

ClassHub

Project URL:
https://sites.google.com/scarletmail.rutgers.edu/classhub

Group Number 6:
Report 3

Omar Atieh oa183@scalretail.rutgers,edu

Abderahman Sherif ajs557@scarletmail.rutgers.edu

Nada Ali n.ali@rutgers.edu

Wahhaj Zahedi wmz3@scarletmail.rutgers.edu

Mohammad Alnadi ma1322@scarletmail.rutgers.edu

Shazim Chaudhary shc77@scarletmail.rutgers.edu

Salman Hashmi sah285@scarletmail.rutgers.edu

https://sites.google.com/scarletmail.rutgers.edu/classhub

Table Of Contents

Contributions Breakdown 3

Summary of Changes 4
Enumerated Functional Requirements: Added many use cases and updated diagrams 5

Customer Problem Statement: 6
A. Student Perspective 6
B. Instructor Perspective: 7
C. Glossary of Terms: 9

3. System Requirements: 10
A. Enumerated Functional Requirements: 10
B. Enumerated Non-functional Requirements 11
C. On Screen Appearance Requirements 11
User Interface Requirements 13

4. Functional Requirements Specification 13
A. Stakeholders 13
B. Actors and Goals 14
C. Use Cases 14
D.Use Case Diagram 17
E. Traceability Matrix 17
E. Fully-Dressed Descriptions 19

5. Effort Size Estimation 25
Calculating UCP: 25
Calculating UUCP: 26
Calculating TCF: 28
Calculating UCP: 29
Calculating Duration: 29

6. Domain Analysis 29
A. Domain Model 29

1. Concept Definitions (D-doing; K-knowing; N-neither) 30
2. Association Definitions 31
3. Attribute Definitions 33
4. Traceability Matrix 35

B. System Operation Contracts 36

Page 1

7. Interaction Diagrams 38
Login/Register 38
Class Setup 39
Questions 40
Feedback 41

8. Class Diagram and Interface Specifications 42
Class Diagrams 42

9. System Architecture and System Design 53
Architectural Styles: 53
Identifying Subsystems: 54
Mapping Subsystems to Hardware: 56
Persistent Data Storage: 57
Network Protocol: 57
Global Control Flow: 58
Hardware Requirements: 58

10. Algorithms and Data Structures 59

11. UI Design and Implementation 59

12. Design of Tests: 75
Unit Testing 75

13. History of Work, Current Status, and Future Work 79
History of Work 79
Key Accomplishments 82

14. References 82

Page 2

Contributions Breakdown

 Wahhaj
Zahedi

Salman
Hashmi

Shazim
Chaudhary

Omar
Atieh

Nada
Ali

Abderahman
Sherif

Mohammad
Alnadi

Class Diagram 14.28 14.28 14.28 14.28 14.28 14.28 14.28

Data Types and

Operations
14.28 14.28 14.28 14.28 14.28 14.28 14.28

Traceability Matrix 14.28 14.28 14.28 14.28 14.28 14.28 14.28

Identifying Subsystems 14.28 14.28 14.28 14.28 14.28 14.28 14.28

Mapping Subsystems to

Hardware
14.28 14.28 14.28 14.28 14.28 14.28 14.28

Persistent Data Storage 14.28 14.28 14.28 14.28 14.28 14.28 14.28

Network Protocol 14.28 14.28 14.28 14.28 14.28 14.28 14.28

Global Control Flow

Hardware

Requirements

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Algorithms and Data

Structures
14.28 14.28 14.28 14.28 14.28 14.28 14.28

User Interface Design

and Implementation
14.28 14.28 14.28 14.28 14.28 14.28 14.28

Design of Tests 14.28 14.28 14.28 14.28 14.28 14.28 14.28

Project Management

and Plan of Work
14.28 14.28 14.28 14.28 14.28 14.28 14.28

General UI
14.28 14.28 14.28 14.28 14.28 14.28 14.28

Instructor View UI
Interface

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Database/server
implementation

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Web Socket
communication

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Page 3

Student view UI
interface

14.28 14.28 14.28 14.28 14.28 14.28 14.28

User Portal UI
14.28 14.28 14.28 14.28 14.28 14.28 14.28

Custom UI designs
14.28 14.28 14.28 14.28 14.28 14.28 14.28

Quiz UI and
Functionality

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Poll UI and
Functionality

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Google Nearby API
Functionality

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Audio Recording of
Answers

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Upvoting Comments
and Questions in Feed

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Direct Messaging
Instructors

14.28 14.28 14.28 14.28 14.28 14.28 14.28

Resource Uploading
14.28 14.28 14.28 14.28 14.28 14.28 14.28

All Team Members Contributed Equally

Each member contributed equally to the project in terms of module break down. Wahhaj
Zahedi worked on database/server and implementation across the full stack. Mohammad
Alnadi and Shazim Chaudhary worked on the Instructor View module and UI. Salman
Hashimi and Omar Atieh worked on the User Portal and web socket communication. Nada
Ali and Abdurrahman Sherif worked on the Student View module and UI. The team
collaborated very closely such that each team member was able to contribute equally..

Summary of Changes

1. Attendance Mechanism:

Page 4

● Main Change, using Google Nearby API to make attendance absolute and uncheatable.
Google Nearby uses a combination of Bluetooth, Bluetooth Low Energy, Wi-Fi and
near-ultrasonic audio to communicate a unique-in-time pairing code between devices that
are connected to the internet, but not necessarily on the same network.

● Details on the API: https://developers.google.com/nearby/messages/overview

2. System Requirements:
● Enumerated Functional Requirements: Added many use cases and updated

diagrams
● Added many more requirements and change priorities
● Change login and register priorities much less
● Added new features

○ Direct Messages to Instructors
○ Upvoting system for live session feed
○ Resource uploading
○ Live session polls
○ Audio answer pinning to student questions
○ Revamped attendance system using a mix of different connective

mechanisms (using Google’s Nearby Messages API)

3. Functional Requirements Specification
● Updated All use cases and added many use cases to account for added features

● Updated matrix
● Added fully dressed description
● Added system sequence diagram

4. Effort Estimation
● Accounted for new features

5. Domain Analysis
● Updated matrix per additional use cases.
● Added new responsibilities per new features added to the mobile application.

6. Interaction Diagrams

● Improved interaction diagrams

7. Class Diagram
● Added new classes and function to class diagram to account for new features

● Added OCL
● Updated traceability matrix

Page 5

https://developers.google.com/nearby/messages/overview

8. System Architecture

● Explained database schema better

9. History Of Work

● Updated history of work
● Added key accomplishments

Customer Problem Statement:

A. Student Perspective
As a student, attending lecture is often troublesome as it may seem like a waste of time. The
current lecture system has several flaws that make attending lecture more adverse than
beneficial. These problems include: a lack of efficient and accurate attendance-taking, an
absence of immediate test-taking to solidify understanding of the lecture material, a need
for efficient communication between the professor and students, and a lack of the
involvement in major decisions of the course such as major due dates.

A lack of efficient attendance-taking can prove to be quite a massive waste of time for a
large class. For example, if 300 students have to sign a sign in sheet each lecture just to
provide proof of their attendance than valuable time is wasted. This valuable time can be
used by students in order to understand the material, take notes, and ask questions before
lecture time is over. The main issue that arises as a student is that the sign in process takes
up a large portion of the total time allotted for the lecture. At times, up to 15 minutes of
class-time is wasted on attendance. The lecture commences with only a short time
remaining - forcing the lecturer to rush through material. This puts tremendous pressure
on students to take notes, understand what’s being said, and comprehend what’s being
presented in too short of a time period. Additionally, this puts more pressure on Teaching
and Learning Assistants, as they are forced to go over material in even more detail in order
to compensate for the lost time due to the extensive sign-in process. This is not a good
experience for the students as it encourages students to leave lecture immediately after
signing in to go study the material at their own speed and time. This is not the only
problem in the current lecture system which encourages the student to skip lecture, the
lack of immediate test-taking during the lecture has also a significant effect on students’
performance.

A lack of immediate test taking does not imply a graded 30-60 minute test on the material
that was presented in the lecture as a whole. Statistics have shown that testing yourself
immediately on a specific concept one has just learned improves one’s understanding and

Page 6

retention drastically. Take Sololearn for example, Sololearn is a web and mobile
application that enables users to learn programming languages and concepts utilizing
immediate test taking strategies. After each new concept, one would face a very short quiz
that would ask the student to apply the concept they just learned in a scenario. If the often
low exam scores and class averages are any indication, immediate test-taking is an absolute
must in today’s learning environment to boost the understanding and application of
important concepts being presented during the lecture by the professor. Not only does this
provide us with a better way to solidify the material, it also can be used as a metric to gauge
whether students are actually understanding the material. Watching a problem being
solved is significantly easier than attempting a problem on one’s own. When students are
tested under the supervision of the lecturer, they are able to figure out where they are
getting stuck on. They then have the opportunity to ask the lecturer for clarification
regarding the material. This provides an overall better experience than the one that
students unfortunately go through today.

The last problem that needs to be addressed is the lack of student involvement in the
course’s major decisions such as deadlines. Often times, professors don’t take into account
the collective schedules of students when they decide on project deadlines. This can
produce unnecessary hardship for both sides. Students often find themselves taking on an
extreme amount of stress at times throughout the year because of impending deadlines
that fall during the same time period. A polling system is a solution for this problem. The
professor would use an application that is connected with the students to post a question
along the lines of “When should this be due?” and the students would pick a due date from
a selection of viable options. This alleviates a magnormous amount of stress off student’s
shoulders. The professor could then determine how he or she wants to proceed with the
poll results and whether he or she wants to follow a majority-rules system.

