Educational Networking Tool for College Students

TiFsio T e) | Geao - veme e <\ =3 - cE.

€« CH alhost aro@O =

Newsfeed:

Report #3 - Specification & Design - Iteration 2

Software Engineering 332:452 - Group 9
https://github.com/kyleru/Creddit

Nathan Del Carmen, Ka Wai Chu, Jonathan Yang,

Elizabeth Chao, Daniel Lee, Kyle Clark, Kyujin Kim

https://github.com/kyleru/Creddit

Individual Contribution Breakdowns:

All team members contributed equally.

Report Distrubution Nathan Elizabeth Kawai Kyle Clark Kyujin Jon Yang Daniel Percentage
del Chao Chu Kim Lee
Carmen
Project Management (16 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Sec.l: Interaction Diagrams (30 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Sec.2: Class Diagram and Interface 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%
Specification (10 Points) 100%
Sec.3: System Architecture and System 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%
Design (15 Points) 100%
Sec.4: Algorithms and Data Structure (4 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%
Points) 100%
Sec.5: User Interface Design and 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%
Implemention (11 Points) 100%
Sec.6: Design of Tests (12 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Sec.7: Plan of Work (2 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Sec.8: Refrences (-5 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Total Points that could be aquired 100
Points Aquired 14.29 14.29 14.29 14.29 14.29 14.29 14.29 100.00

Responsibility Allocation

20
18
16

14 -
12 -
10 -

Nathan del Elizabeth KawaiChu Kyle Clark KyujinKim JonYang Daniel Lee
Carmen Chao

Responsibility Allocation
(Max Points Earned)

O N B O

Team Member Name

Table of Contents:

1.

N

® N

Customer Statement of Requirement............ccccueinnemnsns s s ssssssssss sssss ssssss sns seenn 0
1.1. Problem Statement..........ccoiiiiiiiis e e e e e e e 6
N 1o L 0 (o) s PO TSRS APR TR 7
1.3, SUIMIMATY c.tiiiiie it ss e s e e s s ne e e snns s e sreee e e srene e s e sneseesenne enn ean 12
Glossary of Terms... PP 1
System Requlrements R U1
3.1. Enumerated Functlonal Requlrements .. 15
3.2. Enumerated Nonfunctional Requirements............ccccconvriiiniininnn e 17
3.3. On-Screen Appearance ReqUIrements........ccccceevvereririserenesisieee e e s e s 18
3.4. User Interface DeSigN.......ccoiiiiiiiiieiree e e e rer e e e 19
3.5, Acceptance TeSt CASES.......cuuiirieiierriiiiis e s esr e s s e e s e 24
Functional Requirements Specification..........c.ccovssersmn s s s sessns s ssssss annnn 29
4.1, StaKENOIAErS...ccuoo i e e 29
4.2, Actors and GOAlS.......cueiiiiiiieiie e e e e er e e s 29
G TR € £ O 1] E PP 30
4.3.1. Casual DeSCriPUiON......ccuiiiiiiies e e e e e e e e e 30
T 0% 07/ € FSY R OF=RTI D) E=T)) o PR 30
4.3.3. Traceability MatriX.......ccoucieiiieiniis e sn e s e srnen e 31
4.3.4. Fully- Dressed DesCription.......ccouueriiiinis i s s e s s e 35
4.4, System Sequence Diagrams........cccccoiiiiiiin i s 41
4.5. Acceptance Tests fOr USe Cases.......ccoummuiiiririiiririieniee e e e seisnens 56
User Interface Specification.........cccceisinnninis snsssssns s s sns s s sns s s sssns nsns e 04
5.1. Preliminary DeSigN.......cooooiiiiiiie e e e e e e e e e 64
5.2, Effort EStiMation......ccoooiiii it et e e e s e s 65
1D 004 0T U0 0 QAN 1 B2 1 £ R — | |
6.1. DOMaIN MOAEL......ooiiiiiii et s ten e e e ene s 70
6.1.1. Concept DefiNitioNS. .o cirieiier i e e e 70
(300 NV T Yol =T (0] o B D=5 10U Lo (o) o U0 P 72
6.1.3. Attribute Definition ... e 75
6.1.4. Traceability MatliX......ccooeeririeirt e s e s e een e e e e 77
Interaction Diagrams.......mmmmmsmms s ——————————— 81
Class Diagrams and Interface Specification.........cummmmnnnsssssssss 88
S 200 I 08 =TT D = oy = o o DO 88
8.2. Data Types and Operation SiNatUres.......erernemesseseesessesssessssssessesssesssseens 88
8.3, Traceability MAtIiXcueereereesserseessessenssessssses s ssssessses s sssssessssssssssssssssssssnas 96
8.4. DesSign PatternsS.......cooi i e s 98
8.5. Object Constraint Language.........cccuruerierieereirir e ese e e e e s 99
System Architecture and System DesSign........ccummmnmnnnnnsnnssss 101
0.1. Architectural StYLES ... 101
9.2. 1dentifying SUDSYSLEMS ...ccccuiecerireeirreresriesse s 101
9.3. Mapping Subsystems to HAardwWarecooeneneneeneencenemneessesenseesessssseessssssssssssseens 102
9.4. Persistent Data StOrae.....c.coorrrerrnerirereress e ssssessesnes 102
0.5, NetWOTrK ProtoCO] ... eeess st 106

10.

11.
12.
13.

14.

9.6. GLODA]l CONLIOL FIOW vttt sessee s s sesrsssssss s s sss s sbanssssssssssssanssenssneans 106

9.7. Hardware REQUITEMENTS ... sssssssssssssssssseens 107
Algorithms and Data Structures—————————— 108
101, AlGOTIEIIMIS oo 108
10.2. Data StIUCTUTES ..o 109
User Interface Design and Implementation ... 110
DeSigN Of TESES ..o 124
Project Management ... 128
13.1. Merging the Contributions from Individual Team Members.........ccccovureereenees 128
13.2. Project Coordination and Progress REPOItS ... 128
S0 TR o =1 0 70 O 129
13.4. Breakdown of ReSponSibilities ... sssssssssesssssssesssens 130
23 () o) 4 ol T 132

Summary of Changes

e Page maker has been deleted and its functionality has incorporated into interface
page.

e Part 3 has been added

e Account types

o0 Student

m tutor
o Faculty
0 Admin

o0 Recruiter(deleted)

Itemized List of Changes

e Project Objectives
Optimize and debug the forum page
Optimize and debug the tutor page
Optimize and debug the sign-in page
Optimize and debug the sign up page
Optimize and debug the point system
Optimize and debug the comment page
o0 Implement the search page
e User Interface Diagrams
O Screenshots that represent the most updated design of the site are added
e Functional Requirements Specification
O Actors and Goals: Faculty privileges have been updated
e Interaction diagrams
O Design patterns have been updated with some of the ones from the lectures
e (lass Diagrams and Interface Specification
0 The database tables have been updated to what they actually look in MySQL
O Design patterns have been added
o0 An OCL table has been added
e Algorithms and Data Structures
o0 Updated the algorithm for the point system
O Included an algorithm for the search logic
e User Interface Diagram and Implementation
o0 Updated the images to be what the website currently looks like
e History of Work
O Has been updated to what we have completed at this point and the future

O O O O O O

1. Customer Statement of Requirements:

1.1 Problem Statement

There is a lack of intercollegiate communication currently and no clear way to
establish this communication. With technology evolving at such a rapid pace, we are able to
communicate with virtually anyone that has access to the internet. This has allowed users
to share their plethora of knowledge and resources within the web. Unfortunately, when it
comes to sharing knowledge and resources between colleges, communication is not
optimal. Also, many students excel in certain courses but have no incentive to share that
knowledge with their peers. There is no available centralized hub where insightful
interaction and discussion is possible between college students about course subjects.

Currently there are websites such as Sakai or Piazza that connect students in their
own class for discussions but these websites do not connect students and faculty across
universities, nor do they provide access to available job listings. Frequently the forums on
these websites are not even used unless required by the professor to participate, due to a
lack of an incentive. As the material of the course starts to increase in difficulty, it may be
hard for some students to learn the material independently. Of course, there are students
who have a thorough understanding of the course but there is no online platform to
communicate this knowledge outside of their respective schools. More students are
graduating every year, but there is a continual struggle for students to find a place in the
job market. It is evident that colleges are starting to find methods to improve upon this
issue. According to the Economic Policy Institute,

“Economic Policy Institute reported that roughly 8.5 percent of college
graduates between the ages of 21 and 24 were unemployed. That figure is based on a
12-month average between April 2013 and March 2014, so it’s not a perfect snapshot
of the here and now. Still, it tells us that the post-collegiate job market, just like the
rest of the labor market, certainly isn’t nearly back to normal. (For comparison, the
unemployment rate for all college grads over the age of 25 is 3.3 percent, which is also
still higher than normal.) More worrisomely, the EPI finds that a total of 16.8 percent
of new grads are “underemployed,” meaning they’re either jobless and hunting for
work; working part-time because they can't find a full-time job; or want a job, have
looked within the past year, but have now given up on searching” (How Bad Is the
Job Market for the College Class of 20147?).

Furthermore, many professors struggle when they teach a new class or are unsure of how
to structure the course material. Professors often rely solely on previous professors that
taught the same course, or other faculty members. Frequently new professors are
knowledgeable in the subject they are teaching but lack the ability to teach properly, and
whether it is pride or a lack of resources, most professors do not reach out to other
professors to acquire a better method for structuring their course. There lacks an easily

accessible archive of knowledge that professors from various universities can go to to
further their understanding of materials for teaching.

A myriad of professors are conducting research constantly and are looking for
potential student researchers in the local area. This is very limited and cumbersome due to
many variables, such as:

-Limited resources

-Very few avenues of communication

-It is often difficult to advertise research opportunities for students, thus faculty

tend to list them on their own websites, making it difficult for students to find.

1.2 Solution

Our proposed solution is to create an interface to allow intercollegiate students and
faculty to communicate accessibly with ease. Creddit’s purpose is to optimize currently
existing methods of communication and integrating these methods into one platform. Some
may argue that Facebook, Piazza, and other existing forums already serve these purposes.
However, there does not seem to be one place for students to network educationally. Our
plan is to create a website that unites students, professors, researchers, recruiters and
others professionally. To achieve this standard, users will be separated into Student,
Faculty, Guest, Recruiter, and Admin accounts to allow for an optimal experience while
browsing Creddit.

“Learning doesn't stop when we graduate from high school or college. Teachers want
and need to be lifelong learners and grow throughout their careers. And who better to
guide that growth than experienced, expert teachers?...Peer assistance and review
helps new teachers escape the "sink-or-swim" approach that too often mars entry into
our profession. It provides guidance and support from accomplished colleagues when
teachers struggle to master this highly complex endeavor” (Randi Weingarten is
President of The American Federation Of Teachers).

In order to address the problems listed above which plague currently utilized popular
websites and networks, the following features will be implemented into Creddit to
successfully carry out our proposed solutions.

1.2.1 Forum

A forum is necessary for faculty and students to communicate. They should be able
to comment and post to the forums. These forums should be categorized by subjects, and
then can be filtered even more. An alternative to using a filter can be using the search bar
which will look for keywords in the forums and display those forums.

To ensure the forum is appropriate and relevant to the subjects, the administrators
or faculty should have the power to report the post and have the post/comment removed.
Each post in the forum will also have a rating system. If the post receives too many

downvotes, it should be automatically deleted. If the post gains a surge in popularity and
gets many upvotes, other users should be able to see the post readily in the newsfeed.

