
1

System Specification and Design:
Parking Garage Automation

Matt Edwards, Eric Wasserman,

Abdul Hassan, Juan Antialon

Group Number 2

Project URL: http://code.google.com/p/parking-garage-automation/
 http://www.park-a-lot.vacau.com/

2

Effort Estimation

The table below is a breakdown of the individual member’s contributions to each part of this
report.

 Abdul Matt Eric Juan

Summary of Changes
(5 points)

 100%

Customer Statement of Requirements
(6 points)

 50% 50%

Glossary of Terms
(4 points)

 80% 20%

Functional Requirements Specification
(37 points)

20% 30% 50%

Nonfunctional Requirements
(6 points)

 80% 20%

Domain Analysis
(25 points)

 50% 50%

Interaction Diagrams
(30+10 points)

 100%

Class Diagram and Interface Specification
(10+10 points)

50% 50%

System Architecture and Design
(22 points)

40% 60%

Algorithms and Data Structures
(4 points)

 100%

User Interface
(8 points)

100%

History of Work and Current Implementation Status
(5 points)

 50% 50%

Conclusions and Future Work
(5 points)

 60% 40%

3

References
(3 points)

 100%

Project Management
(10 points)

 50% 50%

Software Coding
(? points)

100%

Total Points Contribution 34.2 67.1 77.2 21.5

4

Table of Contents

SUMMARY OF CHANGES .. 6

CUSTOMER STATEMENT OF REQUIREMENTS .. 8

STATEMENT OF GOALS .. 8

PROBLEM STATEMENT... 8

PROPOSED SOLUTION ... 8

BUSINESS POLICIES ... 12

BUSINESS REQUIREMENTS TABLE... 15

GLOSSARY OF TERMS .. 21

FUNCTIONAL REQUIREMENTS SPECIFICATION ... 23

STAKEHOLDERS .. 23

ACTORS AND GOALS ... 23

USE CASES .. 24

Casual Description of Use Cases ... 24

Fully‐Dressed Description of Use Cases ... 28

Use Case Diagram ... 39

System Requirements ‐ Use Case Traceability Matrix ... 40

SYSTEM SEQUENCE DIAGRAMS ... 43

NON‐FUNCTIONAL REQUIREMENTS ... 47

EFFORT ESTIMATION USING USE CASE POINTS .. 48

DOMAIN ANALYSIS ... 53

DOMAIN MODELS .. 53

Domain Model for UC‐2 .. 53

Domain Model for Remaining Use Cases .. 57

SYSTEM OPERATION CONTRACTS ... 61

MATHEMATICAL MODELS .. 61

INTERACTION DIAGRAMS .. 62

THEORETICAL INTERACTION DIAGRAMS .. 62

IMPLEMENTED INTERACTION DIAGRAMS ... 63

NOTES AND CONVENTIONS .. 65

UC‐1: RESERVE ... 66

UC‐2: PARK .. 68

UC‐3: MANAGE ACCOUNT .. 73

UC‐4: VIEW RESERVATIONS ... 75

UC‐5: REGISTER .. 77

UC‐6: MANAGE GARAGE .. 79

UC‐7: EDIT RESERVATION ... 81

UC‐8: REGISTER VEHICLE .. 83

UC‐9: EDIT VEHICLE .. 85

5

UC‐10: AUTHENTICATE USER .. 87

UC‐11: SET PRICES .. 89

UC‐12: INSPECT USAGE HISTORY ... 91

UC‐13: MONTHLY BILLING .. 93

CLASS DIAGRAM AND INTERFACE SPECIFICATION .. 95

CLASS DIAGRAMS ... 95

DATA TYPES AND OPERATION SIGNATURES ... 99

DESIGN PATTERNS .. 102

OBJECT CONSTRAINT LANGUAGE (OCL) CONTRACTS .. 103

SYSTEM ARCHITECTURE AND SYSTEM DESIGN ... 106

ARCHITECTURAL STYLES ... 106

IDENTIFYING SUBSYSTEMS .. 107

MAPPING SUBSYSTEMS TO HARDWARE .. 110

PERSISTENT DATA STORAGE ... 110

NETWORK PROTOCOL ... 122

GLOBAL CONTROL FLOW ... 122

HARDWARE REQUIREMENTS ... 122

DATA STRUCTURES AND ALGORITHMS .. 124

DATA STRUCTURES ... 124

ALGORITHMS ... 125

USER INTERFACE DESIGN AND IMPLEMENTATION ... 131

HISTORY OF WORK AND CURRENT IMPLEMENTATION STATUS .. 140

CONCLUSION AND FUTURE WORK ... 142

DIRECTED ADVERTISING FOR ONLINE RESERVATIONS ... 143

MULTIPLE GARAGE INTEGRATION .. 144

CUSTOMER PARKS IN UNASSIGNED SPOT .. 145

NEW SENSORS THAT TRACK VEHICLES .. 146

DISPLAY INTERACTIVE GARAGE MAP .. 146

CODE APPENDIX .. 148

REFERENCES .. 159

6

Summary of Changes

Since this report is a collation of our first and second reports with revisions included, here we
specify the major changes we have made between the first, second, and third reports.

First Report - Third Report

Section List of Changes

Customer Statement of
Requirements

● Revised Problem and Solution to make it clearer;
● Updated Business Policies to more accurately reflect

goals of Park-A-Lot;
● Simplified Business Requirements table, split up

complex requirements into simpler ones, and added a
few new ones towards the end;

● Added Prices and Fees section to explicitly show
penalty fees.

Use Case Descriptions ● UC-2 Park was expanded to include the case of a
customer arriving early;

● Modified UC-4 to View Reservations;
● UC-7, 8 and 9 were all added;
● UC-13 MonthlyBilling was added to handle monthly

billing of registered customers.

Use Cases (Fully Dressed) ● Same modifications as above, most notably expanding
UC-2 Park.

User Interface Design ● Included screenshots and navigation paths for newly
designed and updated user interface.

Second Report - Third Report

Section List of Changes

Interaction Diagrams ● Added new section, Theoretical Diagrams, to better
explain what happened with UC-2 Park, why we did
not implement it, and what could be done with it in the
future;

● For the remaining interaction diagrams, included info
about how Model-View-Controller architecture ensures
all design principles to a high level;

● Updated UC-2 Park and UC-10 Authenticate with
design patterns;

● Added new use cases from modified Report 1.

Class Diagram ● Updated class diagram to include new classes added

7

since last iteration;
● Data Types and Op Sigs updated to include changes

to code since last iteration;
● Included short section on Design Patterns and how

they influence our class diagram;
● Added OCL section.

Data Structures and
Algorithms

● Included parking lot bitmap data structure;
● Included algorithm for scheduling reservations using

swapping;
● Included algorithm for determining best alternative

reservation;
● Included algorithm for determining discount pricing.

User Interface
Implementation

● Combined this with UI design from Report 1 into one
large section.

Code Appendix ● Added an appendix for C++ code of reservation
swapping algorithm.

8

Customer Statement of Requirements

Statement of Goals

The main goals of this software development project is to maximize the occupancy and revenue
of a parking garage and develop a user-friendly mechanism that helps customers find and
reserve available parking in the garage, either in advance or at the time of parking.

Problem Statement

The problems that are faced is as follows:

Our customer owns a parking garage that lacks a computerized system for handling the logistics
of parking vehicles efficiently, thus he/she is currently losing profit because of the lost
opportunity of not maximizing the available parking spaces. At times of peak parking in the
area, the garage may not be filled to maximum capacity since there are only primitive ways to
indicate to customers that spots are available inside.

Second, there may be a congestion problem inside the garage since customers might search for
an available spot when no spots are actually open. This congestion would decrease repeat
business, because no customer likes working with an inefficient system.

Finally, some customers may be discouraged by the possibility that driving to an area would
inconvenience them if no parking were to be available. Since the garage has no way to signal
to customers remotely to their homes that parking is available in a certain garage at a certain
time, those customers that choose to stay at home rather than “risk-it” are lost sources of
revenue.

Proposed Solution

In order to increase profits and reduce personnel costs a computerized system will be put into
place to address all three problems suggested above.

The first problem of signaling to customers who may drive by the garage and not know if any
parking is available can be solved by implementing a display at the entrance of the garage
indicating if room is available to house customers driving in off the street. The second problem,
congestion inside of the garage, can be solved by assigning customers parking space numbers
of spots in the garage, so that the customer will always know where the next available spot is.
Finally, the third problem of not knowing if parking will be available for a given date and time will
be solved by implementing a web-based system (a website) that will allow customers to create
accounts and create reservations using that account. These reservations will be simple

9

guarantees that parking will be available for the selected date and time, removing the fear of
being stuck in an area with no place to park.

To implement these changes, several new pieces of hardware will need to be adapted for use in
the garage. The system is based upon a multi-level garage that has a vehicle elevator between
levels. Cars may only enter the garage through the elevator, and can leave through a one-way
exit ramp. This elevator can only accommodate passenger vehicles, so large trucks and other
high-capacity vehicles will need to be excluded from parking here.

The remaining hardware will handle detecting if a vehicle has entered the garage, detecting a
vehicle leaving the garage, and determining if a vehicle is occupying a spot in the garage.

The final piece of our solution is a delineation between customer types: registered customers
versus walk-ins. Registered customers have created accounts with the parking garage’s online
service, and may make reservations in advance. Walk-ins are not associated with the online
service and can only park when they drive in off the street. Since this business will derive a
majority of its profits from repeat business of registered customers, we elect to have the ground
level of the parking garage allow only walk-ins to park, whereas the upper levels will be
reserved for registered customers fulfilling reservations. It is possible that at some point in the
future these restrictions could be eased, however the initial software solution will be kept simple.

The parking and reservation system will be nicknamed “Park-A-Lot”.

Devices
To accomplish the goals state above, Park-A-Lot will implement the following devices:

S1 & S2. The cameras will be installed to act as license-plate readers. S1 is the camera at the
elevator and S2 is the exit camera. The cameras will be using the license-plate recognition
system that are often used in tolls. The basic idea is that when a car arrives at the elevator
platform, S1 reads the registration number and later on S2 will read the registration number of
the vehicle leaving.

S3. There will be a sensor installed in every spot in the garage; this will help us determine
whether the spot is available or not.

D1. This digital display allows walk-ins to check on the availability of the ground level parking,
and has a built in credit card reader along it’s side. If the ground level is full, the display will
indicate so.

D2. The digital display at the elevator will display different messages according to the specific
situation. The messages that might appear in this display are: denied access to upper levels for
non-registered customers or change/edit in the reservation of a registered customer.

10

D3. The keypad will be used in the elevator in cases when the registration number is not
recognized by the camera. In this scenario, the customer will have to key in the confirmation
number given by the system at the time of the reservation.

Although, this is not specifically a device, there will be a one-way barrier at the end of the exit
driveway so that no vehicles will try to enter the higher levels of the garage.

Types of Customers

1. Registered Customers - have an online account with Park-A-Lot, can make
reservations online and receive monthly bills, and may park on the upper levels of the
garage for reservations or the lower level as a walk-in.

2. Unregistered Customers - do not have an online account and cannot make
reservations in advance. These customers must pay at the time they park, and may only
park on the ground level.

Types of Reservations and Parking
1. Recurring Reservation - A reservation that is scheduled to recur on any day(s) of the

week, starting from a start date and recurring until and end date.
2. Confirmed Reservation – A reservation that occurs only once, on the chosen date and

time.

11

The following applies to all types of reservations:

1. The reservation must be scheduled starting either on an hour or on a half-hour (i.e.
8:00am or 8:30am, but not 8:45am), and the length must be in 30-minute increments.

2. The reservation may only be extended in 30-minute increments.
3. The customer is charged a fixed rate per hour (may include special discount pricing).
4. The customer is given a 30 minute, non-extendable grace period. If the customer misses

his or her reservation, the customer will be charged a no-show penalty.

1. Reservation Parking – When a register customer arrives at the garage to fulfill a pre-
existing reservation, either a recurring or confirmed reservation.

2. Walk-In Parking – When a customer (either registered or unregistered) arrives at the
garage without an existing reservation. Parking for unregistered customers is dependent
on the available spaces in the lowest level of the garage. Parking for registered
customers depends on any available space in the garage.

Assumptions

Although our software solution will attempt to cover as many situations and scenarios as
possible, the following general assumptions will be made.

A1. The camera’s license-plate recognition system does not fail, meaning it is correct all the
time, regardless if the plate is dirty or has damages. Also, if the registration number is not
recognized by the system then is is assumed that the car does not correspond to any registered
customer.

A2. If the elevator camera’s license-plate recognition system does not identify the registration
number and the customer fails to provide a correct one then the system will display a message
on elevator display telling them to back up from the elevator. If this occurs then it is assumed
that the customer obediently leaves the elevator.

A3. The sensors that detect the occupancy of the spots work correctly all the time, disregarding
any malfunctioning of the devices. Also, every time a sensor detects occupancy it is because a
vehicle is there and not another object.

A4. The elevator will lift the car to the corresponding deck and will not make any mistakes.

A5. The customer will not fail to park at his or her assigned parking spot.

A6. If the system recognizes the vehicle’s registration number then it is assumed that the
customer driving the car is a registered customer. Specific scenarios in which a non-registered

12

customer borrows a car from a registered customer and when a car is stolen from a registered
customer are not considered.

A7. Organizations and companies may register accounts, meaning there may be multiple
vehicles and people contained within this account. Also, large organizations might make
multiple reservations during the same time period so that multiple employees may utilize the
parking garage.

A8. Lastly, the customer has access to his or her email and a cellphone. However it is not
assumed that the customer will check his or her email frequently or that the customer has a
smart phone capable of accessing web pages on the Internet or downloading apps.

A9. Parking garages are open 24 hours a day. A reservation can be made for any time of the
day.

Business Policies

1. Pricing - A recurring reservation will cost less per hour than a confirmed reservation or
walk-in, since the promise of using the spot (or facing a penalty) will increase profits.
Confirmed reservations will be priced equal to walk-in reservations since there is no
penalty for no-shows of a confirmed reservation.

2. Cancellations - It should be possible to cancel a reservation once it has been made but
prior to the start date-time of the reservation. Any reservation can be canceled before
the start date-time of the reservation, and that spot will then enter the pool of parking
spaces eligible to be doled out to customers parking in the garage. Reservations cannot
be canceled after the end of the grace period since the spot will have already been put
back into the pool of rent-able spaces.

a. Canceling a recurring reservation after the start date-time of the reservation but
before the end of the grace period results in a charge to the registered
customer’s account for the time the spot is held.

b. Canceling a confirmed reservation after the start date-time of the reservation but
before the end of the grace period results in no charge to your account.

c. Any cancellation immediately places the spot back into the pool of eligible
parking spaces.

3. Minimum Parking Time - The minimum parking time for any type of reservation will be
30 minutes. All parking times must be in 30 minute increments.

4. Discounts - Discounts should be given to customers who arrive and depart consistently
on time. A solid performance record would be 90-95% accuracy. Statistical data will be
collected on each registered customer and discounts will be given accordingly.
Unregistered customers becoming registered customers will have a blank record,
regardless of their past transactions with the system.

13

5. Rain Check Credit - If a customer arrives at the parking garage with a reservation but
all spots are occupied, the customer will be issued a credit to his or her account in the
amount of 110% of the price they expected to pay for the current reservation. This credit
can be applied to defray the costs of future bills, but will never be given as a cash refund
- more like store credit, which can only be used to pay for future parking in the garage.

Prices and Fees

The following prices and fees will apply to the Park-A-Lot garage system.

Penalty Rate for Overstays Billed at 150% of the regular hourly rate until
car leaves the lot.

Not arriving during grace period Billed 0.5 hours at the hourly rate.

Canceling a reservation within 30 minutes
of the start time

Billed 0.5 hours at the hourly rate.

14

User Interaction Requirements

Below is an overview diagram of the Park-a-Lot system concept.

The system will have the following requirements and design specifications.

1. A database that will contain:
a. All registered customers’ information;
b. All the parking reservations (past, current and future);
c. State of all available parking spots in the garage;
d. All vehicles registered to customer accounts;
e. A record of all customer transactions (i.e. garage usage history, past

reservations, punctuality or missed reservations);
f. Pricing information;

2. A system administrator role which will be allowed to
a. View the registered customers’ profiles and customer statistics;
b. Set the various prices and rates for the different services provided (i.e parking

fee for a reserved interval, overstays, and the no-show fee).
3. The customer must be able to be able to make a reservation by selecting a date and

time interval using the website for Park-a-Lot. If their desired time slot is available then
the system should allow the customer to make the parking reservation.

4. If necessary or desired, the customer is able to modify his or her existing reservation(s)
no later than 30 minutes before the start time.

5. If necessary or desired, the customer is able to extend his or her reservation end time no
later than 30 minutes prior to the end of the reservation.

6. The customer needs to be notified of his or her parking spot number upon arrival at the
garage. Since the Park-a-Lot system does not have a driver-guidance system, the
customer will need this number to find the correct spot.

15

7. If, for any circumstance, the camera’s recognition system fails to recognize the vehicle’s
registration number then the customer will be asked to log in using the keypad and his or
her customer ID number to retrieve a reservation from his or her account.

8. If the customer uses a mobile phone with internet access or another mobile computing
device to access Park-A-Lot, the software has to have an easy and simple interface that
allows the customer to manage his or her account and reservations quickly. In order to
accomplish this task, the number of inputs (data entries) necessary should be kept to a
minimum.

Business Requirements Table

Identifier Requirement

REQ0 Any person may create a registered customer account using the Park-A-
Lot website. To register, a customer must supply an email address and
password combo, their first and last name, and a valid credit card before
they can make any reservations.

REQ1 A registered customer may park to fulfill a reservation. The elevator
camera will recognize the plate on the car, and a spot number will be
displayed to the customer in which they should park.

REQ2 A registered customer may park as a walk-in. If the car’s license plate
number is recognized then they will have to enter in the desired end time
on the elevator keypad. If the license plate number is not recognized,
the customer will have to enter his or her customer ID and password and
then enter the desired park time. The system will then look for an
available parking spot on any level of the garage.

REQ3 When an unregistered customer enters the garage their license plate
number will not be recognized by the system and they will have to
indicate that they wish to park as a walk-in. The system will then search
for available parking spots in the ground level and assign one to the
customer.

REQ4 In the scenario that the customer does not show up on time for a
reservation then the spot will be held for a “grace period”. If the customer
arrives at the garage to park before the grace period expires then he or
she will be able to park for the duration of the reservation but will be
billed for the the entire period reserved. All types of reservations have a

16

fixed grace period of one half-hour.