A mobile application centered around the classroom communication between a student
and professor is best option since almost every student possesses a smartphone. This
mobile application can be the communication hub between the students and professors
addressing all the solutions mentioned above from the students’ perspective.

B. Instructor Perspective:

As an instructor, holding lecture can often feel like a waste of time. If attendance isn’t
mandatory then most students would choose not to attend. Even when attendance is
mandatory towards the class grade, the methodology of taking attendance through sign in

Page 7

sheets, or iClicker allows students to simply walk into class, sign in, and exit right after.
There can be various reasons for a student to leave, but a massive drop in lecture
attendance indicates that the lecture is not beneficial. This brings in the issue of easy
communication between the instructor and students regarding the lecture and course.
Comfortable communication between the instructor and students is very important if the
instructor aims to improve through student feedback. A comfortable communication
platform also provides solutions to several immediate questions an instructor has during
lecture such as: Are most of the students understanding the material being presented? Are
students coming to class? If so, how many per lecture? What do the students think about
the lecture and instructor’s teaching methods?

To start with attendance, an efficient, full-proof attendance taking tool is required such that
students are required to attend lecture and stay in lecture until the end all while
participating actively with questions and quizzes . The old sign in sheets are often very time
consuming if the lecture contains more than a hundred students. If the sign in sheet is left
at the front, the rush/line of students around it often render the lecturer unable to start the
lecture until everyone has signed in and is seated. The lecture can be started on time where
the sign in sheet is passed around the classroom, however this provides problems of its
own. This method allows students to dishonestly sign in for other students who are not
present in the lecture to fulfill their attendance requirement. Not only that, but this method
often leaves the instructor asking the class ‘if everyone signed in’ to which several students
respond ‘no’ and come up to sign in at the end of the class. Overall, the sign in sheet is an
unreliable and time-consuming attendance taking tool. Another option that instructors
have tried is the iClicker attendance taking where the students bring iClickers to class and
press a button to sign in. Although this method is less time consuming, it poses other
problems such as: student has to buy an iClicker which is expensive on a college student’s
budget, and students can sign in and leave. A software platform that involves the student to
sign in and stay until the end of the lecture with participation is the most viable solution.

A massive drop in attendance often indicates that the lecture is not proving to be beneficial
towards student understanding. One solution for this is a software that provides a feedback
platform for the students to express their constructive critique. Which then guides the
professor on where to improve. This platform should provide a rating of the attended
lecture along with a description explaining why the student gave the rating they did. This
saves valuable time before and after lecture where students express concerns such as
instructor’s volume during lecture, the size of their font, their teaching style, and any
concepts the instructor did not explain properly. On the note of beneficial feedback, the
instructor requires immediate feedback on whether the students in the lecture are

Page 8

understanding the theory behind the concept as well as its application. This calls for
immediate 1-2 question quizzes during lecture after the coverage of each new concept. This
component is essential for the instructor to understand how well the students are
understanding the new material.

A strong communication system is still lacking in today’s lecture system. Usually when an
instructor asks a question, at most, one or two students raise their hands to resolve their
misconceptions. However this is highly unrealistic. Only one or two students cannot be the
only students among hundreds in to have questions at a college level course. Students often
find it uncomfortable to shout in the middle of a lecture hall. This calls for a
question-answer component such that students can post questions onto the application
and have others upvote these questions if they have it as well. These questions are then
addressed by the instructor either in the same application or during lecture.

This is a software platform built for mobile that allows the students and instructors to have
attendance-taking, frequent test-taking, constructive feedback, and strong communication.
This will enhance the classrooms of today’s education system immensely.

C. Glossary of Terms:

Session: A live virtual lecture for the class where instructors and students can interact with

each other in real time through attendance, quizzes/polls, questions & answers, and

feedback.

Class: A set of sessions, that holds the class roster information, class title, start and end

dates for the class.

Live session: a video live stream for the active session. It can only be viewed by students

enrolled in the class. The instructor is the only one who has the option to host a live

session.

Session history: Live session record and statistics where instructor views class grades,

attendees, and session information.

Page 9

Feedback: At the end of the session, students are asked to rate it and give their comments

on how a session can be improved.

3. System Requirements:

A. Enumerated Functional Requirements:

IDENTIFIER PRIORITY REQUIREMENT

REQ-1 3 The system will allow users to register as either a student or instructor
and login after authentication with their information.

REQ-2 4 The system will enable students to ask question real-time during the
session, for all students and the instructor to view the students’ questions.

REQ-3 5 This Application will use Google’s nearby API, which uses a combination of
Bluetooth, Bluetooth Low Energy, Wi-Fi and near-ultrasonic audio to
communicate a unique-in-time pairing code between devices. Which can
be utilized as an uncheatable attendance mechanism.

REQ-4 2 The system should allow both instructors and students to view the session
history including questions, quizzes, and specifically attendance and
reviews for the instructor.

REQ-5 4 The system should allow instructors to create quizzes within the session
for students to answer in real-time.

REQ-6 2 The system shall provide statistics of attendance, quizzes and feedback
per session for the instructor, as well as aggregated statistics per class.

REQ-7 1 The system shall enable instructors to send notifications and reminders to
all students enrolled within a class.

REQ-8 3 The System should enable students to directly message the instructors

REQ-9 4 Upvoting system for live session feed to allow certain comments/question
to be put on priority

REQ-10 2 The system should allow instructors to upload resources(pdf or slides) for
students in the class.

REQ-11 5 Live session polls to take polls during live sessions

Page 10

REQ-12 5 Audio Answering to allow instructors to record their verbal in class
answer to a student’s question and post it in resources

REQ-13 5 Functional database hosted on server to store all user data and classroom
data for push and fetch commands.

B. Enumerated Non-functional Requirements

IDENTIFIER PRIORITY REQUIREMENT

REQ-14 2 The system’s view should be consistent for both students and
instructors, and follow similar design patterns.

REQ-15 2 The system should be secure and each account should be private and
only accessible by its owner.

REQ-16 2 The system should be accessible by different devices, and be responsive
to all of them.

REQ-17 2 A forgot password mechanism must be implemented

REQ-18 4 Robust user navigation and interface

C. On Screen Appearance Requirements

IDENTIFIER PRIORITY REQUIREMENT

REQ-19 3 Registration page for new users to sign up with their information in the
system either as an instructor or a student.

REQ-20 3 Log-in page for students and instructors to access their accounts.

REQ-21 2 A forgot password interface to reset the password

REQ-22 3 Home page for students viewing their schedule of classes, and to access
the classes already enrolled in.

REQ-23 3 Side menu to view additional classes.

REQ-24 3 Class home page for instructors to view previous sessions’ history and
statistics.

Page 11

REQ-25 4 Home page for instructors to view their schedule, and all classes they
are instructing.

REQ-26 5 Session view for instructors to post quizzes and host a live session.

REQ-27 3 Add a new session button for instructors to be able to upload a CSV file
of a class roster

REQ-28 3

Session view for students to be able to take quizzes in class

REQ-29 4 Polls interface in session view to allow the instructor to ask polls and
get results from students.

REQ-30 3 Feedback interface to show after a session for students to rate the class.

REQ-31 5 In session feed to allow communication for everyone in the class, via
comments, questions, polls and quizzes.

REQ-32 3 Resources page for instructors to post lecture slides and other class
documentation.

REQ- 33 2 Notification system for students to view

Page 12

User Interface Requirements

4. Functional Requirements Specification

A. Stakeholders
This system is created for implementation in classroom settings to help adapt classroom
lectures and improve the overall education system.

Below are examples of Groups who would be interested:

Page 13

● Students
● Professors
● Universities and schools

B. Actors and Goals

ACTORS GOALS

Students (participating) ● To familiarize and test oneself on the
material presented in class.

● To empower students to ask questions
and comment on lecturer’s sessions.

● To enable an elevated means of
interaction with instructors.

Instructors (initiating) ● To improve and make lectures more
effective.

● To test student’s knowledge and
receive feedback on lectures.

● To ensure students attend lecture and
are participating.

● To ease the process of facilitating
quizzes and polls.

● To be able to communicate with
students conveniently and in real-time.

Universities & Schools ● Ensure Professors are productive and
utilizing their classroom times
accordingly

● To ensure students are participating
and are productive in lectures

C. Use Cases

Casual Description

Use Cases Description REQS

UC-1:

Register

To create an account that will allow a

student/instructor to join/create a classroom.

REQ 1,
20, 15,
17, 19,
21

Page 14

UC-2: Class

Setup

Allows an instructor to create a classroom by

uploading a CSV file. Set up and organize classroom

REQ 15,
16, 24,
25, 27

UC-3: Session

Preparation

Instructor prepares participation quizzes for each

lecture session.

REQ 23,
22

UC-4

Attendance

Students get marked as present when they attend

lecture through Nearby Messages API*

REQ 3

UC-5

Questions

Students asks questions in lecture through messaging

feed

REQ 12,
2

UC-6 Answers Instructor receives questions and answers them in

class. Instructor can use Audio feature to record his

answer and upload it to resources.

REQ 12

UC-7

Quizzes

Instructor creates an in class multiple choice quiz and

sends it to all students.

REQ 28,
26, 5

UC-8

Polls

Instructor creates a poll inside a session and allows the

students to vote

REQ 29

UC-9

Messaging

feed

Allow students to upvote messages, questions, or

comments during class to prioritize.

