
 
 
 
 
 
 

Parking Garage Automation: 

Reserve Your Spot! 
 

 
 

Software Engineering – 14:332:452 
 

Group #3:  
Bartosz Agas, Christoper Tran, Marvin Germar, Michael Genderen, Justin 
Levatino, Tarun Katikaneni 
 

URL(s): 
www.reserve-your-spot.com (Actual Website) 

www.sites.google.com/site/ece452parkinggarage (Project Tracking Site) 
 

Submission Date: 
March 2, 2012 
  



1 

Effort Breakdown 
 
All team members contributed equally 

 

  



2 

Table of Contents 

Interaction Diagrams…………………………………………………………………………….3 
Class Diagram and Interface Specification……………………………………….……8 

Class Diagram…………………………………………………………………………….…………8 
Data Types and Operation Signatures…………………………………………….…..…9 
Traceability Matrix………………………………………………………………………………11 

System Architecture and System Design………………………………………………11 
Architectural Styles ………………………………………………………………….…………11 
Identifying Subsystems ……………………………………………………………..………12 
Mapping Subsystems to Hardware ……………………………………………..…….13 
Persistent Data Storage ……………………………………………………………….……14 
Network Protocol ………………………………………………………………………….…..15 
Global Control Flow ……………………………………………………………………….…..16 
Hardware Requirements ……………………………………………………………………16 

Algorithms and Data Structures……………………………………………………..……18 
Algorithms…………………………………………………………………………………………18 
Data Structures……………………………………………………………………………………20 

User Interface Design and Implementation…………………………………………21 
Design of Tests……………………………………………………………………………………23 
Project Management and Plan of Work………………………………………………25 

Merging the Contributions from Individual Team Members………………25 
Project Coordination and Progress Report…………………………………………25 
Plan of Work………………………………………………………………………………………26 
Breakdown of Responsibilities…………………………………………………………27 

References……………………………………………………………………………………………28 
  



3 

Interaction Diagrams 

Floor Access – Use Case 3 

 

PlateReader 

 This object is a camera located in the elevator and it is responsible for extracting the 

information off the actual vehicle.  It does so by creating a new plate in the system.  The camera 

shows high cohesion since it is a physical device that handles one task, scanning the license plate 

off cars that enter the elevator. 

Controller 

 The controller is the most essential portion of this interaction as it interacts with all other 

objects within it.  When a vehicle enters the elevator, the controller will get the license plate 

number extracted by the camera and query the database for the cars reservation.  Once it finds 

the reservation is gets the start point, end point, and spot location the user requested when they 

made the reservation.  It then displays all this information on the screen in order to remind the 

user of their time limits and location within the garage.  It then proceeds to lift the elevator to the 

proper level and marking that spot as occupied in the database. 

 

 

 



4 

Database 

 The database will be responsible for maintaining the information about the customer and 

the reservation.  It means the requirements for the high cohesion principle because it takes in a 

variety of inputs and then processes the data to return the information. 

Reservation 

 A reservation object is created when the controller can successfully pull the reservation 

from the database.  It is used to extract the reservation information in order to display the 

information to the user as well as send the elevator to the proper floor. 

ElevatorDisplay and ElevatorController 

 The elevator display is an LCD panel located in the elevator that will display important 

information to the user regarding their reservation.  The elevator controller is responsible for 

taking the elevator to the proper level as instructed by the main controller.  Both these objects 

meet the specifications for low coupling because they don’t take on too many tasks at once.  

Each object simply talks to the next as shown in the diagram above. 

Reservation – Use Case 4 

 



5 

*Note: When a customer places their reservation, they are asked to enter a start point (time and 

date), end point (time and date), and a spot within the garage.  This is represented as one entry, 

for simplicity, in the above diagram as desiredReservation. 

Registered Customer 

 The registered customer will be the one initiating this interaction by placing a reservation 

request.  After the request is processed, the customer will be informed whether that reservation is 

valid or not. 