REQ5 Missing a reservation occurs when a customer fails to arrive before the
end of the grace period. A missed reservation cannot be fulfilled, and the
time of the grace period that the spot was held for will be billed to the
customer. If the customer arrives for a reservation late he or she will be
prompted to park as a walk in.

REQ6 In the scenario that the customer leaves the garage before his/her
reservation expires then it is considered an understay. When this occurs
the customer will still have to pay for the full reserved time. The sensor
will recognize that the spot is vacant or available and will inform the
system so that the spot can be assigned for another reservation.

REQ7 In the scenario that the customer does not leave on time and stays over
his/her reserved time, this is called an overstay. The customer will be
billed for any overage time at 1.5 times the hourly rate, known as the
penalty rate.

REQ8 A registered customer may edit a reservation’s end time no later than
half an hour before the current end time if and only if there is space
available in the garage for the new end time. This procedure can be
done unlimited times as long as there are available spots in the garage.
The new end time can be extended or decreased by at most 90 minutes
at a time.

REQ9 A customer may cancel a reservation up to 30 minutes before the
reservation start time without being billed for any of the reservation.
Cancellations within 30 minutes of the start time cause the customer to
be billed for the grace period.

REQ10 Each registered customer can have multiple unfulfilled reservations
under his/her customer account.

REQ11 In the scenario that a registered customer arrives to the garage but it is
full because other customers have overstayed the system will ask a
registered customer to leave without parking and he or she will be
credited a rain check to his or her account. Unregistered customers will
simply be told there is no vacancy.

REQ12 Registered customers will be billed at the end of a month for charges
incurred in that month, and the system will create a statement which will
be emailed to the customer containing all of the parking and penalty
fees, with each parking reservation itemized on the bill. The bill can be
paid with the credit-card on file with the customer’s account. The bill

17

must be paid within 25 days of it being emailed to the customer.

REQ13 Each garage will have a system administrator who can set and change
prices and penalty fees for that garage. The system administrator will
also be able to view the garage history report which will include
meaningful information regarding overstays, understays, etc.

REQ14 Registered Customers can register any number of vehicles under their
account. Each vehicle must abide by the state’s license plate format
when registering. If a vehicle has a vanity license plate then the user will
still be able to register that vehicle. A registered customer will also be
allowed to edit or delete existing vehicles.

REQ15 Registered Customers can make a single reservation for the parking
garage through their account on the website by entering the start time,
end time, and date of a desired reservation. The customer will be
notified if the garage is full and cannot handle a reservation for a given
time or date.

REQ16 Registered Customers can reserve multiple parking spots at once. A
recurring reservation is defined by the day(s) of the week on which it will
recur, and the date by which the recurrence should end, in addition to the
start time and end time of the reservation. Recurring reservations will be
scheduled starting on the date selected, and then repeated on all
selected days of the week until the end date is reached.

REQ17 Reservations must be made in 30 minutes increments, and must start
either on the top of an hour or at the half-way point between hours.

REQ18 Vehicles may only be registered to one user at a time.

REQ19 If the license plate registered for the reservation differs from what license
plate parked at the garage, the user will be notified during the next login
to the website and asked to register the vehicle with his or her account.

REQ20 Registered Customer can arrive early for a reservation, and be offered
the option to park as a walk-in and have that parking carry over to their
reservation.

18

Identifier Requirement Use Case

REQ0 Any person may create a registered customer account using the
Park-A-Lot website. To register, a customer must supply an email
address and password combo, their first and last name, and a valid
credit card before they can make any reservations.

UC-5

REQ1 A registered customer may park to fulfill a reservation. The elevator
camera will recognize the plate on the car, and a spot number will
be displayed to the customer in which they should park.

UC-2

REQ2 A registered customer may park as a walk-in. If the car’s license
plate number is recognized then they will have to enter in the
desired end time on the elevator keypad. If the license plate
number is not recognized, the customer will have to enter his or her
customer ID and password and then enter the desired park time.
The system will then look for an available parking spot in the ground
level.

UC-2

REQ3 When an unregistered customer enters the garage their license
plate number will not be recognized by the system and they will
have to indicate that they wish to park as a walk-in. The system will
then search for available parking spots in the ground level and
assign one to the customer.

UC-2

REQ4 In the scenario that the customer does not show up on time for a
reservation then the spot will be held for a “grace period”. If the
customer arrives at the garage to park before the grace period
expires then he or she will be able to park for the duration of the
reservation but will be billed for the the entire period reserved. All
types of reservations have a fixed grace period of one half-hour.

UC-2

REQ5 Missing a reservation occurs when a customer fails to arrive before
the end of the grace period. A missed reservation cannot be fulfilled,
and the time of the grace period that the spot was held for will be
billed to the customer. If the customer arrives for a reservation late
he or she will be prompted to park as a walk in.

UC-2

REQ6 In the scenario that the customer leaves the garage before his/her
reservation expires then it is considered an understay. When this
occurs the customer will still have to pay for the full reserved time.
The sensor will recognize that the spot is vacant or available and will
inform the system so that the spot can be assigned for another
reservation.

UC-2

19

REQ7 In the scenario that the customer does not leave on time and stays
over his/her reserved time, this is called an overstay. The customer
will be billed for any overage time at 1.5 times the hourly rate,
known as the penalty rate.

UC-2

REQ8 A registered customer may edit a reservation’s end time no later
than half an hour before the current end time if and only if there is
space available in the garage for the new end time. This procedure
can be done unlimited times as long as there are available spots in
the garage. The new end time can be extended or decreased by at
most 90 minutes at a time.

UC-7

REQ9 A customer may cancel a reservation up to 30 minutes before the
reservation start time without being billed for any of the reservation.
Cancellations within 30 minutes of the start time cause the customer
to be billed for the grace period.

UC-7

REQ10 Each registered customer can have multiple unfulfilled reservations
under his/her customer account.

UC-4

REQ11 In the scenario that a registered customer arrives to the garage but
it is full because other customers have overstayed the system will
ask a registered customer to leave without parking and he or she
will be credited a rain check to his or her account. Unregistered
customers will simply be told there is no vacancy.

UC-13

REQ12 Registered customers will be billed at the end of a month for
charges incurred in that month, and the system will create a
statement which will be emailed to the customer containing all of the
parking and penalty fees, with each parking reservation itemized on
the bill. The bill can be paid with the credit-card on file with the
customer’s account. The bill must be paid within 25 days of it being
emailed to the customer.

UC-13

REQ13 Each garage will have a system administrator who can set and
change prices and penalty fees for that garage. The system
administrator will also be able to view the garage history report
which will include meaningful information regarding overstays,
understays, etc.

UC-6, UC-
11, UC-12

REQ14 Registered Customers can register any number of vehicles under
their account. Each vehicle must abide by the state’s license plate
format when registering. If a vehicle has a vanity license plate then
the user will still be able to register that vehicle. A registered
customer will also be allowed to edit or delete existing vehicles.

UC-8, UC-
9

20

REQ15 Registered Customers can make a single reservation for the parking
garage through their account on the website by entering the start
time, end time, and date of a desired reservation. The customer will
be notified if the garage is full and cannot handle a reservation for a
given time or date.

UC-1

REQ16 Registered Customers can reserve multiple parking spots at once.
A recurring reservation is defined by the day(s) of the week on
which it will recur, and the date by which the recurrence should end,
in addition to the start time and end time of the reservation.
Recurring reservations will be scheduled starting on the date
selected, and then repeated on all selected days of the week until
the end date is reached.

UC-1

REQ17 Reservations must be made in 30 minutes increments, and must
start either on the top of an hour or at the half-way point between
hours.

UC-1

REQ18 Vehicles may only be registered to one user at a time. UC-8

REQ19 If the license plate registered for the reservation differs from what
license plate parked at the garage, the user will be notified during
the next login to the website and asked to register the vehicle with
his or her account.

UC-8, UC-
2

REQ20 Registered Customer can arrive early for a reservation, and be
offered the option to park as a walk-in and have that parking carry
over to their reservation.

UC-2

21

Glossary of Terms

Cancelled Reservation - a reservation that has been cancelled, either by the customer at least
thirty minutes prior to the start date time of the reservation or by the expiration of the grace
period.

Confirmed Reservation - a reservation made in advance with a fixed grace period of thirty
minutes.

Customer ID - the email address a customer uses to register with the online Park-A-Lot system.

Elevator Camera - an image capturing camera capable of utilizing image recognition to
determine the license plate number on a vehicle inside the parking garage elevator.

Elevator Display - an LCD screen located inside the parking garage elevator for displaying
information.

Elevator Keypad - a 102/105-key keyboard located inside the parking garage elevator for
inputting information.

Exit Camera - same as elevator camera, and capable of using image recognition on license
plates of vehicles exiting the garage.

Extended Reservation - A reservation that has been extended past the original end time.

Grace Period - the amount of time a customer is allowed to be late to check in for a reservation
before the reservation is cancelled.

Missed Reservation - when a customer fails to arrive before the grace period is over.

No-Show Penalty - A fee a customer is assessed if he or she fails to fulfill a reservation before
the expiration of the grace period.

No Vacancy - The parking garage is full and is not walk-in parking at this time.

Overstay - when a customer fails to depart at the scheduled time.

Penalty Rate - the rate a customer who overstays his or her reservation is charged for that
overage time, 1.5 times the hourly rate.

22

Rain Check Credit - it is a credit given to the customer when he or she arrives at the parking
garage and no spots are available to park in.

Reservation - an arrangement to park in a parking garage for a fixed amount of time at a
certain fee per hour.

Recurring Reservation - a reservation, made in advance with a variable grace period, that
occurs on some regularly repeating schedule.

Reservation Parking - when a customer parks at the garage to fulfill a pre-existing reservation
(either recurring or confirmed).

Spot Sensors - sonar sensors capable of determining whether a parking spot inside the garage
is occupied with a car or not.

System Administrator - person who will have deep access to the system, and be able to alter
business requirements such a parking prices.

Understay- when a customer leaves the garage before his scheduled time of departure.

Walk In Parking - when a customer parks on-the-spot at a parking garage without a pre-
existing reservation.

23

Functional Requirements Specification

Stakeholders

A stakeholder is anyone who has interest in this system (users, managers, sponsors, etc.).
1. Registered Customers
2. Unregistered Customers
3. Garage Owner / Company
4. System Administrator
5. Security Personnel
6. Nearby Retail / Entertainment

Actors and Goals

An actor is anyone who will directly interact with the system. The two types of actors are
initiating and participating.

1. Initiating
a. Registered Customer
b. Unregistered Customer
c. System Administrator
d. Timer

2. Participating
a. Elevator Keypad
b. Elevator Display
c. Elevator Camera
d. Spot Sensors
e. Exit Camera
f. Database
g. Event Log

24

Use Cases

Casual Description of Use Cases

UC-1 Reserve
A registered customer wants to make a reservation (either one-time or recurring). After being
authenticated by the system, the system will show a reservation form. The user will input all
required information (date and time, length of stay, etc.) and submit. The system will then
validate the information submitted and create the users reservation, storing the data in the
database.

UC-2 Park
A customer (registered or unregistered) arrives at the garage and wants to park. The customer
drives up to the elevator, where the elevator camera will read the customers license plate
number.

If the customer is a registered customer, the elevator display will show the customers
reservation information as well as assign a spot to park. The elevator will then bring the car to
the correct floor where the spot resides so that the user can park.

If the customer is an unregistered customer, the system will check for open spots on the ground
floor, and inform the customer of open spots. The customer will then swipe his/her credit card
before driving though to park.

Finally, if the customer arrives early to his or her reservation, the following applies:

1. Check their license plate for a future reservation, and if found ask if they are there for
that reservation.

a. If yes, and if the upcoming reservation is within some time limit (30 minutes
before the start time), then if there is available parking they may park, and be
charged for the additional time at the rate per hour of their soon to be occurring
reservation.

b. If the user arrives very early (more than 30 minutes before start time), they will
have to park as a walk-in until the start time of their reservation. This would also
require us to make a note that the walk-in reservation would coincide directly with
their upcoming scheduled reservation, meaning that the customer should not be
expected to leave the walk-in parking and re-enter the garage to fulfill their
scheduled reservation. We will assume the walk-in parking will continue directly
to the actual reservation scheduled. The billing should be at a walk-in rate for the
walk-in, and at the regular rate for the reservation.

c. Finally, if no spots are available, the customer will be told they cannot park at this
time.

2. If the license plate isn't recognized, we prompt for credentials, and follow the instructions
given in (1) if the customer is registered with a reservation in the future for that day.

25

3. If all else fails, the customer can park as a walk-in.

UC-3 Manage Account
A registered customer wants to change their account details (email, password, address, credit
card info, etc.). After first being authenticated by the system, the customer will be presented with
a pre-filled form with all of their existing information. The customer will make whatever changes
he/she wishes to make and submit. The system will validate the information and save it in the
database.

UC-4 View Reservations
A registered customers wants to make changes to existing reservations on their account. After
first being authenticated, the user will be presented with a list of all of their current and future
reservations as well as an option to edit a reservation. The edit reservation option is a sub use
case.

UC-5 Register
An unregistered customer wants to register a new account. The system will show a registration
form, which the user will fill out and submit. The system will then validate the submitted
information (name, address, email, password, credit card info) and store it in the database,
assigning the user a unique customer id.

UC-6 Manage Garage
A system administrator wants to manage the garage remotely. After being authenticated by the
system, the administrator will be presented with options to set parking prices, inspect usage
history, as well as view current usage. All options are sub-use cases described later.

UC-7 Edit Reservation
A registered customer wants to edit a reservation (change the end time or cancel it). After first
being authenticated by the system, the customer will choose which reservation they wish to
change and submit. The system will then present the user with a form to either change the end
time of the reservation or cancel it. Canceling it can only be done at least 30 minutes before the
start of the reservation and changing the end time of a reservation must be done at least 30
minutes before the original end time. The system will then mark the reservation as edited if the
end time is changed or canceled if it was canceled and inform the customer.

UC-8 Register Vehicle
A registered customer wants to register a vehicle for his/her account. After first being
authenticated by the system, the system will show a form, which the user will fill out and submit.
The system will then validate the submitted information (license plate number, state, color) and
store it in the database, assigning the user a unique vehicle id.

UC-9 Edit Vehicle

26

A registered customer wants to change the details of a registered vehicle (license plate number,
state, color). After first being authenticated by the system, the customer will be presented with a
list of their current vehicles. The customer will choose one to edit. The system will then present
the customer with a form to fill out. The customer will also have the option to delete the vehicle.
The customer will make whatever changes he/she wishes to make and submit. The system will
validate the information and save it in the database.

UC-10 Authenticate User
A registered customer wants to log in to the system. The system will present a log in form
(email, password) which the customer will fill out and submit. The system will search for and find
the customer in the database. The system will then start a session for the user, which will last
until the user logs out or closes his/her browser.

UC-11 Set Prices
A system administrator wants to set the prices for his/her garage. After first being authenticated
by the system, the system will present a form displaying all acceptable* prices. The
administrator will then choose a price and submit. The system will then validate and store the
price in the database.

* Acceptable prices would need to be shown so that the administrator cannot set arbitrarily high
(or low) prices.

UC - 12 Inspect Usage History
A system administrator wants to view the usage history of his/her garage. After first being
authenticated by the system, the system will gather all statistical data about their garage
(overstay/understay percentages, etc.)

UC - 13 Monthly Billing
The timer will perform the use case every 30 days. For each registered customer, the timer will
extract all reservations not canceled for the previous month and create a bill out of the data but
adding up the reservation charges and penalties. The bill will then be emailed to the registered
customers.

27

Actor’s Goal Tables

Initiating Actors Actor’s Goal Use Case Name

Registered
Customer

To obtain a reservation for a parking spot for a
given duration in advance.

Reserve (UC-1)

Registered
Customer

To park in a parking spot to fulfill a reservation. Park (UC-2)

Registered
Customer

To manage the details of customer account. ManageAccount (UC-
3)

Registered
Customer

To view existing reservations in the customer’s
account.

ViewReservations
(UC-4)

Registered
Customer

To create a new vehicle with a valid license plate
number, state, and color.

RegisterVehicle (UC-
8)

Registered
Customer

To edit an existing vehicle’s license plate number,
state, or color, or to delete it.

EditVehicle (UC-9)

Unregistered
Customer

To park in a parking spot for a given duration. Park (UC-2)

Unregistered
Customer

To register for an account and become a
Registered Customer.

Register (UC-5)

System Admin To manage the parking garage prices and view
parking usage history and statistics.

ManageGarage (UC-
6)

Timer To send out a monthly bill to each customer
including all of their reservations charges plus
penalties.

MonthlyBilling (UC-
12)

Participating Actor Actor’s Goal Use Case Name

Elevator Keypad To consume information. UC-2

Elevator Display To display information. UC-2

Elevator Camera To obtain license plate info from car. UC-2

Spot Sensors To determine if spot is occupied. UC-2

Exit Camera To determine when a car leaves. UC-2

Database To store and manage data. All use cases

28

Fully-Dressed Description of Use Cases

Use Case UC-1: Reserve

Related Requirements: REQ15, REQ16, REQ17

Initiating Actor: Registered Customer

Actor’s Goal: To reserve a parking spot for a future date and time.
Participating Actors: Database

Preconditions: Registered Customer is currently logged into the System.
include::AuthenticateUser (UC-10)

Postconditions: The System reserves the requested date and time for the
customer in the Database.

Flow of Events for Main Success Scenario:

→ 1. Registered Customer selects menu option “Make Reservation”.

→ 2. Registered Customer selects the desired date, start time, and end time for the
reservation, along with any additional options (i.e. for a recurring reservation the customer
may wish to extend the grace period).

← 3. System (a) checks the reservation Database for available reservations, (b) notifies
Registered Customer that the reservation is made, and (c) updates the Database to
include the new reservation.

Flow of Events for Extensions (Alternate Scenarios):

3a. System cannot find an available reservation for the specified date and time.

← 1. System (a) logs the attempted reservation and (b) signals to the Registered
Customer.

→ 2. Registered Customer selects a different date and time to make a reservation.

 3. Same as in step 4.

3b. System finds a conflicting reservation from Registered Customer’s account.

←
1. System notifies customer that he or she already has a reservation or part of a
reservation during that date and time.

→
2(a). Registered Customer can choose to cancel the existing reservation in favor of the
new reservation. include::EditReservation (UC-7). Then same as in step 4.

→
2(b). Registered Customer can choose to book overlapping reservations. Then same
as in step 4.

29

Use Case UC-2: Park

Related Requirements: REQ1, REQ2, REQ3, REQ4, REQ5, REQ6, REQ7,

REQ19, REQ20
Initiating Actor: Registered Customer, Unregistered Customer (collectively

Customer)
Actor’s Goal: To park in the garage.