REQ 9,
31

UC-10

Resources

Archive of all resource uploaded by instructors for

students

REQ 10

UC-11

Direct

Message

Allow students to send messages directly to the

instructor privately.

REQ 8

UC-12

Feedback

Students provide feedback for each lecture to help

ensure the instructor if the students have grasped the

REQ-30,
4, 6

Page 15

material or whether there is something the instructor

can improve on.

UC-13

Session

History

Student/Instructors can look through each session’s

history to see results of quizzes, attendance, feedback,

and resources uploaded for that session.

REQ 24,
6, 4, 11

UC-14

Notifications

Instructor can send notification about upcoming

events via app

REQ 7,
33

UC-15

Database

Functional Database to record all data of classes and

users

REQ 7,
13

UC-16

Student/Instr

uctor

interface

View data that is fetched from database to display user

data.

REQ 14,
15, 18,
,21, 24,
25, 23

Page 16

D.Use Case Diagram

E. Traceability Matrix

Req’t P
W

U
C1

U
C2

U
C3

U
C4

U
C5

U
C6

U
C7

U
C8

U
C9

UC
10

UC
11

UC
12

UC
13

UC
14

UC
15

UC 16

REQ1 3 x

REQ2 4 x

REQ3 5 x

REQ4 2 2 x

REQ5 4 x

REQ6 2 2 x

Page 17

REQ7 1 x x

REQ8 3 x

REQ9 4 x

REQ10 2 x

REQ11 5 x

REQ12 5 x x

REQ13 5 x

REQ14 2 x

REQ15 2 x x x

REQ16 2 x

REQ17 2 x

REQ18 4 x

REQ19 3 x

REQ20 3 x

REQ21 2 x x

REQ22 3 x

REQ23 3 x x

REQ24 4 x x x

REQ25 4 x x

REQ26 5 x

REQ27 3 x

REQ28 3 x

REQ29 4 x

REQ30 3 x

REQ31 5 x

REQ32 3

REQ33 2 x

Page 18

Max PW 4 4 3 5 5 5 5 4 5 2 3 3 5 3 5 4

Total
PW

 15 15 6 5 9 5 12 4 9 2 3 7 13 3 6 21

E. Fully-Dressed Descriptions

Use Case UC-1 Login/Sign up

Related Req’ts REQ 1, REQ 15, REQ 17, REQ 19, REQ 20, REQ 21,

Initiating Actor Instructor, Student

Actor’s Goal To create an account or login to access the system. All user’s data
must be pulled from server

Participating Actors Instructor, Student

Preconditions ● The system database is running live
● The system displays login/sign up interface with email and

password input
● Database will verify all credential of login to launch the

user’s data

Postconditions ● System allows user to reset password if they have forgotten
it.

Flow of Events for Main Success Scenario:
1. Instructor/Student opens the app and inputs user information
2. System a) verifies users, b) displays home page
3. System a) detects error, b) signals the user to enter valid input

Use Case UC-2 Class Setup

Related Req’ts REQ 15, REQ 16, REQ 24, REQ 25, REQ 27

Initiating Actor Instructor

Actor’s Goal Instructor is able to make a class by uploading a roster of emails in
the form of CSV file. Instructor is able to plan class by uploading

Page 19

resources, planning quizzes and notify all students.

Participating Actors Student

Preconditions ● The system database is running live
● User is logged in with instructor account
● Instructor can now upload their CSV file to populate their

roster
● All students on roster automatically get enrolled into class

through registered email

Postconditions ● Instructor sets up class by uploading resources, and sets up
quizzes

Flow of Events for Main Success Scenario:
1. Instructor logs into ClassHub
2. System a) verifies users, b) displays home page
3. User clicks on plus button, and adds class with appropriate class information
4. Instructor uploads the roster by csv file
5. Database parses the csv file and registers emails listed on the roster
6. Instructor can set up resources and quizzes for this class.

Use Case UC-6 Answers

Related Req’ts REQ 12

Initiating Actor Student

Actor’s Goal Instructor views the questions asked by student in live session. If
the chooses to answer them, then he can answer them via audio
recording and uploading to messaging feed.

Participating Actors Instructor

Preconditions ● The system database is running live
● User is signed in with student account
● User is enrolled in class
● Class session is active and students are able to ask

questions
● Questions submitted through server and can be seen on

feed by instructor

Page 20

Postconditions ● Students can upvote certain question to introduce priority
questions.

● Instructor uses audio to save verbal answers for students

Flow of Events for Main Success Scenario:
1. User signs into ClassHub with student account
2. User enters into active class session
3. User submits question for instructor to view and answer
4. Students can upvote the more important questions
5. Instructor can answer the questions via audio and upload that audio to the

database

Use Case UC-12 Feedback

Related Req’ts REQ30 REQ 4 REQ 6

Initiating Actor Student

Actor’s Goal To provide lecture-specific constructive feedback and rating for
instructor to use to improve lecture quality

Participating Actors Instructor

Preconditions ● The system database is running live
● Class session had been active and concluded
● Student is enrolled in class
● Feedback is submitted through server and instructor has

access to feedback to improve lecture quality

Postconditions ● Overall feedback will be aggregated, calculated in to an
overall review

Flow of Events for Main Success Scenario:
1. User logs into ClassHub with student account
2. User accesses concluded class session and submits feedback for instructor to view
3. Feedback is submitted to database and can be viewed in session history
4. Feedback is aggregated overall review of the professor will be shown

Use Case UC-4 Attendance

Page 21

Related Req’ts REQ3

Initiating Actor Instructor

Actor’s Goal Once instructor starts a session,Google’s Nearby API will use
internets, bluetooth, bluetooth low Energy, and near ultra sonic
audio to communicate a unique in time pairing code between
devices.

Participating Actors Instructor, Student

Preconditions ● Live session are active using real time sockets. Attendance
entrance and exit events are able to be marked in the
database.

● Nearby API has been tested and works undoubtedly

Postconditions ● Need to run more test with greater amount of users

Flow of Events for Main Success Scenario:
Instructor launches live session in class.
Students who are logged in to the internet are able to be detected by
instructor
Students are able to gain access to the session and participate in class.
Once session has ended they all data is sent to database

Use Case UC-8 Polls

Related Req’ts REQ29

Initiating Actor Instructor

Actor’s Goal Instructor is able to ask a poll question in the classroom. All
student will get this popup and answer the poll. The poll results
will be displayed in the feed.

Participating Actors Instructor, Student

Preconditions ● Live session is established and connect through sockets to
all students in class.

● Feed is active and connected to all the students
● Poll is able to be launched and made by the instructor
● Students are able to view and answer the poll.

Page 22

https://developers.google.com/nearby/messages/overview

● Poll results are shown

Postconditions ● Poll results must be shown in session history

Flow of Events for Main Success Scenario:
1. Instructor launches live session in class.
2. Instructor presses on poll button and asks a question as well as the

options students are able to to choose.
3. Poll is sent to server where its relayed to students
4. Student’s results are stored in database and shown in feed.

4.D Sequence Diagrams

Login:

Register:

Page 23

Answers:

Feedback:

Page 24

Polls:

Page 25

5. Effort Size Estimation

Calculating UCP:

ACTORS Description Complexity Weight

Students
(participating)

Students interact with the
application (and thus, the
professors) using a text based
system

Average 2

Instructors
(initiating)

Instructors interact with the
application using a GUI Based
system

Complex 3

Universities &
Schools

Interact with the application using a
GUI based system to ensure that
professors and students are in the
correct classes

Complex 3

Database The database is constantly in sync
with a database which stores all of
the saved data

Simple 1

Sockets Sockets allow live communication
between instructors and students
during a session

Complex 3

UAW = 2 + 3 + 3 + 1 + 3 = 12

Calculating UUCP:

Use Cases Description Category Weight

Page 26

UC-1: Register Simple user interface. 4 steps to achieve main
success scenario.
Participating actors: Student, Instructor, and
Database

Average 10

UC-2: Class
Setup

Average User Interface. 3 Steps to achieve
main success scenario.
Participating actors: Instructor, Database, and
University

Average 10

UC-3: Session
Preparation

Average User Interface. 3 Steps to achieve
main success scenario.
Participating actors: Instructor, and Database

Average 10

UC-4
Attendance

Simple User Interface. 1 Step to achieve main
success scenario.
Participating actors: Student and Database

Simple 5

UC-5
Questions

Complex User Interface. 7 Steps to achieve
main success scenario.
Participating actors: Student, Database,
Sockets, and Instructor

Complex 15

UC-6 Answers Simple User Interface. 1 Step to achieve main
success scenario

Simple 5

UC-7 Quizzes Average User Interface. 4 steps to achieve
main success scenario.
Participating actors: Student, Instructors,
Sockets, and Database

Complex 15

UC-8 Polls Simple User Interface. 3 steps to achieve main
success scenario.
Participating: Instructor, Student, and
database

Simple 5

UC-9
Messaging
feed

Average User Interface. 3 steps to achieve
main success scenario.

