstly the camera is

designed to work under all conditions and it is able to read the license plates despite its

condition. Also, if the system does not recognize a license plate, the software prompts the

customer to enter their member number; if the software doesn't recognize that as well,

then it does not allow the customer to enter the garage.

One of the main advantages of this new system was that employees no longer had to

manually check parking spots to see if they were occupied; to assist them, floor sensors

were installed in all the parking spots. These sensors are triggered when a vehicle parks in

the parking spot, at this time, the sensor automatically alerts the garage's system that the

spot has been occupied. The other function these sensors have is that they also alert the

system whenever the vehicle leaves the parking spot and the system marks that spot as

vacant. To prevent malfunction, the sensor was designed such that it doesn't trigger unless

a car occupies the spot or leaves the spot.

5

A major problem in the old garage was that customers generally spent a long time

looking for parking spots which resulted in congestion within the garage. The new system

is designed such that if the customer’s spot is still occupied by a previous customer then he

or she will be assigned a new parking spot. To help customers, the vehicle elevator was

designed such that it will always lift the vehicle to the appropriate deck and never stop at a

wrong deck; this is quite important because, it will prevent customers from searching for

their spot. It will also reduce the chance that a customer will accidentally park in another

spot instead of the one that was assigned to them.

The website will be used to allow customers to place online reservations as well as

provide the parking garage staff with basic customer information and statistics. The goal is

to design a friendly user interface in order to allow the customer to use the website on a

computer and possibly a mobile device. Any mobile device app will be presented in our

demo’s using a phone emulator on our computers. It will have a fundamental structure so

anyone using the site can do so while on the go or multitasking. The home page will take

the user to a login page where unregistered users can easily create an account with basic

information. As changes are made, the database will be adjusted through this website as

customers will enter their account information, register their vehicles, and place

reservations.

6

Glossary of Terms

App – A mobile application where customers can access the system to view their account

or make a reservation.

Camera – A device for recording or reading visual images in the form of photographs and

video, used to read license plates and send information to garage system.

Cancelled Reservation – Occurs when a customer cancels their reservation before the

reservation period.

Confirmed Reservation – A reservation placed by a registered user where the user

chooses not to attach a credit card to it

Customer – A person who wishes to use the garage’s services.

Database – Entity that stores all the system’s information.

Elevator – A platform used to raise vehicle to different floors.

Elevator Terminal – A console or screen inside the elevator where the customer can enter

in necessary information.

Grace Period – An amount of time for a late customer, with a confirmed reservation, to

claim his spot before the reservation is removed.

Guaranteed Reservation – A reservation placed by a registered user that has a credit card

attached it

License-Plate Recognition Software – A camera based system that reads the license

plates of vehicles and checks the information against the database.

Member Number (Customer ID) – A unique number that is given to customers who have

registered on the site.

No-Show – A customer who does not show up for their reservation.

Overbooking – Accept more reservation for parking spots than there is room for.

Overstay – When a customer doesn’t leave the garage at the end of his reservation period.

Rain Check – A ticket given to a registered customer who has reserved a parking spot but,

there are no vacancies.

7

Registered Customer – A customer who has registered an account on the garage’s website

prior to showing up to the garage.

Reservation – The act of reserving a parking spot via the system’s web site.

Reservation Confirmation Number (Reservation ID)– A number that is given to the

customer as confirmation of their requested reservation.

Sensors – A device that is placed on the floor of every parking spot that detects if that spot

is occupied or vacant.

Under Stay – The act of leaving a parking spot before the reservation period is over.

Vehicle – A thing that is used to transport people (I.E: car).

Walk-In – When a customer requests an immediate parking spot without prior

reservation.

Website – An interface that the customer can use to register, and reserve parking spots.

8

System Requirements

Enumerated Functional Requirements

Identifier Priority Requirement
REQ-1: Plate_to_Read 5 The system shall read the plate
REQ-2: Car_to_Customer 5 The system shall identify the customer based on the

license plate
REQ-3: Spot_Sensor 3 The system should detect which spots are

vacant/occupied
REQ-4: Vacancy_Display 2 The system should display vacant spots
REQ-5: Elevator_Display 2 The system should display information to customer on

the elevator
REQ-6: Elevator_Bad_Read 4 The system shall notify the user on the elevator that their

plate was not in the system allowing a confirmation
number input

REQ-7: Internet_Site 5 The system shall be linked to the internet
REQ-8: App 1 The system should be linked with an app
REQ-9: Elevator 5 The system should take the car to the correct floor level

where the parking spot is reserved
REQ-10: Rain_Check 4 The system shall give rain checks to customers who have

been overbooked
REQ-11: Exit_Gate 2 The system should have a gate at the exit
REQ-12: Register_Account 5 Each customer is required to register an account to place

reservation in the system
REQ-13: Late_NoShow 4 If customers make a reservation, but do not show up, they

will have a 30 minute grace period. Customers will be
billed for their initial reserved time, the grace period, and
the new reserved time if they extend their reservation

REQ-14: Pay_Overstay 4 Customers who stays pass their reserved period will pay
an additional fee

REQ-15: Pay_Bill 3 Customers will be billed electronically once a month and
are expected to pay

REQ-16: One_Way 5 The parking garage has a one-way entering and exiting
system. An elevator lifts the car to the proper parking
level and a ramp is used to leave the parking garage

REQ-17: Recognition 5 If the system cannot read the license plate number
customers manually input their membership number in
order to enter the parking garage.

REQ-18: Redirect 5 If a customer arrives at the reserved spot and it is
occupied, the customer will be redirected to a vacant
parking spot. If there are no spots available, a rain check
will be given to the customer

9

Enumerated Nonfunctional Requirements

Identifier Priority Requirement
REQ-19: Sensors 5 The parking garage will have fully functional floor sensors

and cameras that detect when a spot is vacant and when a
customer is entering or exiting a garage, respectively. They
will check if a customer has parked properly.

REQ-20: Simple_Design 4 Web pages will have a simple design to enhance user
experience. Each page will have a similar template to
prevent confusion.

REQ-21: Fail-Safe 5 The system is designed with fail-safes to decrease the
chance of failures.

REQ-22: Last_Minute 4 The system will accept last minute parking request
depending on availability and existing reservations.

REQ_23: Database 5 The database is stored on site to decrease the chance of data
loss.

REQ-24: Ground_Spot 3 Customers will be assigned ground level parking as opposed
to having them choose their own.

FURPS Table

FURPS (Priority Five)

Functionality

 Features floor sensors that detect when a parking spot is occupied or
vacant.

 Includes a camera-based system that detects when a vehicle is entering or
exiting the garage.

 Contains a terminal-based system that allows the customer to enter in
member information.

Usability

 There is consistency as all the web pages follow the same template.
 To accomplish simplicity, each page has a navigation bar to access the

individual pages
 Some pages even include instructions and/or guidelines

Reliability

 System is designed with fail-safes to decrease the chance of failure.
 System uses sensors and cameras to check if customers have parked

properly.
 Additional parking spots will be available if customer’s spot is occupied

by another vehicle.
 Database is stored on site to decrease the chance of data loss.

Performance

 In order to be efficient, parking spots for the ground level will be assigned
as customers enter the lot as opposed to having them choose their own.

o The same method is applied to reservations that are placed online.
 Throughput is increased as a result of the online reservation process.

o By eliminating this step from the procedure done at the garage, it
decreases the change of traffic congestion due payment
transactions.