The newsfeed can be on the front page and should display posts from the forums
that are trending/popular. Users can browse through the categories and indicate
preferences of what they would like to have shown based on their accounts. A subscription
feature would be useful so that students would be able to have access to these courses with
ease.

The posting on the forum should range from questions, to interesting topics, to
general discussion, to related article/site links, to trending document upload. The user
should have the option to save a draft of their post at anytime. When a user is creating a
new post, the posting page should include a listbox which should contain all previously
saved drafts saved by the user to add to their post. Comments of the post should be
automatically saved periodically into the user’s browser’s cache while the user is typing
into the comment box. This should allow the user to reload the unfinished comment if the
user exits the page or the system crashes. This feature should allow long message to be
saved by a user and accessed at anytime if they wish to reuse. a message format in a
different post or to finish a post for later.

Note that spell check should not be added as for education, some
advanced/specialized vocabulary are not covered in the default dictionary. For example,
programming lines, math equations, or uncommon class-related vocabulary in posts would
constantly trigger auto check errors. This will become a hassle for users to work with
instead of convenience.

1.2.2 Point System

Within the forum, there should be a point system that operates under a upvote and
downvote system which number is saved in each individual account. Users can upvote and
downvote comments or posts that they found useful/interesting, and there should be a
reward system based on the number of points accumulated. Once an account reaches a
certain threshold, the user would gain a title, for example: “trusted member.” Each new
threshold will present the member with a new title. Once a user has enough points, they
can apply for positions such as “tutor”, which will be discussed below. They can cash the
points in, and the funding will come from advertisements and donations. If the post is
downvoted to a certain point, then the original post should be automatically deleted to
acquire professional environment. If a comment/reply is downvoted to a certain point,
then the comment/reply will be marked as spam and will be hidden but will also have the
option to be shown if desired by the user.

Points should decay over time after a period of inactivity so those who reach a
threshold for rewards will have an incentive to keep contributing to the forum and

documents. Accounts with under a threshold negative points should not be able to
comment, but regain points over time regardless of inactivity until the account reaches
back to zero. This will dissuade spammers while allowing those who wish to contribute to
do so without being afraid of losing points.

1.2.3 Tutor

Students who reach a certain prestige in a subject should have the option to apply to
teach that subject and become a part time peer to peer tutor. This will allow students to
interact and seek help from reliable peers. To become a tutor you must reach a certain
amount of points on the point system, as mentioned in the Points Section. An incentive for
users to become tutors is that tutors will be paid hourly based on time spent tutoring in the
chat room, and for every new threshold achieved there is a raise in salary. If the user is
eligible for tutoring, and applies to become a tutor for the certain subject, he or she has to
go through an online interview to make sure they are fit for the job. The quality of
performance of each tutor should be based of the rating of the students. Tutors that get
below a certain rating must be reviewed to see if his or her tutor rights should be revoked.

1.2.4 Career Page

This feature should allow faculty to post internships, research, or job opportunities
to the job listing that is viewable by students. These opportunities should be found either
from their respective schools or other schools that are affiliated with Creddit. Students will
be able to refine their searches through the filtering system, where students can search
opportunities based on their interests or major. For company postings a Creddit admins
should confirm and check if the company is not a scam. The company must pay a monthly
fee to Creddit for advertising themselves through job postings. They will be able to post
their openings directly to the page asking for the required credentials.The opportunities
will be listed by different categories: subject, location, deadline, or pay. These categories
are set and cannot be altered unless the users require another category.

Students interested in applying to a recruiter’s posting should have to contact the
recruiter through the information posted on their page, such as private email. However,
students may submit their resume (created through the resume builder or uploaded
themselves), and write a short essay/cover page explaining why they are interested and
why they should be chosen.

This page should include a resume builder in order to help those who have never
created or seen a resume before. The resume builder will be easy to use and optimal. The
resume builder will ask the student to input details containing their work experience,
education, GPA, coursework, college, skills, awards, references, honors, etc. Then the
resume builder should then auto-fill these into a predetermined template.

1.2.5 Faculty Advice Page

This feature should be accessible to faculty as tool for inexperienced professors.
Faculty should be able to interact with other faculties nationwide to seek and share advice
on teaching styles, or search questions that other faculties may have asked, and see other
faculty’s contributions. Experienced professors should be able to offer advice to
inexperienced professors through this service. Professors should interact with each other
to exchange homework/project ideas to improve the course teachings and increase course
ratings. The idea is to allow Creddit to expand connections between faculty in order to
increase communication between different universities/schools and to help improve their
teachings of the course. It is a way to increase social-educational networks with others to
share creativity and wisdom of their own interpretation of the course.

Advice postings should be categorized by course-subject or by school/university.
Categorizing by course-subject will allow professors to easily obtain advices concentrated
on that specific course. If a professor wants to access general and specific advices from
within their own community, they should be able to find their own school/university name
and all the postings pertaining to the school displayed in the subcategory of courses and
general advices. They should be able to easily access advices in an organized manner.
Faculty members should typically expected be to appropriately categorize the material
they post, but a check must be implemented to prevent and remove accidental material
posted under incorrect course categories. A search feature should also be implemented as
an alternative to allow specific terms in material to be found within the faculty advice page.
The main purpose of this page should be to allow professors to connect with other faculty’s
to aid them in enhancing their own teaching methods for students.

1.2.6 Private Chat

This plugin feature should allow all users to privately start a chat with any other
user of all types besides guests. This should allow users to quickly interact with one
another with a chat alert pop-up when one user messages another. This allows quick
comments/questions between peers which will allow communication quicker than email,
but less formal. There should be a list displayed on the site so starting a chat will be easy to
initiate; the list should name others who the user commonly contacts frequently called
“Favorites” and extended with store recent contacts. Chats can be initiated also in other
features, for example anytime the user wishes to start a conversation with a user they
found on the forum, they can click a button to start a chat. Specific users can also be
searched up. This chat system makes it easy for users to professionally interact quickly and
efficiently without the need of adding each other to a “friends list”. This also allows
discussions where two different students learning the same material to discuss problems
outside their own network of recognized friends.

A “block select user-types” should be implemented so a faculty user can prevent
multiple students from spamming them and vice-versa. User can also allow or block

10

specific others to chat. Private chat does not only have to be one-on-one, but also allow
multiple people for a group chat with an “invite-to-chat” button. The private chats will be
stored in an “inbox” viewable only between the chat-ees, indexed chronologically, and will
not be open to public. However, the user should be able to search for specific private
messages in their private inboxes.

1.2.7 Inbox/Email

Each profile should have a inbox/email feature linked to it’s page, allowing students
and faculty to send emails to each other. Faculty should be able to email one another for
one-on-one advice while students should be able to send emails to the professors who
posted the listing. This feature should be a more formal means of contacting someone over
the chat system as chat should be mainly implemented to allow communicate with another
for only brief discussions. Email should remain integrated into the website in the case a
member does not feel comfortable giving a personal email to another member. These
emails should be private to the two correspondents and should be archived in the
correspondents’ inbox to be searched through later by using a provided search bar to pull
out key terms or senders.

1.2.8 Documents

This feature should allow students to be able to post previous years notes, lectures,
and syllabuses so that students would be able to have access and possibly help clarify
certain concepts that could not be understood on their own. Uploading a useful document
for the class should allow users another means to gain points as an incentive. This feature
should be more geared towards documents being shared within the respective school to
help students get a head start in a class or clarifications if the student ever gets stuck.
However, if the student feels like reading lecture slides from another class to gain a
different perspective on a certain topic, then he/she should be able to find documents from
another university that would be similar in terms of content which could be implemented
by using a search bar. Considering the fact that there could be handwritten notes uploaded,
the uploaders should have to fill in things such as a title and maybe even hashtags so that
these documents can be found even if they are not typed.

11

1.3 Summary

This project aims to create a website that allows university-level students and

faculty across the country to become part of an academic community dedicated to
education and learning from each other. However, there is currently a lack of
intercollegiate communication and no simple way to fortify this communication. Our
website seeks to provide a platform for college students of all majors across the nation to
find help and resources related to their coursework. This will be accomplished by creating
a website with several distinguishing features:

N =

u

~

A forum where students can post questions about their courses

A newsfeed which will highlight the trending posts on the forum

A point system where students and faculty can upvote/downvote posts based on
accuracy and appropriateness

A page for faculty to ask for advice on teaching if they do not have previous experience
A place for faculty to post their available research and internship positions for students
to view and apply

A tutoring feature for established site members to tutor other students in topics they
are familiar with

The ability for students to post resources and documents related to their courses

A private chat and e-mail for students and faculty to communicate with each other one-
on-one

12

2. Glossary of Terms:

Administrators (Admins): Employees and creators of Creddit responsible in maintaining
and managing the system in Creddit.

Advertisers: Companies who want to advertise their products/services that are relevant to
Creddit users.

Chatting Station: A live listing of which users are online using Creddit.

Creddit: A website which allows college students as well as the faculty to network and
assist one another through means of forums, chats, and document sharing.

Customers: All those who uses Creddit, which are including guests and users.

Faculty: Members of the school’s faculty (i.e. professors), who wants to assist other faculty
members and students with courses they need help on, will have access to most features of
Creddit.

Forum: A place where users can post questions/answers about a topic in a course.

Guests: All non-Creddit users, who can only view forumes.

NewsFeed: A feature that lists the most relevant/popular/recent postings from Creddit.

Point System: Allows student and faculty users to moderate the site by upvoting or
downvoting posts in the forums. There are certain thresholds for points accumulation or
reduction that may or may not benefit the users depending on the appropriate and relevant
the posts are. For more details, please refer to the Point System section (1.2.2).

Recruiters: Companies who agreed to advertise their career openings through Creddit’s
Career page to student users. They will have to pay a fee to use Creddit’s services.

Resume Builder: A feature that assist students to build a resume by using a given template
as an outline.

Students: Undergraduates, Graduates, and Postgraduates, who want to share resources and
discuss topics on course subjects with other peers, will have access to mostly all features of
Creddit.

13

Tracking Number: This is a number key for an item/request by a user (ie. log in credentials,
post, message, document) for reference in the database. For example user identification,
course identification, etc.

Tutors: Student users who have reached a certain threshold and agreed to the option of
assisting other student users in understanding the course through Creddit.

Users: All those who have access to Creddit. This includes those who have created an
account with Creddit (Students, Faculty, Recruiters, Admins) and those who do not have an
account (Guests).

User Base: All non-Creddit and Creddit users.

User Profile: An identity users use to display themselves as in Creddit. There is a page
dedicated for every Creddit user to customize their personal data with personalized
editable content (i.e. email, interests, courses, major, etc). It will also include name of
attending college.

14

3. System Requirements:

Based upon the consumer needs, a list of requirements has been provided for the

system to possess. For features that must be implemented by the system, "The system/user
shall" is stated, whereas for features that are preferred, "The system/user should" is stated.
For each requirement, there is an identifier in the form of REQ-x, as well as a priority
weight from 1 to 5. A higher priority weight indicates that the corresponding requirement
is more essential and crucial to the success of the project and the customer’s needs.

3.1 Enumerated Functional Requirements

Priority | Description
Weight

REQ- 5 The system shall award points to users based on how many

1 upvotes/downvotes the post obtained.

REQ- 5 The system shall deduct points from the user if the user has not

2 received a upvote in a predetermined set of time.