Complex 15

Page 27

Participating: Instructor, Student, Sockets,
and database

UC-10
Resources

Average User Interface. 3 steps to achieve
main success scenario.
Participating actors: Instructor, Students, and
Database

Average 10

UC-11
Direct
Message

Average User Interface. 3 Steps to achieve
main success scenario.
Participating actors: Student, Database, and
Instructor

Average 10

UC- 12
Feedback

Complex User Interface. 5 Steps to achieve
main success scenario.
Participating actors: Student, Database, and
Instructor

Average 10

UC-13 Session
History

Complex User Interface. 7 Steps to achieve
main success scenario.
Participating actors: Student, Database, and
Instructor

Complex 15

UC-14
Notifications

Simple User Interface. 3 Steps to achieve main
success scenario.
Participating actors: Student, Database, and
Instructor

Average 10

UC-15
Database

Simple User Interface. 1 Step to achieve main
success scenario.
Participating actors: Student, Database, and
Instructor

Simple 5

UC-16
Student/Instr
uctor View

Simple User Interface. 2 steps to achieve main
success scenario.
Participating actors: Student, Database, and
Instructor

Simple 5

UUCW = 10(7) + 5(5) + 15(4) = 155

Page 28

Calculating TCF:

Use Cases Description Weight Score

T1 Distributed System Required 2.0 3

T2 Response Time Is Important 1.0 5

T3 End User Efficiency 1.0 5

T4 Complex Internal Processing Required 1.0 2

T5 Reusable Code Must Be a Focus 1.0 2

T6 Installation Ease 0.5 3

T7 Usability 0.5 4

T8 Cross-Platform Support 2.0 4

T9 Easy To Change 1.0 1

T10 Highly Concurrent 1.0 3

T11 Custom Security 1.0 1

T12 Dependence on Third Party Code 1.0 1

T13 User Training 1.0 1

TCF = 0.6 + (6+5+5+2+2+3+4+4+1+3+1+1+1)/100 = 0.98

Calculating UCP:

UCP = (UUCW + UAW) x TCF

UCP = (155+12) x 0.98 = 163.66

Page 29

Calculating Duration:

Duration = 163.66 * 28 = 4582.48 Hours

6. Domain Analysis

A. Domain Model

1. Concept Definitions (D-doing; K-knowing; N-neither)

Responsibility Type Concept

R1: Allow new user to create an account and to choose
between instructor and student

D
Account Controller

R2: Fetch Data from server based on User Profile D Communication
Controller

R3: Display User’s(Instructor or Student) previous classes,
sessions, and upcoming sessions

D (Student/Instructor)
Interface

R4: Once new session has been initiated by instructor, start
the peer to peer Bluetooth range to check the students’
attendance

D Peer to Peer module

R5: Server will distribute the messages from instructor to
all clients(registered students) in the database

N Real-time Interactor

R6: When instructor starts a session, all students within
peer to peer range (Bluetooth) of instructor’s device will be

K Peer to Peer
Attendance module

Page 30

marked as attended and a timestamp of attendance will be
marked

R7: Data is sent to database to record timestamp of
attendance in real time.

K Communication
Controller

R8: Students are able to type out questions to professor D Question Module

R9: Questions asked to instructor by students are sent to
server and transmitted to instructor instantly

D Real-time Interactor

R10: Instructor is able to give quiz questions D Quiz module

R11: Quiz questions asked by instructor are sent to server
and transmitted to students instantly using sockets API

D Real-time Interactor

R12: Students are able to answer, and the answers stored
directly to database

D Communication
Controller

R13: When student leaves class and out of instructor
Bluetooth range, the app will record timestamp of
departure.

D Peer to Peer module

R14: Data is sent to database to record timestamp of
attendance in real time.

K Communication
Controller

R15: Once instructor ends session all data from session is
uploaded to database along with student feedback.

K Communication
Controller

R16: Student’s display of session history, upcoming
sessions, and classes will be updated

K Communication
Controller

R17: Allow students to direct message instructors. D Communication
Controller

R18: Instructors are able to start a poll for students to give
their preferences

D Real-time Interactor

R19: Instructors are able to send notifications for students
to see

D Communication
Controller

R20: Instructors are able to audio record answers for
student questions live.

D Real-time Interactor

Page 31

R21: Students are able to up vote any comments, questions,
or answers in the feed.

D Real-time Interactor

R22: Instructors are able to upload any resources relevant
to class material.

D Communication
Controller

2. Association Definitions

Concept pair Association Description Association
Name

Account Controller<>
Communication controller

Login request made by student or
Instructor sent and received through
server

Login

User<>Communication
controller

Fetch User’s data from database Student/Class
Data

Communication
Controller<>Interface

Display interface of classes, session
history, and upcoming sessions

Class Display

Instructor
Interface<>Communication
Controller

Allow an instructor to create session Session initiation

Communication Controller
<>Student Interface

Display active sessions to all students Student Session
begin

Peer to Peer
Module<>Attendance
module

Timestamp of the students’ start of
attendance is recorded.

Attendance

Attendance
module<>Communication
Controller

Time stamp of entrance is sent to database Attendance
correspondence
data

Instructor Interface<> Quiz
Module

Instructor will click on “New Quiz” and ask
questions to class

Quizzes

Page 32

Quiz
Module<>Communicator
Controller

Quiz questions will be sent all clients in
server using Sockets API

Quiz distribution

Student Interface <> Quiz
Module

Students will answer all questions Recording
Answers

Quiz Module <>
Communication Controller

All answers will be sent to database Saving Results

Student
Interface<>Question
Module

Students are able to type out questions to
professor

Student
Questions

Question
Module<>Communication
Controller

Question is sent to server using Sockets
API

Saving Student
questions

Communication Controller
<> Instructor Interface

From server question is sent to instructor Instructor
receives question

Instructor
Interface<>Communication
Controller

Instructor ends session and send message
to server

Session end

Communication Controller
<>Student Interface

Student will have session appear as ended
in session history

Session history

Page 33

3. Attribute Definitions

Concept Attribute Description

Account
Controller

1. UserType

2. Password

3. Name

4. Email

1. Associated account with either student or
instructor

2. Password of user account
3. Full name of account owner
4. Email of the account holder

Communication
Controller

1. createData

2. readData

3. updateData

4. deleteData

1. Post new data to server for database to store.
2. Get data queries from database through server API

endpoints
3. Post and replace old data with new data
4. Find and delete data from database

Student
Interface

1. sessionHistory

2. Classes

3. Sessions

1. Recorded history from database of all previous
sessions

2. Fetched data of all the student’s current classes
3. Fetched data of all the student’s past sessions or

any current live sessions

Page 34

Peer to Peer
module

1. Instructor
Location

2. Student
Location

1. Location of the instructor’s phone
2. Distance allotted for the student’s phone to be

registered as present by the instructor. This
depends on the Bluetooth range for the
instructor’s phone.

3. Current Location of the student

Real-time
Interactor

1. Questions

2. Quizzes

3. Server Call

1. Direct questions asked by students to instructor
during session

2. Quizzes made by teacher for students in sessions
3. Socket communication between both instructor

and student devices

Attendance
Module

1. Present

2. Absent

1. Status feedback if the student is present in class
2. Status feedback for if the student is absent from

class

Instructor
Interface

1. Classes

2. Create session

3. Session History

4. Add Class

1. Classes that instructor is teaching
2. Ability to create new lecture session
3. Log of all previous sessions retrieved from

database
4. Ability to create new class and add a roster of

students

Quiz Module 1. Questions

2. Answer

choices

3. Correct

answer

1. Real-time question presented to class from
instructor

2. Multiple choice options for students to choose
from

3. The indicated correct answer by the instructor

Page 35

4. Traceability Matrix

R/UCs UC
1

UC
2

UC
3

UC
4

UC
5

UC
6

UC
7

UC
8

UC
9

Uc
10

UC
11

UC
12

UC
13

UC
14

UC
15

UC
16

R1 X X

R2 X X X

R3 X X X

R4 X X

R5 X X X X

R6 X X

R7 X X

R8 X

R9 X

R10 X X

R11 X X X

R12 X X

R13 X

R14 X

R15 X X X X

R16 X X X

R17 X

R18 X

R19 X X

R20

Page 36

R21 X

R22 X X X

B. System Operation Contracts

● Login/Signup
● Pre-Conditions

■ The system database is running live
■ The system displays login/sign up interface with email and password input

○ Post-Conditions
■ The system verifies the user’s email and password/ stores the text input of a

new user
● Class Setup

○ Pre-Conditions
■ The system database is running live
■ User is logged in with instructor account

○ Post-Conditions
■ The system creates class with appropriate information and roster
■ All students on roster automatically get enrolled into class through

registered email
● Attendance

○ Pre-Conditions
■ Session is running live on instructor phone

○ Post-Conditions
■ Student enters into Bluetooth radius and is marked as attended
■ If a student never enters into Bluetooth radius for the entire duration of the

session, then they are marked as absent.
● Answers

○ Pre-Conditions
■ The system database is running live
■ User is signed in with student account
■ User is enrolled in class
■ Class session is active
■ Student asks a question live

○ Post-Conditions
■ Text or Audio Answer is submitted by the instructor through server and can

be seen on the feed by instructor
● Feedback

Page 37

○ Pre-Conditions
■ The system database is running live
■ Class session had been active and concluded
■ Student is enrolled in class

○ Post-Conditions
■ Feedback is submitted through server and instructor has access to feedback

to improve session quality

Page 38

7. Interaction Diagrams

Login/Register

UI Description:
User is allowed to login to an existing account or create a new account using their Name, Email, a
Password, and their UserType (instructor or student).

