
14:332:452 SOFTWARE ENGINEERING

System Design

Parking Garage Project

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez

3/11/2011

This is the second report of Software Engineering class. It details the design of the project. The team has

met multiple times and worked together and independently to put together this report that will keep up on

track to completing this large project.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 1 of 37

Table of Contents
Individual Contributions Breakdown .. 3

Interaction Diagrams ... 5

ChangeReservations .. 5

UseElevator ... 6

OpenGate ... 7

PayFee ... 8

CheckSpaceAvailibility ... 9

Class Diagram and Interface Specification ... 9

Class Diagram ... 9

Accountant ... 9

Accounts_Database ... 10

Admin .. 11

Camera ... 11

Car ... 11

Charge .. 12

Customer .. 12

Door ... 13

Elevator .. 13

Front_Display .. 13

Garage_UI ... 14

Hardware_Controller ... 14

Parking_Database .. 14

Prediction ... 15

Reservations... 16

Sensor .. 16

Website .. 16

Data Types and Operation Signatures ... 19

System Architecture and System Design .. 21

Architectural Styles ... 21

Event-Driven Architecture .. 21

Front End – Back End ... 21

Database-Centric Architecture .. 21

Pipeline .. 21

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 2 of 37

Client-Server Model .. 21

Identifying Subsystems ... 22

Mapping Subsystems to Hardware .. 24

Persistent Data Storage.. 24

Network Protocol .. 25

Global Control Flow.. 26

Execution Orderness: ... 26

Time Dependency .. 26

Concurrency ... 26

Hardware Requirements .. 26

Algorithms and Data Structures .. 27

Algorithms ... 27

Data Structures .. 29

Summary of Customer Data .. 29

Summary of Car Data .. 29

Storing Mass Quantities of Data in Memory ... 29

Other Data .. 30

User Interface Design and Implementation .. 30

Progress Report and Plan of Work.. 33

Progress Report ... 33

Plan of Work ... 34

Breakdown of Responsibilities.. 36

James Jacob ... 36

Brian Goodacre .. 36

Richard Romanowski .. 36

Matthew Rodriguez ... 36

Richard Roman .. 36

Groups ... 36

Bibliography ... 36

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 3 of 37

Individual Contributions Breakdown

Responsibility Effort B
ri

an
 G

o
o

d
ac

re

Ja
m

es
 J

ac
o

b

M
at

t
R

o
d

ri
gu

ez

R
ic

h
 R

o
m

an

R
ic

h
ar

d
 R

o
m

an
o

w
sk

i

Project Management 3 100%

Team Effort Breakdown 1 100%

Compiling Report 4 100%

Sec 3. Interaction Diagrams

 Interaction Diagrams-Diagram 7 90% 10%

 Interaction Diagrams-Write up 6 100%

Sec 4. Class Diagram and Interface Specification

 Class Diagram-Diagram 11 90% 10%

 Class Diagram-Write up 13 90% 10%

 Data Type-Diagram 7 90% 10%

Sec 5. System Architecture and System Design

 Architectural Styles-Write up 5 5% 95%

 Identifying Subsystems-UML 7 90% 10%

 Mapping Subsystems to Harddrive-Write up 5 95% 5%

 Persistent Data Storage-Write up 6 95% 5%

 Network Protocol-Write up 4 10% 80% 10%

 Global Control Flow-Write up 4 5% 95%

 Hardware Requirements-Write up 4 5% 95%

Sec 6. Algorithms and Data Structures

 Algorithms -Write up 6 90% 10%

 Data Structures-Write up 5 5% 95%

Sec 7. User Interface Design and Implementation 50% 50%

Pencil Drawing 4 100%

Photoshop 5 100%

 Write up 5 100%

Sec 8. Progress Report and Plan of Work

 Progress Report-Write up 4 5% 95%

 Plan of Work-Diagram 5 100%

 Breakdown of Responsibilities-Write up 5 5% 95%

Sec 9. References 1 40% 20% 40%

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 4 of 37

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 5 of 37

Interaction Diagrams

ChangeReservations

The High Cohesion principle was employed to assign responsibilities to objects within

this use case. All objects, such as the user interfaces and the database report to the controller

object, which then send messages in order to invoke the methods required to complete a task.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 6 of 37

Thus, the controller takes on the responsibility of maintaining communication between the

different objects within this use case.

UseElevator

This use case utilized the High Cohesion property to assign responsibilities to internal

objects. The controller object took on a bulk of the responsibilities in terms of sending messages

between objects. Besides the controller, each object was responsible for only its own tasks,

thereby avoiding having too many extraneous chores for these objects.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 7 of 37

OpenGate

Within this use case, the High Cohesion principle was used to avoid objects having to

take on tasks outside their expertise. Objects would simply focus on their designated duties and

all message sending and external tasks are shifted over to the controller. This does not conform

with the Low Coupling principle since the controller now has many different associations with

all the objects within the use case.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 8 of 37

PayFee

The High Cohesion property was implemented within this use case, thereby shifting most

of the computation related tasks towards the controller. All of the other objects within the use

case simply need to work on their own tasks. In the situation where an object needs to invoke a

response from another object, it will send a message to the controller and the controller will then

invoke the needed method within the second object.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 9 of 37

CheckSpaceAvailibility

Both the High Cohesion and Low Coupling principles were utilized within this use case.

The sensor object is only tasked with sensing the arrive or departure of a vehicle. When such an

event occurs, the sensor informs the controller, which then updates the database. Thus, each

object is only involved with its own tasks. However, since this use case was fairly small, each

object only had a few responsibilities. The number of associations between objects was greatly

reduced.