REQ- 4 The system shall allow students to apply for a tutor

3

REQ- 4 The system shall reset points back to zero after a predetermined set

4 of time.

REQ- 2 The user shall be able to private chat with another user, except for

5 recruiters and guest and can add multiple people to their chat.

REQ- 2 The system shall allow users who achieve a predetermined amount

6 of points the ability to apply to become a tutor.

REQ- 2 The system should allow faculty and students to communicate

7 through website email.

REQ- 5 The user shall be allowed to read the forums and all but recruiters

8 and guests will be allowed to post on forums.

REQ- 5 The user shall be allowed to create an account.

9

REQ- 3 The system should allow mistakes while entering the password to

10 login. However, to resist “illegal hacking,” the number of allowed
failed attempts shall be small, say five, after which the system will

15

lock the account and notify the user to reset the password to regain
access to the account.

REQ- 4 The user shall be able to upvote or downvote users, but is not
11 allowed to downvote or upvote the same user within the the time
frame of seven days if the user is a student.

REQ- 4 The user shall be allowed to post job/research/internships if the
12 user is a recruiter or faculty.

REQ- 1 The system should log the user out if he is inactive for a

13 predetermined amount of time.

REQ- 4 The system shall store data in the database.

14

REQ- 4 The system shall receive data from the database.

15

In regards with the point system, we will implement a system in which a user’s
upvote will follow the law of diminishing returns to prevent users from using their upvotes
excessively. Upvotes are converted into points, however as a user gives out his upvotes
without regard, his upvote will soon become worth very little in terms of how many points
it gives the user. If the user is toxic to his community, his points will be deducted. If the
user enters a negative point value, his privileges will be restricted, the user may not be
allowed to comment or upvote/downvote. In order to keep the community active, we have
implemented a decay system. The points will decay over a period of time if the user is
inactive. The point system is the backbone of our website and the websites successes
hinges on the how successful our implementation of the point system is. Our point system
is the key function that keeps users using our website, with its plethora of rewards for
obtaining a high point count. However in the worst case where our point system is not
implemented correct, the website will have a very hard time getting its user base. With no
user base, other companies will not want to post advertisements which leads to problem
on how to raise funds to keep Creddit operating. In the case where a user figures out a way
to abuse the point system, a swift and effective counter measure will be employed to
combat the abuse. If however we are not able to effectively resolve an exploit of the point
system, it will lead to the downfall of the Creddit. If the point system becomes irrelevant
due to the exploit, users will not have an incentive to continue using the website (REQ-1 &
REQ-2 & REQ-11).

The point system has tiers and rewards to encourage users to be proactive in the
community and help fellow peers. The amount of points needed to become a tutor needs to
be a number that is high but still obtainable. Those who qualify to become a tutor have
established themselves as a member of the community who has contributed greatly to it
and are thus rewarded for their service. It will take some time to fine tune the exact

16

amount of pointed needed to become a tutor. Factors that will contribute to the exact
amount will be the user base and how successful the point system is when it is
implemented. If the user base of Creddit is not using the upvote/downvote system much,
the amount of points needed to become a tutor will be lower than if the vote system is
highly utilized (REQ-3 & REQ-4).

The Forum is a place where all Creddit users, except for Recruiters and Guests, can
post questions and concerns about courses and topics they are unsure about. In response
to that, Creddit users (Students and Faculty) can comment on the posts to answer the
question in standing. Recruiters can only view the posts because there is no benefits or
need for them to contribute to the forums. The system must assure that only Student and
Faculty users can post and comment in the forum (REQ-8) or else the system has failed its
purpose. Users that have access to Forum will be able to view, post, and comment on all
forums in Creddit, regardless of school background and school courses. Forums are meant
to be open with no restrictions between users. It is an open discussion between students
and faculty from different schools to communicate (REQ-8).

3.2 Enumerated Nonfunctional Requirements

Non-functional requirements are a more descriptive than practical listing the
qualities of our system. These requirements are based on FURPS+, which are functionality,
usability, reliability, performance, supportability, and other various attributes. These
requirements are mainly concerned with quality attributes such as capability,
compatibility, security, responsiveness, availability, efficiency, and maintainability.

FURPS+
Priority Description
Weight
REQ- 5 The system shall have an uptime for almost 24 /7.
16
REQ- 4 Search engine shall be reliable and will return relevant and
17 accurate results.
REQ- 1 The system shall update the newsfeed based user’s search
18 preferences.
REQ- 1 The system shall implement a captcha in order to detect if the
19 user is a person.
REQ- 2 The system should be easy to navigate and utilize.
20

17

REQ- 4 The system should have a backup hard drive in case of failure of
21 primary hard drive.

REQ- 2 The system should return a search result for a search query of
22 less than 10 seconds.

REQ- 1 The system should be compatible with all browsers i.e. Chrome,
23 Mozilla Firefox, Internet Explorer, Opera.

REQ- 3 The system shall have downtime used for maintenance once a
24 fortnight.

REQ- 4 The system shall be able to handle heavy levels of traffic.

25

3.3 On-Screen Appearance Requirements

In this section, sketches of the user interface are provided for customers to fully
visually understand how the website works. Do note that the arrangement and display is
not finalized and is subjected to change. The purpose of the images are to give the user the
essential information they need to understand the necessary features the system has. Here
below are the list of requirements for the screen appearances of the system from the user’s
point of view. For visual representations, please refer to section 4.4 User Interface Design.

The standard format for the website is split into four sections: Creddit logo,
Newsfeed, Chatting Station, and Main Features. The section on the Creddit logo will appear
on the top of every webpage of Creddit along with the search bar. On the left side of the
website is where the Newsfeed will be displayed with the most recent relevant postings
from the forums. The right side of the website is where the Chatting Station is shown with
the list of currently available users on Creddit. The central area of the website will be the
Main Features of the website, such as the forums, tutors, and documents.

Priority | Description
Weight

0SA- 5 Standard Default - Creddit logo will be on display on every webpage
1 as well as the Login, Logout, and Sign Up link. The About Us and
Contact Us link will also be provided on the top of the website.
Newsfeed and Chatting Station will also be displayed on all webpages
except for Chatrooms. The general search bar will displayed under
the Creddit logo.

18

0SA- Home Page - Displays the default home page of Creddit. Newsfeed,

2 Search bar, and Forums will be accessible. The option to create an
account and/or to log in will be on screen in order to access other
features available in Creddit.

0SA- Forums Page - Displays the categories of the forums by subject and

3 topics.

0SA- Tutor Page - Displays the sessions by subject and topics.

4

0SA- Documents Page - Displays the documents by categories of subject,

5 course number, and topics.

0SA- Career Page - Displays and lists Career opportunities, which can be

6 filtered by interest of work concentration, location, pay, and
deadline.

0SA- Student Dashboard - Displays a similar Home Page view with more

7 features (Forums, Tutors, Documents, Resume Builder, Career,
Newsfeed, Chat, and Inbox). It will also have the options to customize
User Profile.

OSA- Faculty Dashboard - Displays a similar Home Page view with more

8 features (Forums, Faculty Advice, Career, Newsfeed, Chat, and
Inbox). It will also have the options to customize User Profile.

OSA- Recruiter Dashboard - Displays a similar Home Page view with more

9 features (Forums, Career, Newsfeed, Chat, and Inbox). It will also
have the options to customize User Profile.

OSA- Advertisements - Advertisements will be located at certain locations

10 of the website. They must be relevant to the users in the academic
sense.

0SA- Faculty Advice Page - Displays advices, which are organized by

11 subject.

3.4 User Interface Design

*Note: only selected Interface designs are presented below because they are the main
functions of Creddit. The features that have actually been implemented are updated with
screenshots of what the actual design of the website looks like.

19

Tl Facebook = Xotakis - The Game: x ' [16 SGTI0URNEN X | Creddit - Home Pag. x n

« cCH ocalbvost

el
8o
o]

m

Newsfeed:
poits post U TesAdded |

m— = 220 PM
U1 -
4 PR (s

Figure 3.3.1 - Creddit Homepage /Newsfeed

E3 Facebook » V] Kotaku - The Gamer_x ' [16:332:567 (9 unreac = J | Creddit - My Accour ¥ {4 Report3 - Google D ' Bl Report 3.docx - Goo, X =l < |
€« C A [localhost:37472/Account/MyAccount Q. e@O =

Account Information:
AccountID: 25

Name: Ka Wai

Email 12kawaic@gmail com

School: Rutgers University

Degree: ECE

Account Type: Student

oints: 0

©2015 - Creddit

= . 4 om o 2I5PM
Al P B (s

Figure 3.3.2 - Account Page

20

|/ K Facebook x Kotaku - The Game: = Y [2] 16:332:567 (9 unrea xJ | Creddit - TutorPage x & Report 3 - Google D x ' B Report 3.docx - Goo: x =

€« C #i [localhost37472/TutorPage?tutor_nar

© O =

< Back to Tutors

Tutor : Kyle Clark

subject: Chemistry

Rating: &
Reviews

reviews [rating;
Very helpfull4

Post a review (Limit 100 characters):

Give a rating (1to 5

Submit

Tutoring Schedule

su T We Th P Sa

100112 13 14 15 16
718 19 20 2 2 2
24 25 26 27 28 29 30

Please select one of the available times:
51512015 3:00:00 PM

If this s your desired time. click confim.

Confirm

©2015 - Creddit

& 236PM
H - [»
al P B0 o s

Figure 3.3.3 Tutor Session Sign-Up Page

Search

At G Mttt Apeing Mn i

Figure 3.3.4 Search Page

21

Wkafacbook %) Creddit- Tutor

x \ RC Rutgers Cinema x|
€ C & [localhost:374

[] |

Q o@O =
Tutor
Subjects:
= Art
& At History
Elizabeth Chao
5 English
= History
7 Math
= Science
@ Physics
& Chemistry
Kyle Clark
@ Biology

©2015 - Creddit

- 314PM
=7 R R

Figure 3.3.5 Tutor Page

» (5} = - N
« chA oe@3oOo=n
Recent:

Figure 3.3.6 Forums Page

22

gomains. FOr example 8 machine can
g SHVCeS 0N O O Mowever

Post Comment:

Figure 3.3.7 Comment Page

About us | Contact us ch
CREDDIT -

Welcome Jon Yang! (Student) (email)

Recent
Search bar: Elizabeth Chao ©
Nathan del Carmen
Documents Kawai Chu ©
Kyujin Kim
Upload Documents | - Upload document to sharel Kyle Clark
Daniel Lee
Subjects
- Math - English
- History - Chinese
- Computer Science - Philosophy
- Korean - Economics
- French - Italian .
- Spanish - Physics Favorites

- Chemistry - Biology You have not added any
favorites yet.

Figure 3.3.8 Documents Page

23

3.5 Acceptance Test Cases (ATC)

Acceptance tests are run by customers to check whether the system meets the
demands and requirements of the customers. Note that the following test cases provided
below are only coarse descriptions of how the requirements of the system will be tested.
These acceptance test cases are designed for the website to take in account for the majority
of the functions that can be carried out on the site. These test cases show the required
input, pass/fail criteria, and the various scenarios that can occur.