UML Description:
In order to use the application, an account must first be created, with a selection of either a student
account or instructor account. The information used to register is then sent to the server for
authentication. Should there be an error with the user’s entry, either while logging in or registering,

Page 39

the user will be prompted to correct the mistake and continue. Otherwise, the user’s account is
created if registering and logged in to ClassHub. The model used for this use case is the
Publisher-Subscriber design pattern. The user is the subscriber in the registration use-case,
whereas the publisher is the application itself, either alerting the user of issues with their entry or
logging them in. The login, however, follows the Proxy design pattern. If the user is an instructor,
the user has access to functionality such as creating a class or starting sessions, whereas if the user
is a student, the user does not have access to that functionality.

Class Setup

UI description:
The instructor will be able to view classes, rosters, and history of sessions. Instructor will have the
option to start and end the session and students will be notified of the session status.

UML description:
The data (classes, rosters, and history of sessions) for the instructor will be fetched from the
database. Once the instructor starts a session, the session status will be sent to server and then will
be sent to all students enrolled in the class. When the instructor end the session, the session status
will be updated and the history of the session will be sent to the server. The session history can be

Page 40

viewed by both students and instructors. Class setup follows the Publisher-Subscriber design
pattern. The Publisher is the server, which creates the new class after an instructor requests it, and
adds the class to the list of classes of all users, in which the users are the Subscribers.

Questions

UI Description:
A chat window which allow students to ask questions and send them and view the other students
questions. In the instructor’s side, all questions asked by students during the session will appear.

UML Description:
During class, ClassHub makes it easy for students to ask the instructor questions, even if the user is
shy or too far away. An active session will pull up as a chat feed, which all students in the class as
well as the instructor have access to. Students can submit any questions they have about the

Page 41

current lecture material on the chat feed, upon which the instructor can answer the question in
class. This Questions feature follows the Publisher-Subscriber design pattern as well, where the
server once again serves as the Publisher, and the students and instructor are the Subscribers.

Feedback

UI Description:

Instructor ends the live session. Student receives feedback prompt asking for rating out of 5
stars and a brief comment description about the lecture. The student gives their input and
press confirm which leads them back to the class page to which the session belongs to. They
can view the latest session history there.

UML Description:
Instructor ends live session. SessionView calls Feedback View in Student’s view. Feedback
View asks for feedback parameters: rating and comments. Student gives appropriate
information and presses confirm which informs Controller (StudentView) to save feedback
to server with given parameters. Controller then performs an update on the current class
which fetches new information from the server. Controller then displays the current class’s
new updated page. This use case, similar to some of the previous use cases, also follows the
Publisher-Subscriber design pattern. Once the user ends the live session, the students are
prompted to submit a rating and feedback for the lecture that just ended. Once the students
submit the ratings, the feedback is aggregated into the instructor’s session history. The
Publisher is, once more, the server, which takes the information and performs all necessary
functions, before sending it back to be displayed to the Subscriber, the instructor.

Page 42

8. Class Diagram and Interface Specifications

Class Diagrams

The
class

Page 43

diagram displays exactly how the entire system is connected. It begins through a
login or register. Once logged in then you will be taken to either student or
instructor view. In this view the student or instructor is able to view all their classes,
session history, and upcoming sessions. Instructors are also able to add classes,
resources, and launch sessions. Everything is connected to the database because it is
responsible for fetching and displaying all the data.

Data Types and Operations:

These are the list of the main classes we utilize.
UserPortal Class

Login():void->
Allows the user to effectively call on the server to login with inputted information

Subclasses (Operations)

EmailValid() : boolean

Checks if the email is valid
Checks if email contains illegal special characters or not in proper format

PasswordValid() : boolean

Checks if the password is valid

checkValid() : boolean

Checks if name is <=0
Checks if password is longer than 8
Checks if passwords match

Fetch():

Checks if database console accepts the email and password and proceeds to
interface

Page 44

Attributes(for the above methods):
Password: String
Email: String

Register():void->
Allows new users to create a login and send their login information to database

Subclasses(Operations)
EmailValid(): boolean

Checks if email is valid
Checks if email contains illegal special characters or not in proper format

PasswordValid() : boolean

Checks if the password is valid

checkValid() : boolean

Checks if name is <=0
Checks if password is longer than 8
Checks if passwords match

UserType() : String

Checks if user is going to be “instructor” or “student”

Fetch():void

Will send data to database, If console accepts data then user will be created and stored

Attributes(for the above methods):

Name: string
Password: String
Email: String
Usertype: “student” or “instructor”: String

Page 45

StudentView Class

MenuBar()->

Classes()->
Will display all classes the student is taking

SessionLaunch()-> Will take user to sessionView

Subclasses (operations)

SessionCards():object

WIll display all upcoming and previous sessions in card looking format

getRatings():integer

Will pull allow users to view the ratings of every session of the professor

getSessions():void

Will fetch data from server to pull history of sessions and upcoming sessions

resources():void
Will allow students to view and download resources uploaded by the professor

DirectMessages():String
Will allow the student to send private messages to professor

Attributes(for the above methods):

sessionCard: Object
Rating: Integer
Classes: String
resources: Object
DirectMessages: String

Page 46

SessionView class (FOR STUDENT)

SessionLaunch()->

Subclasses (operations)

Questions(): String

Will allowing user to input question

Attendance(): Boolean

Will return true if user is in Instructor range when session is active

QuizAnswer(): Boolean

If student chooses correct answer then returns true

PollAnswer():Object

Popup of poll will appear and the answer choice indicated by student will be
recorded

Upvoting():void

Each time a student presses to up vote the count of upvotes will appear on the
display for both student and instructor

Attributes(for the above methods):
Question: String
Answer: String
Attendance: Boolean
User: String
PollAnswer:Object

Page 47

InstructorView Class

MenuBar()->

Classes()->
Will display all classes the instructor is teaching

SessionLaunch()->
Will allow instructor to create a session
SessionTime()->
Indicate the start and end time of the session. Will send data to the server to students
Subclasses (Operations)

SessionCards()

Will display all upcoming and previous sessions in card looking format

getRatings()

Will display the ratings of previous session in the session cards

getSessions()

Will fetch data from server to pull history of sessions and upcoming sessions

DirectMessages():String

Will allow user to answer and send direct messages for students

uploadResource(): Object

Instructor will be able to upload resources from his or hers local storage

Attributes(for the above methods):

sessionCard: Object
Rating: Integer
Classes: String
uploadResources: Object
DirectMessages: String

Page 48

SessionView class (FOR INSTRUCTOR)

Subclasses (Operations)

QuestionResolve(): boolean

Will return true if question a student asked is resolved

Attendance():

Will run in background recording all attending users

QuizLaunch()

Will allow instructor to create a quiz question and ask students the answer

QuizAnswer()

Instructor will indicate the correct choice for the quiz

LaunchPoll(): void

Instructor will be able to launch a poll and write the questions and choices

ViewPollResults():void

Poll results will be displayed on the feed

AudioAnswer():void

Instructor is able to record his answer and post his audio recording on the feed

Attributes(for the above methods):

Question: String

Answer: String
Attendance: Boolean
User: String
Resolve: Boolean
AudioAnswer: Object
ViewPollResult: String

Page 49

Traceability Matrix:

Domain
Concept

Derived Class Explanation

Account
Controller

User Portal
Class

The concept required that a new user be able to create a new
account either a student or an instructor and that existing users
be able to log in to their existing accounts. The User Portal class
provided an interface and a backend to act as such account
controller.

Communication
Controller
(Student)

StudentView
Class

The concept required several functions:
- Fetch Data from the server based on the user profile.
- Data is sent to database to record timestamp of

attendance in real time.
- Students are able to answer, and the answers stored

directly to database.
- Student’s display of session history, upcoming sessions,

and classes will be updated
Since all of these functions were integral to the communication of
the student with the app and its data, it felt best to organize it into
a seperate controller specific to the communication between the
student and the app.

Communication
Controller
(Instructor)

InstructorView
Class

The concept required several functions:
- Fetch Data from server based on User Profile
- Data is sent to database to record timestamp of

attendance in real time.
- Once instructor ends session all data from session is

uploaded to database along with student feedback.
Similar to the studentview class, this class acts as the
communication controller between the instructor and the app. It
differs from the studentview where in the last point, the student
only acts as the data input (feedback) which is then organized and
rendered only for the instructor, thus its placement in the
instructorview only.

Student
/Instructor
Interface

StudentView
Instructor View

Since we are using react technology which is built upon front-end
languages of HTML, CSS, and JS. It was automatic that the classes
themselves can act as the user interfaces as well as communicate
with backend as needed.
The direct messages client is a new feature added to add more
communication methods between student and instructor

- DirectMessages()- Student view/ instructor view
Allows for the student and instructor to communicate with each
other. Once a student sends a message to the instructor, the
message gets sent to the database and shows to the respective
client.

Google’s Nearby
API

SessionView
(Instructor &

Google Nearby uses a combination of Bluetooth, Bluetooth Low
Energy, Wi-Fi and near-ultrasonic audio to communicate a

Page 50

(Attendance)
module

Student) unique-in-time pairing code between devices that are connected
to the internet, but not necessarily on the same network.

- Live session are active using real time sockets.
Attendance entrance and exit events are able to be
marked in the database.