ReservationController 

 When alerted that a request for a reservation has been put in, it will prompt the user for 

the reservation information.  Once this data is received, it will forward the request to see if there 

are any conflicts with existing reservations.  Upon receiving the result, the controller will return 

to the customer whether this transaction is valid or whether the user should attempt another 

reservation. 

ReservationValidation 

 This will serve as both a connection to the database, responsible for passing messages to 

and from the database, and validating a reservation request by running it through an algorithm to 

validate it. 

Database 

The database will be responsible for maintaining the information about the customer and the 

reservation.  It means the requirements for the high cohesion principle because it takes in a 

variety of inputs and then processes the data to return the information. 

 

 

 

 

 

 

 

 

 



6 

Walk-In – Use Case 5 

 

Customer 

 The customer is the initiator in this transaction and responsible for entering the 

reservation duration and billing information accurately.  If there are no spots available at the time 

the customer arrives to the parking garage, the interaction will terminate and inform the customer 

accordingly. 

 



7 

WalkInController 

 The controller is responsible for interacting with the customer via the vacancy display 

and the system to validate all requests.  It follows the expert doer principle as it knows who and 

what should perform each task. 

Database 

The database will be responsible for maintaining the information about the customer and the 

reservation.  It means the requirements for the high cohesion principle because it takes in a 

variety of inputs and then processes the data to return the information. 

SpotController 

 This will be responsible for assigning the customer with the first available spot located in 

the ground level parking.  If the interaction reaches this point, it has been confirmed that there 

are spots available and this will pull the first available spot and assign it to this customer. 

VacancyDisplay 

 This will be solely responsible for engagin the user to find out how long the user would 

like to stay as well as how to charge them for the parking.  All users interact with this if they 

want to park on the ground level as a ‘walk-in customer.’ 

  



8 

Class Diagram and Interface Specification 

Class Diagram 

 

 



9 

Data Types and Operation Signatures 
All the classes above are broken down a little better below.  Every class contains the 

attributes associated with it as well as the operations they carry out. 

customer: 

 Attributes: 

-int customer_id 

-string first_name 

-string last_name 

-string email 

-string password 

-date dob 

-enum gender(‘Male’, ‘Female’) 

 Operation: (all operations attach customer to any created objects) 

+addCar() : creates a car and inserts into database 

+addCreditCard() : creates a credit card and inserts into database 

+newReservation() : creates a reservation and inserts into database 

parkingspot: 

 Attributes: 

-int spot_id 

-int garage_id 

-enum status(‘vacant’, occupied’, ‘reserved’) 

 Operation: 

+updateStatus() 

garage: 

 Attributes: 

-int garage_id 

-string name 

 Operation: 

+createGarage( ) 

+insertSpot( ) 

creditcard: 

 Attributes: 

-string credit_number 

-int customer_id 



10 

-string cc_name 

-string cc_type 

 Operation: 

+createCreditCard( ) 

car: 

 Attributes: 

-car_id 

-license_plate 

-us_state 

-customer_id 

 Operation: 

+createCar( ) 

+removeCar( ) 

reservations: 

 Attributes: 

-int reservation_i 

-time start_time 

-time end_time 

-date reserve_date 

-int customer_id 

-int car_id 

-int garage_id 

-int spot_id 

-enum reserve_type(‘active’, ‘canceled’, ‘overstay’, ‘understay’, ‘completed’, 

‘upcoming’) 

 Operation: 

+createReservation( ) : creates a reservation record 

+cancelReservation( ) : voids the reservation placed 

+editReservation( ) : for upcoming reservations only, changes can be made 

 

 

 



11 

Traceability Matrix 
All the classes seen above were derived from the traceability matrix.  It is here that 

all the domain concepts were merged with the use cases in order to see how the system 

will function.  Once this was set up, the classes began to form starting with user and from 

what point of view he/she would see the system.  The views were dependent on the user 

being an administrator, unregistered, or registered user.  All the essential equipment used 

throughout the garage also got involved as these pieces of equipment pulled essential 

information from the customer and/or garage in order to efficiently maintain the web 

service. 