Class Diagram and Interface Specification

Class Diagram

Accountant
 Dependencies

 Admin -> Accountant; Accountant -> Accounts_Database;

 Accountant -> Charge

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 10 of 37

 The Accountant class charges the credit cards the appropriate amount. Generally it

takes the card number from the Accounts_Database, and charges for the duration

recorded in Parking_Database. However, for unregistered walk-ins, Accountant has

to take the card number from the Charge hardware module.

 Variables

 float rate; private

 The usual rate for hourly parking.

 float overRate; private

 The hourly rate for overstays.

 float specialRate; private

 The hourly discount rate for special, low volume times.

 Functions

 float getRate(int rateType); package

 Get function for the different rates.

 bool chargeAccount(long cardNum, float time, float overtime); private

 Charges account of exiting car, either with the card number obtained from Charge for

unregistered walk-ins, and from Accounts_Database for every other customer.

 void setRate(int rateType, float newRate); package

 Set function for the different rates.

Accounts_Database
 Dependencies:

 Customer -> Accounts_Database; Reservation ->Accounts_Database;

 Hardware_Control -> Accounts Database;

 Admin -> Accounts_Database; Accountant -> Accounts_Database;

 Accounts_Database -> Car

 Accounts_Database is the main log for all information about the accounts, including

information and history. It is also the class that allows for updating of accounts.

 Variables

 int accountNum; package

 Holds the value of the Account number for searching, login, and updating purposes.

Used in Reservation, and Customer for customer indexing.

 string plateNum; private

 Holds the value of the license plate; used for updating the account and updating the

car list.

 long cardNum; package

 Holds the value of the credit card number. Is used for account updating, and also for

payment by the Accountant class.

 string name; package

 Holds the value of the name of the customer. Used for account updating purposes,

and also the Hardware Control class for display purposes.

 Functions

 bool login(int accountID); private

 Logs into the account information

 void editAccount(int accountID); package

 Edits account info. Specific values to edit are in function. Because this is webpage

compatible, is a package function.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 11 of 37

 addAccount2Car(string plateNum, int accountNum); package

 Adds account number to car file. Includes car class, is therefore a package function.

 void write2file(); private

 Writes info to file.

 void findAccount(int accountID); package

 Locates and loads account info into variables. Used for account updates.

Admin
 Dependencies

 Website -> Admin; Admin -> Accounts_Database; Admin ->Prediction;

 Admin -> Accountant

 Admin has only a few functions because most of the things it does resides in other

classes that it accesses. Admin uses Accounts_Database the same way that Customer

does with some more abilities. It also can adjust the Prediction variables in the

Prediction class, and can adjust rates in the Accountant class.

 Variables

 int adminOp; private

 This variable expresses which operation is selected by the admin. Each value

corresponds to a different operation.

 Functions

 void detAdminOp(); private

 Set function of adminOp.

 getAdminOp(); package

 Get function for adminOp

Camera
 Dependencies

 Hardware_Controller -> Camera

 This class manages the cameras. There is one camera in the elevator that reads the

license plate of the entering vehicle. There is one camera at the exit that determines if

the car exiting must pay at the Charge module (unregistered walk-ins) or if the car

can exit (any registered vehicle).

 Variables

 string plateNum; private

 This variable is the license plate that the camera reads.

 bool cameraNum; private

 This variable determines what camera is being referenced. It is a boolean variable

because there are only two cameras.

 Functions

 string getPlateNum(bool camNum); package

 Get function to return license plate number read by one of the cameras.

 void setPlateNum(string newPlateNum, bool camNum); package

 Set function for license plate number on one of the cameras.

Car
 Dependencies

 Accounts -> Car

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 12 of 37

 Variables

 string accountNums[]; package

 Holds the accounts associated with each license plate. Used in Accounts_Database

for updating.

 Functions

 n/a

Charge
 Dependencies

 Hardware_Controller -> Charge; Accountant -> Charge

 This class manages the credit card machine that reads the credit card number at the

exit for the unregistered walk-ins.

 Variables

 long cardNum; private

 This stores the credit card number.

 Functions

 long getCardNum(); package

 Get function for cardNum

 void setCardNum(long newCardNum); package

 Set function for cardNum

Customer
 Dependencies

 Website -> Customer; Customer -> Reservation, Customer ->Account_Database

 The customer passes values onto Reservation in the event of making, deleting, or

editing a reservation. The customer passes values onto Account_Database when

editing Account information. This is a basic class to provide a middle step before

choosing an option on the website, an intermediary variable holder.

 Variables

 int custOp; private

 This holds the value of the operation that the customer is trying to achieve.

 int accountNum; package

 This holds the value of the account number inputted into the website. It is accessed

by both Account_Database, and Reservation.

 string plateNum; package

 This holds the value of the license plate number, inputted into the website for

reservation or account updating purposes. It is accessed by both Account_Database,

and Reservation.

 int start; package

 Start time of the reservation; this is used by Reservation.

 int end; package

 End time of the reservation; this is used by Reservation.

 Functions

 void detCustOp(); private

 Sets custOp. Only used within Customer

 string parseinfo(); package

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 13 of 37

 Parses the information inputted into the Website interface. May be used by website

in addition to customer.

 getCustOp(); package

 Returns the value of custOp. Determines what class to go to next, Reservation or

Accounts_Database

Door
 Dependencies

 Hardware_Controller -> Door

 This class manages the two doors on the elevator and the gate at the exit.

 Variables

 bool front; private; defaults to

 This is the door that allows the car into the elevator upon entrance.

 bool back; private

 This is the door that allows the car to pull onto the levels of the parking garage.

 bool gate; private

 This is the gate at the exit.

