
1

System Design: Parking Garage
Automation

Matt Edwards, Eric Wasserman,

Abdul Hassan, Juan Antialon, Luke Steepy

Group Number 2

Project URL: http://code.google.com/p/parking-garage-automation/
 http://www.park-a-lot.vacau.com/

http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://code.google.com/p/parking-garage-automation/�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�

2

Effort Estimation

The table below is a breakdown of the individual member’s contributions to each part of this
report

 Abdul Matt Eric Luke Juan

Interaction Diagrams
(35 points) 50% 50%

Classes and Interface Specifications
(13 points) 40% 60%

System Architecture and Design
(22 points) 25% 10% 65%

Algorithms and Data Structures
(4 points) 40% 40% 20%

User Interface
(10 points) 100%

Plan of Work
(4 points) 50% 50%

References
(2 points) 100%

Project Management
(10 points) 60% 40%

Total Points Contribution 17.1 32.3 23.7 7.8 19.1

3

Table of Contents

EFFORT ESTIMATION ... 2

INTERACTION DIAGRAMS .. 4

NOTES AND CONVENTIONS .. 4
UC-1: RESERVE ... 5
UC-2: PARK .. 8
UC-3: MANAGE ACCOUNT .. 15
UC-4: MANAGE RESERVATIONS ... 18
UC-5: REGISTER .. 20
UC-6: MANAGE GARAGE .. 23
UC-7: CANCEL RESERVATION ... 25
UC-8: EXTEND RESERVATION ... 28
UC-9: AUTHENTICATE USER .. 31
UC-10: SET PRICES .. 33
UC-11: INSPECT USAGE HISTORY ... 35

CLASS DIAGRAM AND INTERFACE SPECIFICATION ... 37

CLASS DIAGRAMS ... 37
DATA TYPES AND OPERATION SIGNATURES ... 41

SYSTEM ARCHITECTURE AND SYSTEM DESIGN ... 47

ARCHITECTURAL STYLES ... 47
IDENTIFYING SUBSYSTEMS .. 49
MAPPING SUBSYSTEMS TO HARDWARE .. 51
PERSISTENT DATA STORAGE ... 51
NETWORK PROTOCOL ... 65
GLOBAL CONTROL FLOW ... 65
HARDWARE REQUIREMENTS ... 65

ALGORITHMS AND DATA STRUCTURES .. 66

ALGORITHMS ... 66
DATA STRUCTURES ... 67

USER INTERFACE DESIGN AND IMPLEMENTATION ... 68

PROGRESS REPORT AND PLAN OF WORK ... 69

PROGRESS REPORT ... 69
PLAN OF WORK ... 70
BREAKDOWN OF RESPONSIBILITIES .. 72

REFERENCES ... 73

4

Interaction Diagrams

Notes and Conventions
The following is a list of conventions used for function definitions in the system interaction
diagrams below. Although these are not formal function definitions, they will help the reader to
understand what a function call is trying to accomplish.

Function Call Description

updatePage(“”)
The string contained in this method is a place-holder currently.
Eventually, it will be replaced with an enumeration of codes,
depending on what the page is to be updated to.

notify(“”) Just as with updatePage(), notify() also contains textual
descriptors that refer to an enumeration, although it is not currently
well defined.

SQL Queries
Between Database Proxy and Database there are mock SQL
queries, which although they are not complete, provide a rough idea
of the query we would be using in our system.

5

UC-1: Reserve

Goals: To create a reservation and add it to the Database.

Process: The customer is prompted to input information about the reservation they wish to
create, then the Controller passes the information to the Reservation Checker, which
determines if the reservation is valid and does not overbook the garage. The customer is then
given either a success page or asked to re-enter the information with different values.

Reasons for diagram selection:

● Expert Doer Principle - In an attempt to keep as much data encapsulated within each
class as possible, our selection of this diagram aligns well with the expert doer principle.
The main acting classes are Controller, which coordinates events between the
Registered Customer and the Reservation Checker, which validates an input reservation
and, if possible, creates that reservation in the database.The Controller passes all of the
reservation info directly to the Reservation Checker, which performs all of the logical
functions on it. This division of labor ensures that the class the knows is the class
performing the operation.

● High Cohesion Principle - In an effort to bring as much functionality to the fewest
classes possible, we have only two main actors in this use case: Reservation Checker
and the Controller. The Controller coordinates and the Reservation Checker performs
all the necessary logic for creating the reservation. Each class has quite a few
responsibilities, and therefore satisfies the high cohesion we have sought.

● Low Coupling Principle - Due to the small number of classes we used to implement
this use case and the major responsibilities assigned to each one, low coupling follows
quickly. For example, the Controller never interacts directly with the Database, rather
relying on the Reservation Checker to handle that step when ordering a reservation
created. This reduces the number of dependencies between our classes, creating a
more flexible system.

Below are two iterations of the diagrams, where we chose the second one. This is to
demonstrate our thought process and the evolution of our design.

loop

[else]

[open == true]

[until open == true]

alt

: KeypadEntry : StatusDisplay : Logger

Database

: DatabaseProxy: ReservationCheckerr : Reservation: Controller

RegisteredCustomer

1.1: notify("reserve selected")

1: input("reserve spot")

1.1.1: display("Reservation info?")

8: display("Reservation made")

9: display("enter new reservation")

7: logTransaction("record added")

5: logTransaction(r, open)

4.1.2: result

6.1: INSERT r

4.1.1: SELECT openRes

4.2: result

6: databaseWrite := createRecord(params : string)

4.1: numberOfReservations := retrieve(params : string)

4.2.1: result

4: open := checkOpenReservation()

3: result

2: r := create()

1.1.2: r: = prompt("enter reservation info")

1.1.3: input

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-1 Reserve (deprecated)

loop

opt

opt

[r == NULL]

[numberOfReservations < maxReservations]

alt

[until open == true]

[else]

[success == true]

: PageMaker: InterfacePage : Logger

Database

: DatabaseProxy: ReservationCheckerr : Reservation: Controller

Customer

12: customer cancels
reservation creation

1.1.1.2: update()

8.2: update()

9.2: update()

8: updatePage("reservation made")

9: updatePage("reservation unavailable")

1.1.1.1: makePage()

1.1.1: updatePage("make reservation")

8.1: makePage()

9.1: makePage()

1.1: notify("reserve selected")

1: input("make reservation")

7: logTransaction(params : r, result)

7: result

6.1.1: SELECT count(openRes)
BETWEEN r.start_time AND r.end_time

6.3.1: INSERT r

6.2: result

6.1: numberOfReservations := getNumOpenReservation(
params: r.start_time, r.end_time)

6.3: addReservation(params : r)

6.4: result

6: success := makeReservation(params : r)

5: result

4: r := create()

2: form: = prompt("enter reservation info")

10: r := prompt("adjust reservation/cancel")

3: input

11: input

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-1 Reserve

8

UC-2: Park

Goals: To park in the garage, either to fulfill a reservation or as a walk in.

Process: A customer enters the garage and is either determined to be a registered customer
by having a license plate read or entering a customer ID, or parks as a walk in by making a
reservation on the spot. This is a complicated use case, however, the general flow starts with a
customer entering the garage elevator (Customer in Elevator) and progresses to determining
the customer and reservation type (Select Reservation - Registered Customer / Walk In), then
finally to the physical act of parking the car in the garage (Park),

Because of the complexity involved in use case 2 (UC-2), we have elected to break it into four
(4) system interaction diagrams, which are connected to each other logically. This allows us to
create more readable diagrams, each with a specific and well-defined purpose.

The diagrams are, in order of activation:

1. Customer in Elevator
2. Select Reservation

a. Registered Customer
b. Walk In

3. Park

Customer in Elevator
This diagram covers from the Customer entering the garage elevator up until it is determined if
he or she is a registered or unregistered Customer. At that point, the system interaction
diagram branches.

Reasons for diagram selection:

● Expert Doer Principle - Here, the Controller has most of the work, since it needs to
coordinate between the Elevator Camera Operator and the Database to attempt to read
the license plate of the car in the elevator. Therefore, it is a bit difficult to say that this
diagram satisfies the Expert Doer principle, mainly because the Controller is the one
doing most of the work. However, this diagram is merely a gateway to the more
complex Select Reservation diagrams. Therefore, this can be overlooked.

● High Cohesion Principle - The responsibilities assigned to each class are small in this
diagram, although Controller has a lot of work to do coordinating data between the
Elevator Camera Operator and the Database Proxy in order to determine if the
Customer is registered or not. However, these responsibilities are mainly about ferrying
data, and a majority of what the Controller does it log transactions into the Database for
future review. Therefore, we have assigned a large number of responsibilities to each
class appropriately.