The remainder of the classes were focused around the database as it does hold the 

key pieces to upkeep all this information.  These classes included creating credit cards, 

vehicles, and the garages along with their spots as well.  They each have their own 

respective operations within them to insert, remove, and upkeep accurate data.  This is 

reflected upon the traceability matrix as the database is involved with practically all the use 

cases created. 

System Architecture and System Design 

Architectural Styles 
An architectural style provides a framework for a system which includes software 

components, its properties, and the relationships among them.  The most useful style for 

the parking garage automation is the event-driven architecture.  This software architecture 

pattern promotes the production, detection, consumption of, and reaction to events. One 

specific event is reserving a parking spot.  It is the system’s focus, and thus is the reason 

why event-driven architecture is most suitable. 

When a parking spot is reserved, it causes software components to change and others to 

react. The table below illustrates the system’s cause and effect to an event. 

Event Before After 

Reserve none reserved 

Cancel reserved cancel 

Extend reserve, extend reserve, extend 

Overstay parked overstay 

Understay parked understay 

Missed reserved missed 

Completed reserved, overstay, understay, missed completed 



12 

 

Event-driven architecture is geared towards unpredictable and asynchronous 

environments. This is common when a customer interacts with the system.  By using event-

driven architecture, the parking garage automation sustains a stable and responsive 

system. 

 

Identifying Subsystems 
As this website will be an online service it will contain a client to interact with the user and 

a server to maintain a record of all the interactions and requests.  This is accomplished by 

the user accessing the web client through a web browser user the http protocol.  The client 

is comprised of HTML, CSS, and PHP and will interact with the server within those limits.  

User interaction will take place on the client side of the system and make function calls to 

the server in the background.  Once in the server, the client will update the tables stored 

through the operations location within the database class. 

 
 

 



13 

Mapping Subsystems to Hardware 
The model of the System calls for it to be ran on more than one computer. These computers 

can be broken into two categories; Web servers and client computers.  

Web Servers 

The web server will be used as the main database in which all of the sensors will store the 

data in. Majority of the source code will be run within the web servers. All client account 

information will be stored within the web servers. 

In addition the web server will have a container that stores empty as well as occupied 

parking spots. The web server will keep track of all of the reservations and contracts.  It 

will store a history of all of the reservations and overstays so the system can better predict 

occupancy. 

The web server will store all of the prices and fees and issue them accordingly. It will have 

the ability to contact the client via email to send reminders; such as a reminder that a 

reservation is coming up and a reminder that a payment is due.  

Client Computers 

The client computers will access the web servers via a browser website that is running on 

html code. The client computers include the elevator display, vacancy display and client’s 

personal computers.   

The client’s personal computers will access the web servers to set up an account, make a 

payment, make a reservation, create a contract and edit account information. There is an 

administrator mode that can be accessed when administrator accounts login. From 

administrator mode the user will be able to set prices and policies as well as manage 

delinquent accounts. 

The elevator display and vacancy display will access the web servers to retrieve system 

status. This includes account information as well as vacant parking spots. It will access the 

web servers in order to display reservation information to the client. 

 

 

 



14 

Persistent Data Storage 
MySQL was chosen as the database to maintain all the information acquired by the system.  

Seven tables, customer, creditcard, car, garage, parkingspot, walkin and reservation, will be 

used to hold all the relevant information pertaining to the user and their requests.  The 

tables are seen below along will their respective attributes and detail. 

 

DATABASE TABLES 
Field Type Null Extra Links 
     

customer 
customer_id int no auto increment  
first_name varchar(45) no   
last_name varchar(45) no   
email varchar(45) no unique  
password varchar(45) no   
dob date no   
gender enum(‘Male’, 

‘Female’) 
no   

     
creditcard 

credit_number varchar(45) no   

customer_id int no  customer->customer_id 

cc_name varchar(45) no   

cc_type enum(‘Visa’, 
‘Mastercard’, 
‘American Express’) 

no   

     
car 

car_id int no auto increment  
license_plate varchar(45) no   
us_state varchar(3) no   
customer_id int no  customer->customer_id 
     

garage 
garage_id int no   
name varchar(45) no   
     

parkingspot 
spot_id int no   
status enum(‘vacant’, 

occupied’, 
‘reserved’) 

no default: ‘Vacant’  

garage_id int no  garage->garage_id 
     

 
 