 Functions

 bool getDoorStatus(int doorNum); package

 Get function for the doors.

 void setDoorStatus(int doorNum, bool doorStatus); package

 Set function for the doors.

Elevator
 Dependencies:

 Hardware_Controller -> Elevator

 This class manages the elevator.

 Variables

 int atfloor; private

 Expresses the current floor that the elevator is on

 Functions

 void setFloor(int floorNum); package

 Set function for atfloor

 int getFloor(); package

 Get function for atfloor

Front_Display
 Dependencies

 Hardware_Controller -> Front_Display

 This class manages the display that is in the entrance of the garage before the elevator

that expresses if there is space for walk-ins.

 Variables

 bool walkinStatus; private

 This is the variable that says if there is space for walk-ins or not. It is a boolean

variable because there are only two options.

 Functions

 bool getWalkInStatus(); package

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 14 of 37

 Get function for walkinStatus

 void setWalkInStatus(bool newStatus); package

 Set function for walkinStatus

 void dispStatus(bool walkinStatus); package

 Display function for the screen.

Garage_UI
 Dependencies

 Hardware_Controller -> Garage_UI

 This class manages the user interface inside the elevator.

 Variables

 n/a

 Functions

 void navigateUI(); package

 This function navigates through the user interface inside the elevator, including the

display and the keypad.

Hardware_Controller
 Dependencies

 Hardware_Controller -> Accounts_Database;

 Hardware_Controller -> Parking Database;

 Hardware_Controller -> Camera;

 Hardware_Controller -> Door; Hardware_Controller ->Elevator;

 Hardware_Controller -> Garage_UI;

 Hardware_Controller -> Front_Display; Hardware_Controller -> Sensor;

 Hardware_Controller -> Charge

 The Hardware_Controller coordinates all of the hardware components, and manages

logistics for garage procedures.

 Variables

 n/a

 Functions

 void entrance(); private

 This function coordinates all of the hardware from the moment that the car drives into

the elevator all the way through until the elevator comes back down to the ground

floor after transporting the car to the correct floor.

 void exit(); private

 This function coordinates all of the hardware when the car is exiting.

 void monitor(); private

 This function checks the hardware that reports the states of the garage, specially the

spot sensors. This is the function that signals for overstaying, and signals to release

spots that are free sooner than expected.

Parking_Database
 Dependencies

 Reservation -> Parking_Database; Admin -> Parking_Database;

 Accountant -> Parking_Database; Prediction -> Parking_Database;

 Hardware_Controller -> Parking_Database

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 15 of 37

 Variables

 string otPlate[]; private

 A list of license plates that are overtime in their spots; private because all of the

overtime computations are done in the Parking_Database class.

 int otTime[]; private

 A list of times that the corresponding license plates started in overtime.

 Functions

 int findRes(string plateNum, int accountNum, int start); package

 The main purpose of this function is to recognize whether the cars driving into the

garage have a reservation. Uses values from Hardware_Controller.

 void assignSpot(int accountNum, string plateNum, int start, int end); private

 Manages spot scheduling by assigning spots to reservations and walk-ins. This is an

important function and is for that reason private.

 void freeSpot(int spotNum, int time); private

 Frees up spots when a car leaves early, if there is a no-show, or if a reservation is

cancelled or changed. This is also a very important function so it is private.

 void adjustSpot(int spotNum, int time); private

 This function is a utility function for assignSpot. It helps to reschedule a number of

spots at one time for optimal scheduling, and for conflicts. It will keep a record of

spots that are moved and optimally insert them where it is best.

 void addOT(int spotNum, int otstart); package

 This is the first step for overtime recognition. It lists the offending vehicles in a

queue, and the corresponding times that overtime started in another queue. Uses

information from Hardware_Controller.

 void concludeOT(int spotNum, int endot); package

 This is called when the offending vehicle is exiting. It takes the time of exit, from

Hardware_Controller, and calculates how much over the vehicle was.

 void viewStats(); package

 This allows the Admin to see parking statistics for the garage.

Prediction
 Dependencies

 Admin -> Prediction; Prediction -> Parking Database

 The Prediction class is the module that accounts for the predictions that drive the

overbooking in the garage. It allows admin to set variables, and computes them and

passes them to the Parking_Database.

 Variables

 int predictVar[]; private

 This is an array of the different prediction variables. Because we have get and set

functions for this array, the array is private.

 Functions

 int getPredictVar(int varNum); package

 Get function for predictVar[].

 void setPredictVar(int varNum, int varVal); package

 Set function for predictVar[].

 int calcPredict(); package

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 16 of 37

 This function calculates the overbooking variable using the prediction variables. It

forwards this value to Parking_Database, to allow it to schedule effectively.

Reservations
 Dependencies

 Customer -> Reservation; Reservation -> Parking_Database;

 Reservation -> Accounts_Database;

 Reservation takes the information inputted into the website and forwards it to the

scheduling database (Parking_Database), and the log database (Accounts_Database).

 Variables

 n/a

 Functions

 void makeRes(int accountNum, string plateNum, int start, int end); private

 compiles information to input to the Parking_Database class to check for availability.

Only used in Reservation class.

 void delRes(int accountNum, int start); private

 This inputs the needed information to delete a reservation as requested by a user.

This passes information along to the Parking_Database class, and adjusts the account

info in Accounts_Database. This is only used in Reservation.

 void editRes(int accountNum, int start); private

 Allows the user to edit the reservation; first passes the info on to Parking_Database to

check for availability, then updates Accounts_Database with the new reservation

information.