● Low Coupling Principle - In this diagram it is difficult to say that there is low coupling,
mostly because the Controller coordinates between many of the classes. However, this

9

is a necessary trade-off to achieve efficient operation of the system. The alternative
would have been to assign more responsibility to the Database Proxy, and it would be
nonsensical to have the Database Proxy talking directly to the Elevator Camera
Operator, since there is a very weak relation there. Also, how would that data then get
back to the Controller? Clearly, it is best to keep the Controller well connected in this
case.

Registered Customer
This diagram picks up where the previous Customer in Elevator left off. It assumes that there is
a Registered Customer in the elevator and will attempt to have the Registered Customer select
a reservation and begin parking.

Reasons for diagram selection:

● Expert Doer Principle - As before, most of the responsibility is spread between the
Controller and the Key Checker (before it was the Reservation Checker). The Controller
here coordinates the Registered Customer logging into his or her account, and relies
mainly on the Key Checker class to perform all necessary logic to ensure that the
Registered Customer enters the correct key. Therefore, the class that knows is doing
the action (Key Checker checking the Key).

● High Cohesion Principle - There is high cohesion here because we have assigned
multiple responsibilities to each class, specifically Controller and Key Checker.
Controller is, as always, responsible for maintaining order and keeping the process
running, while Key Checker handles the validation of the inputs Controller passes to it
from the Registered Customer. This design allows for each class to have a large
number of responsibilities.

● Low Coupling Principle - However, despite these many responsibilities, each class
does not heavily depend upon each other. For instance, Controller simply asks Key
Checker to verify a key and return a simple “yes/no” response, if the key is valid or not.
All of the logic resides inside of Key Checker, making this diagram have low coupling
and allowing for easy logic changes in the future without extensive system redesign.

Walk In
Much simpler than the previous case since we do not need to fetch any existing reservations
from the Database. Rather, this diagram assumes that the Customer in the elevator is
unregistered, and is making a walk in reservation. The diagram includes a call to UC-1 Reserve
to create the reservation in the garage elevator using the display and keypad.

Since this diagram relies heavily on UC-1 Reserve, there isn’t much to be said about the
delegation of responsibilities, expert doer principle, or coupling and cohesion. It all relies on
how well UC-1 is put together.

This code re-use is great, since it simplifies our diagram and our coding later on.

10

Park
Finally, this system interaction diagram shows how a Customer will park, including moving the
elevator to the appropriate floor and detecting when the vehicle is parked in a spot, up to the
time it departs.

Reasons for diagram selection:

● Expert Doer Principle - Clearly it is easy to see how the Controller, which coordinates
between the multiple systems in the garage, is the one best qualified to control the
sequence of events. The Controller knows the position and location of each system
operating in the garage, and can control the elevator, spot sensors, etc. to accomplish
the task of parking.

● High Cohesion Principle - As with the Expert Doer principle, there is clearly a lot of
cohesion in this design, since it relies mainly on the Controller to perform all of the
functions. The remainder of the classes simply provide information to the Controller or
take commands from it.

● Low Coupling Principle - Here is where the design seems less successful, since the
Controller is coupled to nearly every class on the page. However, since it is the expert
doer of all of these actions, there is a trade-off to be made between coupling, cohesion
and expert doer. This diagram represents the best balance between those trade-offs.

The one thing in this diagram that doesn’t quite mesh with the remainder of the system, though,
is the Status Display object. Of course, the physical parking garage has a LCD display that
shows information to the Customer in the elevator. However, it would be best to simply
implement the display as a web page, that way we could standardize how we display
information (both on the website when a Customer accesses it from home, and in the parking
garage when a Customer comes in to park). This would allow us to eliminate the Status Display
class and simply have an Interface Page class with Page Maker. It would make all of our
system interaction diagrams more uniform and condensed.

alt

[c == no]

alt

opt

[choice == yes]

[custID == NULL]

[c == yes]

[custID != NULL]

: StatusDisplay: ElevatorCameraOperator : DatabaseProxy

Database

: Logger: Controller

Customer

10: goto UC-2 Registered Customer

16: customer leaves elevator

15: goto UC-2 Walk In

6: display("Login with Customer ID?")

11: display("Park as Walk In?")

5: goto UC-2 Registered Customer

1: enter elevator

2.2: result

2: notify("car present")

2.1: plate := getPlate()

2.3.1: SELECT custID WHERE plate

2.4: result

3: result

2.3: custID := findCustomer(params : plate)

9: logTransaction("registered customer arrived")

14: logTransaction("Walk in arrived")

4: logTransaction(params : custID, "Arrived")

7: choice := prompt("Yes/No?")

12: choice := prompt("Yes/No")

8: input

13: input

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-2 Customer in Elevator

loop

opt

[loginAttempts >= maxLoginAttempts]

opt

[valid != true]

[until loginAttempt >= maxLoginAttempts OR valid == true]

r : ReservationRS : ReservationStorage: Logger: StatusDisplay KS : KeyStorage: KeyCheckerk : Key

Database

: DatabaseProxy: Controller

RegisteredCustomer

16: result

15: r := create()

21: goto UC-2 Park

8: customer leaves garage?

9.3: result

9.2: RS := create(params: res)

7: logTransaction(params : k.custID, loginAttempts, "failed")

20: logTransaction(params : custID, spotNum, "success")

19: display(spotNum)

6: display("Login Failed, incorrect password")

1.1: display("Please enter your password")

12: display(RS->values)

1: from Customer in Elevator

3.4: result

3.3: KS := create(keys)

3.6: result

3.1: keys := getKeys(params : k.custID)

3.5: checkKey(params : k, keys)

3.2: result

3: valid := validateKey(params : k)

1.4: result

1.3: create(params : custID, password)

4: result

10: res := result

18.1: UPDATE r

3.1.1: SELECT k WHERE k.custID

9.1: SELECT reservation WHERE custID
AND closestTime

11: result

18: updateReservation(params: r)

9: RS := getReservations(params : custID)

13: r := prompt("select reservation")

1.2: pwd := prompt("password")

17: spotNum := assignSpotNum(params : r)

14: input

5: loginAttempts++

2: input

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-2 Registered Customer

ref

UC-1 Reserve

: Logger: StatusDisplay: Controller

UnregisteredCustomer

1.4: goto UC-2 Park

1: from Customer in Elevator

1.3: logTransaction(params : "walk in", r)

1.1: display("Reservation info?")

1.2: r: = prompt("reservation info")

2: input

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-2 Walk In

[spotOccNum != spotNum]

opt

: DatabaseProxy

Database

: Controller : ElevatorOperator : ExitCameraOperator: ElevatorCameraOperator: SpotSensorOperator

Customer

13.4.1: UPDATE r

10.2.1: UPDATE r

4: result

2.1: SELECT floor WHERE spotNum

13.4: updateReservation(params : r)

10.2: updateReservation(params : r)

3: result

2: floor := getFloorNumber(params : spotNum)

1: begin parking(spotNum)

13.1: plate := getPlate()

7: openGate()

5: lift(params : floor)

13.3: r.setComplete()

13.2: result

13: notify("car leaving")

12: notify("spot empty")

10.1: r.setSpot(params : spotOccNum)

10: spotOccNum := notify("spot occupied")

9: notify("elevator empty")

8: complete

6: complete

11: leave spot

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-2 Park

15

UC-3: Manage Account

Goals: To change account details for a registered customer.

Process: The registered customer is prompted to make changes to their current account
information. The controller passes the information to the page maker, which updates the
account in the database and then displays a page signifying the successful update.

Reasons for diagram selection:

● Expert Doer Principle - The controller is the first concept to know what function the
registered customer wishes to select and also what info the customer wishes to change.
We first thought it would be logical to have the task of communicating with the database
proxy but then we decided that that would give too much responsibility to the controller.
Therefor we are going against the expert doer principle and having the page maker send
requests to the database proxy.

● High Cohesion Principle - To satisfy high cohesion, it is necessary to have one
concept which has the responsibility of formulating queries for the database and another
concept responsible for rendering the pages for display. These two tasks are left to the
Database Proxy and Page Maker respectively. If both of these tasks were given to the
same concept or given to the Controller to do, then that would be too many tasks for one
concept. We choose to split the tasks up to give each concept their own specialized
tasks to perform.

● Low Coupling Principle - Achieving low coupling would almost directly affect the expert
doer principle. The Controller is the first one to know about all of the tasks so it is logical
to have it send most of the messages. However this puts a lot of responsibility on the
Controller. Since we would rather satisfy the low coupling principle rather than the expert
doer principle, we take away some communication responsibilities and give it to the
page maker. Overall, this is done to not overburden the Controller which will accumulate
too many responsibilities when all of the use cases are put together.