15 

walkin 
walkin_id int no Auto increment  
billing_name varchar(45) no   
billing_credit_number varchar(45) no   
billing_cc_type enum(‘Visa’, 

‘Mastercard’, 
‘American 
Express’) 

no   

     
reservation 

reservation_id int no auto increment  

reserve_type 

enum(‘active’, 
‘canceled’, 
‘overstay’, 
‘understay’, 
‘missed’, 
‘completed’, 
‘upcoming’) 

no   

start_point datetime no   
end_end datetime no   
spot_id date no  parkingspot->spot_id 
customer_id int no  customer->customer_id 
car_id int no  car->car_id 
garage_id int no  garage->garage_id 

 

Network Protocol 
Our service will be offered as a website and it will be hosted off of a single server/machine, 

therefore, there will not be a need to utilize any other communication protocol other than 

HTTP.  The system is still being built but it will be built in such a way that it can be adapted 

quickly; in the future, if the need for security arises, the system can be modified to accept 

other communication protocols. Also, as per the problem statement, the system is designed 

such that it communicates with our database, which stores all client names and 

information. 

 

 

 

 

 



16 

Global Control Flow 
Execution Orderness:  

Our service is two-fold; it is event-driven in that customers are required to enter in 

information regarding themselves and the vehicle that they will be parking in the garage.  It 

is procedure-driven in that as customers approach the garage, the camera based license-

plate recognition software checks each and every license plate for reservations; the floor 

sensors that act to verify if a parking spot is occupied or vacant is also procedure-driven.  

Time Dependency:  

Our system does employ timers; they serve an important role in that they measure the 

duration a customer has utilized the parking garage service. They are also used to measure 

when a customer has checked in to the garage and they also serve to inform the 

management of duration of the over-stay, if the customer over-stay’s his reservation.  

Concurrency:  

No. 

 

Hardware Requirements 
Hard-drive:  A hard-drive is needed for storing customer information.  Assuming that 

customer information per customer costs about a Megabyte of memory and there are about 

200 parking spots which would create a maximum of 71,200 customers a year (200 * 356), 

then the hard-drive should be at a minimum of 100,000 MB per year. 

Elevator Display:  The display in the elevator should be a minimum of 800x600 resolution 

since it is a little smaller and closer to the customer. 

Vacancy Display: The display in the lobby should be bigger so more people can see it at 

once.  This should be a minimum of 1280x720 resolution. 

Network Bandwidth: Since the memory cost of the customer was estimated at 1MB, then a 

bandwidth of 50 KB per second should be the minimum bandwidth.  This would mean that 

a customer would have to wait at the most 20 seconds for their memory to transfer. 

Elevator Keypad: The elevator keypad should consist of only number buttons, an enter 

button, a backspace button, and a cancel button since it is only meant to put in reservation 

numbers. 



17 

Walk-In/Park Computer:  A cheap computer should be available for walk in customers to 

make their on the spot confirmation. 

Sensor:  A light sensor or a ultrasonic sensor would both suffice to sense the vacancy of 

each parking spot while a pressure sensor is needed for the elevator. 

Servers:  There should be a minimum of one server to handle the garages reservations. 

Cameras: The cameras do not have to be too expensive as long as they can differentiate 

between license plates within a 100 meter distance. 

IPhone:  For the customers that choose to have the app, they will need an Iphone. 

Computer: To access the website, a customer will need a computer to create a reservation. 

Central Computer:  To run the whole garage in parallel, the garage will need a computer 

solely to run all of the garage programs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

Algorithms and Data Structures 

Algorithms 
Scheduling a Reservation 

The complex algorithm used to check for possible reservations is more accurately 

described as a database query.  Like an algorithm, the query follows a protocol by 

communicating with the database in a specific manner.  The protocol that is followed 

consists of steps such as retrieving, inputting, and verifying user inputs with the database.  

When a user places a reservation via the website, they select when it will begin, when it will 

end, and which spot they would like to park in.  Once this selection is made and submitted, 

the database query is put together to check to see if this reservation can be made. 