Sensor
 Dependencies

 Hardware_Controller -> Sensor

 This class manages the sensors that are in each parking spot that report if the spot is

vacant or occupied.

 Variables

 bool sensorStatus[]; private

 This array tells the state of each sensor. Each spot has a corresponding spot in the

array.

 Functions

 bool getSensorStatus(int sensornum); package

 Get function for the sensors.

 void setSensorStatus(int sensornum, bool sensorStatus); package

 Set function for the sensors.

Website
 Dependencies

 Website -> Customer; Website -> Admin

 The website class passes values onto both the Customer and Admin classes. It is the

initial User Interface for both the customer and administrators.

 Variables

 bool loginType = 0; private

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 17 of 37

 This variable is to determine what kind of login the user will be attempting,

administrative or customer. The variable is boolean because there are only two types

of login types, so this saves space. The default setting is 0, or customer because that

will be the most used login of the two. This variable will only be changed and

viewed with functions within the class. Therefore it is private.

 Functions

 void setType(bool newChoice); private

 This function sets the variable loginType. This function will only be used within the

class so it is set as private. The argument into the function will provide the new value

for loginType.

 bool getType(); package

 This returns the value of loginType. This is visible to the package because other

classes such as Admin and Customer will use it.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 19 of 37

Data Types and Operation Signatures
On the next page is the diagram showing the Data Types and Operation Signatures.

Please excuse the watermark.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 21 of 37

System Architecture and System Design

Architectural Styles

Event-Driven Architecture
When looking at the system as a whole, it is easy to see that everything is based on

events. Everything from making a reservation, and updating an account, to the entire process of

parking and exiting the garage, to the utility functions that provide the framework and

information needed to make the system run smoothly are all driven by events. The event

emitters are customers and to a smaller extent administration. Everything that occurs in the

system occurs because a customer takes some action, be it making a reservation online, or

leaving the garage after having been parked. The nature of the project and the way in which it is

meant to work guaranteed that our system would follow this style the closest.

Front End – Back End
Another style that permeates through the structure of this program is Front End – Back

End. Clearly the databases are the back end of the program. They store all the information and

make the decisions that drive the program. But the rest of the program is put into place to

transfer information presented to the system (website, hardware) into language that the databases

can understand and use.

Database-Centric Architecture
Most of the system will be designed and constructed resembling this model. The

databases play an important and influential role in the system. They store everything from client

accounts and information to parking information, and reservation details, along with the current

state of the garage. All of this information will be stored in files in which information will be

inputted into a table like design. Many of the main utility functions of the program are also run

directly on the database instead of middle-tier classes. This will work for us because the

functions have easy access to the information and updating the data will occur in the database

itself, which increases efficiency.

Pipeline
The pipeline style is used in the data area of the program. Many of the variables that are

inputted into the system travel between a few classes before they get to the end point. This is

especially true with the information that is inputted into the website, and read from the hardware.

These variables are ultimately passed to modules that make decisions.

Client-Server Model
The website that is being used by both the clients and the administration will be of the

Client-Server Model. It allows for security and ease of use by both groups of users. It will

deviate from the normal characteristics of a Client-Server Model because all of the information

and data will not be stored on the website servers. It will be instead stored in databases.

However, it will be loaded onto the website servers from the database. An advantage in using

this model for the website will be that it will be easy to update information.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 22 of 37

Identifying Subsystems
The three main packages are Administration, Users, and Simulation. This is meant to go

along with the Use Cases so that the reason of using a package is nearly inherent to the package

itself.

The User has limited access to other packages, but these packages will allow the user to

accomplish his tasks.

The Administration can view the important packages related to the parking garage. The

Administrator has limited access to the data storage files but can view the required information

for operation of the parking garage.

The final main package is the Simulation package. This package does not have any

packages unique to itself and it should not. Its purpose is to simulate cars and users using the

parking garage. Due to its function, the design choice of the Simulation package is to be able to

<<import>> information from important databases and allow it to edit these values to make it

seem like the system is being simulated. For a real parking garage, the Simulation Package

would not be necessary.

The databases are separate since they will be storing different information. The Accounts

Database will hold the information related to the cars and people while the Parking Database will

hold the information related to the spots. These two databases will be kept synchronized with

information related to each other. This synchronization will occur through the Reservations

package. This design choice is because anything related to parking spaces will require a

reservation and this reservation will be required to access the accounts.

Hardware is its own package. This design choice comes from the fact that we will have to

simulate all of the electronic devices anyways so there should be a package that will contain all

of the simulate values. For example, camera will have a complex function to “read in license

plate” while a sensor will simply have a function “is occupied.”

UML Package Diagram

Brian Goodacre

Package Diagram1

Website

accounts database

people Hardware

Reservations

cars Accountant (Money)

GUI

Administration

Simulation

users

Monitoring

parking database

This includes all parts of the
parking garage that need to be
simulated: sensors, elevator,
gates, cameras, and keypad.

Package for all the tools an
Adminis trator can use.

Package for all
the tools a user
can use.

Package needs to be
able to enter and read
data into the system at
key points .