Participating Actors: Elevator Display, Elevator Camera, Elevator Keypad, Spot
Sensor Exit Camera, Database

Preconditions: The elevator is currently empty.

Postconditions: System marks reservation as completed in database.

Flow of Events for Main Success Scenario:

→ 1. Customer enters the elevator.

 2. Elevator Camera recognizes license plate of vehicle.

← 3. Elevator Display displays any reservations returned from the Database the customer
may have for the current date.

→ 4. Customer selects a reservation.

←
5. System (a) assigns an optimal spot to the Customer and (b) displays the parking
spot on the Elevator Display.

→ 6. Customer exits the elevator.

 ← 7. Spot Sensor notifies the System when a vehicle is parked in the assigned parking
space.

←
8. Spot Sensor notifies the System when a vehicle is no longer parked in the assigned
space.

 9. Customer exits parking garage and is recorded by Exit Camera.

Flow of Events for Extensions (Alternate Scenarios):

2a. Elevator Camera fails to recognize license plate of vehicle.

←
1. Elevator Display prompts Customer for either (1) a registered customer ID or (2) a
method of payment for a walk in.

→
 1(a). Registered Customer enters ID number, password, and license plate number
into
 Elevator Keypad.

 1(b). include::AuthenticateUser (UC-10)

 1(c). Same as in step 3.

→ 2(a). Customer slashes credit card to pay.

30

← 2(b). Elevator Display prompts user for reservation length.

→ 2(c). Customer enters reservation duration into Elevator Keypad.

 2(d). Same as in step 5.

3a. Customer arrives early for reservation.

 1. If the reservation start time is within 30 minutes of the current time, then

→
 1(a). If parking spaces are available in the garage, then modify the start time of the
reservation by 30 minutes so that Customer may park immediately.

 1(b). Same as in 3.

 2. If the reservation start time is more than 30 minutes from the current time, then

 2(a). Same as in (3b).

 2(b). Make note that the Customer will not be required to leave the assigned spot to
fulfill his or her upcoming reservation.

3b. Customer does not have any existing reservations.

← 1. System prompts user for reservation length.

→ 2. Customer enters reservation duration into Elevator Keypad.

 3. Same as in step 5.

3c. Customer arrives after grace period has expired.

←
1. Customer is informed that grace period has expired and is offered the chance to park
as a walk-in if space is available.

 2. Same as in 5.

Use Case UC-3: Manage Account

Related Requirements: None
Initiating Actor: Registered Customer

Actor’s Goal: To edit the details of a customer’s account.

Participating Actors: Database

Preconditions: Registered Customer is currently logged in to the system.
include::AuthenticateUser (UC-10)

Postconditions: Changes to Database are committed.

Flow of Events for Main Success Scenario:

→ 1. Registered Customer selects menu option “Manage Account”.

31

← 2. System (a) displays current user account details, and (b) prompts Registered
Customer to make changes to desired fields.

→ 3. Registered Customer makes the necessary changes to the form.

← 4. System verifies that the changes made are valid.

Use Case UC-4: View Reservations

Related Requirements: REQ10

Initiating Actor: Registered Customer

Actor’s Goal: To view existing reservations and edit any reservations.
Participating Actors: Database

Preconditions: Registered Customer is currently logged in to the system.
include::AuthenticateUser (UC-10)

Postconditions: Changes to Database are committed.

Flow of Events for Main Success Scenario:

→ 1. Registered Customer selects menu option “View Reservations”.

←
2. System displays any active or future reservations returned from the Database
the customer may have and displays options for editing reservations.

→
3. Registered Customer selects one of the reservations or multiple reservations (if
they are recurring) to edit and follows the corresponding instructions or does not
select any reservation.

 ← 4. System (a) stores the changes made in the Database, and (b) signals to the
Registered Customer the successful change.

Flow of Events for Extensions (Alternate Scenarios):

3a. Selected activity entails editing the reservation.

 1. include::EditReservation(UC-7).

32

Use Case UC-5: Register

Related Requirements: REQ0
Initiating Actor: Unregistered Customer

Actor’s Goal: To create an account and become a Registered Customer.
Participating Actors: Database
Preconditions: Unregistered Customer has a valid email address with which to

register.
Postconditions: The System stores all of the newly Registered Customer’s

information in the Database.

Flow of Events for Main Success Scenario:

→ 1. Unregistered Customer accesses System and selects menu option “Create
Account”.

→ 2. Unregistered Customer fills in personal info: name, address, state, zip, phone
number, email address, password, billing credit card number and submits the info.

← 3. System (a) checks that all fields have been filled in, (b) verifies the email address is
valid and unique within the Database, (c) verifies the credit card information is valid,
and (d) updates the database to include the new Registered Customer.

→ 4. New Registered Customer can now make reservations in advance.

Flow of Events for Extensions (Alternate Scenarios):

3a. System identifies that not all of the fields have been filled in on the registration form.

←
1. System (a) detects error and (b) signals to the Unregistered Customer that they
must complete the form and resubmit.

→ 2. Unregistered Customer fills in the missing data fields and resubmits the form.

 3. Same as in step 3.

3b.
System identifies that email address is invalid or has already been registered with
the website

←

1. System (1) notifies the Unregistered Customer that the email address is invalid
prompts the Unregistered Customer to change that information or (2) detects that
the email address has already been registered in the system and alerts the
Unregistered Customer that the email address has already been registered and to
attempt to log into the account.

→
 1(a). Unregistered Customer changes the email address field and resubmits the
form.

33

 1(b). Same as in step 3.

 2(a). Registered Customer leaves registration area.

3c. System could not verify the credit card information.

←
1. System prompts the Unregistered Customer to re-enter their credit card
information.

→
2. Unregistered Customer changes the information in the credit card field and
resubmits.

 3. Same as in step 3.

Use Case UC-6: Manage Garage

Related Requirements: REQ13

Initiating Actor: System Admin

Actor’s Goal: To set parking prices or inspect usage history.

Participating Actors: Database, Event Log

Preconditions: System Admin is currently logged in to the system.
include::AuthenticateUser (UC-10)

Postconditions: Changes to System are committed and System Admin is
logged out.

Flow of Events for Main Success Scenario:

→ 1. System Admin selects menu option “Manage Garage”.

← 2. System displays options for: (a) setting prices, (b) inspecting parking usage
history.

→
3. System Admin selects one of the options from Step 2 and performs
management activities.

→ 4. System Admin commits changes to System.

 5. System verifies and commits changes to Database.

 6. System Admin logs out of his or her account.

Flow of Events for Extensions (Alternate Scenarios):

3a. Selected activity entails setting parking garage prices.

 1. include::SetPrices (UC-11).

3b. Selected activity entails viewing access history.

 1. include::InspectUsageHistory (UC-12).

34

Use Case UC-7: EditReservation (sub-use case)

Related Requirements: REQ8, REQ9

Initiating Actor: Registered Customer

Actor’s Goal: To extend an existing reservation.

Participating Actors: Database

Preconditions: Some reservations exist for the Registered Customer in the
Database.

Postconditions: Extended reservation is marked as extended in the Database
and the start and/or end time is updated accordingly.

Flow of Events for Main Success Scenario:

←
1. System (a) displays reservation(s) that the Registered Customer selected,
and (b) prompts the Registered Customer to change the end time or cancel the
reservation(s).

→ 2. Registered Customer makes the desired selections / changes.

← 3. System (a) checks the database to see if the extensions can be made, and (b)
notifies the Registered Customer that the reservations have been extended.

 4. System updates the database to include the changes to the reservation(s).

Flow of Events for Extensions (Alternate Scenario):

3a. System identifies that the extension cannot be made due to reservation conflict.

← 1. System notifies the Registered Customer that the parking deck is completely
booked and the reservation cannot be extended.

 2. Same as in step 1 above.

Use Case UC-8: RegisterVehicle

Related Requirements: REQ14

Initiating Actor: Registered Customer

Actor’s Goal: To register a vehicle.

Participating Actors: Database

35

Preconditions: Registered Customer is currently logged in to the system.
include::AuthenticateUser (UC-10

Postconditions: The system stores the new vehicle information in the database.

Flow of Events for Main Success Scenario:

→ 1. Registered Customer selects menu option “Register Vehicle”.

→
2. Registered Customer enters the license plate number, the state, and the color
of the vehicle.

← 3. System verifies that the license plate number is valid based on the state
selected.

 4. System stores the new vehicle information in the database.

Flow of Events for Extensions (Alternate Scenario):

3a. System identifies that the license plate number is not valid.

← 1. System notifies the Registered Customer that the license plate number is not
valid.

 2. Same as in step 2 above.

Use Case UC-9: EditVehicle

Related Requirements: REQ14

Initiating Actor: Registered Customer

Actor’s Goal: To register a vehicle.

Participating Actors: Database

Preconditions: Registered Customer is currently logged in to the system.
include::AuthenticateUser (UC-10

Postconditions: The system stores the new vehicle information in the database.

Flow of Events for Main Success Scenario:

→ 1. Registered Customer selects menu option “Register Vehicle”.

→
2. Registered Customer enters the license plate number, the state, and the color
of the vehicle.

← 3. System verifies that the license plate number is valid based on the state
selected.

 4. System stores the new vehicle information in the database.

36

Flow of Events for Extensions (Alternate Scenario):

3a. System identifies that the license plate number is not valid.

← 1. System notifies the Registered Customer that the license plate number is not
valid.

 2. Same as in step 2 above.

Use Case UC-10: AuthenticateUser (sub-use case)

Related Requirements: None
Initiating Actor: Registered Customer, System Admin (collectively User)
Actor’s Goal: To be positiviely identified by the system.

Participating Actors: Database

Preconditions: The database contains user account information.
Postconditions: None

Flow of Events for Main Success Scenario:

← 1. System prompts the user for their customer ID and password.

→ 2. User supplies a valid customer ID and password.

← 3. System (a) verifies that the customer ID and password are valid, and (b) signals
to the user the identification validity.

Flow of Events for Extensions (Alternate Scenarios):

2a. User enters an invalid customer ID and password combination.

← 1. System (a) detects error, (b) marks a failed attempt, and (c) and signals to the
User the credentials are invalid.

←
 1(a). System (a) detects that the count of failed attempts exceed the
maximum number, (b) informs the user to try again in 15 minutes, and (c) exits
the screen.

→ 2. User supplies a valid customer ID and password.

 3. Same as in step 3.

37

Use Case UC-11: Set Prices (sub-use case)

Related Requirements: REQ13

Initiating Actor: System Admin

Actor’s Goal: To set the parking prices and penalty fees for a particular
garage.

Participating Actors: Database

Preconditions: System Admin is currently logged into the system.
include::AuthenticateUser (UC-9)

Postconditions: Price changes are stored in the Database.

Flow of Events for Main Success Scenario:

→ 1. System Admin selects the menu option “Set Prices”.

← 2. System prompts for the garage location.

→ 3. System Admin selects the appropriate garage(s).

←
4. System prompts for pricing options including recurring reservation parking rate,
confirmed reservation parking rate, penalty fees, etc.

→ 5. System Admin enters in the desired prices.

← 6. System prompts the user to confirm the desired changes.

→ 7. System Admin selects “Yes, confirm the pricing changes”.

← 8. System updates the Database to include the new pricing options for the garage.

Flow of Events for Extensions (Alternate Scenario):

7a. System Admin selects “No, I have made a mistake”.

 1. Same as in step 4..

Use Case UC-12: Inspect Usage History (sub-use case)

Related Requirements: REQ13

Initiating Actor: System Admin

Actor’s Goal: To examine the usage history of a particular garage.
Participating Actors: Database

Preconditions: System Admin is currently logged into the system.

38

include::AuthenticateUser (UC-9)

Postconditions: None

Flow of Events for Main Success Scenario:

→ 1. System Admin selects the menu option “Inspect Usage History”.

← 2. System prompts for search criteria including garage location, start date, and end
date.

→ 3. System Admin specifies the search criteria and submits.

←
4. System prepares a database query that best matches the actor’s search criteria
and retrieves the records from the Database.

→ 5. Database returns the matching records.

←
6. System (a) additionally filters the retrieved records to match the actor’s search
criteria, (b) renders the remaining records for display, and (c) shows the result for
the System Admin to view.

Use Case UC-13: MonthlyBilling

Related Requirements: REQ11, REQ12

Initiating Actor: Timer
Actor’s Goal: To generate and send a monthly bill to every registered

customer in the database.
Participating Actors: Database

Preconditions: It is the last day of the month.

Postconditions: None

Flow of Events for Main Success Scenario:

→ 1. Timer notifies the System that it is the last day of the month

← 2. System queries the Database for all registered customer IDs.

← 3. System queries the database for all accumulated parking hours and fees for
each registered customer.

←
4. System (a) calculates the total charges (b) generates a bill from the
calculations, and © emails one to each registered customer.

39

Use Case Diagram

40

System Requirements - Use Case Traceability Matrix

Identifier Requirement Use Case

REQ0 Any person may create a registered customer account using the
Park-A-Lot website. To register, a customer must supply an email
address and password combo, their first and last name, and a valid
credit card before they can make any reservations.

UC-5

REQ1 A registered customer may park to fulfill a reservation. The
elevator camera will recognize the plate on the car, and a spot
number will be displayed to the customer in which they should
park.

UC-2

REQ2 A registered customer may park as a walk-in. If the car’s license
plate number is recognized then they will have to enter in the
desired end time on the elevator keypad. If the license plate
number is not recognized, the customer will have to enter his or
her customer ID and password and then enter the desired park
time. The system will then look for an available parking spot in the
ground level.

UC-2

REQ3 When an unregistered customer enters the garage their license
plate number will not be recognized by the system and they will
have to indicate that they wish to park as a walk-in. The system
will then search for available parking spots in the ground level and
assign one to the customer.

UC-2

REQ4 In the scenario that the customer does not show up on time for a
reservation then the spot will be held for a “grace period”. If the
customer arrives at the garage to park before the grace period
expires then he or she will be able to park for the duration of the
reservation but will be billed for the the entire period reserved. All
types of reservations have a fixed grace period of one half-hour.

UC-2

REQ5 Missing a reservation occurs when a customer fails to arrive before
the end of the grace period. A missed reservation cannot be
fulfilled, and the time of the grace period that the spot was held for
will be billed to the customer. If the customer arrives for a
reservation late he or she will be prompted to park as a walk in.

UC-2

REQ6 In the scenario that the customer leaves the garage before his/her
reservation expires then it is considered an understay. When this
occurs the customer will still have to pay for the full reserved time.

UC-2

41

The sensor will recognize that the spot is vacant or available and
will inform the system so that the spot can be assigned for another
reservation.

REQ7 In the scenario that the customer does not leave on time and stays
over his/her reserved time, this is called an overstay. The customer
will be billed for any overage time at 1.5 times the hourly rate,
known as the penalty rate.

UC-2

REQ8 A registered customer may edit a reservation’s end time no later
than half an hour before the current end time if and only if there is
space available in the garage for the new end time. This procedure
can be done unlimited times as long as there are available spots in
the garage. The new end time can be extended or decreased by at
most 90 minutes at a time.

UC-7

REQ9 A customer may cancel a reservation up to 30 minutes before the
reservation start time without being billed for any of the
reservation. Cancellations within 30 minutes of the start time
cause the customer to be billed for the grace period.

UC-7

REQ10 Each registered customer can have multiple unfulfilled reservations
under his/her customer account.

UC-4

REQ11 In the scenario that a registered customer arrives to the garage but
it is full because other customers have overstayed the system will
ask a registered customer to leave without parking and he or she
will be credited a rain check to his or her account. Unregistered
customers will simply be told there is no vacancy.

UC-13

REQ12 Registered customers will be billed at the end of a month for
charges incurred in that month, and the system will create a
statement which will be emailed to the customer containing all of
the parking and penalty fees, with each parking reservation
itemized on the bill. The bill can be paid with the credit-card on file
with the customer’s account. The bill must be paid within 25 days
of it being emailed to the customer.

UC-13

REQ13 Each garage will have a system administrator who can set and
change prices and penalty fees for that garage. The system
administrator will also be able to view the garage history report
which will include meaningful information regarding overstays,
understays, etc.

UC-6, UC-
11, UC-12

REQ14 Registered Customers can register any number of vehicles under UC-8, UC-9

42

their account. Each vehicle must abide by the state’s license plate
format when registering. If a vehicle has a vanity license plate then
the user will still be able to register that vehicle. A registered
customer will also be allowed to edit or delete existing vehicles.

REQ15 Registered Customers can make a single reservation for the
parking garage through their account on the website by entering
the start time, end time, and date of a desired reservation. The
customer will be notified if the garage is full and cannot handle a
reservation for a given time or date.

UC-1

REQ16 Registered Customers can reserve multiple parking spots at once.
A recurring reservation is defined by the day(s) of the week on
which it will recur, and the date by which the recurrence should
end, in addition to the start time and end time of the reservation.
Recurring reservations will be scheduled starting on the date
selected, and then repeated on all selected days of the week until
the end date is reached.

UC-1

REQ17 Reservations must be made in 30 minutes increments, and must
start either on the top of an hour or at the half-way point between
hours.

UC-1

REQ18 Vehicles may only be registered to one user at a time. UC-8

REQ19 If the license plate registered for the reservation differs from what
license plate parked at the garage, the user will be notified during
the next login to the website and asked to register the vehicle with
his or her account.

UC-8, UC-2

REQ20 Registered Customer can arrive early for a reservation, and be
offered the option to park as a walk-in and have that parking carry
over to their reservation.

UC-2

43

System Sequence Diagrams

The System sequence diagram for UC-1 can be split up into two parts. Part (a) describes the
sequence of events for the success scenario. The user requests a reservation and there are
available reservations to be given out. Part b describes the sequence of events for the alternate
scenario. The user requests a reservation at a specific date and time but the there are no
available reservations to be given out. The user will continue to enter in a new date and time
until an available reservation can be given out.

44

The system sequence diagram for UC-2 can be split into three parts. Part a describes the
sequence of events for the success scenario. The customer enters the elevator, the elevator
camera recognizes the the customer’s license plate number, and the system assigns the user a
parking spot number.

45

Part (b) of the system sequence diagram for UC-2 describes the sequence of events for an
alternate scenario. The customer enters the elevator but the elevator camera does not
recognize the customer’s license plate number. The customer then signs in as a registered
customer and selects a reservation. The system then assigns the user a parking spot number.

46

Part (c) of the system sequence diagram for UC-2 describes the sequence of events for another
alternate scenario. The customer enters the elevator but the elevator camera does not
recognize the customer’s license plate number. The customer then swipes their credit card and
selects a reservation as a walk-in customer. The system then assigns the user a parking spot
number.

47

Non-Functional Requirements

Fault-tolerance

● Park-A-Lot should remember the details of a user’s interaction if the user interface
should disconnect from the system.