Acceptance Test Cases for REQ-1:

ATC1.01: Gain a threshold points with student account. (Pass: Student obtains points)
ATC1.02: Gain a threshold points with tutor account. (Pass: Tutor obtains points)
ATC1.03: System awards the student a new title. (Pass: Student is granted another title)
ATC1.04: System awards the tutor a new title. (Pass: Tutor is granted another title)

Acceptance Test Cases for REQ-2:

ATC2.01: System deducts points from a student because s/he did not receive an upvote for
a predetermined time. (Pass: Student’s points are deducted)

ATC2.02: System deducts points from a tutor because s/he did not receive an upvote for a
predetermined time. (Pass: Tutor’s points are deducted)

Acceptance Test Cases for REQ-3:

ATC3.01: Student obtains enough points to be eligible to apply for a tutor. (Pass: Student is
eligible to apply for a tutor)

ATC3.02: Student applies for a tutor. (Pass: System allowed the student to become a tutor)

Acceptance Test Cases for REQ-4:
ATC4.01: Student has had his point reset back to zero after waiting the predetermined set
of time. (Pass: The system sets the student’s points are now zero)

Acceptance Test Cases for REQ-5:

ATC5.01: Student is able to create a chat with another student. (Pass: The student is in a
chat with another student)

ATC5.02: Chat is able to allow multiple people to be in it at once. (Pass: The chat has more
than two students communicating with each other)

Acceptance Test Cases for REQ-6:

ATC6.01: Student obtains enough points to be eligible to apply for a tutor. (Pass: Student is
eligible to apply for a tutor)

ATC6.02: Student applies for a tutor. (Pass: System allowed the student to become a tutor)

24

Acceptance Test Cases for REQ-7:

ATC7.01: A student sends an email to a faculty member through the website email system.
(Pass: The email is successfully sent and received by the faculty member.)

ATC7.02: A student sends an email to a student through the website email system. (Pass:
The email is successfully sent and received by the student.)

ATC7.03: A faculty member sends an email to a faculty member through the website email
system. (Pass: The email is successfully sent and received by the faculty member.)
ATC7.04: A faculty member sends an email to a student through the website email system.
(Pass: The email is successfully sent and received by the student.)

Acceptance Test Cases for REQ-8:

ATC8.01: A student views and posts/comments on the forums. (Pass: The student can see
all content on the forum and the post/comment is posted successfully.)

AT(C8.02: A faculty member views and posts/comments on the forums. (Pass: The faculty
member can see all content on the forum and the post/comment is posted successfully.)
ATC8.03: An administrator views and posts/comments on the forums. (Pass: The
administrator can see all content on the forum and the post/comment is posted
successfully.)

ATC8.04: A recruiter views and posts/comments on the forums. (Pass: The recruiter can
see all content on the forum but is not able to post or comment.)

ATC8.05: A guest views and posts/comments on the forums. (Pass: The guest can see all
content on the forum but is not able to post or comment.)

Acceptance Test Cases for REQ-9:

ATC9.01: The user creates a student account. (Pass: The student email is verified and the
account is created.)

AT(C9.02: The user creates a faculty account. (Pass: The faculty email is verified and the
account is created.)

ATC9.03: The user creates a recruiter account. (Pass: The recruiter email is verified and the
account is created.)

Acceptance Test Cases for REQ-10:

ATC10.01: Enter correct password to successfully login upon first try. (Pass: Logged in)
ATC10.02: Enter incorrect password on first try, and correct password on second try and
successfully login. (Pass: Logged in after second try)

ATC10.03: Enter incorrect password on first and second try, and correct password on third
try and successfully login. (Pass: Logged in after third try)

ATC10.04: Enter incorrect password on first, second, and third try, and correct password
on fourth try and successfully login. (Pass: Logged in after fourth try)

ATC10.05: Enter incorrect password on first, second, third, and fourth try, and correct
password on fifth try and successfully login. (Pass: Logged in after fifth try)

ATC10.06: Enter in incorrect password five times, system will lock you out. (Pass: Notifies
that you have been logged out and sends an email to your personal email account)

25

Acceptance Test Cases for REQ-11:

ATC11.01: Upvote a user, and upvote the same user again on the same day. (Pass: System
did not allow the user to upvote again)

ATC11.02: Upvote a user, and upvote the same user again the next day. Do it every day for
the next seven days. (Pass: System did not the same user to upvote another user anytime
within the seven days)

ATC11.03: Upvote a user, and upvote the same user again after the seven days are up.
(Pass: System allowed the user to upvote the same user)

Acceptance Test Cases for REQ-12:

ATC12.01: Post job/research/internship opportunity with a faculty account. (Pass: Allowed
faculty to post)

ATC12.02: Post job/research/internship opportunity with a recruiter account. (Pass:
Allowed recruiter to post)

ATC12.03: Post job/research/internship opportunity with a student account. (Pass: Does
not allow student to post)

Acceptance Test Cases for REQ-13:

ATC13.01: System logs the faculty account out because s/he is inactive for a predetermined
period of time. (Pass: Allowed faculty account to successfully log-out)

ATC13.02: System logs the recruiter account out because s/he is inactive for a
predetermined period of time. (Pass: Allowed recruiter account to successfully log-out)
ATC13.03: System logs the student account out because s/he is inactive for a
predetermined period of time. (Pass: Allowed student account to successfully log-out)
ATC13.04: System logs the tutor account out because s/he is inactive for a predetermined
period of time. (Pass: Allowed tutor account to successfully log-out)

Acceptance Test Cases for REQ-14:

ATC14.01: Post to the chat system with a faculty account. (Pass: Allowed faculty to post and
store it to the database)

ATC14.02: Post to the chat system with a recruiter account. (Pass: Allowed recruiter to post
and store it to the database)

ATC14.03: Post to the chat system with a student account. (Pass: Allowed student to post
and store it to the database)

ATC14.04: Post to the chat system with a guest account. (Pass: Does not allow the guest to
post and is recommended to sign-up for an account)

ATC14.05: Post to the forum with a faculty account. (Pass: Allowed faculty to post and store
it to the database)

ATC14.06: Post to the forum with a recruiter account. (Pass: Does not allow the guest to
post)

ATC14.07: Post to the forum with a student account. (Pass: Allowed faculty to post and
store it to the database)

ATC14.08: Post to the forum with a guest account. (Pass: Does not allow the guest to post
and is recommended to sign-up for an account)

26

ATC14.09: Guest creates a new account. (Pass: Allows guest to create an account and store
account information into the database)

Acceptance Test Cases for REQ-15:

ATC15.01: System receives information from the database after the user completes the
login page correctly (Pass: Receives the input from the user and receives information from
the database and checks whether or not the given input matches any from the database)
ATC15.02: System receives information from the database after the guest completes the
signup page correctly (Pass: Receives the input from the guest and receives information
from the database and checks whether or not the given input already exists within the
database)

ATC15.03: System receives information from the database when a user opens up the chat
box. (Pass: receives information from the database and finds corresponding history of the
chat between users)

Acceptance Test Cases for REQ-16:

ATC16.01: Single user attempts to access the website at any time of the day. (pass: system
remains up 24/7)

ATC16.02: Multiple users attempts to access the website at any time of the day. (pass:
system remains up 24/7)

Acceptance Test Cases for REQ-17:

ATC17.01: Search by entering random sequence of keys that do not relate to any known
keywords of relevant results. (pass: no significant results should be found)

ATC17.02: Search by entering nothing. (pass: no significant results should be found)
ATC17.03: Search by entering keywords of desired result. (pass: system will return any
available relevant results)

Acceptance Test Cases for REQ-18:

ATC18.01: Open forum newsfeed without any user search preferences. (pass: system will
return only the currently popular trending posts)

ATC18.02: Open forum newsfeed with user search preferences. (pass: system will return
currently popular trending posts but with user preferred posts higher up)

Acceptance Test Cases for REQ-19:

ATC19.01: Load a captcha and verify if user input is equivalent to captcha. (Pass: captcha
verified and continue with account.)

ATC19.02: Load a captcha and user input incorrect captcha. (Fail: cannot continue to move
on and reloads the captcha.)

ATC19.03: Manually regenerate a new captcha if captcha cannot be read by user. (Pass: a
new captcha image will appear.)

27

Acceptance Test Cases for REQ-20:

ATC20.01: Click a tab to navigate through the features shown in the website. (Pass:
redirected to the correct page selected by user.)

ATC20.02: Click on the browser’s back button to go back to the previous page. (Pass:
redirected back to the page before.)

Acceptance Test Cases for REQ-21:

ATC21.01: Backup data into another hard drives. (Pass: data can be retrieved from the
extra hard drives.)

ATC21.02: Encountered an error in backing up data into hard drive or the system crashes.
(Fail: data cannot be retrieved from hard drives.)

Acceptance Test Cases for REQ-22:
ATC22.01: User searches using the search bar. (Pass: System returns the search result in
less than 10 seconds).

Acceptance Test Cases for REQ-23:

ATC23.01: The website is compatible with Chrome. (Pass: The website is accessible with all
its features on Chrome.)

ATC23.02: The website is compatible with Mozilla Firefox. (Pass: The website is accessible
with all its features on Mozilla Firefox.)

ATC23.03: The website is compatible with Internet Explorer. (Pass: The website is
accessible with all its features on Internet Explorer.)

ATC23.04: The website is compatible with Opera.(Pass: The website is accessible with all
its features on Opera.)

Acceptance Test Cases for REQ-24:

ATC24.01: A user attempts to access the website at the designated downtime (2 am EST on
Monday mornings, every other week). (Pass: The website is down and the system displays
a maintenance message.)

ATC24.02: Multiple users attempt to access the website at the designated downtime (2 am
EST on Monday mornings, every other week). (Pass: The website is down and the system
displays a maintenance message.)

Acceptance Test Cases for REQ-25:

ATC25.01: Upload large number of documents at once. (Pass: System doesn’t crash or
freeze)

ATC25.02: Several users posting on one or several forum. (Pass: System doesn’t crash or
freeze)

ATC25.03: Several users using the chat function. (Pass: System doesn’t crash or freeze)
ATC25.04: Several users on the same tutoring page. (Pass: System doesn’t crash or freeze)
ATC25.05: Several users logged onto CREDDIT at the same time. (Pass: System doesn’t
crash or freeze)

28

4. Functional Requirements Specification:

4.1 Stakeholders

Stakeholders include individuals and organizations which are interested in the
completion and use of a given product. The amount of stakeholders and different types of
stakeholders relies on the versatility and ease-of-use of the product in question. This
website has a targeted user base, and thus the number of stakeholders is small. Examples of
potential stakeholders include:

o users (interested in the list of features that the service provides)

@)

o

@)

o

students
faculty
recruiters
guests
administrators

e universities (interested in a place where students can gain knowledge)
e businesses (interested in a place to advertise job positions to students)

4.2 Actors and Goals
e User (Student)
o initiating type
o goal: To connect to other students at different universities to get help in classes they
are enrolled in. Also view available internships and research positions and apply for
them.
e User (Tutor)
o initiation type
o goal: A special type of Student, Tutors can do everything that Students can but also
have the added ability to teach Students in subjects of proven expertise.
e User (Faculty)
o initiating type
o goal: To connect to other faculty at different universities to discuss various topics of
interest, as well as advertise available research positions for students to apply for,
while helping monitor the forums to keep the material relevant and on topic.
Faculty will have a few more privileges than users such as a student or a tutor.
When the faculty upvotes/downvotes, their votes will carry more weight compared
to that of regular students or tutors since it should be assumed that they have more
knowledge in the subject. When they also post in the forum, it will be known that the
type of account will be shown as a faculty member. However, these were not yet
implemented yet in the second demo but we hope to have this in the future.
e User (Guest)
o initiating type
o goal: To view the forums and discussions posted on the website.
e User (Administrator)

29

o initiating type
o goal: To monitor forums, chats, and tutoring sessions to ensure that the material is
relevant and appropriate.
e User (Recruiter)
o initiating type
o goal: To post available internship positions for students to view and apply for.
e Database
o participating type
o goal: To store posts from the forum and chat system, as well as store user profile
information.
e Email Notification System
participating type
goal: Used for confirmation when creating a account, sends emails to help keep the
user up to date when talking using the forums, and notify the recruiters or faculty
when a student shows interest in their research/job/internship position via sending
in their resume.