Supportability

 This design is very adaptable as far as the garage size is concerned.
 If there are ever future plans to expand the garage additional floors or any

other renovation, the adjustment would be as simple as making an update
in the database table.

 Maintainability is also fairly straightforward as there isn’t too much
customer information to deal with.

10

Functional Requirements Specification

Stakeholders

 Parking Garage Owners

 Camera and Sensor Companies

 Scanning Device Programmers

 Business Enterprises

 Architects

 Engineers

A parking garage system can be effective and lucrative if run efficiently, but it requires

work and interest to create such a system. Consider an overpopulated area such as a city or

theme park where parking spaces are limited. A parking garage system provides a

resolution when demands for a parking spot are high. However, the parking garage system

needs workers for sustainability and maintenance. To name a few, these include

programmers, architects, construction agencies, and engineers. The stakeholders

mentioned above are a few people out of many who are interested in implementing a

functional parking garage system.

11

Actors and Goals

Actors Goals

Car To be shown to the correct level to park

Management To set the parking prices and have maximum efficiency

Worker To set up the reservations or to know that an invalid customer is trying to
access the garage

Customer To park at their parking spot

Cameras To identify the car to the customer

Sensors To find out if there are vacant spots in the lot

Vacancy Display To show what spots are vacant or occupied

Database To store all of the customer information

Internet Site To allow customers to make their reservations

Phone To allow the customer to use the app

App To allow the user to make a reservation on the go

Servers To allow the internet to run

Elevator To allow the customer to access the correct level

Elevator Keypad To allow customers to input reservation numbers if they're not identified by
their license plate

Elevator Display To update an identified user with information about their parking or to notify
a non-identified user that they were not identified and to enter their
reservation number

12

Casual Description

Use Case Name Description Requirement

UC-1 Leave the Garage To exit the garage via the exit gate Exit_Gate

UC-2 Look for Vacant
Spots

To see if there are vacant spots to
park in (walk in)

Spot_Sensor,
Vacancy_Display

UC-3 Access floor To access the correct parking floor
via the plate read or a reservation
number entry

Elevator,
Plate_Read,
Car_To_Customer,
Elevator Display

UC-4 Make Reservation To make a reservation to park Internet_Site, App

UC-5 Walk In/Park To get parking without a reservation Spot_Sensor

UC-6 Get a Rain Check To get a rain check if overbooking
happens

Rain_Check

UC-7 Change Information To change your contact information Internet_Site

UC-8 Make Contract To make a contract for guaranteed
parking

Internet_Site

UC-9 Set Price To set the price for parking in the
garage

Internet_Site

Use Case Diagrams

Customer (Figure 1)

13

Car (Figure 2)

Manager (Figure 3)

14

Full-Dressed Descriptions

Use Case 4

Use Case (UC-4) Reservation

Requirements Internet site; App

Initiating Actors Any customers; Workers

Actor’s Goal To reserve a parking spot

Participating Actors Internet site; Phone; Servers

Precondition The customer logged into the internet site; The user registered their
information

Post condition The user logs out

Main Success Scenario

1. The user chooses whether they want a long term parking situation
or just for a day

2a. If customer chose one day they are asked to put in from what
time they will be there
2b. If customer chose long-term the system asks what floor the
customer wants

3a. Customer puts in times
3b.Customer chooses level

4a.If spots available output information, otherwise outputs no spot
available
4b.if spots available on that level for long term, output information
otherwise ask for another level

15

Use Case 5

Use Case (UC-5) Walk In

Requirements Spot_Sensor; Vacancy_Display

Initiating Actors Customers

Actor’s Goal To get a parking spot without a reservation

Participating Actors Display system; Sensors; Data-base

Precondition The system is ready to receive the customers input

Post conditions The system marks the spot the customer has taken (if any)
The system gets ready for another customer’s input

Main Success Scenario

1. The customer puts in the times that they want to hold a spot

2a. The system displays that a spot is open during the requested
reservation time and requests a credit card number
2b.The system displays that no spot is open and then gets ready to
receive more input

3a. The customer puts in credit card information
3b. The customer cancels

4a. The system confirms that the information entered is correct and
then adds the customer information to the database
4b. The system is ready for another customer

16

Use Case 6

Use Case (UC-6) Access_floor

Related Requirements Plate_Read, Car_To_Customer, Elevator, Elevator_Bad_Read

Initiating Actors Any of: Car, Customers

Actor’s Goal To access the correct parking level floor

Participating Actors Elevator, Elevator panel, Database

Precondition The customer has tried to be identified by the system

Post conditions The Elevator returned to ground floor and ready for another
customer

Main Success Scenario

Car enters elevator as Identify gives parking level info to the system

The system takes the customer to designated floor

Alternate Scenarios

1. Car enters elevator as Identify returns bad read to the system

2. Elevator display prompts user for reservation input

3. a) Customer puts in correct reservation number

b) Customer puts in incorrect reservation number

4. a) Customer is taken to the correct level
b) Wrong input counter goes up

5. a) Wrong input counter != max
b) Wrong input counter === max

6. a) Loops back to reservation prompt
b) Elevator display asks customer to leave, security is notified

17

Traceability Matrix

 UC-1 UC-2 UC-3 UC-4 UC-5 UC-6 UC-7 UC-8 UC-9

REQ-1:Plate_to_Read X

REQ-2:Car_to_Customer X

REQ-3: Spot_Sensor X X

REQ-4:Vacancy_Display X X

REQ-5:Elevator_Display X

REQ-6:Elevator_Bad_Read X

REQ-7:Internet_Site X X X X

REQ-8: App X X X

REQ-9: Elevator X

REQ-10: Rain_Check X

REQ-11: Exit_Gate X

REQ-12: Register_Account X X

REQ-13: Late_NoShow X X X X

REQ-14: Pay_Overstay X

REQ-15: Pay_Bill X X

REQ-16: One_Way X

REQ-17: Recognition X

REQ-18: Redirect X X X

REQ-19: Sensors X

REQ-20: Simple_Design X X X

REQ-21: Fail_Safe X X

REQ-22: Last_Minute X X

REQ-23: Database X X

REQ-24: Ground_Spot X

Total PW 15 24 23 19 5 9 18 25 8

18

Sequence Diagrams

Access_Floor System Sequence Diagram (Figure 4)

Reservation System Sequence Diagram (Figure 5)

19

Effort Estimation using Use Case Points

Unadjusted Actor Weight (UAW)

Car: 1

Management: 1

Worker: 1

Customer: 2

Cameras: 1

Sensors:1

Vacancy Display: 2

Database:3

Internet Site:2

Phone:1

App:1

Servers:3

Elevator:1

Elevator keypad:1

Elevator display:1

UAW = 22

Unadjusted Use Case Weight

Leave the Garage:5

Look for Vacant Spots:10

Access floor:15

Make Reservation:15

Walk in/Park:10

Get a Rain Check:5

Make Contract:10

Set Price:5

UUCW=75

Unadjusted Use Case Points

UCCP= 97

20

Technical Complexity Factors

T1:3*2 = 6

T2:1*1 = 1

T3:1*1 = 1

T4:1*1= 1

T5:1*1=1

T6:2*.5 = 1

T7:2*.5 = 1

T8:1*2=2

T9:2*1 = 2

T10:3*1=1

T11:1*1=1

T12:1*1=1

T13:0*1=0

Technical Factor Total =19

TCF =.6+.01*19 = .79

Environment Complexity Factors

E1:5 *1.5 = 7.5

E2:3*.5 =1.5

E3:3*1 =3

E4:.5*.5= 2.5

E5:5*1=5

E6:3*2 = 6

E7:3 * -1 = -3

E8:3*-1 = -3

Environment Factor Total= 19.5

ECF =1.4*(-.03*19.5) =.815

Use Case Points

UCP=97*.79*.815 = 62

21

Domain Analysis

Domain Models

General Model (Figure 6)