● Park-A-Lot should quickly recover from a malfunction when a customer is inside the
elevator.

Usability

● The interface should provide customers with access to all relevant use cases with the
fewest number of mouse clicks and key strokes.

Reliability

● Park-A-Lot should function correctly even if a customer inputs invalid entries into a
reservation request form.

● Park-A-Lot should not lose a reservation through the use of persistent storage and
regular backup.

Performance

● The Park-A-Lot elevator display should always display the correct output to the
customer.

● The Park-A-Lot system should minimize connection times to the database and provide a
quick and painless experience to the customer.

● Initially, Park-A-Lot can support at least 100 customers and 1,000 reservations. Over
time should seek to increase these numbers ten-fold or more.

Security

● Other customers or unauthorized users should not have access to or be able to edit a
customer’s account details or reservations.

48

Effort Estimation Using Use Case Points

Unadjusted Actor Weight (UAW)

Actor Name Description of relevant characteristics Complexity Weight

Registered
Customer

Registered Customer is interacting with the
system via the website or with the elevator
keypad and display.

Complex 3

Unregistered
Customer

Unregistered Customer is interacting with the
system via the website (to create an account) or
with the elevator keypad and display.

Complex 3

System
Admin

The System Admin is interacting with the system
via the website (to set prices and view access
history).

Complex 3

Timer Timer is another system which interacts with our
system through a defined API.

Simple 1

Elevator
Camera

Same as Timer. Simple 1

Database Database is another system interacting through
a protocol.

Average 2

Spot Sensor Same as Timer. Simple 1

Elevator
Keypad

Same as Timer. Simple 1

Elevator
Display

Same as Timer. Simple 1

Exit Camera Same as Timer. Simple 1

UAW = 6 x Simple + 1 x Average + 3 x Complex = 6x1 + 1x2 + 3x3 = 17

49

Unadjusted Use Case Weight (UUCW)

Use Case Description Category Weight

Reserve UC-1 Simple user interface. 3 steps for the main
success scenario. 1 participating actor
(Database).

Simple 5

Park UC-2 Complex user interface. More than 7 steps for all
the scenarios. 6 participating actors (Elevator
Display, Elevator Camera, Elevator Keypad, Spot
Sensor, Exit Camera, Database).

Complex

10

Manage
Account UC-3

Simple user interface. 4 steps for the main
success scenario. 1 participating actor
(Database).

Simple 5

View
Reservations
UC-4

Complex user interface. 4 steps for the main
success scenario. 1 participating actor
(Database).

Average

10

Register UC-5 Simple user interface. More than 7 steps for all
the scenarios. 1 participating actor (Database).

Average 10

Manage
Garage UC-6

Simple user interface. 6 steps required for the
main success scenario. 1 participating actor
(Database).

Average 10

Edit
Reservation
UC-7

Simple user interface. 4 steps required for the
main success scenario. 1 participating actor
(Database).

Simple

5

Register
Vehicle UC-8

Simple user interface. 4 steps required for the
main success scenario. 1 participating actor
(Database).

Simple 5

Edit Vehicle
UC-9

Simple user interface. 4 steps required for the
main success scenario. 1 participating actor
(Database).

Simple 5

Authenticate
User UC-10

Simple user interface. 7 steps for all the
scenarios. 1 participating actor (Database).

Average 10

Set Prices UC-
11

Simple user interface. 8 steps for the main
success scenario. 1 participating actor
(Database).

Average 10

50

Inspect Usage
History UC-12

Complex user interface. 6 steps for the main
success scenario. 1 participating actor
(Database).

Complex 15

Monthly Billing
UC-13

Simple user interface. 4 steps for the main
success scenario. 1 participating actor
(Database).

Simple 5

UUCW = 6 x Simple + 5 x Average + 2 x Complex = 6x5 + 5x10 + 2x15 = 110

UUCP = UAW + UUCW = 17 + 110 = 127

Technical Complexity Factor (TCF)

Technical
Factor

Description

Weight

Perceived
Complexity

Calculated
Factor (Weight
x Perceived
Complexity)

T1 Distributed, Web-based system. 2 5 2x5 = 10

T2 User expect good performance
and no down times.

1 3 1x3 = 3

T3 End-users expect efficiency. 1 3 1x3 = 3

T4 Internal processing is relatively
simple except reservation
swapping (UC-1).

1 4 1x4 = 4

T5 Reusability is a must have
feature.

1 4 1x4 = 4

T6 Ease of install is not important
because its a web based system.

0.5 0 0.5x0 = 0

T7 Ease of use is very important. 0.5 3 0.5x3 = 1.5

T8 Portability could be important for
future improvements (phone
app).

2 0 2x0 = 0

T9 Ease to change is required. 1 3 1x3 = 3

51

T10 Concurrent use is required. 1 3 1x3 = 3

T11 Security is a significant concern. 1 4 1x4 = 4

T12 No direct access for third parties. 1 0 1x0 = 0

T13 No unique training needs. 1 0 1x0 = 0

TCF = Constant-1 + Constant-2 x Technical Factor Total =
0.6 + 0.01 x (10 + 3 + 3 + 4 + 4 + 1.5 + 3 + 3 + 4) = 0.955

Environmental Complexity Factor (ECF)

Environmental
Factor

Description

Weight

Perceived
Impact

Calculated
Factor
(Weight x
Perceived
Impact)

E1 Beginner familiarity with the
UML- based development.

1.5 3 1.5 x 3 = 4.5

E2 Some familiarity with
application problem.

0.5 3 0.5 x 3 = 1.5

E3 Some knowledge of object-
oriented approach.

1 2 1 x 2 = 2

E4 Some knowledge of lead
analyst.

0.5 2 0.5 x 2 = 1

E5 Highly motivated but lost one
team member.

1 4 1 x 4 = 4

E6 Stable requirements
expected.

2 1 2 x 1 = 2

E7 All staff is part-time (have
other class work to do as
well).

-1 4 -1 x 4 = -4

E8 Programming language of
average difficulty will be
used.

-1 3 -1 x 3 = -3

52

ECF = Constant-1 + Constant-2 x Environmental Factor Total =
1.4 - 0.03 x (4.5 + 1.5 + 2 + 1 + 4 + 2 - 4 - 3) = 1.16

Use Case Points (UCP)

Therefore, the total of our use case points effort estimation will be:

UCP = UUCP x TCF x ECF = 127 x 0.955 x 1.16 = 140.7

53

Domain Analysis

Domain Models

Domain Model for UC-2

Reasons for model selection:
● Cohesion - The domain elements contain enough information to be completely

independent objects (no overlap in knowledge between objects) and represent concrete
ideas within the system. Therefore, our model has high cohesion since each object has
several responsibilities, but does not attempt to do too much work.

● Coupling - The coupling of objects in our diagram is low, mainly because we have
separated the key checking ability out from the Controller object. Key checking is a main
concern in this model, and therefore deserves it’s own object. The smaller objects
surrounding KeyChecker help it accomplish its job. There is a high degree of coupling
between Controller and many of the physical objects in the parking garage, but that is
impossible to avoid since the controller needs to be in communication with all of the
cameras and sensors in order to instruct other objects when to complete their tasks.

● Expert Doer Principle - The model satisfies this principle because it divides the task of
checking keys and processing information about those checked keys into two distinct
objects. The KeyChecker is the expert on checking customer authentication information,

54

and informs the Controller of customer authenticity. The Controller is then able to
quickly display information about Reservations to the customer.

(D - doing; K - knowing; N - neither)

Responsibility Description Type Concept Name

Coordinate actions of concepts associated with this use
case and delegate the work to other concepts.

D Controller

Shows the actor the current context, what actions can
be done, and the outcomes of the previous actions.

N StatusDisplay

Container for the customer ID and password that the
user entered in.

N KeypadEntry

Container for user’s authentication data, including
Customer ID and password.

K Key

Verify whether or not the key-code entered by the user
is valid.

D KeyChecker

Container for the collection of valid keys associated with
the users.

K KeyStorage

Container for user’s existing reservations. K Reservation

Container for the collection of reservations associated
with each user.

D ReservationStorage

Operate the elevator camera to identify a car’s license
plate number in the elevator platform.

D ElevatorCameraOperator

Operate the elevator to move to the correct floor and
open the entrance door.

D ElevatorOperator

Operate the spot sensor to determine if a car is parked
in the parking spot.

D SpotSensorOperator

Operate the exit camera to identify the car’s license
plate number that is exiting the garage.

D ExitCameraOperator

Log all interactions with the system in persistent
storage.

D Logger

55

Concept Pair Association Description Association Name

Controller ↔
StatusDisplay

Controller passes information
concerning the current context, what
actions can be done, and the
outcomes of the previous actions

conveysInfo

Controller ↔
KeypadEntry

Controller receives user input
information from KeypadEntry.

receiveUserInfo

Controller ↔ Logger
Controller logs information to
persistent storage about system
interactions.

logEvents

Controller ↔ Reservation
Controller obtains reservation
information from Reservation
container.

obtains

Controller ↔ KeyChecker

Controller requests KeyChecker
validate customer ID/password input
and receives any reservations that
ID is linked to.

conveysRequest

Controller ↔ Key
Controller obtains verified user
information from Key container.

obtains

ElevatorCameraOperator
↔
Controller

ElevatorCameraOperator conveys
available license plate number to
Controller when ElevatorCamera
detects a car in the Elevator.

conveyLicensePlateNum

ExitCamera
Operator ↔
Controller

ExitCameraOperator conveys
available license plate number to
Controller when ExitCamera detects
a car leaving the parking garage.

conveyLicensePlateNum

SpotSensor
Operator ↔ Controller

SpotSensorOperator conveys
true/false if a spot is filled to
Controller.

conveySpotOccupancy

KeyChecker ↔ Key
KeyChecker verifies if Key matches
given user account information.

verifies

KeyChecker ↔
KeyStorage

KeyChecker requests a list of valid
keys from KeyStorage container.

requestValidKeys

56

KeyChecker ↔
Reservation
Storage

KeyChecker retrieves a list if
reservations from
ReservationStorage container.

requstValid
Reservations

KeyChecker ↔ Elevator
Operator

KeyChecker tells the
ElevatorOperating what floor to go
to.

signalOperateElevator

Reservation
Storage ↔
DatabaseProxy

ReservationStorage queries
DatabaseProxy for
valid reservations.

retrievesValid
Reservations

KeyStorage ↔
DatabaseProxy

KeyStorage queries DatabaseProxy
for valid keys.

retrievesValidKeys

Concept Attributes Attribute Description

Reservation

Start Date Time

End Date Time

Grace Period

Start time for the reservation of a particular actor.

End time for the reservation of a particular actor.

Grace period for the reservation of a particular
actor.

Key
Customer’s ID

Customer’s Password

ID number of customer.

Password for the customer.

Key
Checker

Number of Trials

Max Number of Trials

Counter to track how many times the user has
unsuccessfully entered in their key.

Maximum allowable times a user can enter in their
key unsuccessfully before they are asked to leave.

57

Domain Model for Remaining Use Cases

Reasons for model selection:
● Cohesion - The responsibilities assigned to each object in this model are not as great

as they first appear, since the UserRequest object is actually a collection of three distinct
objects which are used depending upon customer or system administrator input. The
ReservationRequest is used in the case that the customer seeks to create a reservation,
the SearchRequest in the case the customer or system administrator is searching for a
set of reservations in the database, and the EditDetailsRequest in the case where a
customer needs to edit some info in his or her account, or a system administrator needs
to edit the details of an account. This gives each object a clearly defined set of
responsibilities. The remaining objects are simply there to create and display the data
fetched from the database, and each have a unique function, thus promoting high
cohesion.

● Coupling - While there are many responsibilities assigned to each object, no object has
an excessive amount of work to do. Each object has a distinct task to perform, and the
Controller oversees these tasks and coordinates their efforts. The coupling is lower in
this domain model than in the previous one, since we have reduced the interactions
between Controller and all other objects, while still maintaining a distinct set of tasks for
each object.

58

● Expert Doer Principle - As in the previous domain model, this model also conforms to
the expert doer principle since all of its objects that know information are the objects
performing the tasks. Controller passes any information obtained from the user input to
a DatabaseRequest that performs actions through the DatabaseProxy on the database.
Also, the PageMaker creates the page using information from the DatabaseProxy which
gets any information needed from the database using the DatabaseRequest passed to it.
The Controller orchestrates this entire exchange. Therefore, each object that knows the
information passes it to the correct object to do something with it.

(D - doing; K - knowing; N - neither)

Responsibility Description Type Concept Name

Coordinate actions of concepts associated with this use
case and delegate the work to other concepts.

D Controller

Shows the actor the current context, what actions can
be done, and outcomes of the previous actions.

K InterfacePage

Container for three distinct request types: a reservation
request containing reservation data, a search request
containing search parameters, and an edit details
request containing changes to customer account details.

K UserRequest

Render retrieved records into an HTML document. K PageMaker

Container for user’s requested reservations. K Reservation

Prepare a database query that best matches the actor’s
search criteria and retrieve the records from the
database.

D DatabaseProxy

Form specifying details that need to be changed in the
database.

K DatabaseRequest

Log all interactions with the system in persistent
storage.

D Logger

59

Concept Pair Association Description Association
Name

Controller ↔
InterfacePage

Controller posts the InterfacePage with the
help of PageMaker.

posts

Controller ↔
UserRequest

Controller obtains user information from
UserRequest and forms a DatabaseRequest
to act on that information.

receiveUserInfo

Controller ↔ Logger
Controller logs information to persistent
storage about system interactions.

logEvents

Controller ↔
Reservation

Controller obtains reservation information from
Reservation container.

obtains

Controller ↔
PageMaker

Controller conveys a request to PageMaker to
prepare an HTML page that it will display to
the customer through InterfacePage.

conveysRequest

Controller ↔ Database
Request

Controller creates a DatabaseRequest from
the UserRequest to specify which actions
should be performed on the Database.

creates

PageMaker ↔
InterfacePage

Page Maker prepares the Interface Page. prepares

DatabaseRequest ↔
DatabaseProxy

DatabaseRequest modifies the Database
through DatabaseProxy to insert, delete,
modify, or retrieve records in the Database.

modifies

60

Concept Attributes Attribute Description

Reservation

Start Date
Time

End Date Time

Grace Period

Start time for the reservation of a particular actor.

End time for the reservation of a particular actor.

Grace period for the reservation of a particular actor.

Search
Request

Search
Parameters

Start Date, end date, customer ID.

Reservation
Request

Reservation
(s)

Date, start time, end time, type of reservation.

Edit Details
Request

Detail
Parameters

Customer ID, password, email address, name, address,
zip code, state, phone number, credit card number,
license plate number(s).

61

System Operation Contracts

Operation Park

Preconditions ● parkingSpot = “unoccupied” , The parking spot will be

 occupied as soon as the customer
 exits the elevator.

Postconditions ● parkingSpot = “unoccupied”

Operation Authenticate User

Preconditions ● Set of valid customer IDs is known to the system and is not empty
● numOfTrials < maxNumOfTrials
● numOfTrials = 0, for the first trial of the current user

Postconditions ● numOfTrials = 0, if the entered Customer ID contained in the

 set of valid keys.

Mathematical Models

There are no mathematical models utilized in this design.

62

Interaction Diagrams

Theoretical Interaction Diagrams

For UC-2, when the customer enters the parking garage, we have created a few interaction
diagrams that would be useful in an actual commercial implementation but not for our
demonstration purposes. We will not be demonstrating these interaction diagrams during the
demo, simply because we cannot afford to build a garage with all of the required hardware to
actually implement the signals our system would be receiving. However, we will include a way
to simulate this in the coding of our final project.

The first diagram demonstrates the decisions to be made when a customer enters the garage
elevator. If the customer is Registered and has an existing reservation, then they are called to
UC-2 Registered Customer. If the customer is Registered but does not have an existing
reservation then they are either called to UC-2 Registered Customer or UC-2 Walk In. If the
customer is unregistered then they are called to UC-2 Walk In.

The interaction diagram entitled UC-2 Registered Customer walks through a Registered
Customer logging into the keypad with their password and then selecting which reservation they
wish to fulfill. If the customer does not have an existing reservation then they will create one if it
is available. The customer will then be called to UC-2 Park.

The interaction diagram entitled UC-2 Walk In, walks through a Registered or Unregistered
customer reserving a spot (if one is available) and then proceeding to UC-2 Park. This
interaction diagram utilizes UC-1 Reserve.

The interaction Diagram entitled UC-2 Park, walks through the customer going to the correct
floor, parking in the assigned parking spot and then leaving when the reservation is over. The
interaction diagram utilized the Elevator Operator, the Spot Sensor Operator, the Elevator
Camera Operator, and the Exit Camera Operator. These concepts are used to move the
elevator to the correct floor, identify if a specific parking spot is full, recognize a car’s license
plate number, and notify the system when the customer has left the garage. In our
demonstration, we cannot utilize these concepts, so we have implemented them by using user
interaction. The demo interaction diagrams will be explained in detail in the next section on
implemented Interaction Diagrams.

63

Implemented Interaction Diagrams

All of the interaction diagrams demonstrate our use of the MVC (model, view, controller)
framework. By using this type of framework, we can separate business logic from the controller
and from the views. Within our architecture we have 5 different MVC groups listed below.

● User
● Reservation
● Vehicle
● Admin
● Timer

This means that we have 5 different controllers, 5 different models, and 5 different views, one
corresponding to each group.

The following table lists the MVC group along with the Use Cases it is responsible for.

MVC Use Cases

User UC-3, UC-5, UC-10

Reservation UC-4, UC-7

Vehicle UC-8, UC-9

Admin UC-6, UC-11, UC-12

Timer UC-13

The MVC architecture is actually a very proven way of ensuring that we meet the high standards
of the Expert Doer Principle, High Cohesion and Low Coupling. Since the business logic is
extracted to the models, the customer-facing logic to the views, and the communication logic
between models and views to controllers, we have assured that each interaction diagram that
implements this architecture will benefit.

The following explains how each design principle is satisfied.

Expert Doer Principle

In an attempt to keep as much data encapsulated within each class as possible, our selection
aligns well with the expert doer principle. The main acting classes are the Controllers, which
delegate tasks to the Models and pass data to the Views to display. All of the validation and
business logic is kept within the Models. This design principle ensures that the Models are the
classes that know the information, since the Views are simply display elements (usually HTML),
and the Controllers never know what information they are passing to the Models.

64

A common analogy might be that of a Cook-Server-Customer. The cook (model) prepares the
food and knows what ingredients it contains; the server (controller) bring the food out to the
customer; and the customer (views) consumes the food. The models know the information and
manipulate it, which is exactly what the expert doer principle requires. Both the controller and
views have no clue about the information, they only pass it and display it, but never operate on
it.