4.3 Use Cases
4.3.1 Casual Description

Use | Action Description

Case

UC-1 | Posting in There will be various topics that the user will be able to view
Forum within the forum page. When the user sees a topic relevant to

what the user is looking for, the user would be able to ask a
question regarding the corresponding topic and/or post a
response to another user. Guests (users that are not logged in)
will be able to view the contents of the forum, but they will be
unable to post anything within the forum unless they are logged
in.

UC-2 | Signing up for | The student or a tutor signs up for a tutor. This means that a
Tutoring faculty, recruiter, and the administrator cannot sign up for
tutoring. However, when a tutor is eligible to teach a subject,
that tutor is only able to teach that corresponding subject. If the
same tutor desires to teach another subject, then he/she would
have to go through the sign-up process again for another
subject.

UC-3 | Sign up The system creates an account for the user. To sign up the new
user will be prompted to enter a list of information along with a
.edu email account. The user will then receive a confirmation
email that holds a confirmation code that the user will have to

30

enter to successfully confirm their email account to successfully
complete the sign-up processes.

UC-4 | Login The user signs into his/her account on Creddit by entering the
email account they used to sign up and their password.
UC-5 | Career Post The user posts Job/Internship/Research opportunities,
excluding Students and Guests.
UC-6 | Using the The user searches on Creddit. Through the search bar, it will
Search Bar make it much easier for the user to navigate through the
website. For instance, if the user would like to find a specific
forum post regarding a question that the user has, the search
would filter through all of the posts within the database and
extract the posts that are relevant to what the user searched. It
would also be able to help filter tutors that the user would want
to specifically find.
UC-7 | Creating a The user creates a chat with another user.
Chat
UC-8 | Using the The user emails another user.
Email system
UC-9 | Upvoting / The user upvotes or downvotes a post on the forums by clicking
Downvoting | the up or down arrow next to the left of the post. It is important
to note that a user will not be able to upvote/downvote the
same user within the span of seven days.
UC- | Becoming a Once a student exceeds the 500 point threshold, he/she will be
10 tutor eligible to apply to become a tutor.
UC- Point decay If the user votes too many times within a set amount of time, the
11 worth of each new vote will decay in worth on a logarithmic
scale, approaching zero.
UC- | Pointreset The user has been toxic to the community of Creddit, has gain a
12 large amount of negative point, and lost his privileges. After a
long period of time, has gained the chance to regain those lost
privileges and has his point counter reset.
UC- | View Forum | The user is accessing the forums and sees the contents of the
13 forum. Guests (users that are not logged in) will also be able to

view the contents of the forum, but they will be unable to post
within the forum.

31

UC- | Saving Draft | The user have the option to save their posting as a draft, which
14 Forum Post | will be saved in a listbox for later access.
UC- | Autosave The system will automatically save the drafts of the comments
15 Comments incase of any system downs or window exits.
UC- | Update The Tutor updates their schedule based on available times for
16 Schedule teaching.
UC- | Check The Tutor views the list of Students signed up for a specific
17 Tutoring tutoring session.

Signups

**Use cases 2,5,7, 8, 10, 14, 15, 16, and 17 will be considered for future work due to limited
amount of time**

%1 - Luc-4: Log-in

Guest":;::____ﬂ. .#?@-1: Posting in FomD} H‘ .

RN

-
"

UC-2: Signing-up fc.r)ﬂ__ -._._'__-TH"“m %
tutoring ; ; -—-‘_':'-;'_3_',;;? Database

Recruiter | i/

VI I e
W UC3:signUp DT - T Y
\ =il Ty
) - : o /
Cl._.l C-5: Career Post)™ —~--__ o : s ,‘;_i
I'. --._________-I- 5o {/—-.___hl.-_-- |
-:_.-""__- _f.'/ /'f II_."lr e TN E 'I
'@__E-ﬁ: Using the search bar T i mail
R / Motification
S System

UC-7: Creatingachat)"~

@-B: Using the e-mail syst@’f

Figure 4.3.1(a)
This figure shows the interactions between the actors and use cases 1-8.

32

@ 9: Upmhnngownvutl

Guest \,

_ /
W/ (UC-W Becoming a
V| tutor
Recruiter "I ;‘f
fll \/ Uc-11: F'crmtdecay}
Faculty /A _A_UC-12: Point reset)

<C 13: View Forum)‘

/_ UC-14: Saving Draft Foru

) UC-4: Lﬂg |n

Stuagent™ T+ D A
/ Post P
k -Jf _("l Jl."l
2 @—15; Autosave Comments)‘; P
Tutor / C UC-16: Update Schedme)’ /
%: C} 17: Check Tutoring SlgnuD
Admin

Figure 4.

3.1(b)

X

Database

Email
Motification
System

This figure shows the interactions between the actors and use cases 9-17.

Dotted line = <<include>>

Long dotted line = <<participate>>

Bolded solid arrow = <<participate + initiate>>
4.3.3 Traceability Matrix

The Traceability Matrix allows the reader to cross the functional and non-functional
requirements described earlier with the use cases. This demonstrates which use cases
fulfill each requirement, and the total priority weight of each use case will determine which
cases are the most important. If an X is present at any point in the column for a Use Case,
then the corresponding requirement’s priority weight must be added to the sum. The
remaining Xs in the column are similarly considered, and the total priority weight for the

Use Case is listed at the bottom of the column.

Priority uc- |Uc- |uc- |uc- |uc- |Uc- |uc- |uc- | uc-
Weight 1 2 3 4 5 6 7 |8 9

REQ -1 5 X

REQ -2 5

REQ -3 4 X

REQ -4 4

33

REQ -5

REQ -6

REQ -7

REQ -8

REQ -9

REQ -10

REQ-11

REQ -12

REQ -13

REQ -14

REQ -15

REQ -16

REQ -17

REQ -18

REQ -19

REQ -20

REQ -21

REQ -22

REQ -23

REQ -24

REQ -25

B lTW kRIS NIRRT WDDAW[(UT]O0T|DN (DN
<

Total
Weight

39

27

25

29

29

26

27

25

28

UC-10

UC-11 | UC-12

UC-13

UC-14

UC-15

UC-16

UC-17

REQ -1

REQ -2

REQ -3

REQ -4

REQ -5

34

REQ -6

REQ -7

REQ -8 X X

REQ -9

REQ-10

REQ-11 X

REQ -12

REQ -13

REQ -14 X X X X X X X

REQ -15 X X X X X X X X
REQ -16 X X X X X X X X
REQ -17 X

REQ -18 X

REQ-19

REQ -20 X X X X X X X X
REQ -21 X X X X X X X

REQ -22 X X
REQ -23 X X X X X X X X
REQ -24 X X X X X X X X
REQ -25 X X X X X X X X
Total Weight 31 32 31 43 32 27 27 21

4.3.4 Fully- Dressed Description

The following Use Cases below are selected to have a fully dressed description
because they are more relevant and important to the system. These are the main use cases
that are crucial to the system’s functions. We chose the following “Posting in Forum”,
“Signing up for Tutoring”, “Sign-Up”, “Log In” and “Career Post” due to those cases being
integral to this site. The core backbone of Creddit is the point system, the features that
incorporate some element of the point system are vital features that we have chosen to
focus our attention on. These features are the tutoring feature, the forums, and the career
post feature. The tutoring and forums utilizes the points system while the career post

feature helps retain a constant flow of users.

35

Another feature, “Spell Check” was initially given some thought to be implemented,

but after heavy discussion, we decided that it would be impractical to cover all the

advanced/specialized vocabulary that does not exist in the default dictionary. For example,

programming lines, math equations, organic compounds, or uncommon class-related
vocabulary in posts would constantly trigger auto check errors. This would become a
hassle for users to work with instead of convenience.

Use Case UC1: Posting in Forum

Related Requirements: REQ-8, REQ-14, REQ-15, REQ-16, REQ-17, REQ-18, REQ-20,
REQ-21, REQ-22, REQ-23, REQ-24, REQ-25

Initiating Actor: Student, Faculty, Administrator

Actor’s Goal: To submit a post/comment to the forum on a new or ongoing discussion..
Participating Actor: Database

Preconditions: The user must be a register account of Faculty, Administrator, or
Student.

Postconditions: The post has been updated into the forum database.

Main Success Scenario:

— 1. The Student/Faculty inputs and submits their post.

< 2. The System checks if all required fields have been answered.

« 3. System adds the post to the Database and displays the post in the forum page to all
Users.

Extensions (Alternate Scenarios):

1la. Student/ Faculty comments on an existing post.

— 1. The Student/Faculty inputs a comment.

« 2. The System checks if all required fields have been answered.

« 3. System adds the comment onto the post and displays the comment on the post’s
page.

2a. Student/Faculty attempts to submit an empty post.

« 1. System (a) notifies Student/Faculty with an error message that the form is
incomplete, and (b) reloads the posting form.

— 2. Student/Faculty (a) refill the posting form, and (b) submit the form.

« 3. System continues where it left off at step 2 in Main Success Scenario.

3a. System fails to archive and display the postings in the page.

« 1. System (a) notifies Student/Faculty an error message that the posting did not
successfully transfer through, and (b) reloads the posting form.

— 2. Recruiters/Faculty (a) refill the posting form, and (b) submit the form.

« 3. System continues where it left off at step 2 in Main Success Scenario.

Figure 4.3.2
Use Case diagram for posting in the forum.

36

Use Case UC2: Signing up for Tutoring

Related Requirements: REQ-3, REQ-14, REQ-15, REQ-16, REQ-20, REQ-23, REQ-24,
REQ-25

Initiating Actor: Student

Actor’s Goal: To receive an insightful tutoring session from another student.
Participating Actor: Database, Student.

Preconditions: User must be logged in as a Student or Tutor.

Postconditions: User will have signed up for a tutor.

Main Success Scenario:

— 1. The Student enters the tutoring page and applies for a tutor.

— 2. The System asks the database for list of tutors.

< 3. The Database sends the list of tutors.

< 4. The System displays the list of available tutors.

— 5. The Student selects a tutor.

— 6. The System ask the database for tutor’s reviews.

« 7. The Database sends the tutor’s reviews.

— 8. The system asks the database for list of tutor’s available time slots.

< 9. The Database sends the list of tutor’s available time slots.

— 10. The Student selects desired time slot.

— 11. The System register student for time slot into the database and checks space
availability.

< 12. The System shows the student a confirmation message stating he is registered for

the time slot.

Extensions (Alternate Scenarios):

11a. The System checks the database for space availability and it is full.
< 1. The Database sends back that the time slot is full.

« 2. The System alerts the student that the time slot is full.

< 3. The System asks the student to select another time slot.

Figure 4.3.3
Use Case diagram for signing up for a tutor.

Use Case UC3: Sign-up

Related Requirements: REQ-9, REQ-14, REQ-16, REQ-19, REQ-20, REQ-23, REQ-24,
REQ-25.