We have included two system interaction diagrams for use case 3. The first diagram gives the
responsibility of communication with the Database Proxy to the Controller whereas the second
diagram gives the responsibility of communicating with the Database Proxy to the Page Maker.
We have decided to go with the second diagram because it reduces the burden put on the
Controller therefore satisfying the low coupling principle.

alt

[else]

[accountInfo != NULL]

Database

: DatabaseProxy: PageMaker: InterfacePage : Controller

Registered Customer

2.1.1.2: result

1.1.1.2: result

2.1.1.1: update users
WHERE custID

1.1.1.1: SELECT records
WHERE custID

2.1.1: modify(params : string)

1.1.1: accountInfo := retrieve(params : custID)

1.1.2.2: page := warning()

1.1.2.1: page := renderList()

1.1.2: interfacePage := render(accountInfo : string)

2.1.2.1: result displayed

2.1: makeChange(changeRequest : string)

1.1.3.1: result displayed

1.1: notify("manage account selected")

2.1.2: post page

2: specify change request

1.1.3: post page

1: select function("manage account")

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-3 Manage Account (deprecated)

alt

[else]

[accountInfo != NULL]

Database

: DatabaseProxy: PageMaker: InterfacePage : Controller

Registered Customer

6: update()

5: makePage()

4.1: newAccountInfo := extractData(params : form)

3: result

2: form := prompt("new account info")

4.2: updateAccountInfo(params : newAccountInfo)

1.1.1.2: result

1.1.1.1: accountInfo := getAccountInfo()

1.1.1.1.2: result

4.2.1: update users
WHERE custID

1.1.1.1.1: SELECT records
WHERE custID

4: updatePage(params : "changes made" form)

1.1.1: updatePage("display account info")

1.1.1.4: makePage("warning")

1.1.1.3: makePage()

1.1.1.5.1: result displayed

1.1: notify("manage account selected")

1.1.1.5: update()

1: select function("manage account")

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-3 Manage Account

18

UC-4: Manage Reservations

Goals: To either extend or cancel existing reservations for a registered customer (these are
sub-use cases).

Process: The registered customer is prompted to select whether to extend or cancel any
existing reservations. The Controller receives the choice and then is passes to either system
interaction diagram 7 or 8.

Reasons for diagram selection:

● Expert Doer Principle - Since this use case only involves two concepts, there is no
debate as to who should perform the tasks. The Interface Page is the first to know what
selections the user has made, but the Interface Page should remain as a means of
displaying information and graphics to the user and nothing else. The Controller is the
first worker concept to know about what tasks to be performed and therefor should be
the one to perform the tasks.

● High Cohesion Principle - This use case is solely a parent use cases for two sub use
cases. Therefore there is not much computation to be done. The only computation is the
determination of what the user selected and that responsibility is given to the controller
since it is the only worker concept in the diagram.

● Low Coupling Principle - Once again the Controller should be the one responsible for
communicating with other concepts. There is very little messaging to be done in this use
case so it is not hard to see why the Controller is given the job.

alt

[choice == cancel reservation]

[choice == extend reservation]

: PageMaker: InterfacePage : Controller

Registered Customer

1.1.1.2: update()
1.1.1.1: makePage()

1.1.1: updatePage()

1.1.5: goto UC-7: Cancel Reservation

1.1.4: goto UC-8: Extend Reservation

1.1: notify("manage reservations selected")

1.1.3: input

1.1.2: choice := prompt("extend or cancel reservations")

1: select function("Manage Reservations")

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-4 Manage Reservations

20

UC-5: Register

Goals: To become a registered customer and be stored in the database.

Process: The registered customer is prompted to input their account information. The Controller
passes the account information to the Page Maker which creates the account in the database.
The Page Maker then displays a page signifying the success.

Reasons for diagram selection:

● Expert Doer Principle - The Controller is the first worker concept to know what actions
the customer wishes to take, however if we were to give it the responsibility of
communicating with the Database Proxy, then we would be overburdening it. We decide
to have the Page Maker communicate with the database Proxy which is direct violation
of the expert doer principle but we deem is a better option.

● High Cohesion Principle - High cohesion is achieved by giving the Database Proxy the
responsibility of querying the database. The Database Proxy becomes a very
specialized concept associated with a single task and the Controller can then be
responsible for communication between the interface page and the Page Maker. The
Page Maker is then responsible for making pages and communicating between the
Controller and the Database Proxy.

● Low Coupling Principle - We have chosen to satisfy the low coupling principle by given
some of the Controller’s responsibility to the Page Maker. Overall, this keeps the
communication strands low for each concept and spreads the work more evenly around.

We have included two system interaction diagrams for use case 5. The first diagram gives the
responsibility of communication with the Database Proxy to the Controller whereas the second
diagram gives the responsibility of communicating with the Database Proxy to the Page Maker.
We have decided to go with the second diagram because it reduces the burden put on the
Controller therefore satisfying the low coupling principle.

loop

[until data == valid]

[else]

alt

[a == valid]

: InterfacePage a : CustomerAccount

Database

: DatabaseProxy: Controller

Unregistered Customer

1.1: notify("create account selected")

1.1.3: a := create(data)

1.1.4.2: result

1.1.4.1: INSERT a

1.1.5: result

1.1.4: addAccount(params : a)

1.1.4: data := prompt("re-enter account info")

1.1.3: display("success")

1.1.1: data := prompt("enter account info")

1.1.5: input

1.1.2: input

1: select function("create account")

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-5 Create Account (deprecated)

loop

[until data == valid]

alt

[else]

[data == valid]

: PageMaker: InterfacePage

Database

: DatabaseProxy: Controller

Unregistered Customer

1.1.3: validateData(params : data)

1.1.4.2: makePage()

1.1.4.3: update()

1.1.4.1: insertAccount(params : data)

1.1: notify("create account selected")

1.1.4.1.1: INSERT data

1.1.4: addAccount(params : data)

1.1.5: data := prompt("re-enter account info")

1.1.1: data := prompt("enter account info")

1.1.6: input

1.1.2: input

1: select function("create account")

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-5 Create Account

23

UC-6: Manage Garage

Goals: For a system admin to either set prices or view access history of a garage (these are
both sub-use cases)..

Process: The system admin is prompted to select whether to set prices or view access history
for a garage. The Controller receives the choice and then is passes to either system interaction
diagram 10 or 11.

Reasons for diagram selection:

● Expert Doer Principle - This activity diagram is almost identical to the activity diagram
for use case 4 therefore we will employ very similar strategies. This use case only
involves two concepts so we simply assign all of the tasks to the Controller which is the
only worker concept. The Interface Page is the first to know what selections the user has
made, but the Interface Page should remain as a means of displaying information and
graphics to the user and nothing else.

● High Cohesion Principle - This use case is solely a parent use case for two sub use
cases, therefore there is very little computation to be done. The only computation is the
determination of what choice the user has made and that responsibility is given to the
Controller.

Low Coupling Principle - Once again the Controller should be the one responsible for
communicating with other concepts. There is very little messaging to be done in this use case
so it is not hard to see why the Controller is given the job.

alt

[choice == inspect usage history]

[choice == set prices]

: PageMaker: Controller: InterfacePage

System Admin

2: makePage()

1.1.1: updatePage()

1.1.5: goto UC-11: Inspect Usage History

1.1.4: goto UC-10: Set Prices

1.1.3: input

1.1.2: choice := prompt("set prices or inspect usage history")

3: update()

1.1: notify("Manage Garage selected")

1: select function("Manage Garage")

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-6 Manage Garage

25

UC-7: Cancel Reservation

Goals: To cancel an existing reservation for a registered customer.

Process: The Page Maker requests all existing reservations from the database and displays
them for the registered customer. The registered customer then selects which reservations they
want to cancel. The Controller then passes this information to the Page Maker which updates
the database to list the reservations as “canceled”. The Page Maker then displays the success
page to the customer.

Reasons for diagram selection:

● Expert Doer Principle - The Controller is the first one to know what tasks to perform,
but once again we do not want to let it communicate directly with the Database Proxy.
We instead want the Page Maker to have this responsibility. This violates the expert
doer principle in exchange for satisfying the low coupling principle.

● High Cohesion Principle - To satisfy high cohesion we try not to give too many tasks to
the Controller. We do this by giving the responsibility of rendering the pages to the page
maker and the responsibility of querying the database to the Database Proxy. By giving
those two concepts very specialized tasks, we do not overburden the Controller and yet
still keep the other concepts focused on one primary task.

● Low Coupling Principle - For this use case we deemed the low coupling principle more
vital than the expert doer principle. The Controller’s job is primarily to communicate
between the Interface Page and the Page Maker and the Page Maker then
communicates with the Database Proxy. This splits the amount of communication evenly
between the different worker concepts.