Parking Model (Figure 7)

22

UC-3: Access Floor

Concept Definitions

Responsibility Description Type Concept Name

Container that stores all client information (including
license plate, name and credit card)

K DataBase

Takes in plate numbers and accesses Database to find
which client it is associated with

D Controller

Read the plate number D PlateReader

Displays useful information regarding system status to the
user

D ElevatorDisplay

Controls the elevator position D ElevatorController

Association Definitions

Concept Pair Name Associated Description Association Name
Plate_reader Controller Plate_reader passes the license

plate number to Controller
Provides data

DataBase Controller Controller accesses the
database and links plate to the
right client

Provides data

Controller ElevatorDisplay Controller passes the
reservation confirmation and
floor number to
ElevatorDisplay

Provides data

Controller ElevatorController Controller passes the right
floor number to
ElevatorController

Conveys request

23

Attribute Definitions

Concept Attributes Attribute Description

Database

client identity Used to determine right reservation

client license plate Used to link a car to the right client

client credit card Used to pay for parking

Controller

client search Used to search the database for right client

license plate search Used to search database for license plate
associated with client

GetFloor Used to get what floor the elevator is on

ElevatorDisplay displayRsvInfo Used to display the spot, start time and end
time of a given reservation to the user

ElevatorController liftToFloor Used to select right floor to go to

24

UC-5 Walkin/Park

Concept Definitions

Responsibility Description Type Concept Name

Container that stores all client information (including
license plate, name and credit card)

K Database

Checks for open spots D SpotController

Checks database to see if client is registered with parking
garage

D Controller

Inform user if there is a spot available or not D VacancyDisplay

Association Definitions

Concept Pair Name Associated Description Association Name

Database Controller Controller accesses the
database and links plate to
the right client

Provides Data

Controller Vacancy Display If no match the Controller
requests to prompt user to
register

Conveys Requests

SpotController Vacancy Display SpotController uses
VacancyDisplay to show
results of its actions

Provides Data

Attribute Definitions

Concept Attributes Attribute Description

Database

client identity Used to determine right reservation

client license plate Used to link a car to the right client

client credit card Used to pay for parking

Controller

client search Used to search the database for right client

license plate search Used to search database for license plate
associated with client

Vacancy Display user prompt Used to prompt user to enter walking information

SpotController spot sensors Uses spot sensors to check for empty spots

25

UC-4 Make Reservation

Concept Definitions

Responsibility Description Type Concept Name

Container that stores all client information (including
license plate, name and credit card)

K Database

Field in which user is prompted to login D Login
Field in which user is prompted to register D Register
Knows where there is an empty spot K Spot checker
Logs reservation into database D Logger

Association Definitions

Concept Pair Name Associated Description Association Name

Login Database Login uses database to find right
client

Conveys Requests

Register Database Register sends the client info to the
database

Provides Data

Logger Database Logger accepts the reservation sends
to database

Conveys Requests

Attribute Definitions

Concept Attributes Attribute Description

Database

client identity Used to determine right reservation

client license plate Used to link a car to the right client

client credit card Used to pay for parking

Register
Field Checker Used to make sure all the required fields are filled in

Data passer Used to record client in database

Login

Field Checker Used to make sure all the required fields are filled in

Client Search Used to search database for entered client

Password Checker Used to check for the correct password

Logger
Data passer Used to record the reservation into database

Field Checker Used to make sure all required fields are filled in

26

Interaction Diagrams

Floor Access – Use Case 3 (Figure 8)

 In general, this interaction diagram has four main tasks. These responsibilities

include reading the incoming license plate (R1), pulling a reservation (R2), displaying the

information (R3), and taking the elevator to the proper floor (R4). The first responsibility

would be assigned to the controller, via the high cohesion principle, as it is primarily

responsible for delegating tasks and does so here by pulling the vehicle information. For

R2, the Expert Doer design principle favors assigning R2 to the Controller as it knows the

query parameters, the license plate. The process of displaying the information (R3) is also

carried by the controller via the high cohesion principle of delegating the necessary tasks.

Lastly, R4 is assigned to the elevator controller to lift the elevator to the proper floor using

the high cohesion design

PlateReader

 This object is a camera located in the elevator and it is responsible for extracting the

information off the actual vehicle. It does so by creating a new plate in the system. The

camera shows high cohesion since it is a physical device that handles one task, scanning the

license plate off cars that enter the elevator.

27

Controller

 The controller is the most essential portion of this interaction as it interacts with all

other objects within it. When a vehicle enters the elevator, the controller will get the

license plate number extracted by the camera and query the database for the cars

reservation. Once it finds the reservation is gets the start point, end point, and spot

location the user requested when they made the reservation. It then displays all this

information on the screen in order to remind the user of their time limits and location

within the garage. It then proceeds to lift the elevator to the proper level and marking that

spot as occupied in the database.

Database

 The database will be responsible for maintaining the information about the

customer and the reservation. It meets the requirements for the expert doer principle

because it holds the pertinent information pertaining to a reservation, which it therefore

distributes to any object requesting it.

Reservation

 A reservation object is created when the controller can successfully pull the

reservation from the database. It is used to extract the reservation information in order to

display the information to the user as well as send the elevator to the proper floor. Just like

the database, once a reservation object is created, it holds the information regarding a

reservation, therefore demonstrating the expert doer principle.

ElevatorDisplay and ElevatorController

 The elevator display is an LCD panel located in the elevator that will display

important information to the user regarding their reservation. The elevator controller is

responsible for taking the elevator to the proper level as instructed by the main controller.

Both these objects meet the specifications for low coupling because they don’t take on too

many tasks at once. Each object simply talks to the next as shown in the diagram above.

28

Reservation – Use Case 4 (Figure 9)

 For this use case, the responsibilities include getting the reservation request from

the user (R1) and checking to see if it is valid (R2). The first task is carried out by the

Controller via the high cohesion principle, allowing this to be the center point in assigning

tasks. R2 is assigned to ReservationValidation as the Expert Doer principle calls to assign

responsibilities that contain search query parameters to the object that possesses that

information.

*Note: When a customer places their reservation, they are asked to enter a start point

(time and date), end point (time and date), and a spot within the garage. This is

represented as one entry, for simplicity, in the above diagram as desiredReservation.

Registered Customer

 The registered customer will be the one initiating this interaction by placing a

reservation request. After the request is processed, the customer will be informed whether

that reservation is valid or not.

29

ReservationController

 When alerted that a request for a reservation has been put in, it will prompt the user

for the reservation information. Once this data is received, it will forward the request to

see if there are any conflicts with existing reservations. Upon receiving the result, the

controller will return to the customer whether this transaction is valid or whether the user

should attempt another reservation.