<<import>>

<<import>><<import>>

<<import>>

<<import>>

<<access>>

<<import>>

<<import>><<access>>

<<access>><<access>>

<<access>>

<<access>>

<<access>>

<<import>>

<<access>>

<<access>>

<<access>>

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 24 of 37

Mapping Subsystems to Hardware
Our system does need to run on multiple computers. These computers will be used by the

employees of the parking garbage, the customers of the parking garage, the system for

maintaining a database, and the system for processing requests of its services. Each of the above

computers that the system will run on will have different access points to the system, different

intentions, and varying levels of access to the operations of the system. Below is a list of the

computers that the system will run on and the main modules that will run on these different

computers:

1. Database Server

a. Receive database information requests

b. Send information from database

c. Perform computations for expected no shows

2. Web server

a. Access user information from database and give it to user’s web browser

3. Controller Computer

a. Maintains communications with the sensors on their status

4. Computer for Entering the Garage

a. Determine the reservation status of the customer

b. Instruct car to parking space

5. Computer for Exiting the Garage

a. Charge user for amount of time in the garage

6. Computer in Administrator’s Office

a. View parking garage’s status

7. Customer’s Computers

a. Make account and register car

b. View past history of charges

c. Make reservations

8. Customer’s Cell Phones

a. Make reservations

Persistent Data Storage
The system does need to save data that will outlive a single execution of the system. This

information is related to customer’s account, parking reservations, and activity within the garage.

Ideally, the data will be stored in such a way will allow multiple processes to access the database

at the same time, massive amount of data to be stored at once, and have fast lookup time.

The way we are going to store the information is via a SQL database. This is a

relationship database, which fits our requirements for storing database. The current SQL

database in use is the Microsoft SQL Server 2008. The server is implemented locally on a team

member’s computer and will be developed to allow external requests of information from other

computers. This database allows for fast up scaling to large quantities of data, something our

system demands because of the many possible reservations times, customers, cars, and parking

spaces our system must support.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 25 of 37

The persistent objects that will be able to maintain themselves or their state across several

HTTP requests are each of the columns in the SQL database that are listed below.

Below are the two databases that will be implemented with the SQL database. One is for

customers and cars to track their reservations; the second is meant to work with the reservations

of spaces.

The first maintains reservation and account information per customer.

For the second, we expect that the parking garage will be at maximum capacity most of

the time, so having a full table will require a large amount of storage but will allow for fast

lookup and data calculations. The database will expand when necessary to add additional

columns for dates and times. These will increment every 15 minutes.

Customer and Cars Database Columns:

 Customer ID

 Customer Name

 License Plates of Cars

 Current Balance

 Upcoming Reservation 1 Arrival Time

 Upcoming Reservation 1 Departure Time

 Upcoming Reservation 2 Arrival Time

 Upcoming Reservation 2 Departure Time

 Upcoming Reservation 3 Arrival Time

 Upcoming Reservation 3 Departure Time

 Permanent Reservation

 Last X Number of Reservation (Where X is TBD)

Parking Space Database Columns

 Parking Space ID

 Parking Space Name

 Current Occupant of Car ID Occupant

 Current Occupant of Customer ID

 Customer ID at March 15, 2011 1:00pm

 Customer ID at March 15, 2011 1:15pm

 Customer ID at March 15, 2011 1:30pm

 Customer ID at March 15, 2011 1:45pm

 Etc…

Network Protocol
In order to facilitate communication between the parking garage reservation website and

the parking garage database, the Java JDBC communication protocol will be utilized. This

protocol involves a Java API which provides methods for easy communication between the Java

application and the database server, such that the website can seamlessly access and update

values within the database. The JDBC network protocol is especially suited for relational

databases, which will be especially useful when handling a database filled with relationships

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 26 of 37

between customers, vehicles, and reservations. Each customer can be affiliated with multiple

vehicles and each vehicle can be affiliated with multiple customers. Furthermore, each customer

or vehicles can be tagged with multiple reservations. In this situation, where there are a multitude

of potential overlaps, relational databases prove to be extremely efficient in reducing the number

of tables and objects involved. When a customer is using the website to access his account, the

website will be able to access the database by using the Java JDBC in real time to gather

information that the customer is requesting. Such information will be supplied in an efficient

manner because the database will be constructed and optimized to provide output quickly for the

expected queries. Thus, the Java JDBC network protocol proves to be the best choice within a

system where a remote Java application must communicate with a database.

Global Control Flow

Execution Orderness:
Our system is event-driven since it is almost completely based on user input. An example

of a part of our system that is ¬process-driven is the license plate reader, which is on a loop, to

read a license plate, and then display a user interface to the customer. However, after this the

events of the system are determined by customer behavior, what options they select, what

reservations they hold, etc.

Time Dependency
Our system charges customers for how long they stay, so there must be some

implementation of a timer in the system to determine how long they stayed. It’s periodic in the

sense that it repeats for each customer who enters, parks, and leaves the parking garage.

Concurrency
For the web database, if two users want to access the same information at the same time, we

would need multiple threads for that. (i.e. a husband and wife, both logon on to edit a license

plate, on two different accounts.) For this we just need a simple lock around sections where data

is being edited and then read, so wrong values are not used. Otherwise, only one customer can

park in any spot at one time, so each sensor is single-threaded. Only one customer can be in the

elevator and use the keypad, so that can be single-threaded. Also, only one customer can leave at

a time, so that camera is single-threaded. Finally, the camera that reads license plates is also

single-threaded since it only reads one at a time. The controller itself must multi-threaded since it

needs to send requests from multiple sensors and cameras to the main system. For this, the

requests will need to be put a queue, since the controller can only deal with one at a time. We

need to make sure there is not starvation for one of the input devices.

Hardware Requirements
 Touch screen display

 minimum 800x600 pixels. The touch screen display will be the main way of the

customer communicating with the system and entering information into the database.

 Hard drive

 At least 10 GB of space. This will be the local hard drive for the garage where the

local, cached information is stored. It’ll hold the information about the parking spots

and the customers.