We have included two system interaction diagrams for use case 7. The first diagram gives the
responsibility of communication with the Database Proxy to the Controller whereas the second
diagram gives the responsibility of communicating with the Database Proxy to the Page Maker.
We have decided to go with the second diagram because it reduces the burden put on the
Controller therefore satisfying the low coupling principle.

alt

[reservation != NULL]

[else]

: PageMaer

Database

: DatabaseProxy: Controller: InterfacePage

Registered Customer

2.2: page := warning()

2.1: page := renderList()

2: interfacePage := render(params: reservations)

7: updatePage("reservation(s) canceled")

6.1: UPDATE reservation
WHERE resID

6: deleteReservations(params : resID)

5: input

4: resID := prompt("select reservations to be canceled")

3: post page("reservations")

1.2: result

1.1: SELECT reservations
WHERE custID

1: reservations := retrieveReservations(params : custID)

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-7 Cancel Reservation (deprecated)

alt

[else]

[RS != NULL]

: ReservationStorage: PageMaker

Database

: DatabaseProxy: Controller: InterfacePage

Registered Customer

1.4: result

1.3: RS := create(res)

4.1: deleteReservation(params :resID)

1.2: result

1.1: res := getReservations(params : custID)

1.6: makePage("warning")

1.5: makePage()

4.2: update()

4.1.1: UPDATE reservation
WHERE resID

4: updatePage("delete reservations")

3: input

2: resID := prompt("select reservations to be canceled")

1.7: update()

1.1.2: result

1.1.1: SELECT reservations
WHERE custID

1: updatePage("check reservations")

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-7 Cancel Reservation

28

UC-8: Extend Reservation

Goals: To extend an existing reservation for a registered customer.

Process: The Page Maker requests all existing reservations from the database and displays
them for the registered customer. The registered customer then selects which reservations they
want to extend. The Controller then passes this information to the Page Maker which then
passes the information to the Reservation Checker which compares the number of reservations
in the extended time to the maximum allowed number of reservations. If there are available
reservations, then the Reservation Checker tells the Page Maker if it was a success or a failure
and updates the page to display the information.

Reasons for diagram selection:

● Expert Doer Principle - This diagram requires some real thought because two worker
concepts have a lot of responsibility. The Controller is the first to know what decisions
the customer has made, but the Reservation Checker is the first to know from the
Database Proxy how many reservations are available at the requested time. For the
previous reason, we have give the Reservation Checker the tasks of deciding whether a
reservation can be extended and then telling the Database Proxy to extend the
reservation in the Database.

● High Cohesion Principle - The expert doer principle for this use case helps to ensure
high cohesion. By splitting the work to be done between the Controller and Reservation
Checker, the Controller is not asked to do every computational task and the Reservation
Checker can still be a specialized concept. The alternate choice would be to have the
Controller perform all of the logic to determine if a reservation can be extended, but that
takes away most of the responsibility of the Reservation Checker and leaves the
Controller with too many tasks to perform.

● Low Coupling Principle - To ensure low coupling, the communication responsibilities
are split between the Controller the Reservation Checker and the Page Maker. The
Controller communicates between the customer the interface page, the Reservation
Checker communicates between the Database Proxy and the Database and the Page
Maker communicates between the Controller and the Reservation Checker. By having
both concepts split the messaging work, low coupling is achieved.

We have included two system interaction diagrams for use case 8. The first diagram gives the
responsibility of communication with the Reservation Checker to the Controller whereas the
second diagram gives the responsibility of communicating with the Reservation Checker to the
Page Maker. We have decided to go with the second diagram because it reduces the burden
put on the Controller therefore satisfying the low coupling principle.

alt

[extendedTimes == NULL]

[else]

opt

[success == true]

opt

alt

[reservation != NULL]

[else]

[numberOfReservations < maxReservations]

: PageMaker : Loggerr : Reservation : ReservationChecker: InterfacePage

Database

: Database Proxy: Controller

Registered Customer

2.2: page := warning()

2.1: page := renderList()

2: interfacePage := render(params : reservations)

16: customer cancels extend reservation

15: input

14: extendedTimes := prompt(select new ending reservation times")

13: updatePage("reservation end time unavailable")

7: updatePage("Reservation end times")

12: updatePage("Reservation extended")

11: logTransaction(params : r, result)

10.4: result

6: r := create()

10.3.1: UPDATE r
WHERE endTime

10.3: extendReservation(params : extendedTime, r)

10.1: numberOfReservations := retrieve(params : string)

10: success := changeReservation(params : extendedTime, r)

10.2: result

10.1.2: result

10.1.1: SELECT numberOfReservations
BETWEEN originalEndTime AND

newEndTime

9: input

8: extendedTimes := prompt("select new ending reservation times")

5: input

4: choices := prompt("select reservations to be extended")

3: post page("Reservations")

1.2: result

1.1: SELECT reservations
WHERE custID

1: reservations := retrieveReservations(params : custID)

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-8 Extend Reservation (deprecated)

alt

[else]

alt

opt

[extendedTimes == NULL]

[success == true]

[else]

[RS != NULL]

opt

[numberOfReservations < maxReservations]

: ReservationStorage : Loggerr : Reservation : ReservationChecker : PageMaker: InterfacePage

Database

: Database Proxy: Controller

Registered Customer

1.4: result

1.3: RS := create(res)

8.1.4: result

8.1: success := changeReservations(params : extendedTime,r)

1.7: update()

1.2: result

1.1: res := getReservations(params : custID)

1.6: makePage()

1.5: makePage()

12: customer cancels extend reservation

11: input

10: extendedTimes := prompt(select new ending reservation times")

11: updatePage("reservation end time unavailable")

5: updatePage("Reservation end times")

10: updatePage("Reservation extended")

9: logTransaction(params : r, result)

4: r := create()

8.1.3.1: UPDATE r
WHERE endTime

8.1.3: extendReservation(params : extendedTime, r)

8.1.1: numberOfReservations := retrieve(params : string)

8: updatePage("change reservations")

8.1.2: result

8.1.1.2: result

8.1.1.1: SELECT numberOfReservations
BETWEEN originalEndTime AND

newEndTime

7: input

6: extendedTimes := prompt("select new ending reservation times")

3: input

2: choices := prompt("select reservations to be extended")

1.1.2: result

1.1.1: SELECT reservations
WHERE custID

1: updatePage("retrieve reservations")

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-8 Extend Reservation

31

UC-9: Authenticate User

Goals: To determine if a user is registered with the system and has an account in the
database.

Process: The user accesses the Interface Page via a web browser, selects log in, and enters
their credentials (email and password). The Controller creates a Key from this information
which it passes to Key Checker, which then handles the verification of the user. The user is
allowed a maximum number of login attempts, and must either authenticate within those given
number of logins or be locked out of the system for a pre-determined period.

Note that for this diagram, User is collectively Registered Customer and System Admin, since
both of those types of user can authenticate themselves with the system.

Reasons for diagram selection:

● Expert Doer Principle - We satisfy this principle by dividing up the work between the
Controller and the Key Checker. Key Checker handles verifying the user input key
(combo of customer ID and password), dealing with database queries, and checking the
input key against those in the database. Controller, which is connected to all of the
boundary components of the system, such as the display and user inputs. The
Controller coordinates the user input with the Key Checker and the user.

● High Cohesion Principle - Each class in our system interaction diagram has a large
portion of the responsibility, mainly split between the Controller and the Key Checker.
The Controller coordinates between the user input and the Key Checker, and the Key
Checker handles all necessary verification.

● Low Coupling Principle - Again, the expert doer principle here helps ensure that we
have low coupling, since the object that knows is performing the action. This cuts down
on the coupling between classes, since Controller merely ferries data between the Key
Checker and the user, and the Key Checker handles all dealings with the Database.
This keeps our system very de-coupled.

loop

opt

[loginAttempts >= maxLoginAttempts]

[until loginAttempts >= maxLoginAttempts]

opt

[valid != true]

: KeyStorage: PageMaker : KeyChecker : Logger: InterfacePage

Database

k : Key : DatabaseProxy: Controller

User

12: system timed lockout

6.4: result

6.3: KS := create(keys)

11.2: update()

13.2: update()

9.2: update()

1.1.1.2: update()

11.1: makePage()

11: updatePage("login failed")

13.1: makePage()

9.1: makePage()

1.1.1.1: makePage()

13: updatePage("login succeeded")

9: updatePage("login failed")

1.1.1: updatePage("login")

6.6: result

6.1: keys := getKeys(params : k.custID)

6.5: checkKey(params : k, keys)

6.2: result

6: valid := validateKey(params : k)

14: logTransaction(params: k.custID, "login success")

10: logTransaction(params : k.custID, loginAttempts, "failed")

1.1: notify("login")

1: input("login")

7: result

6.1.1: SELECT key WHERE k.custID

5: result

4: k := create(params : custID, password)

2: k := prompt("credentials")

8: loginAttempts++

3: input

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-9 Authenticate User

33

UC-10: Set Prices

Goal: To update the prices for parking at the garage.