 This is accomplished by establishing a couple important ground rules with the 

database itself.  For starters, the start and end points for a reservation will be stored into 

the reservation table with a DATETIME type.  These entries are stored in the following 

format: 

‘YYYY-MM-DD HH:MM:SS’ 

This simplifies the process because the values in these fields can be compared 

directly via MySQL and don’t need to go through any concatenation.  The system begins by 

pulling all the reservations made for a particular spot, called requested_spot, via the 

following query: 

SELECT * FROM reservation WHERE spot_id=request_spot 

With this query, we pull all the reservations in our database related to that one spot.  

It will serve the first half of our nested, complex query.  The next step is to compare the 

start and end points themselves.  For demonstration purposes, let’s call the start point 

newStart and the end point newEnd.  Again, these two points are of the datetime format.  All 

time comparisons fall into one of five total categories: 

1. The best case scenario, when there is no reservation overlap and the requested 

reservation can be made. 



19 

 
2. This next case occurs when a user wishes to place a reservation that starts before an 

existing reservation and ends after it.  This overlap is an issue and the system will 
inform the user that it is not possible. 

 
3. The reverse of the previous scenario arises when a user wishes to place a 

reservation that falls right in the middle of an existing reservation.  Just like the 

previous case, this is an overlap and the system will inform the user it is not 

possible. 

 
4. Another instance of an overlap will occur when a user attempts to place a 

reservation that starts right before an existing reservation is about to end.  This is 

overlap is not acceptable and the system will inform the user.  

 



20 

5. Lastly, when a user wishes to place a reservation that will start right before an 

existing reservation is set to start.  Once again, the system will inform the user this is 

not acceptable. 

 
The following query is a generic example that will pull any of the four possible overlap 

cases:   

mysql> select * from reservation R where (R.start>=newStart and 

R.end<=newEnd) or (R.start<= newStart and R.end>= newEnd) or 

(R.start>= newStart and R.start<= newEnd) or (R.end>= newStart 

and R.end<= newEnd); 

 Once all this is put together and the final query is made, if there are any results, 

there is an overlap and the requested reservation cannot be made. 

Data Structures 
As mentioned earlier, all the information the system obtains will be stored and 

maintained in a database.  MySQL will be used to make the necessary queries and 

modifications, as well as perform the algorithms described later in this section.  It was 

chosen as it is the world’s most used relational database management system. 

 As some database queries will pull multiple entries at once, an array data structure 

is used to store all these search query results in one place.  It’s really the only data 

structure that was implemented due to its simplicity and efficiency.  Future changes to this 

system will include a map of the garage at the current time to give the user a better 

understanding of what is available.  As this portion hasn’t been implemented yet, any 

additional data structures can’t be guaranteed just yet. 

 

 

 

 



21 

User Interface Design and Implementation 

The following user interfaces are additions to the ones seen in report one.  As of 

now, there haven’t been any modifications submitted in the original report, but the 

following are to appear on the site in the near future.  Each of the following interfaces give a 

brief idea of what the final product will look like as well as an explanation as to how it work 

or what it does. 

Map of the Garage: 

 

Figure x-1: This table is a mapping of what spots are currently available or taken. The table 

is still a work in progress because it needs to be color coded. Available spots will have a 

green background while taken spots will be red. Users will be able to see all four floors via 

the online interface. The first floor is for Walk-In customers while floors two, three, and 

four will be for those who reserved spots in advance.  

 

 



22 

Administration Menu: 

 

Figure x-2: This figure shows the current administrator menu. An administrator will be 

able to access this page and change pricings as needed. More features will be added to this 

menu so that admins can have more control over pricing. For instance, admins will be able 

to change prices for holidays, weekends, and different times of the day.  

Edit Reservation: 

     (a)

    (b) 



23 

Figure x-3: This figure shows what users will see when they want to edit an online 

reservation. (a) They first have to enter their reservation number. (b) After their 

reservation number has been confirmed, users will have to fill this page out in order to 

make changes to their reservation. An error message will let the user know if the newly 

requested time slot is not available. 