- Nearby API has been tested and works undoubtedly
- Instructor launches live session in class.
- Students who are logged in to the internet are able to be

detected by instructor
- Students are able to gain access to the session and

participate in class.
- Once session has ended they all data is sent to database

Question
Module

SessionView
(Instructor &
Student)

It was discussed best that the question module split into two
appropriate components such that the student and the instructor
have their own piece and one cannot edit the other. React-Native
allows for this very easily where each big class can have any
number of components and share data flexibly. Therefore, the
question module was split into:

- Questions() - students’ session view
- QuestionsResolve() - instructors’ session view

Quiz Module SessionView
(Instructor &
Student)

Similar to the questions module, the quiz module has its
respective components in each of the sessionView classes of the
student and instructor. The quiz module is split into:

- QuizAnswer() - students’ session view
- QuizLaunch() - instructors’ session view
- QuizAnswer() - instructors’ sessionview

The QuizAnswer from the student side will be their answer to the
quiz. The QuizLaunch from the instructor side will render the
instructor’s quiz to the students through the server using sockets.
The QuizAnswer from the instructor’s side will be used to check
each student’s answer with the correct answer when the
instructor finishes the quiz.

Poll Module Session view
(Instructor &
Student)

Similar to the quiz module the poll module is split in to
- Launch poll()- Instructor view
- ViewPollResult()-Both student and instructor view
- PollAnswer() - students’ view

This module allows for instructors and students to communicate
polls with each other via the instructor asking the poll and the
student answering them. Communication between student and
instructor is established with sockets.

**Note about module splitting:
The main reason these modules were chosen to be split as such was to avoid overlap of
actions that could cause the component to bug out and/or render in an ugly fashion as
everyone would be directing their actions on the same main module class. If the component
is split such that the students and instructors have something of their own to edit then the

Page 51

communication between the two can remain smooth and lead way to easier debugging in
the future. Rather than looking at the same class, the debugging process is made easier
automatically where the compiler will indicate whether the quiz/question is bugging on the
student’s side or the instructor’s.

Design Patterns

Overall the design patterns for certain components were very similar to each other. For
some of the functions such as quizzes and polls, the components were nearly identical but
the handling of the results differed. The student view and Instructor mirrored each other,
but the functions for each differed respectfully.
To improve the design patterns you can seperate the view for students and instructors and
make each one look different. One can add more individual aesthetics for each view to make
each more appealing for its respective viewer.

Object Constraint Language

1. Student/Instructor Interface

Student/Instructor Interface

Operations

SessionCards()- Make session cards to store session history
getRatings()- Retrieve ratings
getSessions()- Retrieve previous session history and logistics
resources()- Retrieve resource
DirectMessages()- Retrieve previous messages

Invariants Retrieving user Data from the database

Preconditions Student/ Instructor has logged into their accounts

Postconditions All classes, session history, upcoming sessions, resources and
direct messages are retrieved from database

Page 52

2. Session view(Student)

Session view(Student)
Questions()
Attendance()
QuizAnswer()
PollAnswer()
Upvoting()

Invariants Internet Connection between student and instructor through
sockets.

Preconditions Students are in range of professor and professor has launched
session. Students have joined the session

Postconditions Students are able send questions, answer quizzes, and upvote
questions.

2. Session view(Instructor)

Session view(Student)
QuestionResolve()
Attendace()
QuizLaunch()
LaunchPoll()
QuizAnswer()
ViewPollResults()
AudioAnswer()

Invariants Internet Connection between student and instructor through
sockets.

Preconditions Professor launch session and decides how long the session will
be. All attending students will be able to join session

Postconditions Students are able send questions, answer quizzes, and upvote
questions.

Page 53

3. Account Controller

Account Controller

EmailValid()
PasswordValid()
checkValid()
fetch()
UserType()

Invariants Logging in and authenticating user

Preconditions User or Instructor has download and launched the app and is
beginning to make a new account or logging in to a previous
account

Postconditions User’s data is sent to database to be verified and authenticated.

9. System Architecture and System Design

Architectural Styles:

The overall style of our system is component/state based methodology. Our overall system
will be comprised of a cluster of students’ mobile phones connected to an instructor’s
mobile phone via an app. We are are working on the implementation of sockets through our
server. In which through networks we are able to communicate a message from an
instructor’s mobile to our running server and then that message is relayed to all the clients
of that server.
For our app we need a functional database to hold all the data collected of users and their
individual history. The architecture we implemented is NoSQL in which we send and pull
information such as login credentials, registered user information, and history to and from
the database. Currently, our database is running and hosted on Amazon Web services.

- The mobile app is programmed through React Native. This is a cross platform architecture
comprised of AJAX (asynchronous JavaScript and XML) and CSS. The advantage of this

Page 54

architecture allows for students who have android or IOS to download and use the app.
React Native allows the programmer to easily create UI designs and integrate them by
adding functionality to components and their states. An application called expo is used to
continuously test the app on our own devices as we code.

Identifying Subsystems:

This subsystem is used to depict the essence of the server. It allows us to create sockets and
send messages to and from the instructor and student in real time. It is the first thing
established when the student or instructor logs in. The database will search for the user in
its itineraries and sends the user’s data to the interface. The history or previous sessions
and personal data will also be pulled from the database to the UI interface to accustom each

user who has logged in.

Page 55

This subsystem specifies our login and register protocol. Each login whether student or
instructor has to be authenticated by the database. If valid then the user’s next view will be
their specified interface along with the rest of the data that was stored in their itinerary. For
the register client, the database is first checked if the information sent to the database is
valid or previously taken. If it has been previously registered, then the database will ask
user to register again. However, if the email is valid then the user will be made an itinerary
and taken to the interface.

Page 56

This subsystem displays a rough picture of the path for the quiz question and poll system. In
the diagram it is known before that all data sent from instructor to student and vice versa is
first sent to the server and is programmed through sockets to deliver the data accordingly.
For instance the instructor asks a question or poll question, the server is the one that sends
the data to all students. Once the students answer the questions/polls, the feed will display
the results and send to the database. The database then send this data to be seen in the
session history.

Mapping Subsystems to Hardware:

The overall system does indeed need hardware. However, we reduced the need of heavy
hardware through web technology. For instance, we host our server through Amazon Web
Services rather than locally. So as data is constantly called/sent the cloud is constantly
running and working on handling the data. The other mandatory hardware we utilize is
smart phones. To get the most out of the app the system needs two smartphones. One actor
to be the instructor and one to be the student. Each actor will be able to set up their
classroom, communicate through sockets, and take attendance. In essence the system needs

Page 57

a minimum of three pieces of hardware to communicate, two smartphones and a server web
base in the middle.

Persistent Data Storage:

A noSQL database was used to store the data acquired. The data that is stored includes user
information. Which entails Email, encrypted password, and userType. Under the email we
store the classes one is in as well as the history of previous sessions. This data is pulled each
time a user logs in. The user history will keep updating every time a lecture session ends.
Each session information includes the attendance, questions and quizzes.

Network Protocol:

Our network protocol is pretty much standard sockets using React Native. For instance
when it comes to creating a new session, An instructor will send the request to the server.
The backend database will send this message to all the clients that are registered in the
class schema. If a student inside a session decides to ask a question in class, then the
message will be sent from the student to the server. The server will then send out the
message to all clients including the instructor.

We chose this approach because the app needs to be in constant communication
between student and instructor. Also, most of the time when one message is sent from one
client it needs to be sent to all users within that schema.
An example of how each student’s view is customized to provide their previous sessions is
this fetch call.
async getSessions(){
 const courseObj = navigation.getParam('courseObj', 'null');
 this.setState({course: courseObj})
 let response = await fetch(SERVERURL/getsessions', {
 method: 'post',
 headers: {

 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },

 body: JSON.stringify({

 classID: courseObj._id,

 })

 })

Page 58

 let data = await response.json()
 if ('status' in data) {
 console.log('No Sessions in this Class')

} else {
 this.setState({ sessions: data })
 }

}

 We customize the state and view based upon the information gathered from the
database.

Global Control Flow:

The flow control is driven through both execution and time dependency. For instance, the
events that every student has to go through include logging in, view their classes, and click
on the running session. A running session will only appear when the instructor of particular
class has created it. Once created, the server will send the session’s information to all clients
of that class. The system later becomes time dependent. The session will have a timer in
which during this time frame, students may ask question, answer quizzes, and take
attendance. Concurrent activity between student and Instructor in real time live sessions is
realized through web sockets. When the session ends all the data will be collected in
subsequent session name. Then this data will appear in the database where the users
account will pull from it. The attendance flow is reliant on location of the instructor and
student location. The location of the instructor when activated is given a range, if student is
inside range then he or she is maked present.
In reality the system does rely on certain events to occur before others. However when a
session is created the session will partly rely on time.

Hardware Requirements:

The system resources we depend on are mobile devices and the internet. The
communication network between users’ mobile device to server to mobile device is indicted
heavily on constant internet connection. The database being hosted on Amazon Web
Services creates less dependency on having the database stored on a device. However, in
order to effectively use the app, a constant internet connection is needed. WIthout a
network then not only con a user be logged on but a previously logged in user cannot view

Page 59

any previous session history or classes. The local storage on each mobile device does not
have to be large at all. All larger pieces of data accumulated will be sent and saved to the
database.

10. Algorithms and Data Structures

We use arrays to store the data sent from the backend API. React native allows us to
dynamically map the arrays to render UI elements using map() and filter() functions. We chose this
method as it is the most optimal and generally considered best practices for JavaScript. We also use
the average to calculate the session ratings displayed in the instructor view. We aggregate the
ratings given by every student for a particular session and take the average.

11. UI Design and Implementation

UI Design Implementation details

This is the landing view of the user who has
opened the application for the first time. This
login portal is where each user will be able to
login and authenticate their username with
the database. If they do not already have an
account they will be required to sign using
the sign up tab next to the “Login” title and
above the white box.