Process: The system admin requests via a web browser to change the prices for a garage,
and is given a web page containing the old pricing information and a form to change to newer
prices. Controller takes this form and passes it to the Page Maker, which extracts the new info
from it and updates the Database with that pricing data. The web page the system admin sees
is then updated with the new prices and a confirmation of the changes.

Reasons for diagram selection:

● Expert Doer Principle - The expert doer principle is satisfied well here, because only
the objects that need to know information are performing work on it. The Page Maker
interacts directly with the Database to retrieve information it needs to create HTML
pages to present via the Interface Page. The Controller deals with the orchestration of
tasks between the System Admin and the Page Maker. Therefore, the one who knows
is the one performing the action.

● High Cohesion Principle - In this system interaction diagram there is very high
cohesion, since Controller and Page Maker each have varied tasks, and handle most of
the work in the specific diagram. Page Maker has a high level of cohesion because it
interacts directly with the Database Proxy, giving it both the responsibility to create the
Interface Page and also retrieve the information included in it.

● Low Coupling Principle - Although the coupling in this diagram is not fantastic, there
are lower levels than if we had relied upon the Controller to access the Database
through Database Proxy and pass that information on to the Page Maker. Allowing no
link between Controller and Database Proxy greatly reduces the coupling of this system.

: PageMaker : DatabaseProxy

Database

: Controller : InterfacePage

System Admin

1.3.4: update()

1.1.4: update()

1.1.1: getPricing()

1.3.2: updatePricing(params : newPrices)

1.3.3: makePage()

1.3.1: newPrices := extractData(params: form)

1.1.2: result

1.1.3: makePage()

1.3: updatePage(params : "changes made", form)

1.1: updatePage("price control")

1.1.1.1: SELECT prices

1.3.2.1: UPDATE newPrices

2: result

1: from UC-6 ManageGarage

1.2: form := prompt("new prices")

3: result

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-10 Set Prices

35

UC-11: Inspect Usage History

Goal: To view the usage history of the parking garage.

Process: The system admin requests to view the parking garage usage history, and the
Controller requests from Page Maker that the history be pulled from the Database for a certain
range of dates input by the system admin. The Page Maker retrieves this data and creates an
HTML page to display it to the system admin for review.

Reasons for diagram selection:

● Expert Doer Principle - As with UC-10 Set Prices, this use case is very similar, except
that it only allows the Admin to view information about the garage, not edit it. Therefore,
the structure is very similar, with the same expert doers handling their tasks (Controller
and Page Maker).

● High Cohesion Principle - As with UC-10, there is a very high level of cohesion here
since we have assigned so many responsibilities to Page Maker, and Controller as well.

● Low Coupling Principle - The coupling here is the same as it was in UC-10, with the
Page Maker linking to both the Controller and the Database Proxy, but removing any
need for the Controller to talk directly with the Database Proxy.

: PageMaker

Database

: DatabseProxy: InterfacePage: Controller

System Admin

1.3.5: update()

1.3.2: history := getHistory(params : dateRange)

1.1.2: update()

1.3.4: makePage()

1.3.3: result

1.3.1: dateRange := extractData(params : form)

1.3: updatePage(params: "usage history", form)

1.1.1: makePage()

1.1: updatePage("date selection")

1: from UC-6 ManageGarage

3: result

1.3.2.1: SELECT history
BETWEEN start AND end

1.2: form := prompt("date range?")

2: input

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
UC-11 Inspect Usage History

37

Class Diagram and Interface Specification

Class Diagrams

For this project, we plan to take advantage of a PHP framework known as Kohana[4]. Therefore,
our class diagrams will be a composition between classes that come directly from tables in the
Database (see next section, Data Types and Operation Signatures). In addition, we develop a
class diagram from our system interaction diagrams. The marriage of these two will be the
basis for our system.

The advantage to using the Kohana framework in this way, we can now run methods against
objects in our program rather than SQL queries against the database. From a programming
perspective, this is ideal because it allows to always keep an object-oriented view about our
program (treating tables in the database as objects in the program). However, it makes our
system interaction diagrams slightly more difficult to translate into a class diagram.

Therefore, we define both a class diagram from our system interaction diagram and also a class
diagram for our Kohana framework mapped tables.

To alleviate a lot of the coding needed to implement our system, we will be using an existing,
open source PHP framework, Kohana version 3.1. The Kohana framework will allow for the
MVC (model, view, controller) architecture. Our business logic exists inside out models. Within
Kohana, there is an ORM (object relational mapping) library that abstracts a lot of the database
queries as objects. Within the ORM already exist a lot of common methods, such as save(),
create(), edit(), etc. We can talk about the class diagrams later on during the meeting. The way I
see it, every class should be responsible for creating itself. This is a possible implementation,
but again, there are many ways to do this.

class Model_Reservation extends ORM
{
 protected $_belongs_to = array(
 'user' => array('model' => 'user'),
);

 public function create_reservation(array $values)
 {
 // Will throw an exception if validation fails
 $this->values($values)->create();

 return TRUE;
 }

38

}

class Model_User extends ORM
{
 protected $_has_many = array(
 'reservations' => array('model' => 'reservation'),
);

 public function add_reservation(array $values)
 {
 $reservation = new Model_Reservation;
 $reservation->user_id = $this->id;

 return $reservation->create_reservation($values);
 }
}

-Reservation r
-string input
-Logger log
-HTMLForm userInput

+notify(Notifications N)
+prompt(string) : string

Controller

-id
-user_id
-vehicle_id
-status
-start_time
-end_time
-time_arrived
-time_departed
-date_added
-ReservationStatus status

+create() : Reservation
+setStatus(ReservationStatus S)

Reservation

+makeReservation(Reservation r) : boolean

ReservationChecker

-Database db

+addReservation(Reservation r) : boolean
+getNumOpenReservation(date start, date end) : int
+findCustomer(string custID) : string
+getKey(string custID) : Key []
+getReservations(string custID) : ReservationStorage RS
+updateReservation(Reservation r)
+getPricing() : string
+updatePricing(string newPrices)
+getHistory(date start, date end) : string

DatabaseProxy

+input(string input)
+update()

InterfacePage

+updatePage(PageCode P, HTMLForm form)
+makePage()
+extractData(HTMLForm form)

PageMaker

-string filepath
-LogLevel level

+logTransaction(string [])
+prompt(string) : string

Logger

<<Constant>> -LIGHT
<<Constant>> -VERBOSE

<<enumeration>>
LogLevel

<<Constant>> -UPCOMING
<<Constant>> -ACTIVE
<<Constant>> -CANCELED
<<Constant>> -OVERSTAY
<<Constant>> -UNDERSTAY
<<Constant>> -GRACE
<<Constant>> -MISSED
<<Constant>> -COMPLETED

<<enumeration>>
ReservationStatus

+display(string msg)

StatusDisplay

+validateKey(Key k) : boolean
+checkKey(Key k, KeyStorage KS) : boolean

KeyChecker

-string custID
-string hashed_pass

+create(string custID, string pass) : Key

Key

+getPlate() : string

ElevatorCameraOperator

<<Constant>> -HOME
<<Constant>> -LOGIN
<<Constant>> -REGISTER
<<Constant>> -VIEW_HISTORY
<<Constant>> -RESERVE
<<Constant>> -UPDATE_PRICING
<<Constant>> -MANAGE_GARAGE

<<enumeration>>
PageCode

-Key keys[]

+create(Key keys [])

KeyStorage

-Reservation res[]

+create(Reservation res [])

ReservationStorage

+lift(int floor) : boolean
+openGate() : boolean

ElevatorOperator

<<Constant>> -ELEVATOR_EMPTY
<<Constant>> -SPOT_OCCUPIED
<<Constant>> -LOGIN
<<Constant>> -RESERVE
<<Constant>> -CAR_PRESENT
<<Constant>> -CAR_LEAVING

<<enumeration>>
Notifications

+getSpotOccupied() : int

SpotSensorOperator

Visual Paradigm for UML Community Edition [not for commercial use]

SheldonCooper
Text Box
Class Diagram from System Interaction Diagrams

SheldonCooper
Text Box
Kohana Framework Class Diagram

41

Data Types and Operation Signatures

The Kohana framework allows us to dynamically map tables from our database directly to object
types in our system, which we define below.[4]

admins: (users with admin rights)

 Attributes:

 Operations:

update_pricing(params : newPrices);
This method allows only admins to adjust the pricing in the price_plans

 class.
get_history(params : dataRange);
This method allows the admins to check the usage history of users and

 corresponding garages.

admins_garages: (join table for admins and the garages they use)

 Attributes:

 Operations:
 There are currently no operations for this class.