ReservationValidation

 This will serve as both a connection to the database, responsible for passing

messages to and from the database, and validating a reservation request by running it

through an algorithm to validate it.

Database

The database will be responsible for maintaining the information about the customer and

the reservation. It means the requirements for the high cohesion principle because it takes

in a variety of inputs and then processes the data to return the information.

30

Walk-In – Use Case 5 (Figure 10)

This last interaction diagram involves checking to see if spots are available (R1),

entering that information into the database (R2), and displaying information to the driver

(R3). All these four tasks are carried out by the controller as it has to interact with both the

driver and the database to process this entire request. The design principles here involve

both high cohesion to carry out tasks and expert doer to make all the necessary database

queries.

Customer

 The customer is the initiator in this transaction and responsible for entering the

reservation duration and billing information accurately. If there are no spots available at

the time the customer arrives to the parking garage, the interaction will terminate and

inform the customer accordingly.

31

WalkInController

 The controller is responsible for interacting with the customer via the vacancy

display and the system to validate all requests. It follows the expert doer principle as it

knows who and what should perform each task.

Database

The database will be responsible for maintaining the information about the

customer and the reservation. It means the requirements for the high cohesion principle

because it takes in a variety of inputs and then processes the data to return the

information.

SpotController

 This will be responsible for assigning the customer with the first available spot

located in the ground level parking. If the interaction reaches this point, it has been

confirmed that there are spots available and this will pull the first available spot and assign

it to this customer.

VacancyDisplay

 This will be solely responsible for engagin the user to find out how long the user

would like to stay as well as how to charge them for the parking. All users interact with

this if they want to park on the ground level as a ‘walk-in customer.’

32

Class Diagram and Interface Specification

Class Diagram

General (Figure 11)

Database (Figure 12)

33

Beginning with the General Class Diagram, this figure goes on to demonstrate how

the system collaborates with the different classes and hardware, located throughout the

garage. The equipment the user interacts with, such as the displays, spot sensors, and

elevator, all have their specified functions to send to the controller in order to place the

proper requests. The controller then takes these functions and sends them over to the

proper class to carry them out. Obviously most functions require input parameters that

most of these items are responsible for acquiring, but of course this varies on different

situations and they are explained in full detail in the individual interactions diagrams.

All the information is stored in the database and can be viewed in the second

diagram. The strategy design pattern (Reference #13) is being implemented here as there

are three different types of users and they all have different privileges. These different

types are administrator, unregistered, and registered users. The strategy design pattern

calls for selecting algorithms at runtime in order to prompt the user with the proper

action/information. Each table has the necessary fields to upkeep the system and they are

called based on the type of user requesting/sending information. This pattern is best

demonstrated when a customer arrives at the garage. The following table demonstrates all

the possibilities regarding reservation type that a customer can be labeled for upon their

arrival to the garage:

Registered? Recognized? Reserved? Type

No No No Walk-In

No No Yes Not Possible

No Yes No Not Possible

No Yes Yes Not Possible

Yes No No Walk-In

Yes No Yes Reserved

Yes Yes No Walk-In

Yes Yes Yes Reserved

34

The following state machine helps explain how the system distinguishes between

reservations types upon the customer’s arrival to the garage:

Figure 13

In order to ensure the authenticity of a user, an authentication proxy design pattern

is used to confirm the user is accessing the proper information. The administrator is

assigned to the system manually and given a user name and password for their account.

Registered and unregistered users are the customers themselves who can go about getting

a parking spot differently, as seen above. Authenticity of these users is essential and the

table above builds off of the state machine, above, to show the credentials the system

considers when identifying users.

35

Data Types and Operation Signatures
All the classes above are broken down a little better below. Every class contains the

attributes associated with it as well as the operations they carry out.

customer:

 Attributes:

-int customer_id

-string first_name

-string last_name

-string email

-string password

-date dob

-enum gender(‘Male’, ‘Female’)

 Operation: (all operations attach customer to any created objects)

+addCar() : creates a car and inserts into database

+addCreditCard() : creates a credit card and inserts into database

+newReservation() : creates a reservation and inserts into database

parkingspot:

 Attributes:

-int spot_id

-int garage_id

-enum status(‘vacant’, occupied’, ‘reserved’)

 Operation:

+updateStatus()

garage:

 Attributes:

-int garage_id

-string name

 Operation:

+createGarage()

+insertSpot()

36

creditcard:

 Attributes:

-string credit_number

-int customer_id

-string cc_name

-string cc_type

 Operation:

+createCreditCard()

car:

 Attributes:

-car_id

-license_plate

-us_state

-customer_id

 Operation:

+createCar()

+removeCar()

reservations:

 Attributes:

-int reservation_i

-time start_time

-time end_time

-date reserve_date

-int customer_id

-int car_id

-int garage_id

-int spot_id

-enum reserve_type(‘active’, ‘canceled’, ‘overstay’, ‘understay’, ‘completed’,

‘upcoming’)

 Operation:

+createReservation() : creates a reservation record

+cancelReservation() : voids the reservation placed

+editReservation() : for upcoming reservations only, changes can be made

37

Traceability Matrix
All the classes seen above were derived from the traceability matrix, seen earlier on

page 17. It is here that all the domain concepts were merged with the use cases in order to

see how the system will function. Once this was set up, the classes began to form starting

with user and from what point of view he/she would see the system. The views were

dependent on the user being an administrator, unregistered, or registered user. All the

essential equipment used throughout the garage also got involved as these pieces of

equipment pulled essential information from the customer and/or garage in order to

efficiently maintain the web service.

The remainder of the classes were focused around the database as it does hold the

key pieces to upkeep all this information. These classes included creating credit cards,

vehicles, and the garages along with their spots as well. They each have their own

respective operations within them to insert, remove, and upkeep accurate data. This is

reflected upon the traceability matrix as the database is involved with practically all the use

cases created.

38

Object Constraint Language (OCL) Contracts

Authorization
Invariants - A user needs access to an account.
Pre-Conditions - The user acquires the proper log on credentials to access their account.
Post-Conditions - The user can make changes as well as place reservations.

Account
Invariants - Must be a valid registered user.
Pre-Conditions - The user must meet the restrictions placed on certain changes made to an
account (such as two credit cards per customer).
Post-Conditions - Any valid transactions are recorded and then displayed on the account
page.

Reservation
Invariants - Must be a valid registered user and place a valid registration request.
Pre-Conditions - The garage must be able to allocate a spot for the requested time interval.
Post-Conditions - Garage vacancy decreases.

Registration
Invariants - Can be any unregistered user
Pre-Conditions - The user can provide the basic information needed to create an account.
Post-Conditions - The new user's basic information is entered into the database and that
user is re-directed to their account page.

User
Invariants - Must be a registered user with a confirmed email account.
Pre-Conditions - Needs to be registered with basic user information.
Post-Conditions - Once entered into the system, the user can further manage their account
by entering vehicles, credit cards, and other registered user privileges.

Garage
Invariants - Contains spots available for parking.
Pre-Conditions - Spots are available.
Post-Conditions - As parking spots begin to fill, the vacant space decreases till it hits zero.

Vehicle
Invariants - Must be a valid vehicle (contain a valid license plate as well as a licensed
driver)
Pre-Conditions - The vehicle has not been registered by another user.
Post-Conditions - The vehicle is entered into the database, under the respective user, and

used labeled with a unique name, to that user.