 Network Connection

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 27 of 37

 A 1Mbps connection to support website and database transfers. A fast connection

will allow the online customer database to interact with the system at the garage to

keep track of reservations and which customers showed up.

 RAM

 Minimum 2 GB of RAM to process the information from the touch screen. Without a

good amount of RAM, the touch screen system UI will be slow and customers will be

stuck in the UI menus waiting for them to load

 CPU

 2GHz processor to process the times and customer information efficiently. A slow

processor will again make menu navigation a headache. Fast speed and efficiency

will keep the customers happy and make things move faster.

 Sensors

 IR sensors to detect whether or not a car is in a parking spot.

 Camera

 5 Megapixel Resolution for optimal reading of license plates

 Elevator buttons

 To dictate which floor you are taking your car to.

Algorithms and Data Structures

Algorithms
This parking garage system employs an overbooking algorithm to maximum the usage of

the parking spaces to the greatest degree possible. This algorithm predicts the number of no-

shows, overstays, understays, and walk-in based on historical data and accepts the appropriate

amount of reservations to make sure the parking garage is always running at 100% occupancy or

as close to that as possible. The overbooking algorithm takes the total number of parking spots

within the parking garage and subtracts the number of parking spots that are predicted to be

unavailable at a certain time. The difference provides the number of parking spots that are

predicted to be open for reservations. The exact algorithm is as follows:

Where:

PT = Total # of parking spaces within garage

RC = Confirmed reservations

RG = Guaranteed reservations

N = No-show factor for reservations

OP = predicted overstays

UP = predicted understays

WP = predicted walk-ins

PF = # of parking spaces that are currently free

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 28 of 37

The confirmed reservations account for one time reservations made by registered

customers and the guaranteed reservations account for contract reservations made by registered

customers. The no-show factor is based on historical data gathered during parking garage

operation and it represented the percentage of customers that actually show up to claim their

reserved parking space. The overstay count is predicted based on the percentage of cars within

the garage that overstayed their parking duration in the past and the understay count is predicted

based on the percentage of cars that understayed their parking duration in the past. The walk-in

count is predicted based on the percentage of cars within the garage which are simply walk-in

customers who have not made a reservation. Thus, this algorithm relies heavily on the ability to

collect, store, and analyze the parking garage data.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 29 of 37

Data Structures
Customer – The Customer class has the following data associated with it:

 Primary

o int: Registration ID. This int will be the unique identifier when talking about

customers.

 Secondary

o String: First Name

o String: Last Name

o String: Street Address

o String: City

o String: State

o int: Zip code

o int: Credit Card number

o int: Phone Number

o String: email address

o String[]: License plates. This needs to be dynamically allocated that automatically

doubles it size when required. Since most users should have anywhere between 1

and 4 license plate, it will at most waste one String of allocated memory.

Summary of Customer Data
Most of the data here is self-explanatory. We chose to do an array for the multiple cars

that will be used since most customers will only have one car associated with them. Also, it is

easier to implement and faster to search the array then a linked list, especially if you know the

index number. Many of the integer values can probably be casted as smaller sized variable types

once we decide on final details. (i.e. length of ID number)

Car – The Car class had the following data associated with it:

 Primary

o String: License plate. This will be the unique identifier of a car.

 Secondary

o int[]: Registration IDs. A list of all the customers by registration ID associated

with this Car. We will also use a dynamically allocated array here, since cars will

only have more than 1 to 4 users if it is a company car, and if this is a popular

option, we can add a company ID number to customer classes, so cars can belong

to many people.

Summary of Car Data
The license plate can be any alphanumeric character, so a String is the easiest

implementation. We chose to implement arrays here for multiple customers, since most cars will

be associated with one or two customer, so a dynamically doubling array will waste no space in

these two scenarios. It is also faster and easier to search than a LinkedList. Once again, int may

change depending on length of registration ID required.

Storing Mass Quantities of Data in Memory
If we see the need to store mass amounts of data in memory for search, fetch, and edit,

we will use red-black trees. The reason for this is threefold, they sort the data by the field we

decide. They are always balanced, and self-balance so little maintenance is required on the user

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 30 of 37

end to keep them organized. They also search very quickly, on the order of log2n. This will

depend on the criteria of the master system, for our demo, we will have to scale this aspect down

to get a reasonable initialization time.

Other Data
All other permanent storage of data will be done with a database, which will be read

when required.

User Interface Design and Implementation
The following description is for the User Interface navigation for the keypad on the elevator:

As a customer drives up to the elevator, a

splash screen is displayed (Figure 1) as a

place holder until the license plate is read.

Figure 1

[OPTIONAL] After this a confirmation

screen appears with the image of the license

plate (Figure 2) that the camera captured.

Above this image is the license plate string

that the system recognized from the image.

The customer can confirm this by clicking

yes, or clicking no. If the customer clicks yes

they will be brought to one of two screens.

Figure 2

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 31 of 37

If only one customer is associated with the

registered car, then they are automatically

welcomed (Figure 3), and their next

reservation is listed on the screen if there are

any. It also gives the customer the option of

editing this reservation. (i.e. to extend it). The

customer will then confirm it is he or she.

Figure 3

The second option is that multiple customers

are associated with the car, if that is the case

then a list of all the customers associated with

the car is displayed. (Figure 4) The customer

can then select their name from the list, or

click the button to say they are not listed. If

they select one of the names, they are brought

to a similar screen as Figure 3 with their

current reservation, and the option to edit this

reservation, or to continue parking.