42

billing_info: (Billing information for each customer)

 Attributes:

 Clarifications: cc_number: is the registered users credit card number

active: represents whether or not this card will be billed at the end of
the billing cycle.

Operations:
 monthly_payment(params: active, cc_number);

The monthly payment operation automatically deducts the balance of the
 linked registered user.

garages: (garages that can be parked at)

 Attributes:

 Operations:
 There are currently no operations for this class.

43

price_plans: (pricing for each individual garage)

 Attributes:

Clarifications:registered_price: price registered customers pay.

walk_in_price: price walk in costumers pay.
discount_rate: the rate at which registered customers earn discounts.
min_price: the minimum allowable price to charge any customer.
active: Only one price can by active at a moment.

 Operations:
 There are currently no operations for this class.

registered_users: (users that have registered and can now make reservations)

 Attributes:

 Operations:
 add_reservation(params: r);
 The user will use this method to add a reservation to park at a garage.
 delete_reservation(params: resID);
 The user will use this method to remove a reservation that they have already
 signed up for.
 edit_reservation(params: newTime, resID);
 The user will use this method to change the time of a reservation they have
 already signed up for.
 extend_reservation(params: extendTime, r);

44

 The user will use this method to add time to a current reservation.
 confirm_reservation(params: resID);
 The user will use this method to confirm a reservation that they have made.
 update_account_Info(params: newAccountInfo);
 The user will use this method to update their accounts information.
 update_reservations(params: r);
 When the user parks in a garage this method is used to update the
 database.

add_vehicle(params: newVehicleInfo);
 The user will use this method to register their vehicle.

reservations: (reservations that are in the system)

 Attributes:

 Clarifications: garage_id: the garage where the user will park.
 vehicle_id: the vehicle the user is requesting parking for.
 status: the current status of the reservation.
 start_time: scheduled start time.
 end_time: scheduled end time.
 time_arrived: actual start time.
 time_departed: actual end time.

Operations:
 There are currently no operations for this class.

45

roles: (roles of the different users in our system)

 Attributes:

Operations:
 There are currently no operations for this class.

roles_users: (a join class between roles and the users)

 Attributes:

 Operations:
 There are currently no operations for this class.

unregistered_users: (users that have not registered in our system but have the ability too)

 Attributes:

 Operations:
 add_account(params: data);
 This method allows an unregistered user to sign up to become a registered
 user, enabling them to make reservations.
 log_transaction(params: “walk in” ,r);
 This method is used when unregistered customers walk in and the systems
 database needs to be updated.

46

user_tokens: (class for collecting data when users log into the system)

 Attributes:

 Operations:
 There are currently no operations for this class.

user_vehicles: (a join class between users and their vehicles)

 Attributes:

 Operations:

There are currently no operations for this class.

vehicles: (vehicles that users have registered and can use for reservations)

 Attributes:

 Clarifications: registered_user_id: the user who added the vehicle.

Operations:
 There are currently no operations for this class.

47

System Architecture and System Design

Architectural Styles
The structure used in our project resembles the Event-Driven architecture. The EDA is a pattern
that promotes the production, detection, consumption of, and reaction to certain events.
Our software is based on the customers requesting to park their vehicles in our garage.
Therefore our system architecture is based on the event of the customer wanting to reserve a
parking space.[1]

Different entities change state in our system. A reservation can have multiple states during its
life cycle. When a customer cancels a reservation, its state changes from “active” to “canceled”.
If a customer fails to leave the garage after the reservation time has ended, its state changes
from “active” to “overstay”. The following table sums up the events and states for a reservation.

Events for Reservation Pre-State Post-State

Created None “upcoming”

Canceled “upcoming” “canceled”

Extended “active”, “upcoming” Same as Pre-State

Overstay “active” “overstay”

Understay “active” “understay”

Grace “upcoming” “grace”

Missed “grace” “missed”

Completed “active”, “overstay”, “understay”,
“missed”

“completed”

48

The framework we will be implementing in “Park-A-Lot” is a HMVC (Hierarchical Model View
Controller) framework. The main point in MVC is straight forward: the following responsibilities
must be clearly separated.

The controller deals with the user requests. It controls and coordinates the things needed in
order to execute the user request. The model consists of the data and the rules or policies
regarding the data. The view creates a way to represent the data obtained from the model.[2]

49

Identifying Subsystems

Our system will make use of many existing software packages and libraries. The following list
describes in short the different packages we will use in implementing our system.

● Kohana PHP framework
● Kohana ORM module (object relational mapping)
● Kohana Validation module (validates a plethora of data, from emails to credit cards)
● PayPal, Google Checkout (accept payments from out customers)
● Kohana Auth module (used to login/logout and keep track of customers and

administrators)
● jQuery Javascript library
● jQuery Calendar plugin (used for easy reservation scheduling)
● Google Maps plugin (used to locate nearby garages)
● Bluetrip CSS framework

Since our system is to going to be built as a website/web service, we will need to design both
the server side and client side(s) that will make up our system. The end user will interact with
the main server using any standard web browser using a standard HTTP connection. The client
side will be implemented in HTML/CSS/JavaScript, while the server side will be implemented in
PHP. If time permits, we also plan to add other clients, specifically as mobile applications on
mobile phones.

The diagram below shows the UML package diagram for our system. It is divided into two sub-
systems. The first one is the client side, which through the use of a browser chooses different
actions and then this sub-system sends the info to the server. The server, which is the other
sub-system, is where the code for all the classes is located. It also contains the database with
all the info of the customer, rates, and network settings (with other garages).[3]

50

51

Mapping Subsystems to Hardware

The system can be broken into three main parts: a web server, a client terminal.

Web Server
The web server runs the majority of the code, maintains a relational database concerning details
of the parking garage and its reservations, and accepts input from a client-side system that
allows reservations to be created and user accounts to be managed.

The server stores three main types of data: garage information, reservations, and user
accounts. The garage information are things such as garage capacity and pricing structure for
the garage. The reservations is the reservation records made by customers, either in advance
or on the spot as walk ins. Finally, the user account info contains usage history for each
customer, and a log of user activity on the system, which can be used to determine discounts
for particularly well behaved customers.

Client Side
The client side is much simpler. Basically, it consists of a web browser capable of executing
HTML and some CSS. Most of the elements on the client side are HTML forms, which harvest
data from the user and relay it to the web server which handles all processing and data
manipulation.

In the future, it will be possible to have the client side also run asnative Android and iOS apps.
That functionality will be similar to the web browser based system, just with a nicer interface on
top. However, the functionality of harvesting data from a user and relaying it to the server will
remain the same.

Persistent Data Storage

Our system requires us to keep track of several entities. We need to keep track of

● Customers
● Customer reservations
● Customer vehicles
● Customer billing information
● Garages (which implement our system)
● Garage price plans
● Garage administrators, and their privileges

We will be using a relational database(s), MySQL. We chose MySQL because of its reputation,
its price, and because its open source software that we can alter to fit our needs if need be.

Park-a-lot

Table of contents

Page number: {02}1 admins_garages
Page number: {03}2 billing_info
Page number: {04}3 garages
Page number: {05}4 price_plans
Page number: {06}5 reservations
Page number: {07}6 roles
Page number: {08}7 roles_users
Page number: {09}8 user_tokens
Page number: {10}9 users
Page number: {11}10 users_vehicles
Page number: {12}11 vehicles
Page number: {13}13 Relational schema

Page number: 1/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

1 admins_garages

Table comments : Join table for admins and the garages they have rights to.
Creation: Mar 07, 2011 at 09:13 PM

Field Type Attributes Null Default Extra Links to Comments MIME

user_id int(10) UNSIGNED No users -> id
garage_id int(10) UNSIGNED No garages -> id

Page number: 2/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

2 billing_info

Table comments : Billing information for each customer.
Creation: Mar 07, 2011 at 09:14 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
user_id int(10) UNSIGNED No users -> id
cc_number bigint(16) UNSIGNED

ZEROFILL
No Credit Card Number

address varchar(80) No
city varchar(60) No
state char(2) No
zip_code mediumint(5

)
UNSIGNED
ZEROFILL

No

date_added int(10) UNSIGNED No
active tinyint(1) No Whether this is the card to bill at the end of

each billing cycle. Only one credit card can be
active at any moment.