39

System Architecture and System Design

Architectural Styles
An architectural style provides a framework for a system which includes software

components, its properties, and the relationships among them. The most useful style for

the parking garage automation is the event-driven architecture. This software architecture

pattern promotes the production, detection, consumption of, and reaction to events. One

specific event is reserving a parking spot. It is the system’s focus, and thus is the reason

why event-driven architecture is most suitable.

When a parking spot is reserved, it causes software components to change and others to

react. The table below illustrates the system’s cause and effect to an event.

Event Before After

Reserve none reserved

Cancel reserved cancel

Extend reserve, extend reserve, extend

Overstay parked overstay

Understay parked understay

Missed reserved missed

Completed reserved, overstay, understay, missed completed

Event-driven architecture is geared towards unpredictable and asynchronous

environments. This is common when a customer interacts with the system. By using event-

driven architecture, the parking garage automation sustains a stable and responsive

system.

40

Identifying Subsystems
As this website will be an online service, it will require a client to interact with the

user and a server to maintain a record of all the interactions and requests. This is

accomplished by the user accessing the web client through a web browser using the http

protocol. The client is comprised of HTML, CSS, and PHP and will interact with the server

within those limits. User interaction will take place on the client side of the system and

make function calls to the server in the background. Once in the server, the client will

update the tables stored through the operations location within the database class.

This subsystem combines the classes seen in the class diagram (Figures 11 and 12)

in order to design a subsystem that remains hidden from the rest of the model. These two

systems comprise of the server, which is essentially the database containing all the

information, and the client, which would be any aspect of the system the user interacts

with. The diagram below demonstrates this by showing the user interacting with the web

browser to access the client subsystem. This system grants the user certain privileges like

modifying account settings, placing/editing reservations, and just getting general

information on the garage itself. All these tasks are carried out by the client in the

background through its interaction with the server that actually stores it. This

architectural style resembles that above by encompassing multiple classes to create the

client and all the information tables to create the server, or database.

Figure 14

41

Mapping Subsystems to Hardware
The model of the System calls for it to be ran on more than one computer. These computers

can be broken into two categories; Web servers and client computers.

Web Servers

The web server will be used as the main database in which all of the sensors will store the

data in. Majority of the source code will be run within the web servers. All client account

information will be stored within the web servers.

In addition the web server will have a container that stores empty as well as occupied

parking spots. The web server will keep track of all of the reservations and contracts. It

will store a history of all of the reservations and overstays so the system can better predict

occupancy.

The web server will store all of the prices and fees and issue them accordingly. It will have

the ability to contact the client via email to send reminders; such as a reminder that a

reservation is coming up and a reminder that a payment is due.

Client Computers

The client computers will access the web servers via a browser website that is running on

html code. The client computers include the elevator display, vacancy display and client’s

personal computers.

The client’s personal computers will access the web servers to set up an account, make a

payment, make a reservation, create a contract and edit account information. There is an

administrator mode that can be accessed when administrator accounts login. From

administrator mode the user will be able to set prices and policies as well as manage

delinquent accounts.

The elevator display and vacancy display will access the web servers to retrieve system

status. This includes account information as well as vacant parking spots. It will access the

web servers in order to display reservation information to the client.

42

Persistent Data Storage
MySQL was chosen as the database to maintain all the information acquired by the system.

Seven tables, customer, creditcard, car, garage, parkingspot, walkin and reservation, will be

used to hold all the relevant information pertaining to the user and their requests. The

tables are seen below along will their respective attributes and detail.

DATABASE TABLES
Field Type Null Extra Links

customer
customer_id int no auto increment
first_name varchar(45) no
last_name varchar(45) no
email varchar(45) no unique
password varchar(45) no
dob date no
gender enum(‘Male’,

‘Female’)
no

status enum(‘Active’,
‘Inactive’)

no

creditcard

credit_id int no
credit_number varchar(45) no
customer_id int no customer->customer_id
cc_name varchar(45) no
cc_type enum(‘Visa’,

‘Mastercard’,
‘American
Express’)

no

name_given varchar(45) no

car
car_id int no auto increment
car_name varchar(45) no
license_plate varchar(45) no
us_state varchar(3) no
customer_id int no customer->customer_id

garage
garage_id int no
name varchar(45) no

43

parkingspot
spot_id int no
status enum(‘vacant’,

occupied’,
‘reserved’)

no default: ‘Vacant’

garage_id int no garage->garage_id

walkin
walkin_id int no Auto increment
license_plate varchar(45) no
us_state varchar(3) no
customer_id int no customer->customer_id
spot_id int no parkingspot->spot_id
garage_id int no garage->garage_id
entrance datetime no
departure datetime

reservation
reservation_id int no auto increment

reserve_type

enum(‘active’,
‘canceled’,
‘overstay’,
‘understay’,
‘missed’,
‘completed’,
‘upcoming’)

no

start_point datetime no
end_end datetime no
spot_id int no parkingspot->spot_id
customer_id int no customer->customer_id
credit_id int creditcard->car_id
car_id int no car->car_id
garage_id int no garage->garage_id
arrive datetime
depart datetime

priceplan
priceplan_id int no auto increment
garage_id int no garage->garage_id
registered decimal no
unregistered decimal no

raincheck
check_id int no auto increment
duration decimal no
customer_id int no customer->customer_id

44

Network Protocol
Our service will be offered as a website and it will be hosted off of a single server/machine,

therefore, there will not be a need to utilize any other communication protocol other than

HTTP. The system is still being built but it will be built in such a way that it can be adapted

quickly; in the future, if the need for security arises, the system can be modified to accept

other communication protocols. Also, as per the problem statement, the system is designed

such that it communicates with our database, which stores all client names and

information.

Global Control Flow
Execution Orderness:

Our service is two-fold; it is event-driven in that customers are required to enter in

information regarding themselves and the vehicle that they will be parking in the garage. It

is procedure-driven in that as customers approach the garage, the camera based license-

plate recognition software checks each and every license plate for reservations; the floor

sensors that act to verify if a parking spot is occupied or vacant is also procedure-driven.

Time Dependency:

Our system does employ timers; they serve an important role in that they measure the

duration a customer has utilized the parking garage service. They are also used to measure

when a customer has checked in to the garage and they also serve to inform the

management of duration of the over-stay, if the customer over-stay’s his reservation.

Concurrency:

No.

45

Hardware Requirements
Hard-drive: A hard-drive is needed for storing customer information. Assuming that

customer information per customer costs about a Megabyte of memory and there are about

200 parking spots which would create a maximum of 71,200 customers a year (200 * 356),

then the hard-drive should be at a minimum of 100,000 MB per year.

Elevator Display: The display in the elevator should be a minimum of 800x600 resolution

since it is a little smaller and closer to the customer.

Vacancy Display: The display in the lobby should be bigger so more people can see it at

once. This should be a minimum of 1280x720 resolution.

Network Bandwidth: Since the memory cost of the customer was estimated at 1MB, a

bandwidth of 50 KB per second should be the minimum bandwidth. This would mean that

a customer would have to wait at the most 20 seconds for their memory to transfer.

Elevator Keypad: The elevator keypad should consist of only number buttons, an enter

button, a backspace button, and a cancel button since it is only meant to put in reservation

numbers.