Figure 4

… If the user clicks no in Figure 2, or the

license plate is not recognized, or if the

customer clicks the “I’m not here” button in

Figure 4, the customer is brought to the screen

where they can type in their registration

identification number (RIN). (Figure 5) If

they type in their correct registration number,

they will be brought to their own welcome

screen where their current reservation is

listed. If they type it incorrectly, they will be

given two more tries to get it correct before

they are asked to leave. They may choose to

skip this, if they do not have one. They are

now considered a walk-in customer.

Figure 5

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 32 of 37

If the customer is a walk-in or a registered

customer who wants to edit their reservation,

they are brought to Figure 6. They can choose

the time they want to now stay using the drop-

down menus provided. Once they hit ok, they

are brought to the thank you splash screen

(Note this Figure is just a placeholder)

Figure 6

Once the customer confirms their final

reservation, they are greeted with a final

splash screen (Figure 7) telling them to drive

forward.

Figure 7

This is the splash screen (Figure 8) that the

customers will see upon exit. Once the

camera picks up on the license plate of the

leaving car, it displays the next screen.

(Figure 9)

Figure 8

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 33 of 37

The screen displays how much the customer

will be charged. It also displayed the amount

they overstayed, so any extra charged is

explained. If they are a registered customer in

the system, they will be automatically

charged, and they won’t need to slide their

credit card. However, if it is an unregistered

customer leaving from a walk-in, they will

need to slide their credit card. After the

customer pays they are shown the splash

screen again, thanking them for parking.

Figure 9

Progress Report and Plan of Work

Progress Report
We have a very basic database currently working. The java program currently has two

files associated with it: customers.txt and cars.txt. The first file list all the customers on each line

individually, with the registration number first. After that follows all the user information,

contact information, and then all the cars associated with the customer by license plate, all

separated by a delimiter. The second file lists the cars on each line individually, with the license

plate first, and then all the customers associated with the car, listed by registration number,

separated by a delimiter.

The program when it starts up parses all this information and loads it into memory. Right

now this is small scale, less than ten users, but we want to see if it’s realistic to load a large

number of information at startup, and use this information in memory, so the program runs fast,

and allows for ease of programming. All the customers and cars are put in their own Linked List,

that can be searched.

After all variables are initialized, the user has several options, they can view their

information, by looking at the license plate. This models the camera sending a license plate to the

database, and fetching the user name. If that doesn’t work, aka the user wants to skip it, the user

can enter their registration number, and that will fetch their information via that variable. If the

user does not have a registration number, they can choose to skip this step, and they will be

asked to input their first name and last name, as well as the license plate of the primary car they

want to be associated with. They will then be assigned a registration number, and their

information will be displayed for them. This is analogous to registering via the website. All new

information is written to text files for permanent storage.

The next task to be tackled is to implement a reservation module. We need to allow user

to make a reservation, view their reservation, and edit their reservation. We also need to figure

out how to represent this data in the database. Along with making reservations, we need to make

parking spot classes, that can get take reservations, and a system that oversees these operations.

Another system being worked on is the elevator user interface that the customer sees when they

drive up to the elevator.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 34 of 37