Therefore, we have almost completely satisfied the expert doer principle.

High Cohesion Principle

The MVC architecture also has a very high level of cohesion, since all of the three elements
work together but retain their own distinct logical functions.

Models know information and manipulate it at the will of the user and system. Controllers pass
information between models and views and control its flow. Views display this information but
do not know anything about it, or how to manipulate it.

Therefore, each element of the MVC architecture has it’s own unique function. There is no
overlapping functionality between any of the three core components here, because of the well-
defined separation of business logic from display logic. As such, we have completely satisfied
the high cohesion principle.

Low Coupling Principle

The architecture also supports excellent low coupling, since we do not need to have any two
components of the system in constant communication. The view collects information, send it to
the model with the help of the controller, and the model operates on that data and sends it back
along to the view, using the controller. Never does one element operate on data then pass it
along to be operated on again.

This abstraction of function with the MVC architecture ensures that our classes are loosely
coupled, needing only to communicate with each other once or twice during an operation to
accomplish it.

65

Notes and Conventions

The following convention is used for database calls in the system interaction diagrams below.
Although this is a not formal function definition, it will help the reader to understand what the
query is trying to retrieve.

Function Call Description

SQL Queries
Between Database Proxy and Database there are mock SQL
queries, which although they are not complete, provide a rough
idea of the query we would be using in our system.

66

UC-1: Reserve

Goals: To create a reservation and add it to the Database.

Process: The customer is prompted to input information about the reservation they wish to
create, then the Controller passes the information to the Model, which determines if the
reservation is valid and does not overbook the garage. The customer is then given either a
success page or asked to re-enter the information with different values.

loop

[for each 30 minute block]

[else]

alt

alt

[else]

[swap successful]

[numberOfReservations < maxNumberOfReservations]

DatabaseRegisteredCustomer

: ReservationModel: ReservationController

1.3.5: freeSpace ++

1.3.3: freeSpace ++

1.3.2: compare numberOfReservations
to maxNumberOfReservations

1.3.4: swap existing reservations

1.3.1: SELECT reservations
Where startTime AND endTime

1.2: result

1: select function("reserve spot")

1.1: info := prompt("enter reservation info")

1.3: createReservation(params : info)

Visual Paradigm for UML Community Edition [not for commercial use]

68

UC-2: Park

Goals: To park in the garage, either to fulfill a reservation or as a walk in.

Process: A customer enters the garage and is prompted to select one of three options;
Registered Customer with a reservation, Registered Customer without a reservation, or Walk In.
Based on the selection the customer will be required to enter in his/her license plate number
and then be told in what parking spot to park. The customer then has the option to leave the
garage and is informed of how much the parked cost. This implementation is only for simulation
purposes and is not intended to be used for an actual parking garage.

Design Pattern:
We have employed the strategy pattern in use case 2, Park. We decided to use this pattern
because UC-2 has three different algorithms / options pertaining to the user’s input and by
employing this pattern we can simplify the logic involved. All three of the algorithms / options are
chosen at run time so this patter was an obvious choice. The three algorithms we have
employed are Recognized Customer, Registered But Unrecognized, and Walk In. All three
strategies are inherited by the incoming customer interface. The diagram below shows the
strategies and their inherited methods.

The advantaged to using the strategy pattern are that the strategies are encapsulated as an
object and then made interchangeable. It would be easy in the future to add, remove or change
any of the strategies because they are each a separate object called from their parent interface.
Also, since all of the information relating to picking which strategy to use is entered during run
time, the strategy patterns limits the amount of hard coding that is necessary to utilize each
option. Each strategy is stored as a reference to the actual object which makes it easy to create
and destroy.

alt

[choice == create reservation]

[else]

[custChoice == Walk In]

[custChoice == Registered But Unrecognized]

[custChoice == Recognized Customer]

alt

: DemoInterface

Customer

6.4: str.processIncomingCustomer()

6.3: Strategy str := new WalkIN()

6.2: Strategy str := new WalkIN()

3.1: Strategy str := new RecognizedCustomer()

5: choice := CreateReservationOrWalkIn()

4: licensePlate := EnterLicensePlate()

3: licensePlate := EnterLicensePlate()

2: custChoice := TypeOfCustomer()

6: duration := EnterReservationDuration()

6.1: Strategy str := new RegisteredButUnrecognized()

1: enter elevator

Visual Paradigm for UML Community Edition [not for commercial use]

Database

: DatabaseProxy: DemoInterface

RegisteredCustomer

4.1.1: Update Reservation
Where spotUnoccupied

4.1: SpotUnoccupied()

4: spotOccupied := No

3.1.1: Update Reservation
WHERE spotOccupied

3.1: SpotOccupied()

3: spotOccupied := Yes

2.1.1: Update Reservation
Where spotNumber

2.1: Update Parking Spot Number(spotNumber)

2: spotNumber := EnterParkingSpotNumber()

1: from Customer in Elevator

Visual Paradigm for UML Community Edition [not for commercial use]

ref

UC-1 Reserve

: Database

: DatabaseProxy: DemoInterface

RegisteredCustomer

4.1.1: Update Reservation
Where spotunOccupied

4.1: SpotunOccupied()

4: spotunOccupied := Yes

3.1.1: Update Reservation
Where spotOccupied

3.1: SpotOccupied()

3: spotOccupied := Yes

2.1.1: Update Reservation
Where spotNumber

2.1: Update Parking Spot Number(spotNumber)

2: spotNumber := parkingSpotNumber()

1: from Customer in Elevator

Visual Paradigm for UML Community Edition [not for commercial use]

alt

[else]

[BitMap == empty]

: Database

: DatabaseProxy: DemoInterface

Customer

5.2: Parking Garage is Full

2.1.1: Select BitMap
Where duration

2.1: checkBitMap(Duration)

2: Duration := EnterReservationDuration()

5.1.1: Update Reservation
Where spotunOccupied

5.1: SpotunOccupied()

5: spotunOccupied := Yes

4.1.1: Update Reservation
Where spotOccupied

4.1: SpotOccupied()

4: spotOccupied := Yes

3.1.1: Update Reservation
Where spotNumber

3.1: Update Parking Spot Number(spotNumber)

3: spotNumber := parkingSpotNumber()

1: from Customer in Elevator

Visual Paradigm for UML Community Edition [not for commercial use]

73

UC-3: Manage Account

Goals: To change account details for a registered customer.

Process: The registered customer is prompted to make changes to their current account
information. The controller passes the information to the Model, which updates the account in
the database and then displays a page signifying the successful update.

Database

: UserModel: UserView : UserController

Registered Customer

1.3.4: display newAccountInfo

1.3.3.1.4: Account updated

1.3.3.1.3: update
users WHERE custID

1.3.3.1.2: validate newAccountInfo

1.3.3.1: EditUser(params : form)

1.3: Display Account Info

1.2: result

1.1.2: result

1.3.3.1.1: newAccountInfo :=
extractData(params : form)

1.3.2: result

1.3.1: form := prompt("new account info")

1.1.1: SELECT accountInfo
WHERE custID

1.3.3: updatePage(params : "changes made" form)

1.1: retrieve account info

1: select function("manage account")

Visual Paradigm for UML Community Edition [not for commercial use]

75

UC-4: View Reservations

Goals: To view existing reservations for a registered customer.

Process: The registered customer selects the option to view his or her existing reservations,
both past, present, and future. The Controller receives this choice and displays that customer’s
reservations.

Database

: ReservationModel: ReservationView : ReservationController

Registered Customer

1.2: result

1.1.2: result

1.1.1: SELECT Reservations
WHERE custID

3: editReservation(reservationID)

1.3: displayReservations

1.1: retrieveReservations

3.1: goto UC-7: Edit Reservations

2: reservationID := "edit reservation"

1: select function("View Reservations")

Visual Paradigm for UML Community Edition [not for commercial use]

77

UC-5: Register

Goals: To become a registered customer and be stored in the database.

Process: The registered customer is prompted to input their account information. The Controller
passes the account information to the Model which creates the account in the database. The
Controller then calls the View to display a page signifying the success.

alt

[data == valid]

[else]

: UserModel: UserView

Database

: UserController

Unregistered Customer

1.5: display error message

1.3.5: result

1.4: display home page

1.3.4: result

1.3.3: send verification email

1.3.1: validate data

1.2: result

1.3: createAccount(params : data)

1.1: display register page

1.3.2: INSERT into User
data

1.1.1: data := prompt("enter account info")

1.1.2: input

1: select function("create account")

Visual Paradigm for UML Community Edition [not for commercial use]

79

UC-6: Manage Garage

Goals: For a system admin to either set prices or view access history of a garage (these are
both sub-use cases)..

Process: The system admin is prompted to select whether to set prices or view access history
for a garage. The Controller receives the choice and then passes it to to either system
interaction diagram 11 or 12.

alt

[choice == inspect usage history]

[choice == set prices]

Database

: AdminModel: AdminController: AdminView

System Admin

1.4: result

1.3: display garage info

1.2: result

1.1.2: result

1.1.1: SELECT info
FROM garage

1.1: retrieve garage info

1.6: goto UC-12: Inspect Usage History

1.5: goto UC-11: Set Prices

1.3.2: input

1.3.1: choice := prompt("set prices
or inspect usage history")

1: select function("Manage Garage")

Visual Paradigm for UML Community Edition [not for commercial use]

81

UC-7: Edit Reservation

Goals: To edit or cancel an existing reservation for a registered customer.

Process: The Registered customer either selects an change in the end time of the reservation
or selects the cancel reservation option. The Controller receives this information and then
passes it to the Model to validate and make the changes in the database. The View displays the
successful change.

alt

[form == "cancel reservation"]

[form == "new end time"]

: ReservationModel: ReservationView

Database

: ReservationController

Registered Customer

3.2: Update Reservation
Where ReservationID

4.1: Update Reservation
Where ReservationID

4: editReservation(params :
reservationID)

3.1: validate newEndTime

3: editReservation(params :
reservationID, newEndTime)

2: result

1.2: input

1.1: form := prompt("edit end time
or cancel reservation")

1: display reservation(s)

Visual Paradigm for UML Community Edition [not for commercial use]

83

UC-8: Register Vehicle

Goals: To create a vehicle for a Registered Customer’s account.

Process: The Registered Customer enters the vehicle’s license plate number and state. The
Controller receives this information and then passes it to the Model which validates it and then
makes the addition to the database. The View displays the successful creation of the vehicle.

alt

[data == valid]

[else]

: VehicleModel: VehicleView

Database

: VehicleController

Registered Customer

1.5: display error message

1.3.4: result

1.4: display home page

1.3.3: result

1.3.1: validate data

1.2: result

1.3: registerVehicle(params : data)

1.1: display vehicle registration page

1.3.2: INSERT into Vehicle
(data)

1.1.1: data := prompt("enter vehicle info")

1.1.2: input

1: select function("register vehicle")

Visual Paradigm for UML Community Edition [not for commercial use]

85

UC-9: Edit Vehicle

Goals: To edit a registered vehicle’s license plate number or state..

Process: The Registered Customer enters the vehicle’s new license plate number and state.
The Controller receives this information and then passes it to the Model which validates it and
then makes the addition to the database. The View displays the successful change to the
vehicle.

Database

: VehicleModel: VehicleView : VehicleController

Registered Customer

3.3.2: Update Vehicle
Where vehicleID

3.3.1: validate form

3.3: editVehicle(params : vehicleID, form)

3.2: result

5: input

4: form := prompt("edit vehicle info") 3.1: displayVehicle

1.2: result

1.1.2: result

1.1.1: SELECT Vehicles
WHERE custID

3: editVehicle(VehicleID)

1.3: displayVehicles

1.1: retrieveVehicles

2: vehicleID := "edit Vehicle"

1: select function("Edit Vehicle")

Visual Paradigm for UML Community Edition [not for commercial use]

87

UC-10: Authenticate User

Goals: To determine if a user is registered with the system and has an account in the
database.

Process: The user accesses the Interface Page via a web browser, selects log in, and enters
their credentials (email and password). The Controller passes the information to the Model
which creates a protection proxy based on the user’s privileges.

Design Pattern:
We have employed the protection proxy pattern in use case 10, Authenticate User. We decided
to use this pattern because different users with different roles log into the system and it would
be helpful to assign each user their privileges through a protection proxy. The two roles for the
protection proxy are system admin and Registered Customer. The diagram below shows which
use cases the two different roles have a privilege to participate in.

The advantages to using the protection proxy are that we are able to take the logic for granting
privileges away from the models and into a proxy. By doing this, it will be easy in the future to
add additional roles and privileges. If we were to keep the system the way it was, then it would
be a daunting task to make any changes because all of the complex logic and IF-THEN-ELSE
statements involved. Also, the roles and privileges serve as a distraction from the main task of
the client and server objects, so adding a protection proxy removes side responsibilities away
from the objects and into their own proxy. The protection proxy is also able to protect an object
from unauthorized access better than in out previous system because of its simplicity.

alt

[else]

[credentials == "registered customer"]

[credentials == "admin"]

dBc :
ConnectionImpl

proxyRC :
DBConRegCust

proxyAD :
DBConAdmin

factory : Factory: UserModel: UserView : UserController

User

1.5: display Home Page

1.3.1.6: return NULL

1.3.1.5: return proxyRC

1.3.1.4: proxyRC := create(dBc)

1.3.1.3: return proxyAD

1.3.1.2: proxyAD := create(dBc)

1.3.1.1: dBc := getConnection()

1.3.1: dBase := getDbConnection
(emailAddress, password)

1.4: result

1.3: connection := login(params :
emailAddress, password)

1.2: result

1.1.2: input

1.1.1: form := prompt("enter email
address and password")

1.1: display login page

1: select function("login")

Visual Paradigm for UML Community Edition [not for commercial use]

89

UC-11: Set Prices

Goal: To update the prices for parking at the garage.

Process: The system admin requests via a web browser to change the prices for a garage,
and is given a web page containing the old pricing information and a form to change to newer
prices. Controller takes this form and passes it to the Model, which extracts the new info from it
and updates the Database with that pricing data. The web page the system admin sees is then
updated with the new prices and a confirmation of the changes.

alt

[else]

[prices == valid]

Database

: AdminModel: AdminController: AdminView

System Admin

1.5.3.1: display invalid prices

1.5.3: invalid Prices

1.5.1: validate prices

1.5: setPrices(params : form, garageID)

1.4: result

1.3.2: input

1.3.1: form := prompt("set Garage
Prices")

1.2: result

1.3: display prices

1.1.2: result

1.1.1: SELECT prices
Where garageID

1.5.2: UPDATE newPrices
Where garageID

1.1: getCurrentPrices()

1: from UC-6 ManageGarage

Visual Paradigm for UML Community Edition [not for commercial use]

91

UC-12: Inspect Usage History

Goal: To view the usage history of the parking garage.

Process: The system admin requests to view the parking garage usage history, and the
Controller requests from Model that the history be pulled from the Database for a certain range
of dates input by the system admin. The Model retrieves this data and the View displays the
statistics to the system admin for review.

alt

[else]

[dateRange == valid]

: AdminModel

Database

: AdminView : AdminController

System Admin

1.6: display invalid date range

1.4: result

1.3.1: validate dateRange

1.5: display Access History Table

1.5: result

1.3.3: result

1.3.2: SELECT data
Where dateRange AND

garageID

1.3: getAccessHistory(params : form,
garageID)

1.2: result

1.1.2: input

1.1.1: form := prompt("select date
range")

1.1: display calendar

1: from UC-6 ManageGarage

Visual Paradigm for UML Community Edition [not for commercial use]

93

UC-13: Monthly Billing

Goal: To generate and send a monthly bill to all registered customers.

Process: The Timer requests the user’s billing information from the Model, which extracts the
info and create s a bill in PDF form to be emailed to the registered customer.

loop

[for each registered customer]

Database

: TimerModel: TimerController

Timer

1.3.5: sendEmail()

1.3.4: createPDF()

1.3.3: totalCosts()

1.3.2: result

1.3.1: SELECT reservationHours, fees
Where customerID

1.3: sendBill(customerID)

1: prepare bills

1.2: result

1.1.2: result

1.1.1: SELECT users

1.1: getCurrentCustomers()

Visual Paradigm for UML Community Edition [not for commercial use]

95

Class Diagram and Interface Specification

Class Diagrams

For this project, we plan to take advantage of a PHP framework known as Kohana [4].
Therefore, our class diagrams will be a composition between classes that come directly from
tables in the Database (see next section, Data Types and Operation Signatures). In addition,
we develop a class diagram from our system interaction diagrams. The marriage of these two
will be the basis for our system.

The advantage to using the Kohana framework in this way is that we can now run methods
against objects in our program rather than SQL queries against the database. From a
programming perspective, this is ideal because it allows to always keep an object-oriented view
about our program (treating tables in the database as objects in the program). However, it
makes our system interaction diagrams slightly more difficult to translate into a class diagram.

Therefore, we define both a class diagram from our system interaction diagram and also a class
diagram for our Kohana framework mapped tables.

To alleviate a lot of the coding needed to implement our system, we will be using an existing,
open source PHP framework, Kohana version 3.1. The Kohana framework works on the MVC
(model, view, controller) architecture. The basic idea of this system architecture is that business
logic is stored in models, customer-facing presentation is coded in views, and controller’s
handle the interaction between the views (customers) and the models (our system).

Within Kohana, there is exists an ORM (object relational mapping) library that abstracts a lot of
the database queries as objects. Within the ORM there are a lot of common methods, such as
save(), create(), and edit(). These stock methods will make it easy to implement our
system.

Below is a sample of the PHP code inside the Kohana Framework that we might use in our
design. It consists of an example model for reservations in the parking garage. This model
directly maps to the reservation table in our database, and is abstracted using the ORM.