Walk-In/Park Computer: A basic computer is required here as the only tasks it will need

to do it carry out simple data base calls. This doesn’t require too much memory and the

calls are instant.

Sensor: A light sensor or a ultrasonic sensor would both suffice to sense the vacancy of

each parking spot while a pressure sensor is needed for the elevator.

Servers: There should be a minimum of one server to handle the garages reservations.

Cameras: The cameras do not have to be too expensive as long as they can differentiate

between license plates within a 100 meter distance.

Android Phone: For the customers that choose to have the app, they will need an Android

based smart phone.

Computer: To access the website, a customer will need a computer to create a reservation.

Central Computer: To run the whole garage in parallel, the garage will need a computer

solely to run all of the garage programs.

46

Algorithms and Data Structures

Algorithms
Scheduling a Reservation

The complex algorithm used to check for possible reservations is more accurately

described as a database query. Like an algorithm, the query follows a protocol by

communicating with the database in a specific manner. The protocol that is followed

consists of steps such as retrieving, inputting, and verifying user inputs with the database.

When a user places a reservation via the website, they select when it will begin, when it will

end, and which spot they would like to park in. Once this selection is made and submitted,

the database query is put together to check to see if this reservation can be made.

 This is accomplished by establishing a couple important ground rules with the

database itself. For starters, the start and end points for a reservation will be stored into

the reservation table with a DATETIME type. These entries are stored in the following

format:

‘YYYY-MM-DD HH:MM:SS’

This simplifies the process because the values in these fields can be compared

directly via MySQL and don’t need to go through any concatenation. The system begins by

pulling all the reservations made for a particular spot, called requested_spot, via the

following query:

SELECT * FROM reservation WHERE spot_id=request_spot

With this query, we pull all the reservations in our database related to that one spot.

It will serve the first half of our nested, complex query. The next step is to compare the

start and end points themselves. For demonstration purposes, let’s call the start point

newStart and the end point newEnd. Again, these two points are of the datetime format. All

time comparisons fall into one of five total categories:

47

1. The best case scenario, when there is no reservation overlap and the requested

reservation can be made.

2. This next case occurs when a user wishes to place a reservation that starts before an

existing reservation and ends after it. This overlap is an issue and the system will
inform the user that it is not possible.

3. The reverse of the previous scenario arises when a user wishes to place a

reservation that falls right in the middle of an existing reservation. Just like the

previous case, this is an overlap and the system will inform the user it is not

possible.

4. Another instance of an overlap will occur when a user attempts to place a

reservation that starts right before an existing reservation is about to end. This is

overlap is not acceptable and the system will inform the user.

Figure 16

Figure 15

Figure 17

Figure 18

48

5. Lastly, when a user wishes to place a reservation that will start right before an

existing reservation is set to start. Once again, the system will inform the user this is

not acceptable.

The following query is a generic example that will pull any of the four possible overlap

cases:

mysql> select * from reservation R where (R.start >= newStart and R.end <=newEnd) or

(R.start <= newStart and R.end >= newEnd) or (R.start >= newStart and R.start <= newEnd)

or (R.end >= newStart and R.end <= newEnd);

 Once all this is put together and the final query is made, if there are any results,

there is an overlap and the requested reservation cannot be made.

Data Structures
As mentioned earlier, all the information the system obtains will be stored and

maintained in a database. MySQL will be used to make the necessary queries and

modifications, as well as perform the algorithms described later in this section. It was

chosen as it is the world’s most used relational database management system.

 As some database queries will pull multiple entries at once, an array data structure

is used to store all these search query results in one place. It’s really the only data

structure that was implemented due to its simplicity and efficiency. Future changes to this

system will include a map of the garage at the current time to give the user a better

understanding of what is available. As this portion hasn’t been implemented yet, any

additional data structures can’t be guaranteed just yet.

Figure 19

49

User Interface Design and Implementation

Home Page

Figure 20

 This is the first page users see when the go to the website. Can’t really do much on

this page other than log in and make requests to other pages. In addition to this, this page

provides a brief welcome note to provide the user a very brief idea of what they can do

here.

50

Registration

Figure 21

 In order to keep the registration process quick and painless, there isn’t much

information needed to register. Upon registering, a confirmation email will be sent to the

email registered on this page. All fields must be entered and the email address has to be

unique in order for the account to successfully get created. All passwords stored are

encrypted prior to being entered in the database.

51

My Account

Figure 22

After logging in or registering a new account, the user is re-directed towards their

account page. On this page the user has the option to change their password, insert a credit

card, and insert a vehicle. Once a credit card or vehicle is entered, they will be displayed

below with some of the information pertaining to that one item. This is done to ensure

privacy and not display information like credit card numbers. As the user is limited to two

credit cards and two vehicles, they have the option of deleting one of the existing ones from

the database.

52

View Garage

Figure 23

 On this page the user can take a look at the current status of the garage. Spots

starting with a one, 1xx, denote walk in parking and spots starting with a two or higher,

denote reservation parking. All spots colored in red are currently occupied and all spots

colored in green denote a vacant spot.

53

View All Reservations

Figure 24

If the user is experiencing issues reserving a spot or is curious as to what type of

reservations people have previously made, they can access this page. On this page the user

can pick a time frame and view previous and/or future reservations. To ensure privacy,

only the spot number, start point, and end point are displayed. If no time frame is specified,

the page will display the next twenty upcoming reservations, if any.

54

Reservations
Figure 25

 On this page the user can perform multiple tasks. On the left hand side of the page the

user can place a reservation by entering a start point, end point, vehicle, and, optionally, a credit

card. Upon successfully choosing a timeframe the system agrees with, the reservation

confirmation number and spot will be displayed on the bottom. A valid reservation consists with

one that passes the reservation algorithm (described in the previous section), contain at least one

vehicle, have a start date that comes before the end date, yet after the current time, and be carried

out by an ‘active’ user who has validated his email address.

 The right hand side allows the user to edit/delete existing reservations. If a user selects

the ‘red x’ button, the reservation will be removed from the system. If the user selects the

‘pencil’ button, the user will be re-directed to a screen with all the values. All the changed

entries go through the same procedure a regular reservation would go through and therefore need

to be valid.

Figure 26

55

Entrance Camera

Figure 27

On this hidden page, the user can simulate a vehicle entering the garage. This is

carried out by entering a license plate and the state associated with it to demonstrate how

the system would go about reacting to input given by the license plate reader (camera). To

provide a quick demo of the two most common tasks, walk-ins and reserved customers, the

following screen shots are the step by step demo.

If a user enters a plate that is unknown to the system, the system will take it to be a
walk in customer and proceed accordingly.

Figure 28

 Once the plate has been entered, a spot is assigned to that car along with its
timestamp and asks if the user wishes to continue to their spot or leave. Leave will not
have any affect, but selecting park will set that spot to vacant and initialize the counter.

56

Figure 29

When a user selects a license plate that is related to an upcoming reservation, the
following screen will show. Note this is very similar to the walk in page as information is
displayed and the options to park or leave are given. The only difference here is the fact
that the displayed information pertains to what the user requested as well as a spot on the
upper floor of the deck.

Figure 30

57

Figure 31

Lastly, if a user tries to park a car that has already entered the garage, but has not
yet left, the site will re-direct the user to the same page and inform them of the situation.