Initiating Actor: Guest.

Actor’s Goal: To create an account that has access to the website’s functionalities.
Participating Actor: Database, Email Notification System, Administrator

37

Preconditions: The user is not yet registered and has a valid college .edu email address.
For recruiters, they will provide their respective company e-mail (i.e. johndoe@yelp.com,
stevejobs@apple.com, etc.) For faculty, proof of employment in the university/ college is
required.

Postconditions: The user has an account type. If the account type was a faculty or
recruiter account, an administrator has checked their company email or proof of
employment.

Main Success Scenario:

— 1. The Guest clicks on the sign-up link.

« 2. The System displays the application page to sign-up.

— 3. The Guest selects his account type.

— 4. The Guest inputs his/her credentials, the .edu email address, and submits the
application. If the account type is faculty or recruiter, they are required to input

their proof of employment at their respective college/university or professional work
email.

« 5. The System checks the basic requirements of the password.

« 6. The System checks to make sure email address is not in the Database, adds them to
the Database.

« 7. Relocates the Guest to the page that says “Check Email and Activate Account”

— 8. The System signals the Email Notification System to send the confirmation code to
user’s email.

— 9. The Guest activates the account by entering the confirmation code in the
confirmation email.

— 10. The System activates the account by granting it access in the Database and
displays the page that says, “Registration Successful!”

Extensions (Alternate Scenarios):

3a. The Guest enters invalid password information.

« 1. System (a) notifies guest with an error message that the form is incomplete, and (b)
reloads the application page.

— 2. Guest (a) must refill the posting form, and (b) submit the form.

< 3. System continues where it left off at step 5 in Main Success Scenario.

5a. The System displays an error when email is already in Database.

« 1. System (a) notifies guest with an error message that the email is already taken.

— 2. Guest (a) must refill the posting form, and (b) submit the form.

« 3. System continues where it left off at step 6 in Main Success Scenario.

7a. The account type selected was faculty or recruiter.

« 1. If the account type is a faculty or recruiter type, the System sends the user an email
telling him that his account will become active after verification by an Administrator.

« 2. The System sends the Administrator a notification alerting him that his attention is
required to verify the proof of employment, or professional work email.

— 3. The Administrator will verify the credentials and updates the system.

< 4. The System notifies the Email Notification System

38

mailto:johndoe@yelp.com
mailto:stevejobs@apple.com

< 4. The Email Notification System sends an email to notify their user that their
account has been activated.

Note: The administrators will not sign-up through the sign-up page, but will be created
by another administrators. The first administrators are the founders of Creddit.

Figure 4.3.4
Use Case Diagram for signing up for an account on Creddit.

Use Case UC4: Log-in

Related Requirements: REQ-10, REQ-13, REQ-14, REQ-15, REQ-16, REQ-20, REQ-23,
REQ-24, REQ-25

Initiating Actor: Students, Faculty, Recruiters, Administrators.

Actor’s Goal: To log-in and access the website.

Participating Actor: Database

Preconditions: The user has an existing account.

Postconditions: The user will log-in and be granted access the website.

Main Success Scenario:

— 1. The User enters the User ID and password.

— 2. The System checks for the validity of the credentials to prevent “illegal hacking.”
« 3. The System verifies the credentials by checking the Database and grants the user
log-in privileges.

Extensions (Alternate Scenarios):

1a. The User enters an invalid User ID and password.

— 1 The System prompts an error message.

1b. The User enters the wrong credentials 3 times.

< 1. The System locks the the account and notifies the User to reset the password.

Figure 4.3.5
Use Case diagram for logging into Creddit.

Use Case UC5: Career Post (revision)

Related Requirements: REQ-12,REQ-14, REQ-15, REQ-16, REQ-20, REQ-22, REQ-23,
REQ-24, REQ-25
Initiating Actor: Recruiters, Faculty

39

Actor’s Goal: To post any career openings (jobs, research, internships) for students to
apply to.

Participating Actor: Students, Database, Email Notification System

Preconditions: User is logged in as Faculty or Recruiter

Postconditions: A new career posting is added to the system’s database

Main Success Scenario:

— 1. Recruiters/Faculty fills out the posting form.

— 2.Recruiters/Faculty submits the posting form.

« 3. System checks if all required fields have been answered.

< 4. System adds the posting to the Database and displays the posting in the Career
page to Users.

< 5. Email Notification System notifies Recruiters/Faculty when Students apply to the
posting.

Extensions (Alternate Scenarios):

2a. Recruiters/Faculty failed to answer required fields.

«< 1. System (a) notifies Recruiters/Faculty with an error message that the form is
incomplete, and (b) reloads the posting form.

— 2. Recruiters/Faculty (a) refill the posting form, and (b) submit the form.

< 3. System continues where it left off at step 3 in Main Success Scenario.

4a. System fails to archive and display the postings in the page.

« 1. System (a) notifies Recruiters/Faculty an error message that the posting did not
successfully transfer through, and (b) reloads the posting form.

— 2. Recruiters/Faculty (a) refill the posting form, and (b) submit the form.

«< 3. System continues where it left off at step 3 in Main Success Scenario.

Figure 4.3.6
Use Case diagram for posting a career/internship post.

40

4.4 System Sequence Diagrams
*Note: only selected Sequence Diagrams are presented below because they are the main
functions of Creddit.

UC1: Posting in Forum
% Main Success Scenario %
{{initiaHElEErll:turbb System {{suEpa:::ratitlj'lgsaEturbb

select function
("forums")
request categories

load categories
dizplay categories - -— == -
| | | |

select category
request posts

load posts
display posts — = == ==
| | | |

submit post

verifies post
requirements

stores post

updates and displays new post
| | | |

Figure 4.4.1 - UC1: Posting in Forum (Main Success Scenario)

Valid users will go to the Forum Page and the system will load and display the forums into
categories. Users will select a certain category of their choice, which will notify the system
to load the requested category with its corresponding posts. Users will write a post and
submit a post request. After the system verifies the posting requirements, it will store the
post into the database and displays the new post in the Forum page.

41

UC1: Posting in Forum
% Alternate Scenario %

] Database
System =<supporting actor=>

_User
=zinitiating actor=>

select function
("forums")
request categories

load categories
dizplay categories - - == -
| | | |

select category
request posts

load posts

display posts — = == ==

Loop

submit post

verifies post
requirements

notifies user of incomplete form
| | | |

stores post

updates and displays new post
| | | |

Figure 4.4.2 - UC1: Posting in Forum (Alternate Scenario 1 - incomplete form)

Valid users will go to the Forum Page and the system will load the forums into categories.
Users will select a certain category of their choice, which will notify the system to load the
corresponding posts. Users will write a post and submit a post request. If the user did not
complete the required files of the posting form, then the system will notify the user the
incomplete form. The user will then have to refill in the posting form. Once the required
fields are filled, the system will store the post into the database and displays the new post
in the Forum page.

42

UC1: Posting in Forum
% Alternate Scenario

User
<<initiating actor» System «xuppomn; lctor»

select function
("forums”)

request categories

load ca!cgonea

display categories - -

— ma— — asm—
select category

request posts

load posts

display posts Cor— \ammen ro— — —

J submit comment

verifies comment
reauirements

store comment

Figure 5.4.3 - UC1:Posting in Forum (Alternate Scenario 2 -adding comment)

Figure 4.4.3 - UC1: Posting in Forum (Alternate Scenario 2 - adding comment)

Similar to the main scenario of posting in forum as seen in Figure 4.4.1, valid users will post
a comment instead of a new forum in the Forum page. User will go to the Forum Page and
select a certain category of their choice, which will notify the system to load the
corresponding posts. Users will write a comment on an existing forum. Once the required
fields are filled, the system will store the comment into the database and displays it below
the specified forum post.

43

UC1: Posting in Forum
Alternate Scenario

User - Database
<=initiating actorx» System <<zupporting actors»

select function
("forums")
request categories

load categories

display categories - - == -

| | | |
select category
request posts

load posts
display posts - - - -
|

Loop

submit post

verifies post
requirements

attempis to store post

error: fails to store post

natifies user of error and asks
| | | |

for a resubmission
| | | |

stores post

updates and displays new post
| | | |

Figure 4.4.4 - UC1: Posting in Forum (Alternate Scenario 3 - storing failure)

Valid users will go to the Forum Page and the system will load the forums into categories.
Users will select a certain category of their choice, which will notify the system to load the
corresponding posts. Users will write a post and submit a post request. Once the required
fields are filled, the system will attempt to store the post into the database. However, in this
scenario, the system fails to store the post. An error message will display to the user and
will ask for a resubmission.

44

UC-2: Providing Tutoring

7 x

Student . System Database

«initiating actor» «supporting actor»
select function
("tutoring page")

) Inquire tutors acquire tutors

System displays send list of tutors
é available tutors 6
N S e —— .

select tutor) inquire tutor's

acquire tutor's

reviews
) reviews
. : send tutor's reviews e

(reviews

inquire tutor
available time slots

)| acquire time slots

displays available time slots

send list of (
(time slots ————— -

select desired
time slot) register Student for

el)

confirmation that
Student is
registered for the
time slot

K

Figure 4.4.5 - UC2: Providing Tutoring (Main Success Scenario)

Valid users will access the Tutor page. The system will collect the available tutors and
displays the list of tutors from the database onto the Tutor page. User will select a tutor to
display the tutor’s review once the system acquire the tutor’s review information from the
database. The system will also obtain the available time slots from the database and
displays the availability to the user. User will select the desired time slot and the system
will register the user to the tutor and update the database with the new information. A
confirmation will be send to the user when tutoring appointment is successfully saved.

45

UC-2: Providing Tutoring

Alternate Scenario

x x

Student - Syst Database
«initiating actor» ==ystem «supporting actor»
select function
("tutoring page")

) inquire tutors aquire tutors

System displays send list of tutors
é available tutors 'e _______

inquire tutor's
select tutor) reviews aquire tutor's
) reviews

. send tutor's reviews g
display tutor's ﬁ Emm . —
(reviews

inquire tutor
available time slots

aquire time slots

send list of
displays available time slots &
(time slots 6————_-_

loop I select desired

time slot

) inquire availability

checks availability

prompt student to . . H
select a different k Time slot is full

time slot

confirmation that register Student for
Student is time slot)
registered for the

time slot

k

Figure 4.4.6 - UC2: Providing Tutoring (Alternate Scenario - full time slot)

Valid users will access the Tutor page. The system will collect the available tutors and
displays the list of tutors from the database onto the Tutor page. User will select a tutor to
display the tutor’s review once the system acquire the tutor’s review information from the
database. The system will also obtain the available time slots from the database and
displays the availability to the user. If system verifies the selected time slot is full, an error
message will be prompted telling the user to select another time slot.

46

UC3 - Sign-up (student)

Main Success Scenario

- System /I \ ’ \

User Database Email Notification System
«initiating actor» «supporting actor» «supporting actor»
select function ("sign-up”)

prompts user for credentials

verifypassword
requirements

enter credentials

H

check Email

cSescsssasess }
(verify Email

send confirmation code
email to user

prompts user to check email

enter confirmation code

activate user account

display registration success

- -

Figure 4.4.7 - UC3: Sign Up (Main Success Scenario)

User will click on the sign-up link and the system will redirect them to a form. User will
enter the required credentials and submit the form. System will verify the information and
check with the database to avoid duplicate accounts. Once verified by the database, the
system will send a confirmation code email to the user through the Email Notification
System. User will have to confirm the email using the confirmation code so system can
activate the account.