96

class Model_Reservation extends ORM
{
 protected $_belongs_to = array(
 'user' => array('model' => 'user'),
);

 public function create_reservation(array $values)
 {
 // Will throw an exception if validation fails
 $this->values($values)->create();

 return TRUE;
 }
}

class Model_User extends ORM
{
 protected $_has_many = array(
 'reservations' => array('model' => 'reservation'),
);

 public function add_reservation(array $values)
 {
 $reservation = new Model_Reservation;
 $reservation->user_id = $this->id;

 return $reservation->create_reservation($values);
 }
}

-Reservation r
-string input
-Logger log
-HTMLForm userInput

+notify(Notifications N)
+prompt(string) : string

Controller

-id
-user_id
-vehicle_id
-status
-start_time
-end_time
-time_arrived
-time_departed
-date_added
-ReservationStatus status

+create() : Reservation
+setStatus(ReservationStatus S)

Reservation

+makeReservation(Reservation r) : boolean

ReservationChecker

-Database db

+addReservation(Reservation r) : boolean
+getNumOpenReservation(date start, date end) : int
+findCustomer(string custID) : string
+getKey(string custID) : Key []
+getReservations(string custID) : ReservationStorage RS
+updateReservation(Reservation r)
+getPricing() : string
+updatePricing(string newPrices)
+getHistory(date start, date end) : string

DatabaseProxy

+input(string input)
+update()

InterfacePage

+updatePage(PageCode P, HTMLForm form)
+makePage()
+extractData(HTMLForm form)

PageMaker

-string filepath
-LogLevel level

+logTransaction(string [])
+prompt(string) : string

Logger

<<Constant>> -LIGHT
<<Constant>> -VERBOSE

<<enumeration>>
LogLevel

<<Constant>> -UPCOMING
<<Constant>> -ACTIVE
<<Constant>> -CANCELED
<<Constant>> -OVERSTAY
<<Constant>> -UNDERSTAY
<<Constant>> -GRACE
<<Constant>> -MISSED
<<Constant>> -COMPLETED

<<enumeration>>
ReservationStatus

+display(string msg)

StatusDisplay

+validateKey(Key k) : boolean
+checkKey(Key k, KeyStorage KS) : boolean

KeyChecker

-string custID
-string hashed_pass

+create(string custID, string pass) : Key

Key

+getPlate() : string

ElevatorCameraOperator

<<Constant>> -HOME
<<Constant>> -LOGIN
<<Constant>> -REGISTER
<<Constant>> -VIEW_HISTORY
<<Constant>> -RESERVE
<<Constant>> -UPDATE_PRICING
<<Constant>> -MANAGE_GARAGE

<<enumeration>>
PageCode

-Key keys[]

+create(Key keys [])

KeyStorage

-Reservation res[]

+create(Reservation res [])

ReservationStorage

+lift(int floor) : boolean
+openGate() : boolean

ElevatorOperator

<<Constant>> -ELEVATOR_EMPTY
<<Constant>> -SPOT_OCCUPIED
<<Constant>> -LOGIN
<<Constant>> -RESERVE
<<Constant>> -CAR_PRESENT
<<Constant>> -CAR_LEAVING

<<enumeration>>
Notifications

+getSpotOccupied() : int

SpotSensorOperator

Visual Paradigm for UML Community Edition [not for commercial use]

99

Data Types and Operation Signatures

The Kohana framework allows us to dynamically map tables from our database directly to object
types in our system, which we define below. [4]

garage: (parking spots in our garage)
 Attributes:
 -int id
 -int parking_id: accompanying parking record
 -int level_num: the floor where the spot is
 -int row_num: the row where the spot is
 -int col_num: the column where the spot is
 -string license_plate: info about the vehicle in the spot
 -string state: info about the vehice in the spot
 -bool open: whether the spot is open or taken
 Operations:
 +bool clear_spot(): clears the spot, for when a user exits the spot
 +bool take_spot(values): marks the spot as taken

parking: (parking records)
 Attributes:
 -int id
 -int user_id: user who parked here (NULL for walk-in, unregistered parking)
 -int price_plan_id: the price plan that was active when this record was created
 -int reservation_id: reservation that this record attaches to (NULL for walk-ins)
 -int vehicle_id: the vehicle that the user arrived in (NULL for unregistered
vehicles)
 -int arrival_time: the time the user actually arrived
 -int departure_time: the time the user actually departed
 Operations:
 +bool start_parking(values): opens a new parking record, starts the timer
 +float stop_parking(): stops the timer, computes the amount due

price_plan: (current and previous price plans)
 Attributes:
 -int id
 -float member_price
 -float guest_price
 -float discount_rate: rate at which members price drops
 -float min_price: the minimum acceptable price, even with discounts applied
 -int date_added
 Operations:
 +bool create_price_plan(array values)

100

 +bool activate_price_plan(): activates this price plan, and deactivates all others
 +price_plan static get_active_price_plan(): returns the active price plan object

reservation: (keeps records of upcoming/past reservations)
 Attributes:
 -int id
 -int user_id
 -int start_time
 -int end_time
 -bool recurring: whether this is a recurring reservation
 -int previous_id: a reference to the reservation directly before this (if recurring)
 -int date_added
 -int last_edited
 -active: whether this reservation is active/cancelled
 Operations:
 +bool create_reservation(array values): creates a new reservation record, and all
others (if recurring)
 +bool cancel_reservation(): deactivates (cancels) this reservation, and all that
follow (if recurring)
 +bool edit_reservation(array values): edits this reservation, and all that follow (if
recurring)

roles: (different roles users can take)
 Attributes:
 -int id
 -string name: one of either login, confirmed, or admin
 -string description: a description describing the role in some detail
 Operations:
 N/A

roles_users: (joins users to roles, which is many to many)
 Attributes:
 -int user_id
 -int role_id
 Operations:
 N/A

users:
 Attributes:
 -int id
 -string first_name
 -string last_name
 -string email
 -string password

101

 -int registration_date
 Operations:
 +bool add_reservation(array values): creates a reservation, and binds it to this
user
 +bool add_vehicle(array values): creates a vehicle, and binds it to this user

user_token: (user “remember me” tokens)
 Attributes:
 -int id
 -int user_id
 -string user_agent
 -string token
 -string type
 -int created
 -int expires
 Operations:
 +bool create_token()

vehicle:
 Attributes:
 -int id
 -int user_id
 -string license_plate
 -string state
 -int date_added
 Operations:
 +bool create_vehicle(array values)
 +bool remove_vehicle()

102

Design Patterns

Since our Interaction Diagrams make use of both the Strategy and Protection Proxy design
patterns, and since the class diagram can be read almost directly from the Interaction Diagrams,
the patterns applied there will carry over heavily into the class diagram.

To implement the Protection Proxy we would need to incorporate a Proxy object for each type of
proxy we plan to have, which is:

1. Customer Proxy (proxyRC)
2. Adminstrator Proxy (proxyAD)

These proxies would represent an abstract layer between the database and the user, where
each proxy has its own individualized set of commands it can operate on the database. For
instance, the administrator proxy can alter the prices stored in the database, but the customer
proxy cannot.

The strategy proxy we implement in UC-2 Park does not need any additional classes to
function. Rather, it is implemented in the logic of the coding.

103

Object Constraint Language (OCL) Contracts

OCL Contracts are constraints on a class or operation that enables the users, implementers and
extenders to share the same assumptions or rules about the class/operation. This kind of
contracts determine certain constraints on the class state that must be valid (always unless
there are exceptions) so that the operation can work properly. There are three types of OCL
constraints: invariants, preconditions, and postconditions.

We will analyze our classes and show these three constrains for each class:

CLASS Garage
-Invariants.- Must have spots available
 context Controller inv:
 self.garage ~= FULL
-Pre-conditions.- Still has available spots, must not be full.
 context Controller : Boolean pre
 self.garagespotsavailable >0
-Post-conditions.- Is occupied/has less spots available. If full, do not allow further
reservations/walk-ins.

CLASS Vehicle
-Invariants.- Must be a valid vehicle (have insurance, plates and be driven by a licensed user).

context Controller inv:
 self.vehicle == valid
-Pre-conditions.-The vehicle has not been register under another customer or has been stolen
 context Controller : Boolean pre:
 if license_plate exists
 then NULL;
 else proceed;
-Post-conditions.-The vehicle enters the database and is a register vehicle in our system.

CLASS User
-Invariants.- Must be a registered user that confirmed its registration by email
 context Controller inv:
 email && password == valid;

-Pre-conditions.- Must have registered before.
 context Controller : Boolean pre:
 self.registered_customer ==valid;
-Post-conditions.- Adds information that was inputted by the user (add reservation or vehicle or
updated information)
 post: if add_reservation == valid || add_vehiclle ==valid
 then the reservation or vehicle gets bind to this customer

104

 else NULL;

CLASS Roles-Users
-Invariants.-Must be a registered user

context Controller inv:
 email && password == valid;
-Pre-conditions.- N/A
-Post-conditions.- N/A

CLASS Parking
-Invariants.- A vehicle needs to park
 context Controller inv:
 self.parking == true;
-Pre-conditions.- The vehicle must be at the elevator where the spot will be assigned and park
where assigned.
-Post-conditions.- The vehicle has left the spot and now the spot is empty and ready for
someone else to use.
 post: start_parking =0;
 stop_parking =0;

CLASS Roles
-Invariants.- A user is trying to use the system
-Pre-conditions.- This user must be either logging in, a register user or an admin.

context Controller : Boolean pre:
 email && password ==valid;
-Post-conditions.- N/A

CLASS User-Token
-Invariants.- Must be a valid registered user
 context Controller inv:
 email && password ==valid;
-Pre-conditions.- N/A
-Post-conditions.- N/A

CLASS Reservation
-Invariants.- Must be a valid registered user

context Controller inv:
 email && password ==valid;
-Pre-conditions.- The garage cannot be full or must have space between the requested interval.
 context Controller (garagespotsavailable) Boolean pre:
 garagespotsavailable > 0;
-Post-conditions.- Garage has less space.
 post: garagespotsavailable = garagespotsavailable -1;

105

CLASS Price-Plan
-Invariants.- N/A
-Pre-conditions.- Must be an admin/manager
 context Controller: Boolean pre:
 email && password == valid admin;
-Post-conditions.- Updates the prices in the database and browser.

106

System Architecture and System Design

Architectural Styles

The structure used in our project resembles the Event-Driven architecture. The EDA is a pattern
that promotes the production, detection, consumption of, and reaction to certain events.
Our software is based on the customers requesting to park their vehicles in our garage.
Therefore our system architecture is based on the event of the customer wanting to reserve a
parking space [1].

Different entities change state in our system. A reservation can have multiple states during its
life cycle. When a customer cancels a reservation, its state changes from “active” to “canceled”.
If a customer fails to leave the garage after the reservation time has ended, its state changes
from “active” to “overstay”. The following table sums up the events and states for a reservation.

Events for Reservation Pre-State Post-State

Created None “upcoming”

Canceled “upcoming” “canceled”

Extended “active”, “upcoming” Same as Pre-State

Overstay “active” “overstay”

Understay “active” “understay”

Grace “upcoming” “grace”

Missed “grace” “missed”

Completed “active”, “overstay”, “understay”,
“missed”

“completed”

The framework we will be implementing in “Park-A-Lot” is a MVC (Model View Controller)
framework. The main point in MVC is straight forward: the following responsibilities must be
clearly separated.

107

The controller deals with the user requests. It controls and coordinates the things needed in
order to execute the user request. The model consists of the data and the rules or policies
regarding the data. The view creates a way to represent the data obtained from the model [2].

Identifying Subsystems

Our system will make use of many existing software packages and libraries. The following list
describes in short the different packages we will use in implementing our system.

● Kohana PHP framework
● Kohana ORM module (object relational mapping)
● Kohana Validation module (validates a plethora of data, from emails to credit cards)
● PayPal, Google Checkout (accept payments from out customers)
● Kohana Auth module (used to login/logout and keep track of customers and

administrators)
● jQuery Javascript library
● jQuery Calendar plugin (used for easy reservation scheduling)
● Google Maps plugin (used to locate nearby garages)
● Bluetrip CSS framework

108

Since our system is to going to be built as a website/web service, we will need to design both
the server side and client side(s) that will make up our system. The end user will interact with
the main server using any standard web browser using a standard HTTP connection. The client
side will be implemented in HTML/CSS/JavaScript, while the server side will be implemented in
PHP. If time permits, we also plan to add other clients, specifically as mobile applications on
mobile phones.

The diagram below shows the UML package diagram for our system. It is divided into two sub-
systems. The first one is the client side, which through the use of a browser chooses different
actions and then this sub-system sends the info to the server. The server, which is the other
sub-system, is where the code for all the classes is located. It also contains the database with
all the info of the customer, rates, and network settings (with other garages).

109

[3]

110

Mapping Subsystems to Hardware

The system can be broken into three main parts: a web server, a client terminal.

Web Server
The web server runs the majority of the code, maintains a relational database concerning details
of the parking garage and its reservations, and accepts input from a client-side system that
allows reservations to be created and user accounts to be managed.

The server stores three main types of data: garage information, reservations, and user
accounts. The garage information are things such as garage capacity and pricing structure for
the garage. The reservations is the reservation records made by customers, either in advance
or on the spot as walk ins. Finally, the user account info contains usage history for each
customer, and a log of user activity on the system, which can be used to determine discounts
for particularly well behaved customers.

Client Side
The client side is much simpler. Basically, it consists of a web browser capable of executing
HTML and some CSS. Most of the elements on the client side are HTML forms, which harvest
data from the user and relay it to the web server which handles all processing and data
manipulation.

In the future, it will be possible to have the client side also run asnative Android and iOS apps.
That functionality will be similar to the web browser based system, just with a nicer interface on
top. However, the functionality of harvesting data from a user and relaying it to the server will
remain the same.

Persistent Data Storage

Our system requires us to keep track of several entities. We need to keep track of
● Customers
● Customer reservations
● Customer vehicles
● Customer billing information
● Garages (which implement our system)
● Garage price plans
● Garage administrators, and their privileges

We will be using a relational database(s), MySQL. We chose MySQL because of its reputation,
its price, and because its open source software that we can alter to fit our needs if need be.

No description

Table of contents

Page number: {02}1 garage
Page number: {03}2 parking
Page number: {04}3 price_plans
Page number: {05}4 reservations
Page number: {06}5 roles
Page number: {07}6 roles_users
Page number: {08}7 user_tokens
Page number: {09}8 users
Page number: {10}9 vehicles
Page number: {11}11 Relational schema

Page number: 1/11 May 06, 2011 at 10:13 AM

No description

1 garage

Creation: May 06, 2011 at 10:03 AM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
parking_id int(10) UNSIGNED Yes NULL parking -> id
level_num tinyint(3) UNSIGNED No
row_num tinyint(3) UNSIGNED No
col_num int(11) No
license_plate varchar(10) Yes NULL
state char(2) Yes NULL
open tinyint(1) No 1

Page number: 2/11 May 06, 2011 at 10:13 AM

No description

2 parking

Creation: May 06, 2011 at 10:05 AM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
user_id int(10) UNSIGNED Yes NULL users -> id
reservation_id int(10) UNSIGNED Yes NULL reservations -> id
price_plan_id int(10) UNSIGNED No price_plans -> id
vehicle_id int(10) UNSIGNED Yes NULL vehicles -> id
arrival_time int(10) UNSIGNED No
departure_time int(10) UNSIGNED Yes NULL

Page number: 3/11 May 06, 2011 at 10:13 AM

No description

3 price_plans

Creation: Apr 28, 2011 at 07:31 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
member_price float(4,2) UNSIGNED No hourly price for registered customers
guest_price float(4,2) UNSIGNED No hourly price for walk ins
discount_rate float(2,2) UNSIGNED No discount rate given to members for good

attendance
min_price float(4,2) UNSIGNED No minimum allowable price, even with discounts

date_added int(10) UNSIGNED No
active tinyint(1) No 0 only one price plan can be active at a time

Page number: 4/11 May 06, 2011 at 10:13 AM

No description

4 reservations

Creation: May 06, 2011 at 10:07 AM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
user_id int(10) UNSIGNED No users -> id
start_time int(10) UNSIGNED No
end_time int(10) UNSIGNED No
recurring tinyint(1) No 0
previous_id int(10) UNSIGNED Yes NULL reservations -> id
date_added int(10) UNSIGNED No
last_edited int(10) UNSIGNED Yes NULL
active tinyint(1) No 1

Page number: 5/11 May 06, 2011 at 10:13 AM

No description

5 roles

Creation: Apr 28, 2011 at 07:31 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(11) UNSIGNED No auto_increment
name varchar(32) No
description varchar(255) No

Page number: 6/11 May 06, 2011 at 10:13 AM

No description

6 roles_users

Creation: Apr 28, 2011 at 07:31 PM

Field Type Attributes Null Default Extra Links to Comments MIME

user_id int(10) UNSIGNED No users -> id
role_id int(10) UNSIGNED No roles -> id

Page number: 7/11 May 06, 2011 at 10:13 AM

No description

7 user_tokens

Creation: Apr 28, 2011 at 07:31 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(11) UNSIGNED No auto_increment
user_id int(11) UNSIGNED No users -> id
user_agent varchar(40) No
token varchar(40) No
type varchar(100) No

created int(10) UNSIGNED No
expires int(10) UNSIGNED No

Page number: 8/11 May 06, 2011 at 10:13 AM

No description

8 users

Creation: Apr 28, 2011 at 07:31 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
first_name varchar(30) No
last_name varchar(40) No
email varchar(127) No

password char(64) No
registration_date int(10) UNSIGNED No

logins int(10) No 0
last_login int(10) Yes NULL

Page number: 9/11 May 06, 2011 at 10:13 AM

No description

9 vehicles

Creation: May 06, 2011 at 10:08 AM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
user_id int(10) UNSIGNED No users -> id
license_plate varchar(10) No
state char(2) No
date_added int(10) UNSIGNED No

Page number: 10/11 May 06, 2011 at 10:13 AM

No description

 garage
 id
 parking_id
 level_num
 row_num
 col_num
 license_plate
 state
 open

 parking
 id
 user_id
 reservation_id
 price_plan_id
 vehicle_id
 arrival_time
 departure_time

 price_plans
 id
 member_price
 guest_price
 discount_rate
 min_price
 date_added
 active

 reservations
 id
 user_id
 start_time
 end_time
 recurring
 previous_id
 date_added
 last_edited
 active

 roles
 id
 name
 description

 roles_users
 user_id
 role_id

 user_tokens
 id
 user_id
 user_agent
 token
 type
 created
 expires

 users
 id
 first_name
 last_name
 email
 password
 registration_date
 logins
 last_login

 vehicles
 id
 user_id
 license_plate
 state
 date_added

Page number: 11/11 May 06, 2011 at 10:13 AM

122

Network Protocol

Since our system will be built as a website/web service, and thus built on a single server, there
is no need for any communication protocols except the standard HTTP.

Some sensitive data is being passed back and forth (such as the date and time of a customer’s
reservation), and eventually it may become prudent to implement the option to allow customers
to access the site through an SSL connection, in order to ensure total privacy.

Global Control Flow

● Execution order - Our software is event-driven so it depends on the customer and his
purpose while interacting with the system.

● Time Dependency - The only timers in the system is the 15 min inactive log-in time
allowed. If a customer logs into his/her account and remains inactive for 15 min then the
system will logged him/her out.

● Concurrency - No.