 

Design of Tests 

Unit Testing 

The test cases for this system will be based of the generic class diagram, non-PHP specific, 

mentioned earlier.  The five main classes in this system are the registration, reservation, 

management, authorization, and account classes.  Unit testing will involve going through 

each of these classes and their modules, asserting them with different parameters. 

The breakdown of the testing that will be performed or the individual class is as follows: 

Registration 

 Registering a new user with information that matches data of another existing user 

in the system.  All users are uniquely identified by their email and this will be the 

essential factor in testing this. 

Reservation 

 The registration process can lead to a variety of situations and will therefore include 

testing try to expose any leaks.  This will involve inserting any reservations that 

conflict with existing reservations, including the parking spot ID, start points, and 

end points.  In addition to this, the design will also test that confirmed and 

guaranteed reservations do not conflict as they both pertain to the same spots, but 

are looked at with two different statuses.  Lastly, any revisions made to upcoming 

reservations will also be tested to find conflicts as they arise. 

Authorization 

 Authorizing is an a crucial key that grants certain users, certain privileges and 

testing this class is key to making sure order is maintained in the system.  As users 

attempt to identify themselves by either the Vacancy Display or through the 

website, their log on credentials will be passed through this class.  Testing will 

involve asserting the modules with log on credentials that both match up and 

differentiate themselves from the ones in the database. 



24 

Account 

 The account class is responsible for maintaining the information regarding the user 

and their account.  Testing in this class will involve asserting a validation process 

that will take any requested changes or additions and look them over before they 

are carried out. 

Management 

 Just like the account class, management is the same principle except it involves 

pricing and regulation for the entire system.  Therefore it will assert the modules in 

this class with parameters to validate all changes. 

 

The goal for the design of tests is to cover the interactions a user has with the system 

covered from end to end.  As the user can interact with the system in a variety of ways 

through a few channels, it is important to have coverage to account for all the scenarios, no 

matter what the situation. 

Integration Testing 

 In order to keep things simple, the big bang integration approach will be used to 

carry out the testing design described above.  The goal of the big bang method is to take all 

the individual unit test cases and combine them to form a complete or major part of the 

system.  One type of big bang integration, known as Usage Model Testing, runs testing by 

carrying out user-like workloads in user-like integrated environments.  The individual 

components are proved through this method by proving through the environment itself.  

The main focus will be to not avoid any smaller cases that may arise through the individual 

components.   

 This integration approach was chosen due to its simplicity and efficiency.  Its 

simplicity stems from its capability to cover a significant amount of individual unit cases.  

One  item that may be looked at for unit testing is the SimpleTest framework for PHP, very 

similar to JUnit.  It is built around test classes that are written as extensions of base test 

classes that extend the modules found in the actual code.  It works by asserting various 

values to methods a developer expects to be true.  This will be covered in more detail in the 

final report as it is worked into the system. 

 

 

 



25 

Project Management and Plan of Work 

Merging the Contributions from Individual Team Members 
When it comes to preparing a report in teams, many issues arise as different members will 

have their own way to go about it.  In order to ensure consistency, once all the individual 

contributions were completed, all the members of this team got together and went over all 

aspects of the report.  Once we were comfortable with what everyone had done, all the 

individual files were compiled by one or two members in order to ensure consistency 

through uniform formatting and appearance.  From there, the final rough draft is 

distributed amongst the team for proofreading and any last minute recommendations or 

changes.  It is after this step that the report is approved for submission. 

 

Project Coordination and Progress Report 
At this point, the website is up and running with several items still in the works.  A user can 

go to the parking website and register their own account.  In addition to this they can log 

onto their account through the home page and make changes to their account, credit card, 

and vehicle information.  Lastly, the reservation page allows users to place their 

reservation by selecting a start and end date.  Some items that are still being tackled are 

reservation conflicts, adaptation to drivers using their spot outside reservation time, and 

the page to view the garage and its availability.  These modifications have been worked 

since the last report submission, but still haven’t been fully implemented where they can be 

uploaded to the site for regular use. 