Page 60

If a student or instructor does not have a
username then they will be able to sign up
through the signup portal. ClassHub requires
a user choose their respective User Type. We
were able to make the design optimal for any
user to register their information in to the
database. In addition to that, email
formatting and password encryption have
been added to the final product.

Page 61

This is the homepage for the student once
they have successfully logged in with their
credentials. The purpose of the student’s
home page is to search for any nearby active
sessions as the main reason they should be
logged in is to participate in the lecturer's
active session. All other features are a
priority below that.

Once a lecturer has set up his/her active
session, the nearby API implementation of
ClassHub will locate the single lecturer from
the student’s view in a moderate radius
around the student’s phone and the
implementation of sockets will confirm their
connection and join them into the lecturer’s
session automatically.

Page 62

The side menu is implemented in almost the
same way for both the instructor and the
student. Both the instructor and students can
access this menu by swiping the left side of
their screen to the right or simply press the
triple bar button on the top left corner of
their screen.

For the student, the home button will lead
them to their homepage where the app will
begin “searching for sessions”.

All classes that are listed are the classes that
the student has been registered into by their
respective professor. The student can press
on any of them and will be lead to that
respective “Class Page” as will be shown
soon.

These buttons lead to different pages for the
instructor. For example the classes listed will
be the classes the instructor teaches, has
created in the app and is in charge of
managing. There is one more bonus to the
instructor that will be shown soon.

The email address directly below the
“ClassHub” logo leads to the user’s “User
Profile” since this app is not a social media
platform, the UI and functionality of the
user’s profile was kept minimal as will be
shown next.

Page 63

This is each user’s profile that they can
access by pressing their email address
located directly below the app’s logo on the
menu bar. Since the app’s purpose lies in
acting as a major tool in bridging the
communication between students and
instructor, there was no perceived need to
waste time and energy on sprucing a simple
account page.

Therefore, the functionality was kept to
signing out of the app or deleting the
account.

Page 64

This is the student’s class page. They can
access each respective class page by pressing
the class’ name in the menu bar. Each class
page acts as a record of the student’s
experience of the class’ lectures so far. The
sessions are rendered as cards with their
title, student’s attendance of that lecture, and
the student’s rating of that lecture visible. As
the class progresses through the
semester/school year, the class page will
serve as a data book of the lectures of that
class as well.

To elaborate, each session card can be
pressed to view further details about that
specific lecture of that specific date, on that
specific topic (that will usually be the title of
the session). These details include questions
asked during the lecture, the instructor’s
remarks, and quizzes taken during that
lecture. More on this later.

Page 65

Now we move onto the instructor’s
perspective.

This is the menu bar for the instructor. As
can be seen there is an addition to this bar as
opposed to the student’s bar and that is the
“Add New Class” button. The instructor can
press this button to create a new class that
they are in charge of and fill the roster for
that class in by uploading a comma separated
file (.csv) of a column of emails that they
would like to add to their class as students.

Other than that, the class buttons lead to a
different class page than the students’ as
discussed before that will be shown next.

Page 66

The class page for the instructor consists of
two main parts: the sessions and the class
statistics.

The sessions are rendered in a horizontal,
scrollable row, and similar to the student’s
view, they display the title, date, and
duration of the session and can be pressed
on to view more details about that specific
session. There are more details that the
instructor can view about the sessions than
what the student can view, as will be shown
soon.

The class statistics section is a graph that the
instructor can view to judge how the
sessions are going in the attendance and quiz
departments over the course of the
semester/school year. The x-axis are dates,
and the y axis is a percentage of how many
students attended out of the total roster, and
a percentage of the total average grade of
quizzes for the session of that day.

To elaborate, if the students collectively
scored 10 correct quizzes out of the 20
issued for that session. The class average
score for that quiz was a 50% and so the
graph would show a point on 50% on the
date of that session.

Page 67

The instructor can upload resources related
to the class such as slides, documents, images
etc. This feature is not yet complete as it is
recently conjured and the students cannot
view the uploaded resources. Given enough
time, this feature can also be given proper
life using sockets and react-native magic.

This UI component can be accessed by
pressing on the book button on the top right
corner of the class page screen as shown in
the previous image.

Page 68

Upon pressing a session card, a sub-view
below the card row will unveil itself by
sliding down. In this sub view there are three
tabs that describe the relevant details about
the session and a tab bar that controls the
navigation of this sub view. These three tabs
are: feedback, feed, and stats. The instructor
can choose to navigate using the tab bar
buttons or by swiping left and right on the
view itself.

In the feedback tab, the instructor can view
the feedback left by the students about the
session. This feedback is prompted to the
student when the instructor ends the session
(more on this later). This feedback consists
of a 5 star rating of that session along with
some brief comments. These are rendered
vertically and will expand the sub view
according to their quantity.

The sub view’s maximum height is
determined by which tab’s content covers
the most vertical distance. This is not the
most pleasing to the eyes sometimes but if
more time was available, a solution was
inevitable.

Page 69

The feed view of the sub view allows the
instructor to revisit the session’s discussions,
questions, quizzes and comments. Thes data
is taken straight from the live session’s chat
feed present in the app’s database and
formatted in a more fitting manner.

Page 70

The stats tab contains the attendance and
quiz quantities and average percentages for
the session. The data from the database is
intended to be rendered using the gauges
shown, however since this was a new feature
attempted to be implemented at the last
moment, data population issues could not be
resolved in time and are left to the next
generation of capable developers. Good Luck!

Now to move on to the actual live sessions of
the lectures. They are born when the
instructor decides to press the + button
available to them on their respective class
page. This button leads to a magical
command the instructor unleashes onto the
app, the command known as “New Session”.

Page 71

Once the instructor presses that the app will
need some information from the instructor
like “What do you wanna call this session?
How long do you want it to be? Are you really
sure about this? You can still cancel now and
we can pretend this never happened.”

But alas, if the instructor is adamant in their
decision, they can fill the title and add time
as they see fit using the buttons provided and
then launch the session.

Page 72

Pressing the launch button will launch the
session for the instructor immediately. Some
permissions will be asked for location, and
audio. The instructor can post text, quizzes
and polls as shown.

The students do not have the options to post
anything except text (in the form of
questions mostly). They do however have the
option to upvote other’s posts.

After launching the session, any students that
are in a certain range of the student will be
able to find it using their app automatically.
And will be rendered the same view
immediately.

Page 73

Upon pressing new quiz or poll, this format
will arise, asking for further information.
After filling it out and pressing launch, all
students present in the live session will be
given the quiz to select their answer. After
the instructor stops the quiz the students will
be taken back to the live session’s chat feed.

Page 74

This a brand new feature for the ClassHub
app that makes it unique for what it is.

Since this is a lecture app. The instructor can
choose to answer his students by pressing
the red circular recording button on any
posted text in the chat feed. He/She can
follow the instructions, record the answer,
play it back if needed, and then the intention
is to have it available in the live chat and chat
history for students to listen to and use to
study.

Although the recording itself is fully
functional, this idea was thought of at some
of the last moments of the course, it could
not be fully implemented as the instructor’s
recording is not fully connected to the text
they respond to and is not available for the
students to view in their history. The
creators of ClassHub leave this to the next
generation of passionate coding warriors to
come.

Within all the design implementations, “Ease-of-use” is among the biggest priority. We had

to change the gestures for many popups as well as the state because they did not provide the user
with ease of use. The menu had to be rearranged for it to open and close by sliding gesture. When
pop ups appear we initially had “x” buttons to close them when we realized it's easier for the user to
simply slide down on the popup to close. The UI has been heavily focused on for this phase of the
project. The UI has been made functional using static data, and now it will be implemented using
sockets and real-time updated data from the database.

For the various props and components we need to fetch data from the database so they
could activate. For instance, with the session cards we need to fetch from the database the data of
the session history in order for them to display and provide the statistics of the session. We also
enabled the slide gesture to scroll through them. The aim of design is for the instructor and student
to not feel like uses this app is going to be a burden or consume time. The objective of the app is

Page 75

both make the student and instructor experience ideal. This demand that the application’s UI has to
be simple and easily accessible.

Additionally, designing a modal to create new sessions that was quick and easy to use was
pretty challenging. We had to redesign and implement the modal three different times after the first
two times were considered difficult to use. In our last implementation, we brainstormed together to
have a design that will be easy to read and use for instructors to quickly launch a session for their
students.

12. Design of Tests:

Unit Testing

TC-1 Login/ Sign up functionality as well as Authentication
TC-2 Instructor/Student ability to view menu screen populated with classes
TC-3 Instructor’s ability to add a class
TC-4 Tests Instructor’s ability to launch session
TC-5 Tests Student’s ability to receive a session
TC-6 Tests Student’s ability to perform attendance
TC-7 Tests Instructor's ability to launch a quiz
TC-8 Tests Student’s ability to answer quiz
TC-9 Tests Student’s ability to ask questions within session
TC-10 Tests Students ability to comment and rate session afterwards
TC-11 Tests Instructor's ability to see session history
TC-12 Tests Instructor’s ability to launch a poll
TC-13 Tests Student’s ability to answer the poll
TC-14 Tests class ability to see poll
TC-15 Tests Student’s ability to upvote questions and comments in feed
TC-16 Tests Instructor ability to record answers for student questions
TC-17 Tests Student ability to send direct messages to class instructor
TC-18 Tests Instructor ability to upload resources for a class
TC-19 Tests Google Nearby API ability to test attendance

TC Tests Test Coverage

1 Sign up several email types
(gmail, msn, rutgers) and
lengths as both student and
instructor and login.

● If any type, length, or amount of email
produces an issue for signing up or logging
in to the database.