Hardware Requirements

Our system requires the following:

● Keypad - For the customer to enter information at the elevator.
● Screen Display -Minimum resolution of 640 X480 pixels. This display will be

implemented in the elevator.
● Hard Disk/Server - 50 GB of storage space would satisfy our needs to keep track of all

user data, as well as garage and reservation data. With an expectation of supporting 1M
users, we would expect to amass about 5GB of data at the end of each year.

● Sensors - In order to figure out if the parking space is available or occupied.
● Cameras - In order to identify the vehicles coming in the garage and leaving.
● Network Bandwidth - Since there is not a huge amount of information being

transferred, the amount required should be 56 kbps to access the system successfully.
● Web browser - In order for the client to access the software, he/she must use a semi-

advance browser (i.e Mozilla Firefox 4.0 or up, Google Chrome, Internet Explorer 8 or
up).

Aside from the hardware which is integrated into our system (keypad, display, etc.), the only
hardware we require is disk space for our database(s). Looking at our database schema, its
evident that our largest table will be the reservations table. The reservation table consists of 11
fields, 10 of which are int fields (4 bytes), and one of which is an enum field (1 byte). Each

123

record in the table will take up 41 bytes. The amount of disk space will depend on the number of
customers we intend to support, and the average rate of reservations we think each user will
make and how long we will keep old records.

For example: Lets say we intend on supporting up to 100 customers, who make reservations at
a rate of 1 per month. That’s 1200 reservations a year. That’s 1200 * 41 = 49,200 bytes, or 49.2
Kbytes a year. If we intend on holding reservation information for the past 3 years, that’s at least
150 Kbytes before we dump out old data. Obviously, we will support a lot more customers and
customers will make a lot more reservations, and we will keep data a lot longer... this is just an
example. Obviously, other tables will take up data as well, but nothing is expected to grow as
fast as the reservations table, so this is what we should be looking to support (I would think). In
any case, disk space is cheap, bandwidth is not... so depending on the number of hits we intend
on getting a day, we may need heavy processors, fast ram, etc. But, for this project, I don’t think
bandwidth will be much of an issue.

124

Data Structures and Algorithms

Data Structures

Our system does not use many complicated structures (hash tables, linked lists or trees) but we
do use arrays in order to quickly analyze and refer to the data in our database. The reason why
we chose arrays over any other method is because it is simple to use and linked lists are not
implicitly supported by PHP, the language we will be coding our server side application in.

The main source and storage of all our data will be done in relational databases. Using a
technology such as MySQL allows quick access to all of our data, and complicated algorithms
can be simplified with the powerful Structured Query Language (SQL).

A main component of our parking reservation system will be the parking lot bitmap, which is
simply a two-dimensional map which encodes information about what parking spots are filled at
all times. The bitmap will be as follows,

This data can be encoded in a table in the database.
It is important to note that the size of this bitmap can become quite large, especially when coded
into a table. Suppose, for a garage with 300 spaces, that we keep track of the next 3 months

125

worth of reservations. If we consider 30 minute increments of time, this parking lot bitmap table
will contain

(30 days/month)*(3 months)*(24 hours/day)*(2 half-hours/hour) x 300 parking spots

or

4320 rows x 300 columns

Which is an enormous table that would take a very long time to search through. Therefore, it
might be better to find a different type of data structure that could store this parking lot bitmap.
However, using PHP and Kohana there does not appear to be a more efficient way.

Algorithms

Scheduling Reservations - A problem may arise where a customer wishes to schedule a
reservation but is unable to do so because there are no blocks of time available in which to
schedule the full reservation. This problem can be represented by considering the following
case for our parking lot bitmap:

Note that for the original parking lot bitmap it is impossible to schedule the reservation for a
future time, because of how we currently have future reservations distributed. However, we can

126

implement a swap() function that pairwise compares future reservations to determine if two
can be swapped that would allow the new reservation to be created. [5]

The simplest implementation of this algorithm is as follows. The input access the existing
parking lot bitmap, encoded as a matrix M. The rows of M are the parking spots in the garage,
and the columns of M are the time blocks (could be in 30 minutes increments, 1 minute
increments, whatever the system calls for). The reservation R has a start and end time, and a
unique reservation number to distinguish it from other reservations.

Input: Parking lot bitmap (as matrix M[spot, time block]), Reservation R, Max number of
 parking spots max_spots

Output: Parking lot bitmap with new reservation added, if possible

Assign-Reservation(M, R, max_spots)
assigned = false;
for each parking spot m in M until assigned = true
 if m is free from R.start until R.end then
 Assign R to m;
 assigned = true;
if assigned = false then
 if size M = max_spots
 return Swap-Reservation(M, R);
else

return M;

 Swap-Reservation(M, R)
 for each parking spot m in M
 if m is free at R.start but not R.end then
 R1 = m.nextReservation;
 for each parking spot n not previously considered in M
 R2 = n.nextReservation;
 if n is free from R1.start until R.end and
 m is free from R1.end until R2.end then
 Swap R1 with R2;
 Assign R to parking spot m;

The Swap-Reservation() function simply checks if two reservations can be swapped so that the
new reservations can be included in the parking lot bitmap. If we consider the matrix M below
with pre-defined reservations in it, and attempt to insert a new reservation (Number: 6, Start: 3,
End: 6), the following happens.

127

The general idea here is to start by searching for a parking spot that can accommodate the start
time of the reservation, then seeing which reservation can be swapped with the conflicting
reservation in that spot. If a swap is possible, we make it and assign the new reservation. If
not, we move on to the next spot in the bitmap, and repeat, this time comparing against all spots
(except the first spot, which we have already paired with the second, so no need to repeat that).

The appendix to this report contains a C++ implementation of the algorithm.

As for applying this algorithm to our system, looking at the database schema there are two
tables of which to take note: Parking and Reservations. Parking contains all of the information
about cars currently parked in the garage - spot number filled, start time, end time, etc.
Reservations contains the information about reservations in the system, both past, current, and
future. Feeding this information into the algorithm, there are two steps to building and updating
the parking bitmap.

1. Look in the Parking table to determine the durations of those parked in currently
assigned spots, all of which are "active" and therefore untouchable, i.e. unable to be
swapped with other reservations in an attempt to make room for a future reservations.
These current parkings will be the basis of our parking bitmap.

2. Second, look in the Reservations table (up until some point in time in the future) and try
to place as many reservations into spaces as possible, using the algorithm to assign
them. When a new reservation gets added simply try to add it, and if it doesn't fit call the
swap() function to see if it can be swapped to make room. If not, it cannot be added.

Each time either Parking or Reservations gets updated, we will need to update the parking
bitmap, which is stored as another table inside the database.

128

The point in the future we consider in Step 1 would probably be either 24 or 48 hours, wherein
we consider intervals of 1 minute. Therefore, a table storing this information would have
24*60=1440 rows or 2880 rows, which means the parking bitmap would have a resolution of
1440/2880 time increments, multiplied across the number of spots in the garage.

Best Alternative Reservation - This algorithm will determine the largest contiguous block of
time contained in the period between a customer’s desired reservation start and end times, in
the event that a reservation for the entire block of time is unavailable.

For example, if a customer wants a confirmed reservation from 9am until 5pm and the creation
of that reservation would overbook the garage for any amount of time within that interval, then
the customer would be offered the largest contiguous block of time within that 9-5 window that
would not create an overbooked garage.

Input: A reservation R, Parking Lot Bitmap M
 Output: Largest contiguous reservation possible, G

 Find-Best-Alternative(M, R)
 maxBlock = 0;
 G = NULL;
 for each parking spot m in M
 conflict = m.nextReservation;
 if (R.start - conflict.start) > maxBlock then
 maxBlock = R.start - conflict.start;
 G = new Reservation starting at R.start and ending at conflict.start;

Mathematically this is a very simple algorithm. We look through the parking lot bitmap to
determine which spot offers the most amount of time matching the given start and end times of
a desired reservation. Then return a reservation with those characteristics, which the customer
can choose to reserve instead.

This algorithm will help the customer select a reservation. The customer may not know that
their requested reservation of 9am until 5pm is unmanageable, but perhaps a 9am-4:30pm
reservation is possible.

129

Discount Price - This algorithm will determine the discounted price a registered customer may
pay for parking. After a registered customer has completed some amount of “perfect
reservations” for a given time period, i.e. reservations for which the customer both arrived on
time and departed on time the pricing for each upcoming reservation will be offered at a
discounted price per hour.

This is actually a very simple algorithm. It is a tiered pricing structure which moves the pricing
per hour for a registered customer into a lower pricing tier if the customer has a solid record of
arriving a departing on time. We will call this type of a customer a “good” customer.

Registered customer’s normally pay a fixed price $P per hour. The price will drop as a
percentage of $P as the customer’s performance record over the time window W reaches
certain thresholds, T[i] where i = 0, 1, 2...

The following step function illustrates this idea.

Note how for different thresholds of T[] the pricing decreases This price structure is completely
customizable per each garage, and different thresholds can be set for customer performance.
Each value of T[] must be a statistical percentage of reservations completed on time, compared
with all reservations, some of which may have been either overstays or understays.

Moreover, a customer must have at least 10 reservations completed for these discounts to take
affect. For example, a customer with only 1 reservation completed on-time will not be eligible

130

for the 100% completed discount rate. Rather, the rates will only apply after a customer has
accrued more than 10 completed reservations to ensure fairness.

As an example, the following values for T[] and P are possible.

P = $20, 0.9P = $18, 0.8P = $16, 0.7P = $14
T[0] = 0%, T[1] = 80%, T[2] = 90%, T[3] = 95%.

So a customer who arrived on time and departed on time 95% of the time would only pay $14
per hour, as opposed to the regular rate of $20 per hour.

131

User Interface Design and Implementation

A few significant additions/edits were made to the user interface to increase the user
experience. All mock-ups can be seen live at http://www.park-a-lot.vacau.com/. The design is
meant to reduce user effort to a minimum, by providing a sleek and reduced graphical interface
that is simple to understand (no screen clutter or extraneous information).

The differences between our previous design and our current design go as follows:

Home Page
Since we did not actually implement the multi-garage feature, we’ve removed the Google Map
from our homepage. We’ve also added a price breakdown on our home page so customers can
easily see our current prices for members and guests alike.

User Registration
We’ve eased up on our user registration form, making it easier and quicker for users to sign up.
We no longer require any credit card information at sign up.

132

User Login
We did not change much with user login, except added a few site-wide tips to our login screen.
The login screen as seen from our home page remains the same, but we added a few helpful
tips and FAQ to our main login screen.

133

User Profile
The user profile page contains links to all important pages from a users standpoint. From there,
they can go to the create reservation page, create vehicle page, list reservations page, list
vehicles page, as well as view any reservations for a specific day by clicking on a date from the
calendars shown, which summarize which days the user has a reservation in the next 2 months.
Also, from the home page, the user can see how much they have on their current monthly bill to
date. Every action that the user takes, whether it be add a new reservation, cancel an existing
one, etc. they are redirected back to their profile and a popup notification is shown at the very
top of the page to provide feedback.

Create Reservation
The create reservation page was updated to add popup calendars to each field that takes a date
input to make it easier for the user.

134

List Reservations
The list reservations page lists in more detail all of the users reservations, past, present, and
future. From here, they can choose to edit/cancel any reservation which can still be
edited/updated. each reservation is color coded to easily distinguish between
past/present/future/cancelled reservations.

135

Edit/Cancel Reservation
From this page, users can edit or cancel a reservation. Reservations can only be cancelled if
done so at least 30 minutes prior to the beginning of the reservation, where as reservations can
be edited if done so at least 30 minutes before they end. If a user comes to this page after the
allowable cancellation period, the cancel action will not be shown. We also added options to
edit/cancel all reservations following the one being edited/cancelled if the one being
edited/cancelled is a recurring reservation.

Add Vehicle
The add vehicle page is where the user goes to register a new vehicle with their account. These
vehicles are recognized when the user arrives for quick and easy entrance into the garage.

136

List Vehicles
The list vehicles lists all vehicles currently registered with the users account.

Remove Vehicle
From this page, users can de-register any of their vehicles. This page just asks for confirmation,
as well as shows information about the vehicle being removed.

137

View Garage Usage
From this page, administrators can view a few statistics about the garage, such as the average
time spent parking, the percentage of overstays/understays, the number of no-shows, etc.

Set Price Plan
From this page, administrators can set new price plans, as well as activate old price plans.

138

Simulation
To test our system, we implemented a simulation test bench. The simulation is to emulate as
close as possible the process of physically parking in our garage. Below are a few screenshots
of our simulation.

Welcome Screen

Exit Screen

139

Garage Map

Our entire user interface is aimed at an ease-of-use for the user. We’ve accomplished this by
limiting the number of options on each page to the minimal, only the necessary actions to be
taken are shown on a page. Our longest form is our user registration form, which only requires 5
input text fields. Our average form only requires 3 input fields, making form completion very
simple for the user. Our most complicated form, our create reservation form, is already filled in
with the basic information, such as the start date and start time (which we take as starting 3
hours from the current time).

140

History of Work and Current Implementation Status

Since the last report, there have been many changes to the design and implementation of our
project. First, we re-evaluated the Use Cases that we used in Report 1. We broke down some
of the requirements so that each requirement will apply to at least one Use Case as opposed to
our first report where some business requirements applied to several use cases, and some
business requirements applied to none. After re-organizing the Use Cases, we updated our
UML diagrams and class diagrams accordingly. Since the previous report and demo, there were
many small details that we had to figure out, such as:

● How do we bill the customer?
● How do we ensure maximum usage of the parking lot?
● How do we give discounts?
● How should recurrence reservations work? limits?
● Do we want to let the user register multiple cars? If so how many is allowed?
● How much access do we give the garage administrator?

These key questions were related to the use cases we had yet to implement.

Our progress developed as follows:

Completion of First Report February 16th, 2011

Completion of Second Report March 10th, 2011

Completion of First Demo March 27th, 2011

Major Revision of First Report April 4th, 2011

Major Revision of Second Report April 15th, 2011

Implementation April 28th, 2011

Unit and Integration Testing May 1st, 2011

Completion of Second Demo May 1st, 2011

Completion of Third Report May 6th, 2011

141

Our milestones in this project were:

● Determine the Use Cases
● Determine our System Design
● Determine our Database Design
● Finalized the Software Design
● Implementation of the Code

Some our key accomplishments are:

● We were able to have concurrent reservations.
● Came up with an algorithm that provides fair discounts to customers.
● Make reservations as fast and easy as possible.
● Efficient reservation swapping algorithm to maximize garage usage.
● Create simulation tab to simulate customer entering and exiting garage.
● Implemented all Use Cases we designed into the website.

Overall, the project is now somewhat usable as a real-world system. It contains all of the major
functionality described by our use cases, and has been tested to work properly in a limited but
still comprehensive set of tests. Although certainly not ready for a production environment,
these system could be used as a great learning tool, and with a little bit more coding and testing
(perhaps another month of work or so) all of the bugs could be ironed out and this system could
be placed into production.

The one major piece we are missing is the implementation of UC-2 Park, since we did not have
any sensors or a parking garage to integrate into our project. Without that, we did not code
anything to handle retrieving input from the parking garage sensors, which would be integral to
this project functioning successfully. Therefore, any move of this product to production status
would require some heavy lifting in that area.

In this project, we have accomplished all of our goals we set out with. In the next section we will
take some time to wrap it all up, and then discuss what additional features we thought would
work well with our system, yet did not have the time to implement.

142

Conclusion and Future Work
This project was difficult from the beginning, mainly because none of our group members had
ever worked on a full-scale software project like this before. We had all coded applications, but
the planning aspect of it and the formulation of such length reports proved somewhat a
challenge.

However, at the conclusion of the semester we now have a functioning software system in
place, and a long list of documentation and design reports supporting it. Although it was not
simple or easy to put together, our careful design process and extremely clean coding style
helped to create a powerful and easy to understand piece of code.

In sum, this project is not ready for prime-time. It certainly looks sharp and can handle all of the
use cases we have designed for in this report, however some bugs do still exist that would
require time to debug and refactor. The reports, on the other hand, should be nearly bulletproof
by this point. We have implemented all of our ideas, and even elaborated on the process used
to determine that those ideas were the best option for our project, in these reports. With our
work as a baseline, it should be simple to translate our work on these pages into a powerful
piece of software.

We would like to thank our professor, Ivan Marsic, for all of the help he gave us during this
project and over the course of the semester.

Below, we discuss future work that could be integrated into the Park-A-Lot system.

143

Directed Advertising for Online Reservations

Goal: To offer targeted advertising to customers who create reservations using the online
system which is relevant to both the time and location of the currently created reservation.

Design: Suppose that a customer decides to make a reservation for a Park-A-Lot garage in
New York City. The garage she parks at is within walking distance of the nearby theatre district.
The Park-A-Lot system, in an effort to improve revenue, could target advertising to this
customer for the nearby theatre. If the customer makes her reservation for 7pm, the system
could show advertisements and recommendations for Broadway shows starting at 8pm, and
possibly nearby places to grab a bite to eat.

To start out, this advertising system would be available to nearby retailers and services
surrounding each Park-A-Lot garage. A garage owner might sell advertising space to these
merchants with the promise that customers parking nearby would be notified of offers,
discounts, and deals available to Park-A-Lot customers.

As time goes on, the advertising system could grow to learn what a customer enjoys doing in a
nearby area (perhaps present the customer with the option to take a quick survey to more
effectively target advertising), and the results from that survey could be employed to provide
more granular and refined results when making reservations. A customer’s preferences would
be stored alongside her account information and be used to target advertising to her when
making future reservations.

In an even more advance scenario, it may be possible to book parking at 7pm, and from the
Park-A-Lot website also buy Broadway show tickets at 8pm, simply by clicking through a
targeted advertising link. The possibilities are endless.

Integration: The main goal of integrating this type of advertising into the Park-A-Lot system
should be simplicity. The website was designed with the goal of simplicity in mind, and that goal
should be carried through any changes that are made to the system. Therefore, it might be
better to simply notify the customer that, when making a reservation for a particular location and
time, that offers exist in the area. If the customer so chooses, she could select to view these
promotions and could take advantage of them as a Park-A-Lot customer. Another tab could be
added to the website which would store information about existing offers for each reservation
the customer has made into the future.

The goal of implementing this system should not be driven purely by profit, but rather by the
desire to help a customer get the most out of using our system. If we can offer the convenience
of a nearby deli to grab a sandwich in, then we have increased our customers’ happiness and
also increased the chances they will continue to use our service into the future. At no point
should this system become like those of other “ad-tracking” companies, who seek to gather

144

information on users and then sell it to the highest bidder. This ideal should be a principle
tenant of any advertising system designed for Park-A-Lot.

Multiple Garage Integration

Goal: To allow multiple Park-A-Lots to be interfaced together and allow the sharing of
information under one System Administrator account to facilitate parking and convenience for
the customer.