47

UC3 - Sign-up

Alternate Scenario

0z

- System
User —=ystem Database Email Notification System
ainitiating actors asupporting actors wsupporting actors
select function I"si;n—up"]

prompts user for credentials

loop)
enter credentials > verify password

reguirements

prompts user for different —

password credentials

verify Email

send confirmation code
email to user

messssssssssalscsscssssass=

prompts user to check email

enter confirmation code

activate user account

display registration success

Figure 4.4.8 - UC3: Sign Up (Alternate Scenario 1 - Failed Password Requirement)

Similar to the main scenario of Sign Up as seen in Figure 4.4.7, the system will redirect User
to a form. User will enter the required credentials and submit the form. System will verify
the information and check with the database to avoid duplicate accounts. In this case, the
password did not fulfill the security requirements, so the system will request user to create
a different password. Once the requirement is fulfilled, the system will continue to check
and verify the credentials with the database and send a confirmation code to activate the

account.

48

UC3 - Sign-up

Alternate Scenario

. System ,- \ / \

User Database Email Notification System
winitiating actors wsupporting actors asupporting actors
select function ("sign-up”)
- >
prompts user for credentials
loop J
enter credentials verify password
requirements
—
check Email
oy ey R >
P verify Email ,
)
prompts user for different email
N ———
send confirmation code
email to user
............ R L LT Ty

enter confirmation code

activate user account

display registration success

Figure 4.4.9 - UC3: Sign Up (Alternate Scenario 2 - invalid email)

Similar to the alternate scenario of Sign Up as seen in Figure 4.4.8, the system will redirect
User to a form, and User will submit the completed form. System will verify the information
and check with the database to avoid duplicate accounts. In this case, the email is invalid
(account was previously created or is not .edu account). System will request user to use a
different email. Once the email is valid, the system will continue to check and verify the
credentials with the database and send a confirmation code to activate the account.

49

UC3 - Sign-up (Faculty/Recruiter)

Alternate Scenario

S S Y

User Database Email Notification System Administrator
«initiating actor» «supporting actor» asupporting actor» «supporting actor»
select function ("sign-up”)
>
prompts user for credentials
enter credentials verify password
> | requirements
e -
1
1
6 -
check Email
............ >
verify Email

sends notification
request

notify the user that his
account is under review

send alert to
administrator

verify the

'é credentials

sends noification

notify the user that his I Fﬂles_l —
account have been
approved and activated

Figure 4.4.10 - UC3: Sign Up (Alternate Scenario 3 - Faculty/Recruiter Signup)
*Note: For faculty/recruiter to sign up in Creddit, it will take 2-3days to review and verify.

Similar to the main success scenario of Sign Up as seen in Figure 4.4.7, System will redirect
User to a form. If signing up for Faculty account, user must supply proof of employment. If
signing up for Recruiter account, company email is required. User will submit the
completed form. System will verify the information and check with the database to avoid
duplicate accounts. Once verified by the database, the system will notify the User that the
account is under review and alert the administrator to confirm the account. Once the
administrator verifies the credentials, they will send a notification to the system to activate
the account and notify the user.

50

UC4 - Log-in

Main Success Scenario

: Svystem

Lser Database

=<jnitiating actor== ==supporting actor=>

User clicks login 1-:

Svstem asks user for credentials |

.{----------------.

User inputs credentials '-:

| Check User credentials

e

Verify the credentials

[€nmmmmmanaas

Grants user access

.{----------------.

-r

Figure 4.4.11 - UC4: Login (Main Success Scenario)

User will click on the login link and the system will redirect them to a login form. User will
enter the required credentials and submit the form. System will verify the information and
check with the database to confirm user information. Once verified by the database, user is
granted access to account and Creddit.

51

UC4 - Log-in

Alternate Scenario

: Svystem
User Database

=<initiating actor== <=supporting actor=>

User clicks login 1-:

loop || System asks user for credentials |

.{----------------.

User inputs credentials '-:

| Check User credentials |

------------}i

Verify the credentials

rants user access

.{----------------.

-r

Figure 4.4.12 - UC4: Login (Alternate Scenario 1 - incorrect credential)

Similar to the Main Success Scenario in Figure 4.4.11, System will redirect user to a login
form. User will enter the required credentials and submit the form. System will verify the
information and check with the database to confirm user information. If the information is
not valid, access will be denied and will as user to re-enter login information. Once verified
by the database, user is granted access to Creddit account.

52

UC4 - Log-in

Alternate Scenario

: System) ; _
User Database Email Notification
==sUpporting actor== ==sUpporting actor==

<<jnitiating actor==

User clicks login)

loop xj| System asks user for credentials

User inputs credentials)

Check User credentials

Verify the credentials

: Lock the user|

_ [
{. -
Sends notification request

A
_ Email the user that the account has been locked due to foo many failed attempts

.:------------.--... | 8

Figure 4.4.13 - UC4: Login (Alternate Scenario 2 - account lock)

Similar to the Alternate Scenario in Figure 4.4.12, System will redirect user to a login form.
User will enter the required credentials and submit the form. System will verify the
information and check with the database to confirm user information. If the information is
not valid for more than 5 times, access will be denied and the account will be locked.
System will request the Email Notification to send an email informing the owner of the
UserID/email that the account is locked due to multiple failed attempts.

53

UC5 - Career Post

Main Success Scenario % %

- System
User —=/Sem Database Email Notification

«initiating actor» asupporting actor» «supporting actors

Request to post career opening

Prompt Posting Application

Fill and submit posting form

Verify form

H

Dizplay Posting in Career Page

Send notification request

--—-.—-----—-.—-[----------- =

Figure 4.4.14 - UC5: Career Post (Main Success Scenario)

Valid users will go to the Career Page and the system will load and display the career
postings. Users request to create a new career opening. System will prompt a posting form,
and Users will fill and submit the form. System will verify the form and will store the post
into the database. System will also display the new post in the Career page. If Student User
applies to the post, the system will request the Email Notification to notify the owner of the
post.

54

UCS5 - Career Post

Alternate Scenario % %

User . System Database Email Notification
«initiating actor» gsupporting actors «supporting actors
Regquest to post career opening }
IOQPJ Prompt Posting Application
.G___'___'_______;___
Fill and submit pusti:}g form
> Verify form

Signal: incomplete form H

prompt to try again

Display Posting in Career Page

Figure 4.4.15 - UC5: Career Post (Alternate Scenario 1 - incomplete form)

Similar to the Main Success Scenario in Figure 4.4.14, Valid Users request to create a new
career opening. System will prompt a posting form, and Users will fill and submit the form.
System will verify the form and if the form is incomplete, the system will notify the user to
complete the required credentials. Once completed, the system will store the post into the
database and display the new post in the Career page. If Student User applies to the post,
the Email Notification will notify the owner of the post.

55

UCS5 - Career Post

Alternate Scenario % %

User : System Database Email Notification

«supporting actor» «supporting actor»

«initiating actors

Regquest to post career opening
Ioop J < Prompt Posting Application

Fill and submit posting form

Verify form

H

Notify User for resubmission prompt to try again

Send notification request

----.--------.--[----------- =

Figure 4.4.16 - UC5: Career Post (Alternate Scenario - saving failure)

Similar to the Alternate Scenario in Figure 4.4.15, Valid Users request to create a new
career opening. System will prompt a posting form, and Users will fill and submit the form.
System will verify the form and if the form is incomplete, the system will notify the user to
complete the required credentials. Once the required fields are filled, the system will
attempt to store the information into database. However, in this scenario, the system fails
to store, and an error message will display and will ask for a resubmission.

4.5 Acceptance Tests for Use Cases

Acceptance Tests for Use Cases are similar to Acceptance Test Cases in Chapter 4.5.
These tests are employed so the users can decide whether to accept the system or return it
for further development. It specifies the step-by-step of how the user interacts with the
system and what is the system expected to do. The following test cases below are selected

56

from the use cases described above in Chapter 5.3.1. These test cases are selected with
reasons as stated from above in Chapter 5.3.4. Acceptance tests are not limited to the ones
described below.

Test-Case Identifier: TC-1.01

Use Case Tested: UC-1: Posting in Forums - main success scenario

Pass/Fail Criteria: The test passes if system saves user post on to forum and that post
can be accessed/viewed/replied by other student and faculty users.

Input Data: Post

Test Procedure: Expected Results:

Setup: User must be Student,
Faculty, or Admin

Website displays “Please fill out the post field.” and

Step 2. Submit blank post to post doesn’t not process the request.

field.

Website displays “Please complete all fields.” and
doesn’t not process the request.
Step 3. Submit incomplete post, not

all fields are filled. Website redirects user to the site with contained
post.

Step 4. Submit a valid post.
Figure 4.5.1

Test Case diagram for the main success scenario of posting in the forums.

Test-Case Identifier: TC-1.02

Use Case Tested: UC-1: Posting in Forums - alternate scenario

Pass/Fail Criteria: The test passes if system saves user comment on to forum and that
comment can be accessed/viewed/replied by other student and faculty users.

Input Data: Post

Test Procedure: Expected Results:

Setup: User must be Student,
Faculty, or Admin

Website displays “Please fill out the comment field.”

Step 1. Submit blank comment to | 44 doesn’t not process the request.

comment field.

57

Website redirects user to the site with contained
post.

Step 2. Submit a valid post.

Figure 4.5.2
Test Case diagram for the alternate scenario of commenting in the forum.

Test-Case Identifier: TC-2.01

Use Case Tested: UC-2: Signing up for Tutoring - main success scenario

Pass/Fail Criteria: The test passes if the user selects an available time and date from a
chosen tutor.

Input Data: None

Test Procedure: Expected Results:

Setup: User must be a Student.

Website displays subcategories within that subject.
Step 1: User selects subject that

they want tutoring in.
Website displays available tutors for that

subcategory.
Step 2: User selects subcategory

that they require help in.
Website displays the page of the selected tutor,

including subject, rating, reviews, and schedule.
Step 3: User selects available

tutor.
Website displays available times for that date.

Website signs student up for that time and displays a

Step 4: User selects available date))
confirmation message.

from schedule listed.

Step 5: User selects available time
from the times listed.

Figure 4.5.3
Test Case diagram for the main success scenario of signing up for a tutor.

Test-Case Identifier: TC-2.02

Use Case Tested: UC-2: Signing up for Tutoring - alternate scenario

Pass/Fail Criteria: The test fails if the user attempts to select an unavailable date or
time.

Input Data: Email address, Password

Test Procedure: Expected Results:

58

Setup: User must be a Student.

Step 1: User selects subject that
they want tutoring in.

Step 2: User selects subcategory
that they require help in.

Step 3: User selects available
tutor.

Step 4: User selects a date that is
booked.

Step 5: User selects available date
from schedule listed.

Step 6: User selects a time that is
booked.

Step 5: User selects available time
from the times listed.

Website displays subcategories within that subject.

Website displays available tutors for that
subcategory.

Website displays the page of the selected tutor,
including subject, rating, reviews, and schedule.

Website displays an error message, asking for the
user to select an available date.

Website displays available times for that date.

Website displays an error message, asking the user
to selectan a

Website signs student up for that time and displays a

confirmation message.

Figure 4.5.4

Test Case diagram for the alternate scenario of signing up for a tutor.