Figure 32

58

Exit Camera

 Similar to the entrance camera, the exit camera will simulate how the system will

react to vehicles leaving the garage via the exit ramp. The license plate information will be

needed upon departure and a raincheck ID, if any.

Figure 33

 Once this criterion is entered, the garage will display the amount charged for the

parking, change the spot status, and set the timestamp for the departure.

Figure 34

59

Spot Sensor

 This was just an additional page used to simulate what the spot controller would be held

responsible for. Upon arriving to this page, each spot is filled with the appropriate radio button,

based on whether or not the spot is vacant or occupied. This page was implanted as sort of a

manual override in case the exit camera chose to fail in some sort of fashion. An employee

could proceed to manually set the spot status as vehicles exit the garage, based on their

reservation and/or vehicle information.

Figure 35

60

Design of Tests

Integration Testing

 In order to keep things simple, a specific type of integration testing, known as the

big bang integration approach (Reference #10), will be used to carry out the testing for this

system. The goal of the big bang method is to take all the individual unit test cases and

combine them to form a complete or major part of the system. One type of big bang

integration, known as Usage Model Testing, runs testing by carrying out user-like

workloads in user-like integrated environments. The individual components are proved

through this method by proving through the environment itself. The main focus will be to

not avoid any smaller cases that may arise through the individual components. This

integration approach was chosen due to its simplicity and efficiency. Its simplicity stems

from its capability to cover a significant amount of individual unit cases.

Acceptance Test Cases

Acceptance test cases are events that the customer wishes to specify in order to

ensure they handled properly. Since the customers using the website for any reservation

requests and account changes, this is where most of the test cases will stem from. In order

to carry out the integration testing mentioned above, acceptance test cases must be

generated in order to understand what the user-like workloads will be. Below are the

acceptance test cases designed for the website that account for the majority of the

functions that can be carried out on the site. These test cases show the required input,

pass/fail criteria, and the various scenarios that can occur.

61

Test Cases

Test-Case Identifier: TC-1, Logging In

Pass/Fail Criteria: The test passes if the user enters an email password combination that is
contained in the database.

Input Data: Email Address, Password
Test Procedure: Expected Result:

Step 1. Submit blank fields Website displays “Please fill out this field.” and
does not process the request

Step 2. Submit an unknown email address,
password combination

Website re-directs the user to the home page
and displays “Incorrect email or password.”

Step 3. Submit a valid email address, password
combination

Website re-directs the user to their respective
‘My Account’ page

Test-Case Identifier: TC-2, Vehicle Update

Pass/Fail Criteria: The test passes if the user puts in a request that does not conflict with
another existing database entry and stays within the account limits.

Input Data: Car Name, License Plate, US State where vehicle is registered
Test Procedure: Expected Result:

Step 1. Submit a request without having all the
necessary fields filled

Website displays “Please fill out this field.” and
does not process the request

Step 2. Submit a change that conflicts with
another database entry

Website re-directs the user to their account
page and displays “Vehicle already registered.”

Step 3. Add a third vehicle Website re-directs the user to their account
page and displays “Too many registered
vehicle.”

Step 4. Submit a valid vehicle change that does
not conflict with another database entry and
stays within the account limits

Website re-directs the user to their account
page and displays the change(s).

62

Test-Case Identifier: TC-3, Placing/Editing a reservation

Pass/Fail Criteria: The test passes if the user places a request with the start date coming
before the end date and if it passes the scheduling algorithm

Input Data: Start Point, End Point, Car, Credit Card (Optional)
Test Procedure: Expected Result:

Step 1. Submit a request without filling all the
required fields

Website displays “Please fill out this field.” and
does not process the request

Step 2. Submit a request where the start date
comes AFTER the end date

Website re-directs the user to the reservation
page and displays “Please request a reservation
whose end date is BEFORE the start date.”

Step 3. Submit a request that does not pass the
scheduling algorithm (no space available for
that time)

Website re-directs the user to the reservation
page and displays “There are no spots available
for that requested time frame, please try
another request or check to see if any walk-in
spots are available.”

Step 4. Submit a valid request that passes the
scheduling algorithm

Website re-directs the user to the reservations
page and displays the reservation ID along with
the spot they were assigned

Test-Case Identifier: TC-4, Registering

Use Case Tested:

Pass/Fail Criteria: The test passes if the user attempts to register an account with a unique
email address

Input Data: Email Address, Name, Password, Date of Birth
Test Procedure: Expected Result:

Step 1. Submit a request without filling all the
required fields

Website displays “Please fill out this field.” and
does not process the request

Step 2. Submit the request with an email address
that already exists in the databas

Website re-directs the user to the registration
page and displays “The email is already in use.”

Step 3. Submit a request where the two
password fields do not match

Website re-directs the user to the registration
page and displays “The passwords do not
match.”

Step 4. Submit a unique email address,
password fields that match, and the other
requested information

The system creates a session and re-directs the
user to the account page

63

Unit Testing
The test cases for this system will be based of the generic class diagram, non-PHP

specific, mentioned earlier. The five main classes in this system are the registration,

reservation, management, authorization, and account classes. Unit testing will involve

going through each of these classes and their modules, asserting them with different

parameters.

The breakdown of the testing that will be performed on the individual classes is

seen below. Each class has a brief description and some classes even contain a state

diagram to demonstrate how requests are validated.

Registration

 Registering a new user with information that matches data of another existing user

in the system. All users are uniquely identified by their email and this will be the

essential factor in testing this.

Figure 36

Reservation

 The registration process can lead to a variety of situations and will therefore include

testing try to expose any leaks. This will involve inserting any reservations that

conflict with existing reservations, including the parking spot ID, start points, and

end points. In addition to this, the design will also test that confirmed and

guaranteed reservations do not conflict as they both pertain to the same spots, but

are looked at with two different statuses. Lastly, any revisions made to upcoming

reservations will also be tested to find conflicts as they arise.

64

Figure 37

Authorization

 Authorizing is an a crucial key that grants certain users, certain privileges and

testing this class is key to making sure order is maintained in the system. As users

attempt to identify themselves by either the Vacancy Display or through the

website, their log on credentials will be passed through this class. Testing will

involve asserting the modules with log on credentials that both match up and

differentiate themselves from the ones in the database.

Figure 38

65

Account

 The account class is responsible for maintaining the information regarding the user

and their account. Testing in this class will involve asserting a validation process

that will take any requested changes or additions and look them over before they

are carried out.

Figure 39

Management

 Just like the account class, management is the same principle except it involves

pricing and regulation for the entire system. Therefore it will assert the modules in

this class with parameters to validate all changes.

The goal for the design of these tests is to cover the interactions a user has with the

system covered from end to end. As the user can interact with the system in a variety of

ways through a few channels, it is important to have coverage to account for all the

scenarios, no matter what the situation.

66

History of Work, Current Status, and
Future Work

History of Work

 Although there were multiple steps involved in finalizing this project, the milestones

are listed in the table below along with their completion dates. These were the big picture

objectives that were pre-assigned a date for submission and revised as needed, based on

the feedback given.