Page number: 3/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

3 garages

Table comments : Garages that use our system.
Creation: Mar 07, 2011 at 09:17 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
address varchar(80) No
city varchar(60) No
state char(2) No
zip_code mediumint(8

)
UNSIGNED
ZEROFILL

No

date_added int(10) UNSIGNED No

Page number: 4/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

4 price_plans

Table comments : Price plans each garage has.
Creation: Mar 07, 2011 at 09:14 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
garage_id int(10) UNSIGNED No garages -> id
registered_price float UNSIGNED No Price registered customers pay.
walk_in_price float UNSIGNED No Price walk in customers pay.
discount_rate float UNSIGNED Yes NULL The rate at which registered customers earn

discounts.
min_price float UNSIGNED No The minimum allowable price to charge any

customer.
date_added int(10) UNSIGNED No
active tinyint(1) No Only one price plan can be active at any

moment.

Page number: 5/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

5 reservations

Creation: Mar 07, 2011 at 09:12 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
user_id int(10) UNSIGNED No users -> id
garage_id int(10) UNSIGNED No garages -> id The garage where the user will park. Can

change in the event the user is relocated.
vehicle_id int(10) UNSIGNED No vehicles -> id The vehicle the user is requesting parking for.

status enum('active
', 'cancelled',
'pending')

 No The current status of the reservation.

start_time int(10) UNSIGNED No The scheduled start time.
end_time int(10) UNSIGNED No The scheduled end time.
time_arrived int(10) UNSIGNED Yes NULL The actual time the user arrived.
time_departed int(10) UNSIGNED Yes NULL The actual time the user departed.
date_added int(10) UNSIGNED No
last_edited int(10) UNSIGNED Yes NULL

Page number: 6/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

6 roles

Table comments : Roles (privileges) users can have in the system.
Creation: Mar 07, 2011 at 09:14 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(11) UNSIGNED No auto_increment
name varchar(32) No
description varchar(255) No

Page number: 7/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

7 roles_users

Table comments : Join table for users and the roles they have.
Creation: Mar 07, 2011 at 09:15 PM

Field Type Attributes Null Default Extra Links to Comments MIME

user_id int(10) UNSIGNED No users -> id
role_id int(10) UNSIGNED No roles -> id

Page number: 8/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

8 user_tokens

Table comments : Extra data collected/generated each time a user logs in.
Creation: Mar 07, 2011 at 09:16 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
user_id int(10) UNSIGNED No users -> id
user_agent varchar(40) No
token varchar(40) No
type varchar(100) No

created int(10) UNSIGNED No
expires int(10) UNSIGNED No

Page number: 9/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

9 users

Creation: Mar 07, 2011 at 09:15 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
first_name varchar(32) No
last_name varchar(64) No
email varchar(127) No

password varchar(64) No
registration_date int(10) UNSIGNED No

logins int(10) UNSIGNED No 0
last_login int(10) UNSIGNED Yes NULL

Page number: 10/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

10 users_vehicles

Table comments : Join table for users and the vehicles they own/use.
Creation: Mar 07, 2011 at 09:15 PM

Field Type Attributes Null Default Extra Links to Comments MIME

user_id int(10) UNSIGNED No users -> id
vehicle_id int(10) UNSIGNED No vehicles -> id
date_added int(10) UNSIGNED No

Page number: 11/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

11 vehicles

Table comments : User vehicles, to use with different reservations.
Creation: Mar 07, 2011 at 09:16 PM

Field Type Attributes Null Default Extra Links to Comments MIME

id int(10) UNSIGNED No auto_increment
user_id int(10) UNSIGNED No The user who first added the vehicle
plate_number varchar(10) No
state char(2) No
date_added int(10) No

Page number: 12/13 Mar 08, 2011 at 03:19 AM

Park-a-lot

 admins_garages
 user_id
 garage_id

 billing_info
 id
 user_id
 cc_number
 address
 city
 state
 zip_code
 date_added
 active

 garages
 id
 address
 city
 state
 zip_code
 date_added

 price_plans
 id
 garage_id
 registered_price
 walk_in_price
 discount_rate
 min_price
 date_added
 active

 reservations
 id
 user_id
 garage_id
 vehicle_id
 status
 start_time
 end_time
 time_arrived
 time_departed
 date_added
 last_edited

 roles
 id
 name
 description

 roles_users
 user_id
 role_id

 user_tokens
 id
 user_id
 user_agent
 token
 type
 created
 expires

 users
 id
 first_name
 last_name
 email
 password
 registration_date
 logins
 last_login

 users_vehicles
 user_id
 vehicle_id
 date_added

 vehicles
 id
 user_id
 plate_number
 state
 date_added

Page number: 13/13 Mar 08, 2011 at 03:19 AM

65

Network Protocol

Since our system will be built as a website/web service, and thus built on a single server, there
is no need for any communication protocols except the standard HTTP.

Global Control Flow

● Execution order - Our software is event-driven so it depends on the customer and his
purpose while interacting with the system.

● Time Dependency - The only timers in the system is the 15 min inactive log-in time
allowed. If a customer logs into his/her account and remains inactive for 15 min then the
system will logged him/her out.

● Concurrency - No.

Hardware Requirements

Our system requires the following:

● Keypad - For the customer to enter information at the elevator.
● Screen Display -Minimum resolution of 640 X480 pixels. This display will be

implemented in the elevator.
● Hard Disk/Server - 50 GB of storage space would satisfy our needs to keep track of all

user data, as well as garage and reservation data. With an expectation of supporting 1M
users, we would expect to amass about 5GB of data at the end of each year.

● Sensors - In order to figure out if the parking space is available or occupied.
● Cameras - In order to identify the vehicles coming in the garage and leaving.
● Network Bandwidth - Since there is not a huge amount of information being

transferred, the amount required should be 56 kbps to access the system successfully.
● Web browser - In order for the client to access the software, he/she must use a semi-

advance browser (i.e Mozilla Firefox 2.0 or up, Google Chrome, Internet Explorer 7 or
up).

Aside from the hardware which is integrated into our system (keypad, display, etc.), the only
hardware we require is disk space for our database(s). Looking at our database schema, its
evident that our largest table will be the reservations table. The reservation table consists of 11
fields, 10 of which are int fields (4 bytes), and one of which is an enum field (1 byte). Each
record in the table will take up 41 bytes. The amount of disk space will depend on the number of
customers we intend to support, and the average rate of reservations we think each user will
make and how long we will keep old records.

For example: Lets say we intend on supporting up to 100 customers, who make reservations at
a rate of 1 per month. That’s 1200 reservations a year. That’s 1200 * 41 = 49,200 bytes, or 49.2

66

Kbytes a year. If we intend on holding reservation information for the past 3 years, that’s at least
150 Kbytes before we dump out old data. Obviously, we will support a lot more customers and
customers will make a lot more reservations, and we will keep data a lot longer... this is just an
example. Obviously, other tables will take up data as well, but nothing is expected to grow as
fast as the reservations table, so this is what we should be looking to support (I would think). In
any case, disk space is cheap, bandwidth is not... so depending on the number of hits we intend
on getting a day, we may need heavy processors, fast ram, etc. But, for this project, I don’t think
bandwidth will be much of an issue.

Algorithms and Data Structures
Algorithms

Best Alternative Reservation - this algorithm will determine the largest contiguous block of
time contained in the period between a customer’s desired reservation start and end times, in
the event that a reservation for the entire block of time is unavailable.

For example, if a customer wants a confirmed reservation from 9am until 5pm and the creation
of that reservation would overbook the garage for any amount of time within that interval, then
the customer would be offered the largest contiguous block of time within that 9-5 window that
would not create an overbooked garage.

Mathematically this is a very simple algorithm.

1. Determine the blocks of time during garage operating hours that the garage is not
currently overbooked;

2. Filter the result of (1) to the window of time the customer requested;
3. Of the blocks of time remaining in (2), determine the largest possible block of time.

This algorithm will help the customer select a reservation. The customer may not know that
their requested reservation of 9am until 5pm is unmanageable, but perhaps a 9am-4:30pm
reservation is possible.

Discount Price - this algorithm will determine the discount registered customers accrue over
time. After a customer has racked up X “perfect reservations”* in a row, each upcoming
reservation will be offered at a discount, depending on the number of previous perfect
reservations.

As an example, lets assume discounts are only offered after 3 perfect reservations, the regular
hourly price of a reservation is $10/hour, the discount rate is 10% off of the previous price, and
the minimum allowable price is $6/hour.

67

If Bob has had 3 perfect reservations, his 4th reservation will be offered at a discount price of
10% off ($9/hour). If Bobs 4th reservation is also perfect, then his 5th reservation will be offered
at a discount price of 10% off the previous price he paid ($8.10/hour). The trend will continue
until Bob has a mishap (imperfect reservation) in which case he starts over and pays the regular
fee, or until he reaches the minimum price allowed ($6/hour) in which case he will continue to
pay this price until a mishap.