Design: Often times, a parking garage may become full and have no more capacity to handle
walk-ins or reservations. At this point, it would be advantageous to redirect that customer’s
business to another nearby parking garage, or risk losing it entirely. A customer may be put off
by being told “No Vacancy for You”, but might find warmth in the response “We found you
something else.”

The greatest advantage that could be gained from interfacing multiple Park-A-Lots is the ability
to share traffic between them. If they are close, location-wise, this would be almost as if there
were one large, combined garage the customer could park in. If a customer coming from out of
town cannot find a spot at the garage on Street A, then perhaps a spot in the garage on Street B
just one block away might suffice. This convenience would ensure customer loyalty and
increase revenue.

The question remains: does two garages need to be owned by the same person or corporation
in order to interface them?

Certainly, if two garages are owned by one company or person it would be highly advantageous
to interface them, and allow them to share reservations between themselves. Of course, this
sort of bond is only as strong as the distance between the two interfaced garages - if they are
geographically far apart, the benefits become smaller. In that case, it may be only a mild
convenience to know that it is possible for a customer to find a spot in the garage across town.

If the two garages are not owned by the same interest, it may still be an advantage to have a
connection between them. Directing your customer to the competition is by no means a way to
turn a profit, but letting a customer know you car about them by offering to find them a spot in
another garage goes a long way in the line of customer service, and eventually customer loyalty
which can turn to easy profit.

Integration: Clearly, this implementation wouldn’t require much of a change to our existing
database and system structure. Rather, it would build on top of it a new system for sharing
information between separate Park-A-Lot systems.

To effectively integrate a multi-garage system composed of several smaller, individual garages
we would need to implement a new web interface for administrating the connection between

145

each garage in the system. Technically, it would be an extension of the current System
Administrator role.

Currently, we have System Admins who can edit pricing and view parking history at the
garages. If we decorated System Admins with the ability to access multiple garages from the
same account, and also granted them access to a special web interface for viewing the entire
garage system at once, then we could easily accomplish the administration of the multi-garage
system without modifying our existing design too much. Since we have already implemented a
Protection Proxy for users accessing the system, this change is a simple as adding one
additional proxy to our current system.

Of course, having Park-A-Lot suggest to customers a different garage would require some
changes to our current system. Each garage would need to be aware of it’s sister garages and
their current status, so that when a customer was redirected it would be to a garage that could
actually handle the additional traffic.

Customer Parks in Unassigned Spot

Goal: To account and rearrange our system’s database when a customer does not park in
his/her assigned spot.

Design: This is a question that is hard to account for because the sensors we have available
only track if the spot is occupied or empty, it does not tell us which car or plate is on the parking
spot. We understand a customer may be in a rush and parked in the first spot he saw after
he/she got out of the elevator, however, what if the system assigns another customer right
behind (or later) him/her to that specific spot because it thinks it;s empty? Would the database
handle it correctly? what if there is a reservation already assigned to that spot in 30 min after,
would it affect the customer that registered already?

The answer is no because, although the customer parked in the incorrect spot, there are still the
same amount of spots free in that particular floor. The design of the Park-A-Lot garage is made
so that no car can go from one floor to another unless it is through the elevator. Therefore if the
elevator drops you off in floor 2, for example, there is no way you can park in a spot on floor 1 or
3 so the same open spots (each floor has 100 spots) will be there. Whether the spot free is 201,
205, 207 or 207,208 and 209, there are still 3 open spots so it would not affect reservations that
were assigned, however it does affect the view of the garage map. We would like to have an
accurate description of what spots are available and let the system know that someone has
mistakenly parked in the wrong spot so that the system readjusts accordingly.

Implementation: One way to implement this is by constantly receive information from the
sensors to the database. If we allowed a certain period of time to go by between levels of
parking then we will be able to assure that a certain customer parked incorrectly. For example, if
customer A parks incorrectly in 205 and then the customer B right behind it was assigned 205,

146

how does the system know that if was the customer A that parked in spot 205 instead of
customer B. In order to avoid this problem we would have to make the system assigned parking
in different levels. What this means is that if you have a line of 5 cars waiting to receive a
parking slot, the system will assigned the first level to the first car, then the second level for the
second car and so on, this way we will have enough time to see if the car in level one parked
incorrectly before the next customer arrives at level 1 and tries to park. Therefore writing a few
restrictions on the way the system determines what spot to assign to the customers, we can
control where they park and accurately determine if someone parks in the wrong spots and
update our database accordingly.

New Sensors That Track Vehicles

Goal: To implement new sensors, as they become available, into our system to increase the
performance.

Design: As time goes on, technology advances. There are new sensors that are coming out
that track vehicles as they move through the garage, which will help us to determine where they
park exactly. The biggest question is: how would our system handle that? Would we have to
change the structure or design of our software to adapt these new sensors?

Certainly not, our architectural design is able to handle these new sensors and replace the old
sensors that just detected if the spot was empty or occupied. The main difference would be the
amount of space need to accommodate all the data sent by the sensors. These new sensors
will be constantly communicating with the server and depending how many sensors we have
then it might decrease the performance of the server due to the amount of information being
send/received.

Implementation: The way to fix this issue is by increasing the network bandwidth and also the
size of the disk so that it allows for more data to be stored. Although some of the classes and
functions would have to change slightly, especially those regarding parking it would be of great
benefit to have this type of sensors in our system and would help us solve the problem when a
customer parks in the wrong spot.

Display Interactive Garage Map

Goal: To have an interactive map in which the user (admin) can select a time of the day and
see what spots are occupied, reserved and their information.

Design: In order for the manager to have an accurate idea of how the garage is functioning, it is
of great help for him to have a garage map that updates and lets him/her interact with it. Right

147

now, the admin can see a map of the garage with the spots that are full and empty. However,
what if the manager wants to know what car or what customer is parked in spot 117 or what
time did the vehicle arrived at that spot? Then we need to consider updating the map that we
have and let the user input a time of the day that he/she wishes to see the map of the garage.
This will help the manager make better decision regarding operating hours and the effect it will
have on the business.

Implementation: To implement this interactive map, we will need to modify the current display
that we have now. Since what we have now is pretty simple and just color coded. We would
need to change each spot to handle to store information (vehicle parked, time of arrival,
expected time of departure and customer info) in order to have an interactive map. Another way
to let the admin check the information of each spot is by creating a table with all the spots of the
garage and just simply allowing the admin to have access to the information stored. For
example, when the system gives the parking spot, it will need to store all the customer’s info to
that parking spot’s data. Then simply we can create an interface (or another tab in the admin’s
profile) to let him enter a specific spot (or click from the map) and obtain all the information
needed at any time of the day on any spot in the garage.

148

Code Appendix

/**
* Parking Spot Assignment
* by Matt Edwards, Rutgers University 2011
*
* Program assigns parking reservations to spots (machines) using a simple
linear programming algorithm. It is constrained by a maximum
* number of spots (machines). When the maximum is reached, the program
attemtps to swap existing reservations so that new reservations
* can be fit within the existing time slots.
*/

#include <iostream>
#include <vector>
#include "Machine.h"

using namespace std;

bool assignJobs(int [], int [], int [], int, int, vector<Machine> &);
bool assignJob(int, int, int, int, vector<Machine> &);
bool trySwap(int, int, int, vector<Machine> &);
void makeReservation(int, vector<Machine> &);
void showReservations(vector<Machine> &);
int setNewMax(int, vector<Machine> &);
void deleteReservation(vector<Machine> &);

/**
* Program starts with a max of 3 machines. More can be added. Each
reservation is assigned to a machine,
* if free space is available. Menu options allow for making, deleting and
displaying reservations.
*/
int main()
{
 int maxMachines = 3;
 vector<Machine> machines;

 int input = 0;
 do
 {
 cout << "Reservation Assigner" << endl;
 cout << "-------------------" << endl;
 cout << "1) Make Reservation" << endl;
 cout << "2) Delete Reservation" << endl;
 cout << "3) Show Reservation Table" << endl;
 cout << "4) Set Max Machines" << endl;

149

 cout << "5) Restart" << endl;
 cout << "6) Quit" << endl;
 cout << endl;
 cout << "Choice: ";
 cin >> input;
 cout << endl << endl;

 switch (input)
 {
 case 1:
 makeReservation(maxMachines, machines);

 break;
 case 2:
 deleteReservation(machines);

 break;
 case 3:
 showReservations(machines);

 break;
 case 4:
 maxMachines = setNewMax(maxMachines, machines);

 break;
 case 5:
 machines.clear();
 cout << "Reservations cleared." << endl;
 cout << endl << endl;

 break;
 case 6:
 return 0;

 break;
 default:
 cout << "Not a valid menu choice!" << endl;
 cout << endl << endl;

 break;
 }
 } while (input != 4);

 system("PAUSE");
 return 0;
}

/**
* Assigns multiple jobs to the machines vector.

150

*
* @param job Array of job numbers.
* @param r Array of job start times.
* @param d Array of job end times.
* @param n Number of jobs, start times, and end times in
each array.
* @param maxMachines Maximum number of machines to assign to machines
vector.
* @param machines The machines vector, which stores the machines
that jobs are assigned to.
*
* @return bool True if all jobs assigned, false if not.
*/
bool assignJobs(int job[], int r[], int d[], int n, int maxMachines,
vector<Machine> &machines)
{
 int success = true;
 for (int j = 0; j < n; j++)
 {
 success = assignJob(job[j], r[j], d[j], maxMachines, machines) &&
success;
 }

 return success;
}

/**
* Assigns a single job to the machines in the machines vector. Attempts to
assign job without moving any
* existing reservations, then will try to swap other reservations to make
room for new reservation.
*
* @param job The job number to be assigned.
* @param r Job start time.
* @param d Job end time.
* @param maxMachines Maximum number of machines to assign jobs to.
* @param machines Vector which stores all machines being assigned
jobs.
*
* @return bool True if job assigned, false if not.
*/
bool assignJob(int job, int r, int d, int maxMachines, vector<Machine>
&machines)
{
 // Determine number of machines in vector, if any
 int i = 0;
 if (machines.size() == 0)
 {
 Machine m(i);

151

 machines.push_back(m);
 } else {
 i = machines.size() - 1;
 }

 int assigned_flag = false; // Set to true when job is assigned
 int k = 0;
 while(!assigned_flag && k < machines.size())
 {
 if (machines[k].isFree(r, d))
 {
 machines[k].assign(job, r, d);
 assigned_flag = true;
 }
 k++;
 } // Loop until job is assigned or we've hit the end of the machines
vector

 // Either add new machine or swap jobs
 if (!assigned_flag)
 {
 if (i+1 == maxMachines) // Can't add any more machines
 {
 // Try to swap two reservations to make room for the new
one
 bool swap_flag = trySwap(job, r, d, machines);
 return swap_flag;
 } else {
 // Can add another machine, do so
 i++;
 Machine newMachine(i);
 newMachine.assign(job, r, d);
 machines.push_back(newMachine);
 }
 }

 return true;
}

/**
* Attempt to swap two reservations so that a third (new) reservation can be
added.
* This function considers only pairwise swapping (will not shift more than 2
jobs to make room for a third).
*
* @param job Job number to be added.
* @param start New job start time.
* @param end New job end time.
* @param machines Vector of machines.

152

*
* @return bool True if swap successful, false if no swap possible.
*/
bool trySwap(int job, int start, int end, vector<Machine> &machines)
{
 for (int i = 0; i < machines.size(); i++)
 {
 // Determine why we can't assign a job to a machine
 int conflict = machines[i].findConflict(start, end); // Returns
index of first intersection between new job and existing job already on
machine
 int conflictingJob = machines[i].findNextJob(conflict);
 int conflictingJobStart =
machines[i].findJobStart(conflictingJob);
 int conflictingJobEnd = machines[i].findJobEnd(conflictingJob);

 // Determine if there is any open time on machine, starting from
new job start time
 if (conflict > start)
 {
 int diff = end - conflict; // How much more time we need
 for (int j = i+1; j < machines.size(); j++) // Loop
through remaining machines
 {
 // Is there enough open time on machine j to
complement time we have on machine i? e.g. Can we make up diff
 if (machines[j].isFree(conflict, end))
 {
 // If so, determine next job on machine j that
we would need to swap with conflicting job on machine i
 int nextJob =
machines[j].findNextJob(conflict);
 int nextJobStart =
machines[j].findJobStart(nextJob);
 int nextJobEnd =
machines[j].findJobEnd(nextJob);

 // Determine if swap possible, so that job on
machine j swapped to machine i will not cause any conflicts, and vice-versa
 if (machines[i].isFree(conflictingJobEnd,
nextJobEnd) && machines[j].isFree(conflictingJobStart, nextJobStart))
 {
 // Then swap, start by deleting jobs on
machines i and j
 machines[i].deleteJob(conflictingJob);
 machines[j].deleteJob(nextJob);

 // Then reassigning those jobs, to effect
a swap

153

 machines[i].assign(nextJob, nextJobStart,
nextJobEnd);
 machines[j].assign(conflictingJob,
conflictingJobStart, conflictingJobEnd);

 // Finally, assign new job
 machines[i].assign(job, start, end);

 return true;
 }
 }
 }
 }
 }

 return false;
}

/**
* Helper function that handles user input for making a reservation.
*
* @param maxMachines Maximum number of machines to assign.
* @param machines Vector of machines.
*/
void makeReservation(int maxMachines, vector<Machine> &machines)
{
 int rnum = Machine::getLastJobNum();
 int start, end;

 cout << "Start Time: ";
 cin >> start;
 cout << "End Time: ";
 cin >> end;

 bool success = assignJob(rnum, start, end, maxMachines, machines);
 if (!success)
 {
 cout << "Reservation not made, cannot exceed max machines" <<
endl;
 }
}

/**
* Helper function for displaying reservations to the console.
*
* @param machines Machines vector to display.
*/
void showReservations(vector<Machine> &machines)
{

154

 for (int j = 0; j < machines.size(); j++)
 {
 Machine hold = machines.at(j);
 cout << "Machine " << j << " ";
 hold.printTasks();
 }

 cout << endl << endl;
}

/**
* Helper function to handle user input when setting a new max number of
machines.
* Maximum number of machines must be greater than 0, and max cannot be set
smaller than
* current number of machines assigned jobs in machines vector.
*
* @param oldMax The old max number of machines.
* @param machines Vector of machines.
*
* @return int New maximum number of machines.
*/
int setNewMax(int oldMax, vector<Machine> &machines)
{
 int newMax = oldMax;
 cout << "Max Machines (currently " << oldMax << "): ";
 cin >> newMax;
 newMax = (newMax > 0) ? newMax : oldMax;

 if (newMax < machines.size())
 {
 newMax = oldMax;
 cout << "Max Machines cannot be less than size of machines
vector." << endl;
 } else {
 cout << "New Max Machines: " << newMax << endl;
 }

 cout << endl << endl;

 return newMax;
}

/**
* Helper function to handle user input when deleting a reservation by
number.
*
* @param machines Machines vector.
*/

155

void deleteReservation(vector<Machine> &machines)
{
 showReservations(machines);

 int rnum = 0;
 cout << "Delete which reservation number: ";
 cin >> rnum;
 cout << endl;

 for (int i = 0; i < machines.size(); i++)
 {
 machines[i].deleteJob(rnum);
 }

 showReservations(machines);
}

#pragma once
class Machine
{
 private:
 int task[10];
 int number;
 static int lastJobNum;
 void clearFuture();

 public:
 Machine(int);
 void printTasks(void);
 bool isFree(int, int);
 int findConflict(int, int);
 int findNextJob(int);
 int findJobStart(int);
 int findJobEnd(int);
 bool isIdle();
 void assign(int, int, int);
 void advanceTime(int);
 void deleteJob(int);
 static int getLastJobNum();
};

/**
* Class Machine
* by Matt Edwards, Rutgers University 2011
*
* A Machine can store jobs starting and ending at a specific time. Jobs
have a number which differentiates them.

156

*/

#include <iostream>
#include "Machine.h"

using namespace std;

// Static variable for keeping track of the last job number assigned.
Incremented when new job is assigned.
int Machine::lastJobNum = 1;

Machine::Machine(int num)
{
 number = num;
 for (int i = 0; i < 10; i++)
 task[i] = 0;
}

void Machine::printTasks()
{
 for (int i = 0; i < 10; i++)
 cout << task[i] << ' ';
 cout << endl;
}

bool Machine::isFree(int start, int end)
{
 for (int i = start; i < end; i++)
 if (task[i] > 0) return false;
 return true;
}

int Machine::findConflict(int start, int end)
{
 for (int i = start; i < end; i++)
 if (task[i] > 0) return i;
 return -1;
}

int Machine::findNextJob(int start)
{
 for (int i = start; i < 10; i++)
 if (task[i] > 0) return task[i];
 return -1;
}

int Machine::findJobStart(int jobNum)
{
 for (int i = 0; i < 10; i++)

157

 if (task[i] == jobNum) return i;
 return -1;
}

int Machine::findJobEnd(int jobNum)
{
 for (int i = 9; i >= 0; i--)
 if (task[i] == jobNum) return i+1;
 return -1;
}

bool Machine::isIdle()
{
 if (Machine::isFree(0,10))
 return true;
 return false;
}

void Machine::assign(int job, int start, int end)
{
 for (int i = start; i < end; i++)
 task[i] = job;
 lastJobNum++;
}

void Machine::advanceTime(int shift)
{
 int temp[10] = {0};
 for (int i = 0; i < 10-shift; i++)
 temp[i] = task[i+shift];

 for (int i = 0; i < 10; i++)
 task[i] = temp[i];

 //Machine::clearFuture();
}

void Machine::clearFuture()
{
 for (int i = 0; i < 10-1; i++)
 {
 if (task[i] != task[i+1])
 {
 for (int j = i+1; j < 10; j++)
 task[j] = 0;
 }
 }
}

158

void Machine::deleteJob(int job)
{
 for (int i = 0; i < 10; i++)
 {
 if (task[i] == job)
 task[i] = 0;
 }
}

int Machine::getLastJobNum()
{
 return lastJobNum;
}

159

References

[1] “Event Driven Architecture”, Wikipedia, http://en.wikipedia.org/wiki/Event-driven_architecture

[2] Model-View-Controller Tutorial, http://net.tutsplus.com/tutorials/other/mvc-for-noobs/

[3] Introduction to UML 2 Package Diagrams,
http://www.agilemodeling.com/artifacts/packageDiagram.htm

[4] The Kohana Framework, http://kohanaframework.org/

[5] “Interval Scheduling, Reservations and Timetabling”, Tim Nieberg, http://www.or.uni-
bonn.de/cards/home/nieberg/sched08/ivrtSCHED.pdf