Milestone Completion Date
Report One February 17, 2012
Report Two March 9, 2012
Demo One March 30, 2012

Web Design April 20, 2012
AI Implementation April 23, 2012

Testing April 25, 2012
Demo Two May 2, 2012

Report Three May 3, 2012

The milestones regarding all three reports and the two demoes were all met with

ample time to review the work and revised for future submissions. The other milestones

were not exactly lined up with the Plan of Work sections mentioned in previous reports as

there were newer items being added to the web page that were either not originally

proposed and/or updated based on the feedback given. Nonetheless, all the work for the

project was done so there was time for a group review where each member would

proofread the sections of other team members to assure we were all on the same page and

that everything lined up correctly.

Current Status

 As of today, a user can access the web page and create their personal account. As a

registered user, they are given the privileges of registering a credit card(s) and vehicle(s)

to be able to place a reservation for an upcoming date. If at any time a registered user

would like to make changes to these features, they can do so on their respective editing

pages as long as they uphold the account and system limitations. All users can go to the

web page and take a look at the current garage state as well as the reservations in the

system. These functions ensure the privacy of other users by not displaying any sensitive

information, but rather just the start and end points specific to a reservation. Once all the

required information is in the database, a customer can go to the garage and park in a spot,

based on their reservation type, if space is available.

67

 In addition to all this, we are in the beginning phases of developing an android

application to allow customers to interact with the system via their phone. Although very

basic at this point, the app does create a log in screen and will take the user to the website.

Not fully functional as of yet, but further work will allow being able to log into existing

accounts and place reservations so users can do it on the fly. With all these available

features, the current implementation allows customers to work with the system in a

convenient fashion. This is accomplished by getting the minimum amount of information

from the user that will both get their request through and protect their privacy.

 Lastly, the aspect of artificial intelligence can be used to test this system. This is

accomplished by setting up a script to run on a certain time schedule. The scheduler used

in this project is called cron (Reference #12). Cron is a time-based scheduler in Unix

operating system that enables used to schedule commands to run repeatedly at certain

dates/times. This can be used to show heavy traffic on the system through having

reservations placed in large quantities at once. As this system is being hosted on GoDaddy,

the cron jobs were set up on the server, which runs Linux. It has to be enabled by logging

into that server.

Future Work

 Future work for this project will definitely be to try and expand the phone

application to allow customers to use it with the same capabilities as the web site. This

process would involve completing the application for android phones and then expanding

over to the iOS platform. This is the first step in future work because as of late 2011, over

75% of smart phone users have either android or iOS phones (Reference #11). This is a big

share of the wireless market as there are a significant number of smart phone users in the

United States and that numbers continues to grow.

 As the site is designed to be able to handle multiple garages, even though the

current implementation focuses on one, future work may involve establishing contracts

with large companies to meet the parking needs of their employees. There are many large

companies, such as Johnson and Johnson, who hold locations in urban areas where parking

isn’t easily available. These companies then turn to acquiring their own garage where their

employees can safely park without having to go through the hassle of the crowded city

environment. These contracts would be focused around one, very large customer, with a

large number of vehicles. The current system places limitations on these types of

transactions and future design may allow large scale businesses to establish custom

contracts.

68

Conclusion

 As with most software engineering endeavors, this project is challenging. There are

many factors that went into planning the approach to the parking garage automation.

Many discussions debated over which class structure might perform better or make more

sense for future system modification. The compromise is the system that is outlined in this

report.

 Given a short time period, a lot is accomplished. The website is fully functional and

able to run on mobile browsers. The database system works and can recognize a rain

check situation when the garage is full. The system is capable to store credit cards while

employing a form of security so that the credit card numbers cannot be easily stolen. The

system is also able to intelligently assign parking spots to the users.

 However, every single software project can be improved. There is room for

improvement with the current system. With more time an enhanced the GUI would be

implemented. This update includes minimizing keystrokes to accomplish a given task.

Also, sharper graphics and animations would be employed to give the user a feeling that

he/she is using a premium service. This improves on the customer satisfaction and

experience.

 Furthermore, another major improvement to accomplish is to fully finish the app.

After creating the app’s design and its features there is an unexpected problem connecting

the app to the database. The app is built on the android platform so the coding is JAVA

based. The servers use mostly http and php, but unfortunately the JAVA code is not

translated to the proper programming language in time.

 Overall, the technical challenges faced are solved with an efficient software

program. With proper project management, the system requirements and use cases used

developed a functional parking garage system. Despite some shortcomings, mostly due to

time constraint, the project helps understand the software engineering approach and its

significance. Through the software engineering application, the parking garage automation

is implemented successfully.

69

Breakdown of Responsibilities
 Bartosz Agas

o Worked on Report 1, Web Site Design, Database Structuring, Report 2,

Coding and Implementation, Simulation, Report 3 (Design of Tests)

 Christopher Tran

o Worked on Report 1, Web Site Design, Database Structuring, Report 2,

Coding and Implementation, Simulation, Report 3 (Interaction Diagrams)

 Marvin Germar

o Worked on Report 1, Web Site Design, Database Structuring, Report 2,

Coding and Implementation, Simulation, Report 3 (Class Diagram

Specficantion)

 Michael Van Genderen

o Worked on Report 1, Web Site Design, Report 2, Coding and Implementation,

Simulation, Report 3 (System Architecture and System Design), Testing

 Justin Levatino

o Worked on Report 1, Web Site Design, Report 2, Coding and Implementation,

Simulation, Report 3 (Effort Estimation), Testing

 Tarun Katikaneni

o Worked on Report 1, Web Site Design, Report 2, Coding and Implementation,

Simulation, Report 3 (Functional Requirements), Testing

70

References

1. Marsic, Ivan. Software Engineering. 2012.

2. Bruegge, Bernd, and Allen H. Dutoit. Object-oriented Software Engineering: Using

UML, Patterns, and Java. Boston: Prentice Hall, 2010

3. Bardi, James A. Hotel Front Office Management. Hoboken, NJ: John Wiley & Sons Inc.,

2007.

4. Duckett, Jon. Beginning HTML, XHTML, CSS, and JavaScript. Hoboken, NJ: Wiley,

2010.

5. Miles, Russ, and Kim Hamilton. Learning UML 2.0. Sebastopol, CA: O'Reilly, 2006.

6. Nixon, Robin. Learning PHP, MySQL, and JavaScript. Beijing: O'Reilly, 2009.

7. Ramakrishnan, Raghu, and Johannes Gehrke. Database Management Systems.

Boston: McGraw-Hill, 2003.

8. Website Template - ChocoTemplates - The Sweetest CSS Templates WorldWide. Web.

1 Feb. 2012. <http://chocotemplates.com/>.

9. “Event-Driven Architecture,” Wikipedia, <http://en.wikipedia.org/wiki/Event-

driven_architecture>

10. "Integration Testing." Software Testing Fundamentals. Web.

<http://softwaretestingfundamentals.com/integration-testing/>.

11. Mayer, Chris. "Android Rules the Yard, but IOS Developers Still Rake in the Cash."

Jaxenter.com. 23 Nov. 2011. Web. <http://jaxenter.com/android-rules-the-yard-but-

ios-developers-still-rake-in-the-cash-39531.html>.

12. "Newbie: Intro to Cron." UNIXGEEKS.ORG. Web.

<http://www.unixgeeks.org/security/newbie/unix/cron-1.html>.

13. "Strategy Design Pattern." Design Patterns and Refactoring. Web.

<http://sourcemaking.com/design_patterns/strategy>.