Doing this, we will ensure that our customers strive for perfection with their reservations, as well
as ensure that more customers register for an account as opposed to walk in.

* In this case, a perfect reservation is one where the customer arrives and departs on time.

Data Structures

Our system does not use many complicated structures (hash tables, linked lists or trees) but we
do use arrays in order to quickly analyze and refer to the data in our database. The reason why
we chose arrays over any other method is because it is simple to use and linked lists are not
implicitly supported by PHP, the language we will be coding our server side application in.

68

User Interface Design and Implementation

At this point, there were no major changes made to the user interface. We will add/edit the user
interface as we define further needs, while maintaining our main goal for the user interface
which is a great and easy user experience for the end user. A great user experience is rather
subjective, so to test whether we achieve our main goal, we plan to have random users rate
their user experience.

Since there were no major changes, please refer to Report #1 for information and screen mock-
ups of the user interface. The screen mock-ups in Report #1 were actually implemented at
http://www.park-a-lot.vacau.com/ so there is no reason to re-iterate those images here. The
design is meant to reduce user effort to a minimum, by providing a sleek and reduced graphical
interface that is simple to understand (no screen clutter or extraneous information).

Our interface follows the “Ease-of-use” guidelines very well, as evidenced by:

1. The simple yet straightforward interface;
2. The addition of a Google Map on the homepage to help users locate their nearest Park-

A-Lot garage;
3. Simple navigation on the top-right corner of the web page, with very clear names such

as “Register” and “Reserve”.

A simple navigation combined with a clearly defined form on each page defines the essence of
our user interface.

http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com%2F&sa=D&sntz=1&usg=AFQjCNHRtay4uugbgyvq-nfcV3UQkuBNbg�

69

Progress Report and Plan of Work
Progress Report

Since the last report, we have managed to finalize many details of the system architecture and
interactions, through the creation of the system interaction diagrams earlier in this report. These
interactions are the key to fully defining our system, since they reflect the most in-depth look at
how our system is expected to function.

So far, no use cases have been implemented in code. However, the next three weeks of our
project is dedicated to accomplishing that. The Gantt chart in the next section (Plan of Work)
details how we plan to accomplish that implementation, including the order in which we will be
implementing our use cases. It is worthwhile to note that since this system will not be put
immediately into practice, and we do not have a physical parking garage to test it on, we will be
building test cases to simulate the customer interactions of UC-2 Park.

The main functional part is our user interface, which is implemented at http://www.park-a-
lot.vacau.com. However, there is no logic or function yet built in. It is simply a shell that will
eventually house our code.

http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�
http://www.google.com/url?q=http%3A%2F%2Fwww.park-a-lot.vacau.com&sa=D&sntz=1&usg=AFQjCNFlW_HjOMKebcLfUr6D25sTP39Yng�

70

Plan of Work

The Gantt chart attached to this section details how and in what order and timeline we will
complete the implementation of our use cases.

The chart contains all of our project milestones, mostly use cases we will be implementing.
Responsibilities for the Gantt chart are detailed in the next section, Breakdown of
Responsibilities.

ID Task Name Duration Start Finish Predecessors

1 Implement UC-1 Reserve 2 wks Mon 3/14/11 Fri 3/25/11
2 Implement UC-7 and UC-8 Cance 5 days Mon 3/21/11 Fri 3/25/11 1SS
3 Create Necessary Databases 1 day Mon 3/14/11 Mon 3/14/11
4 Implement UC-5 Register 1 wk Mon 3/14/11 Fri 3/18/11 3SS
5 Implement UC-9 Authenticate Use 1 wk Thu 3/17/11 Wed 3/23/11
6 Implement UC-4 Manage Account 3 days Thu 3/24/11 Mon 3/28/11 5
7 Implement UC-6 Manage Garage 3 days Thu 3/24/11 Mon 3/28/11 5
8 Implement UC-10 Set Prices 2 days Mon 3/21/11 Tue 3/22/11
9 Implement UC-2 Park as Test Cas 1 wk Mon 3/28/11 Fri 4/1/11

10 Implement UC-11 Inspect Usage H 3 days Tue 3/29/11 Thu 3/31/11

T F S S M T W T F S S M T W T F S S M T W T F S
Mar 13, '11 Mar 20, '11 Mar 27, '11

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 1

Project: Project1
Date: Fri 3/11/11

72

Breakdown of Responsibilities

Below, there is also a responsibility matrix, which assigns specific responsibilities on the Gantt
chart to team members who will be completing them.

 Abdul Matt Eric Luke Juan

UC-1 Reserve X X X

UC-7 and UC-8 Extend/Cancel
Reservation X X

Create Databases X

UC-5 Register X X X

UC-9 Authenticate User X X

UC-4 Manage Account X X

UC-6 Manage Garage X X

UC-10 Set Prices X

UC-2 Park Test Cases X X

UC-11 Inspect History X X

Integration Coordination - This will be coordinated by Matt and Abdul. It involves bringing all
of the separate modules together and ensuring end-to-end connectivity and correctness.

System Testing - This will be performed by all group members, since it will require extensive
testing for the varied possibilities of cases. There are many possible scenarios where things
may go wrong, and it will be best to have each team member testing the system with varied
inputs to ensure the highest quality.

73

References

[1] “Event Driven Architecture”, Wikipedia, http://en.wikipedia.org/wiki/Event-driven_architecture

[2] Model-View-Controller Tutorial, http://net.tutsplus.com/tutorials/other/mvc-for-noobs/

[3] Introduction to UML 2 Package Diagrams,
http://www.agilemodeling.com/artifacts/packageDiagram.htm

[4] The Kohana Framework, http://kohanaframework.org/

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvent-driven_architecture&sa=D&sntz=1&usg=AFQjCNF2gIiuuFVWCvXFOmF2PPLV2Fg6IQ�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fnet.tutsplus.com%2Ftutorials%2Fother%2Fmvc-for-noobs%2F&sa=D&sntz=1&usg=AFQjCNFNjxopWP9JammebtazG8JHlemxcA�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fwww.agilemodeling.com%2Fartifacts%2FpackageDiagram.htm&sa=D&sntz=1&usg=AFQjCNH-I5Mkp5ZPfzstmG0DlC1x54N4cw�
http://www.google.com/url?q=http%3A%2F%2Fkohanaframework.org%2F&sa=D&sntz=1&usg=AFQjCNFuSaNZozEeSlYH3qMmIffdUm1NCA�
http://www.google.com/url?q=http%3A%2F%2Fkohanaframework.org%2F&sa=D&sntz=1&usg=AFQjCNFuSaNZozEeSlYH3qMmIffdUm1NCA�
http://www.google.com/url?q=http%3A%2F%2Fkohanaframework.org%2F&sa=D&sntz=1&usg=AFQjCNFuSaNZozEeSlYH3qMmIffdUm1NCA�
http://www.google.com/url?q=http%3A%2F%2Fkohanaframework.org%2F&sa=D&sntz=1&usg=AFQjCNFuSaNZozEeSlYH3qMmIffdUm1NCA�
http://www.google.com/url?q=http%3A%2F%2Fkohanaframework.org%2F&sa=D&sntz=1&usg=AFQjCNFuSaNZozEeSlYH3qMmIffdUm1NCA�
http://www.google.com/url?q=http%3A%2F%2Fkohanaframework.org%2F&sa=D&sntz=1&usg=AFQjCNFuSaNZozEeSlYH3qMmIffdUm1NCA�

	Effort Estimation
	Interaction Diagrams
	Notes and Conventions
	UC-1: Reserve
	UC-2: Park
	UC-3: Manage Account
	UC-4: Manage Reservations
	UC-5: Register
	UC-6: Manage Garage
	UC-7: Cancel Reservation
	UC-7
	UC-7 2
	UC-8: Extend Reservation
	UC-9: Authenticate User
	UC-9
	UC-10: Set Prices
	UC-10
	UC-11: Inspect Usage History

	UC-11
	Class Diagram and Interface Specification
	Class Diagrams
	Class Diagram SID
	Class Diagram Lukes
	Data Types and Operation Signatures

	System Architecture and System Design
	Architectural Styles
	Identifying Subsystems
	Mapping Subsystems to Hardware
	Persistent Data Storage
	2
	3
	4
	5
	6
	7
	Network Protocol
	Global Control Flow
	Hardware Requirements

	Algorithms and Data Structures
	Algorithms
	Data Structures

	User Interface Design and Implementation
	Progress Report and Plan of Work
	Progress Report
	Plan of Work
	Gantt Chart
	Breakdown of Responsibilities

	References