 



26 

Plan of Work 

 

 Web Site Design 

o As mentioned before, there are still a few aspects of the site that need to be 

added/modified.  The plan is to have it done at the end of the week in order 

to start preparing for the first demo on March 27, 2012. 

 AI Implementation 

o In order to get a better feel as to how the site will function as a large quantity 

of users interact with it, artificial intelligence will be implemented to 

demonstrate. Once activated, the threads will pull all the available spots in 

the garage from the database and then place random reservations. 

 Simulation 

o The simulation aspect of this project will be a hidden page. It will be strictly 

used to demonstrate how the artificial intelligence will interact with regular 

user actions. Its purpose is to activate the artificial intelligence and 

demonstrate how the ‘View Garage’ portion of the website will update itself 

to change the status of the individual spots. 

 Report Three 

o As the final report, report three will have an exact explanation of how the 

final product will work and function. It will specify any changes made going 

back to the original proposal. It will demonstrate how the user will interact 

with the site, what’s going on in the background, and what the management 

staff can do with it behind the scenes. 

 Testing 

3/11 3/18 3/25 4/1 4/8 4/15 4/22

Web Site Design

AI implementation

Simulation

Testing

Report Three

Pull Statistics

Plan of Work 



27 

o Predicted testing methods will primarily include unit testing. Since the user 

will interact with the website for their needs, the plan is to work on each 

page individually in order to find any faults in the design and functionality. It 

will first begin with testing the site alone and then performing the same 

testing methods as the artificial intelligence is running in the background. 

 Pulling Statistics 

o If time allows, this will be an additional page on the website. As of now, plans 

are to keep this strictly for the use of the parking garage management staff. 

It’ll be a simple run down of how many clients over stay their reservation, 

have a credit card on file, park in the garage on a day-to-day basis, and much 

more. The purpose of this is to give the staff a better idea as to what type of 

people they are dealing with on a consistent basis and how to predict future 

ideas/improvements to the garage based on these numbers. 

 

Breakdown of Responsibilities 
 Bartosz Agas 

o Worked on Report 1, Web Site Design, Database Structuring, Report 2, 

Coding and Implementation, Simulation, Report 3 

 Christopher Tran 

o Worked on Report 1, Web Site Design, Database Structuring, Report 2, 

Coding and Implementation, Simulation, Report 3 

 Marvin Germar 

o Worked on Report 1, Web Site Design, Database Structuring, Report 2, 

Coding and Implementation, Simulation, Report 3 

 Michael Van Genderen 

o Worked on Report 1, Web Site Design, Report 2, Coding and Implementation, 

Simulation, Report 3, Testing 

 Justin Levatino 

o Worked on Report 1, Web Site Design, Report 2, Coding and Implementation, 

Simulation, Report 3, Testing 

 Tarun Katikaneni 

o Worked on Report 1, Web Site Design, Report 2, Coding and Implementation, 

Simulation, Report 3, Testing 



28 

References 

 Marsic, Ivan. Software Engineering. 2012. 

 Bruegge, Bernd, and Allen H. Dutoit. Object-oriented Software Engineering: Using 

UML, Patterns, and Java. Boston: Prentice Hall, 2010 

 Bardi, James A. Hotel Front Office Management. Hoboken, NJ: John Wiley & Sons Inc., 

2007. 

 Duckett, Jon. Beginning HTML, XHTML, CSS, and JavaScript. Hoboken, NJ: Wiley, 

2010. 

 Miles, Russ, and Kim Hamilton. Learning UML 2.0. Sebastopol, CA: O'Reilly, 2006. 

 Nixon, Robin. Learning PHP, MySQL, and JavaScript. Beijing: O'Reilly, 2009. 

 Ramakrishnan, Raghu, and Johannes Gehrke. Database Management Systems. 

Boston: McGraw-Hill, 2003. 

 Website Template - ChocoTemplates - The Sweetest CSS Templates WorldWide. Web. 

1 Feb. 2012. <http://chocotemplates.com/>. 

 “Event-Driven Architecture,” Wikipedia, http://en.wikipedia.org/wiki/Event-

driven_architecture 

 