● If any type, length, or amount of email
produces as issue from either being
designated as a student or instructor in the

Page 76

database..

2 Use instructor accounts to
create classes and upload
rosters and logout/in to test
them being rendered on the
menu.

Use student accounts
uploaded as rosters to check
if the class is available on the
menu screen.

● If instructors are able to create classes.
● If instructors are able to upload rosters.
● If instructors are able to login/out with

classes being rendered correctly.
● If menu is rendered correctly.
● If all student emails in the roster supplied

are applied to the appropriate class.
● If students are connected to the instructor

after roster upload.
● If students can view the class they are

connected to.

3 Use instructor accounts to
enter the menu bar and use
the add class option to add
class and upload roster.

Login/out to check if classes
are rendered correctly.

● If all instructor accounts are able to create
classes.

● If all instructor accounts are able to upload
rosters.

● If classes are rendered correctly upon class
creation and roster upload.

● If classes are rendered correctly upon
login/out.

4 Use menu bar in instructor
account to access a class.
Inside the class use the action
button on the bottom right to
launch sessions of multiple
lengths. Do this for several
classes.

● If the instructor can launch a session in any
class successfully.

● If the session can be of any length.
● If the session’s launch is successful for any

class and any instructor account.

5 Login to several students in
the roster of the class for
which a session has been
launched and check if the
student can see the session as
live and can access it.

● If the session notifies all students in the
class roster that it is live without exception.

● If any student on the roster can view the
session as live.

● If any student can access the live session.

6 Use of the add quiz button in
instructor account to be able
to write questions and
answers and launch the quiz.

● If the instructor can write question and all
answers for the quiz.

● If the instructor can launch the quiz during
the active session.

● If all students in the roaster receive the
same quiz the instructor’s version.

Page 77

7 The ability of students to
answer quiz during the active
session and record the
students answers.

● If students in the roaster can view the quiz
launched by the instructor.

● If students are able to answer the quiz and
there answer get recorded in the database.

● If the quiz disappears after the time is up
and students can go back to the live
session.

8 Use the student’s session
history so students can view
their answers to quizzes and
know the correct answer.

● If students can view the quizzes asked
during the live session after session is
done.

● If students can know the correct answer for
the quiz and can view their own answers.

● If students can view all the questions
answered in the session.

9 Use of geolocation so
instructor can take
attendance.

● If instructor can set specific diameter so
student in this diameter can be marked as
attended.

● If only students in the roaster in the given
diameter can be marked as attended.

● If student who leaves the session before the
session is attended, they will be marked as
not attended.

10 Use the active session
window for student’s to ask
their questions

● If students in the roaster can access the
live session for a given class.

● If students can type their questions and
send it.

● If all students in the active session can view
the questions asked by other students.

● If the instructor can view all students
questions.

11 Use the feedback window
after the session is ended to
rate the session.

● If the feedback window appear right after
the instructor ends the session

● If the students can type their opinion about
the session in the feedback section.

● If the students can rate the session in a
scale out of five.

● If the students feedback get recorded in the
database.

Page 78

12 Use the session history for the
instructor’s side to view the
students’ feedback about the
session and statistics for
quizzes.

● If the instructor can view the session
history after the session is ended.

● If the instructor can view the students’
comments and their rating of the session.

● If the instructors can view the statistics for
the quizzes asked in the session.

13 Use the poll modal for
students to answer polls
launched by instructors in
session feed.

● If student can view poll question and
choices

● If student can answer poll and the answer
is recorded in the database

14 The ability for the entire class
(both students and
instructor) to view poll
results in session feed

● If students and instructor can see poll
statistics in session feed.

● If poll results are stored in the database

15 The ability for students to
upvote questions and
comments in session feed

● If students can upvote questions in session
feed

● If upvotes are stored in database and
rendered on the session view for both
students and instructor

16 The ability for instructors to
record audio as answers for
student questions posed in
the feed

● If instructors are able to record audio to
answer student questions

● If the database stores the audio and links it
to the particular question

● If students are able to playback the
instructor recording whether in the live
session or session history.

17 The ability for students to
send direct messages to
instructors

● If students can send message to instructor
● If instructor is able to view and respond to

message

18 The ability for instructors to
upload class resources for
students

● If instructor is able to upload resources for
class

● If resources are stored in database
● If students are able to view resources and

download them on to their device

Page 79

19 The ability for Google nearby
API works for attendance for
students

● If students within the classroom are able to
be signed in as “attended”

● If students outside of the class room are
not signed in

● If students who walk in late to the class are
signed in as “attended”

13. History of Work, Current Status, and Future
Work

History of Work

Tasks Description Start End Status

1)User
Portal

 Create a register window
using react components

2/10/19 2/18/19 Complete

 Make a login portal for users 2/10/19 2/18/19 Complete

 Backend Support (data
management)

2/10/19 2/18/19 Complete

 Login Authentication with
server

2/10/19 2/18/19 Complete

 Design initial user interface 2/10/19 2/18/19 Complete

 Forgot password module 4/10/19 Complete

2)Student
portal

 Navigation, side menu, home
page and intuitive design

2/10/19 2/16/19 Complete

Page 80

 Aggregate view to show the
user’s classes and previous
sessions

2/27/19 3/15/19 Complete

 Make session cards to
correlate to each previous
session

2/18/19 2/27/19 Complete

 Make a profile page to allow
user to log out or delete
account

2/10/19 2/16/19 Complete

 Show all classes in navigation
pane

2/10/19 2/26/19 Complete

 Allow students to access
resource files

4/10/19 4/15 Complete

3) Session
portal

 Enable socket communication
from student to server to
everyone in class

2/27/19 3/5/19 Complete

 Create message feed every
client is able to communicate
with each other

3/5/19 3/20/19 Complete

 Create question popup for
instructor to ask a question in
live session and create
multiple choice answers

3/5/19 3/18/19 Complete

 Communicate with sockets to
send quizzes to students

3/5/19 3/18/19 Complete

 Create a poll window for
instructors to ask students

4/1/19 4/18 Complete

 Communicate through sockets
to send and receive poll
questions and answers

4/1/19 4/18 COmplete

 Audio answers recorded by
professor and sent to session
history

4/5/19 4/18 Complete

Page 81

 Upvoting system for students
to be able to upvote certain
questions in session message
feed

4/5/19 4/15 Complete

 Utilize Google Nearby API to
Track attendance of nearby
devices

4/5/19 4/14/19 Complete

4. Instructor
Portal

Navigation Bar 2/10/19 3/14/19 Complete

 Session history tabs fetching
from database and displaying

2/18/19 2/27/19 Complete

 Create and Send Notifications
to all students

3/1/19 3/14/19 Complete

 Ability to add a new class via
CSV file

3/10/19 3/18/19 Complete

 Ability to add resource file for
all students in class to view

4/5/19 4/10 Complete

 Ability to view all results from
previous sessions including
quizzes, polls, and attendance.

3/1/19 3/25/19 Complete

5. Database

 Express server on Node js
hosted on AWS

2/10/19 2/12/19 Complete

 Rest API Endpoints on AWS
EC2 instance

2/3/19 3/6/19 Complete

 Database schema using
MongoDB

2/10/19 3/28/19 Complete

 Socket.IO and real-time
communication between
clients and server

2/23/19 3/25/19 Complete

 Receive all data from sessions
and store and send to session
history

2/23/19 3/15/19 Complete

Page 82

Above we have our plan of work and we accomplished a lot. However, after demo 1 we
realized that we needed to add some more functional features to improve product. We also had to
leave the geolocation idea as it did have some pitfalls. We are working diligently to add all the
features before demo 2. We have already implemented Google’s Nearby API to improve attendance
functionality.

Key Accomplishments

● Created entire app and all its features from scratch
● Created the versatile and reliable attendance taking mechanism
● Created a live virtual classroom
● Allowed for in class virtual quizzes, polls, and messages to be taken in real time

through socket communication
● Created session history to keep track of all data
● Created very pleasant UI design

Some possible directions for this project is to incorporate it with sakai like features to make
it the ultimate University resource

14. References

- [1] Software Engineering Book. Ivan Marsic.

http://eceweb1.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

- [2] React-Native Documentation. Facebook.

- https://facebook.github.io/react-native/

- [3] Git & Github Crash Course. Traversy Media, Youtube.

- https://www.youtube.com/watch?v=SWYqp7iY_Tc

- [4] Expo Mobile App quick-start Documentation. Expo.

- https://docs.expo.io/versions/latest/

- [5] Node.js Documentation. Node.js.

- https://nodejs.org/en/about/

- [6] Yarn Dependency Management Documentation. Yarn.

- https://yarnpkg.com/en/docs/getting-started

- [7] React Tutorial. The Net Ninja, Youtube.

- https://www.youtube.com/playlist?list=PL4cUxeGkcC9ij8CfkAY2RAGb-tmkNwQHG
- [8] Google nearby API

- https://developers.google.com/nearby/connections/overview.

Page 83

http://eceweb1.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
http://eceweb1.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
https://facebook.github.io/react-native/
https://www.youtube.com/watch?v=SWYqp7iY_Tc
https://docs.expo.io/versions/latest/
https://nodejs.org/en/about/
https://yarnpkg.com/en/docs/getting-started
https://www.youtube.com/playlist?list=PL4cUxeGkcC9ij8CfkAY2RAGb-tmkNwQHG
https://developers.google.com/nearby/connections/overview