Plan of Work

ID Task

Mode

Task Name Duration Start Finish Predecessors

1 Proposal 1 day Fri 1/28/11 Fri 1/28/11

2 First Report 15 days Mon 1/31/11 Fri 2/18/11 1

59 First Demo 15 days Thu 3/24/11 Wed 4/13/11 26

60 Product Brochure 15 days Thu 3/24/11 Wed 4/13/11

61 Demo Format 15 days Thu 3/24/11 Wed 4/13/11

63 Demo Schedule 5 days Thu 3/24/11 Wed 3/30/11

62 Create Database 3 days Thu 3/24/11 Mon 3/28/11

87 Electronic Project Archive 62 days? Mon 1/31/11 Tue 4/26/11 1

26 First Level Programming of the Assignment 26 days Wed 2/16/11 Wed 3/23/11

28 Determine how to begin coding 10 days Wed 2/16/11 Tue 3/1/11

31 Work with partners 8 days Wed 2/16/11 Fri 2/25/11

29 Code first parts 8 days Wed 3/2/11 Fri 3/11/11 28

27 Research Data Structures 2 days Sat 3/5/11 Mon 3/7/11 28

32 Debug other's code 7 days Mon 3/14/11 Tue 3/22/11 29,31

30 Start working on next part 1 day Wed 3/23/11 Wed 3/23/11 32

33 Second Report - Design 15 days Mon 2/21/11 Fri 3/11/11 2

34 Cover Page and Individual Contributions

Breakdown

2 days Mon 2/21/11 Tue 2/22/11

35 Table of Contents 1 day Mon 2/21/11 Mon 2/21/11

36 Interaction Diagrams 5 days Mon 2/21/11 Fri 2/25/11

37 Class Diagram and Interface

Specification

7 days Mon 2/21/11 Tue 3/1/11

38 Class Diagram 4 days Mon 2/21/11 Thu 2/24/11

39 Data Types and Operation Signatures 3 days Fri 2/25/11 Tue 3/1/11 38

40 System Architecture and System Design 13 days Mon 2/21/11 Wed 3/9/11

41 Architectural Styles 3 days Mon 2/21/11 Wed 2/23/11

44 Persisten Data Storage 3 days Mon 2/21/11 Wed 2/23/11

45 Network Protocol 3 days Mon 2/21/11 Wed 2/23/11

46 Global Control Flow 3 days Thu 2/24/11 Mon 2/28/11 45

47 Hardware Requirements 3 days Thu 2/24/11 Mon 2/28/11 44

42 Identifying Subsystems 3 days Wed 3/2/11 Fri 3/4/11 37

43 Mapping Subsystems to Hardware 3 days Mon 3/7/11 Wed 3/9/11 42

48 Algorithms and Data Structures 5 days Mon 2/21/11 Fri 2/25/11

49 Algorithms 5 days Mon 2/21/11 Fri 2/25/11

50 Data Structures 5 days Mon 2/21/11 Fri 2/25/11

52 Progress Report and Plan of Work 2 days Mon 2/21/11 Tue 2/22/11

53 Progress Report 2 days Mon 2/21/11 Tue 2/22/11

54 Plan of Work 2 days Mon 2/21/11 Tue 2/22/11

55 Breakdown of Responsibilities 1 day Mon 2/21/11 Mon 2/21/11

56 References 1 day Mon 2/21/11 Mon 2/21/11

51 User Interface Design and

Implementation

8 days Wed 3/2/11 Fri 3/11/11 37,36

57 review uml diagrams 3 days Mon 3/7/11 Wed 3/9/11 42,37,36

58 review written works 2 days Wed 3/9/11 Thu 3/10/11

64 Third Report 35 days Mon 3/14/11 Fri 4/29/11 33

65 split up parts 1 day Mon 3/14/11 Mon 3/14/11

66 Cover Page and Individual Contributions

Breakdown

2 days Mon 3/14/11 Tue 3/15/11

67 Table of Contents 1 day Mon 3/14/11 Mon 3/14/11

68 Summary of Changes 4 days Mon 3/14/11 Thu 3/17/11

69 Customer Statement of Requirements 5 days Mon 3/14/11 Fri 3/18/11

70 Glossary of Terms 4 days Mon 3/14/11 Thu 3/17/11

71 Functional Requirements 8 days Mon 3/14/11 Wed 3/23/11

74 Domain Analysis 8 days Mon 3/14/11 Wed 3/23/11

75 Interaction Diagrams 10 days Mon 3/14/11 Fri 3/25/11

76 Class Diagrams and Interface

Specification

1 day? Mon 3/14/11 Mon 3/14/11

77 System Architecture and System Design 8 days Mon 3/14/11 Wed 3/23/11

78 Algorithms and Data Structures 10 days Mon 3/14/11 Fri 3/25/11

79 User Interface Desgin and

Implementation

10 days Mon 3/14/11 Fri 3/25/11

80 History of Work & Current Status of

Implementation

10 days Mon 3/14/11 Fri 3/25/11

81 Conclusions and Future Work 3 days Mon 3/14/11 Wed 3/16/11

82 References 1 day Mon 3/14/11 Mon 3/14/11

72 Nonfunctional Requirements 5 days Thu 3/24/11 Wed 3/30/11 71

73 Effort Estimation using Use Case Points 4 days Thu 3/24/11 Tue 3/29/11 71

83 Second Demo 25 days Wed 3/30/11 Tue 5/3/11 59

84 Product Brochure 15 days Wed 3/30/11 Tue 4/19/11

85 Demo Format 15 days Wed 3/30/11 Tue 4/19/11

86 Demo Schedule 5 days Wed 4/20/11 Tue 4/26/11 85

1/16 1/23 1/30 2/6 2/13 2/20 2/27 3/6 3/13 3/20 3/27 4/3 4/10 4/17 4/24 5/1 5/8

February March April May

Task

Split

Milestone

Summary

Project Summary

External Tasks

External Milestone

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

Deadline

Progress

Page 1

Project: Plan of Work

Date: Fri 3/11/11

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 36 of 37

Breakdown of Responsibilities

James Jacob
is currently responsible for developing, coding, and testing the following classes:

 The Hardware_Controller class

 The Door class

 The Elevator class

 The Garage_UI class

 The Front_Display class

Brian Goodacre
is currently responsible for developing, coding, and testing the following classes:

 The Prediction class

 The Parking_Database class

 The Accountant class

Richard Romanowski
is currently responsible for developing, coding, and testing the following classes:

 The Customer class

 The Car class

 The Account_Database class

Matthew Rodriguez
is currently responsible for developing, coding, and testing the following classes:

 The Website class

 The Admin class

Richard Roman
is currently responsible for developing, coding, and testing the following classes:

 The Sensor class

 The Camera class

 The Charge class

Groups
Richard Romanowski, Brian Goodacre, and James Jacob will coordinate the integration

of all of the classes into the full system. In addition, Brian Goodacre and James Jacob will

perform the testing of the integrated system

Bibliography
Bruegge, Bernd and Allen H Dutoit. Global Control Flow: Object-Oriented Software

Engineering: Using UML, Patterns, and Java. Prentice Hall, 2010.

Marsic, Ivan. Software Engineering. New Brunswick, 2009.

Microsoft. Chapter 3: Architectural Patterns and Styles. n.d. 10 March 2011

<http://msdn.microsoft.com/en-us/library/ee658117.aspx>.

System Design: Parking Garage Project

14:332:452 SOFTWARE ENGINEERING

R. Romanowski, R. Roman, J. Jacob, B. Goodacre, M. Rodriguez Page 37 of 37

Miles, Russ and Kim Hamilton. Learning UML 2.0. Ed. Eric McLaughlin and Mary O'Brien.

Sebastopol: O'Reilly, 2006.

Oracle. Hierarchy For All Packages. n.d. 2 March 2011

<http://download.oracle.com/javase/1.5.0/docs/api/overview-tree.html>.

Sun Microsystems, Inc. Java Look and Feel Design Guidelines. Mountain View, 1999.

Visual Paradigm. VP Galley. n.d. 7 March 2011 <http://www.visual-

paradigm.com/VPGallery/index.html>.