Test-Case Identifier: TC-3.01

Use Case Tested: UC-3: Sign Up - main success scenario
Pass/Fail Criteria: The test passes if the email address is not previously taken and the

password meets the criteria.

Input Data: name, college/university, email address, date of graduation, major, classes
currently taking, resume, and password.

Test Procedure: Expected Results:

Step 1: User clicks on join Website redirects the user to the signup form.

Step 2: User submits the
blank fields of the signup

Website redirects the user to a confirmation page that
says that a confirmation email has been sent to the

form respective email address.

59

Figure 4.5.5

Test Case diagram for the main success scenario for signing up for an account on Creddit.

Test-Case Identifier: TC-3.02

Use Case Tested: UC-3: Sign Up - alternate scenario

Pass/Fail Criteria: The test fails if the password does not meet the criteria.

Input Data: name, college/university, email address, date of graduation, major, classes
currently taking, resume, and password.

Test Procedure: Expected Results:

Step 1: User clicks on join Website redirects the user to the signup form.

Step 2: User submits the signup form Website displays “Incorrect password
with mismatching password or provided”.
password that does not meet the

criteria. Website displays “Missing [corresponding]

field.”
Step 3: System leaves the password

field blank.)) . .
Website redirects the user to a confirmation

page that says that a confirmation email has
Step 2: User re-submits the blank fields | been sent to the respective email address.
of the signup form, correctly.

Figure 4.5.6
Test Case diagram for an alternate scenario for signing up for an account on Creddit.

Test-Case Identifier: TC-3.03

Use Case Tested: UC-3: Sign Up - alternate scenario

Pass/Fail Criteria: The test fails if the email address is previously taken or is not .edu.
Input Data: name, college/university, email address, date of graduation, major, classes
currently taking, resume, and password.

Test Procedure: Expected Results:

Step 1: User clicks on join Website redirects the user to the signup form.

Website displays “This email is already taken or

Step 2: User submits the signup form | _ _
is not an educational email”.

with an email address that has
previously been taken or is not .edu.

Website displays “Missing [corresponding]
Step 3: System leaves the email field field.”
blank.

60

Website redirects the user to a confirmation
page that says that a confirmation email has
been sent to the respective email address.

Step 2: User re-submits the blank
fields of the signup form, correctly.

Figure 4.5.7
Test Case diagram for an alternate scenario for signing up for an account on Creddit.

Test-Case Identifier: TC-4.01

Use Case Tested: UC-4: Login - main success scenario
Pass/Fail Criteria: The test passes if the user inputs an email address and password

that exists in the database.
Input Data: Email address, password

Test Procedure:

Expected Results:

Step 1: User clicks on login.

Step 2: User submits the login form with

his/her email address and password.

Website redirects the user to the login page.

Website redirects the user to the main page
with their corresponding permission.

Figure 4.5.8
Test Case diagram the main success scenario for logging into Creddit.

Test-Case Identifier: TC-4.02

Use Case Tested: UC-4: Login - alternate scenario
Pass/Fail Criteria: The test fails if the email and password do not match.

Input Data: Email address, password

Test Procedure:

Expected Results:

Step 1: User clicks on login.

Step 2: User fills out the login form with a
mismatching email and password.

Step 3: System leaves the email and
password fields blank.

Step 4: User re-submits the login form with
his/her email address and password
correctly.

Website redirects the user to the login
page.

Website displays “Your email and
password do not match!”

Website displays “Incorrect user
credentials”.

Website redirects the user to the main
page with their corresponding
permission.

61

Figure 4.5.9

Test Case diagram for an alternate scenario for logging into Creddit.

Test-Case Identifier: TC-4.03

Use Case Tested: UC-4: Login - alternate scenario

Pass/Fail Criteria: The test fails if the email and password do not match 5 times.
Input Data: Email address, password

Test Procedure:

Expected Results:

Step 1: User clicks on
login.

Step 2: User fills out the
login form with a
mismatching email and
password.

Step 3: System leaves the
email and password fields
blank.

Step 4: Step 2 and Step 3
happen 5 times.

Website redirects the user to the login page.

Website displays “Your email and password do not match!”

Website displays “Incorrect user credentials”.

Website redirects the user to a page saying “You have
incorrect credentials 5 times. Your account will be locked
until you confirm your email” and locks the user account.
The system will send an email to the corresponding email
address.

Test Case diagram for an alternate scenario for logging into Creddit.

Figure 4.5.10

Test-Case Identifier: TC-5.01

Use Case Tested: UC-5: Career Post - main success scenario

Pass/Fail Criteria: The test passes if the post is uploaded successfully in the Career Page
after filling out all the requirements in the posting form.

Input Data: Career descriptions

Test Procedure:

Expected Results:

Setup: The user must be a Recruiter or

Faculty.

Step 1. Click on link to Career Page from | fia]ds.

User Dashboard.

Redirects user to a posting form with blank

Redirects user to Career Page and displays
the new post in the list.

62

Step 2. Fill in the required blank fields
and submit the form.

Figure 4.5.11
Test Case diagram for the main success scenario for posting a career post.

Test-Case Identifier: TC-5.02

Use Case Tested: UC-5: Career Post - alternate scenario (2a)
Pass/Fail Criteria: The test fails if the posting form does not reload and if the post is not

uploaded in the Career Page.
Input Data: Career descriptions

Test Procedure:

Expected Results:

Setup: The user must be a Recruiter or
Faculty.

Step 1. Click on link to Career Page from
User Dashboard.

Step 2. Submit a blank form or unfinished
blank fields.

Step 3. Fill in the required blank fields
and submit the form.

Redirects user to a posting form with blank
fields.

Prompt user to fill in the form and refresh
the posting form.

Redirects user to Career Page and displays
the new post in the list.

Figure 4.5.12
Test Case diagram for the alternate scenario for posting a career post.

63

5. Effort Estimation

5.1 User Effort Estimation

Use Action Description Total
Case Clicks/Keystrokes
UC-1 | Postingin Click on forums + click on topic/subject + 5
Forum click on the specific forum + click on
comment box + click submit
UC-2 | Signing up for | Click on tutors + click on subject + click 6
Tutoring on topic + click on tutor + click on
tutoring date + click join
UC-3 | Signup Click sign up + click password + click 8
name + click school + click school email +
click password + click gender + click
submit
UC-4 | Login Click login + click enter school email + 4
click enter password + click login
UC-5 | Career Post Click post jobs + click enter information + 4
click what types of majors sought after +
click submit
UC-6 | Using the Click on search bar + click search 2
Search Bar
UC-7 | Creating a Chat | Click chat + click search person + enter to 5
find person + click on correct person
UC-8 | Using the Click on email + click on compose + click 6
Email system on receivers + click on topic + click on
dialog box + click send
UC-9 | Upvoting / Click upvote or downvote 2
Downvoting
UC- Becoming a Click sign in to be a tutor 1
10 tutor
UC- Point decay None 0
11

64

UC- Point reset None 0
12
UC- View Forum Click on forums 1
13
UC- Saving Draft Click save 1
14 Forum Post
UC- Autosave None 0
15 Comments
UC- Update Click update schedule + click date + click 5
16 Schedule start time + click end time + click confirm

change
UC- Check Tutoring | Click check who signed up + click section 2
17 Signups

5.2 Developer Effort Estimation
User Case Points method provides the ability to estimate the person-hours a software
project requires based on its use cases. (UCP) = UUCP x TCF x ECF

UUCP:

Unadjusted Use Case Points (UUCP) measures the complexity of the functional
requirements.

UAW

The Unadjusted Actor Weight (UAW), based on the combined complexity of all the actors in
all the use cases.

Actor Description of relevant characteristics Complexity | Weight
Name
Guest Guest interacts with our system via a graphical user | Complex 3
interface.
Recruiter | Recruiter interacts with our system via a graphical | Complex 3
user interface.
Faculty Faculty interacts with our system via a graphical Complex 3
user interface.
Student Student interacts with our system via a graphical Complex 3
user interface.

65

network communication protocol.

Admin Admin interacts with our system via a graphical Complex 3
user interface.
Database | Database interacts with our system through a Average 2

UAW = (5 x complex) + (1 x average) = 5(3) + 1(2) =17

Uucw

The Unadjusted Use Case Weight (UUCW), based on the total number of activities (or steps)
contained in all the use case scenarios.

Use Action Description Category | Weight

Case

UC-1 | Postingin Simple user interface. Average | 10
Forum

UC-2 | Signing up for | Complex user interface. Average | 10
Tutoring

UC-3 | Sign up Simple user interface. Complex | 15

UC-4 | Login Simple user interface. Average | 10

UC-5 | Career Post Simple user interface. Average |10

UC-6 | Using the Complex user interface. Simple 5
Search Bar

UC-7 | Creating a Chat | Simple user interface. Average | 10

UC-8 | Using the Email | Simple user interface. Average | 10
system

UC-9 | Upvoting / Simple user interface. Simple 5
Downvoting

UC-10 | Becoming a Average user interface. Simple 5
tutor

UC-11 | Point decay Simple user interface. N/A 0

UC-12 | Point reset Simple user interface N/A 0

66

UC-13 | View Forum The user accesses the forums Simple 5
UC-14 | Saving Draft The user have the option to save their Simple 5
Forum Post posting as a draft, which will be saved in
a listbox for later access.
UC-15 | Autosave The system will automatically save the N/A 0
Comments drafts of the comments incase of any
system downs or window exits.
UC-16 | Update The Tutor updates their schedule based | Average | 10
Schedule on available times for teaching.
UC-17 | Check Tutoring | The Tutor views the list of Students Simple 5
Signups signed up for a specific tutoring session.

UUCW = (1 x complex) + (7 x average) + (6 x simple) = (1 x15) + (7 x 10) + (6 x5) = 115
UUCP = UAW + UUCW =17 + 115 =132

TCF:

Technical Complexity Factor (TCF)—Nonfunctional Requirements

Technical | Description Weight | Perceived Calculated Factor
Factor Complexity (WeightxPerceived
Complexity)
T1 Distributed web-based 2 3 2x3=6
system
T2 User should expect good | 1 3 1x3=3
performance but nothing
exceptional
T3 End-user should expect |1 3 1x3=3
efficiency but nothing
exceptional
T4 Internal processing is 1 1 1x1=1
relatively simple
T5 No requirement for 1 0 1x0=0
reusability
T6 No need to install 0.5 0 0.5x0=0

67

T7 Should be easy to use 0.5 5 0.5x5=25

T8 No portability concerns | 2 0 2x0=0

T9 Easy to change is 1 1 1x1=1
minimally required

T10 Concurrent use is 1 4 1x4=4
required

T11 User security is 1 5 1x5=5
important

T12 No direct access for third | 1 0 1x0=0
parties

T13 No user training 1 0 1x0=0
required

Total 25.5

Constant-1=0.6
Constant-2 =0.01
TCF = Constant-1 + Constant-2 x Technical Factor Total = 0.6 + (0.01 x 25.5) = 0.855

ECF:

Environmental complexity factors (ECF) measure the experience level of the people on the
project and the stability of the project.

Environmental | Description Weight | Perceived | Calculated Factor
Factor Impact (WeightxPerceived
Complexity)
E1l Beginner familiarity 1.5 1 1.5x1=15
with UML-based
development
E2 Beginner familiarity 0.5 1 0.5x1=0.5
with application
problem
E3 Some knowledge of 1 2 1x2=2
object-oriented
approach

68

E4 Beginner lead analyst | 0.5 0.5x1=0.5

E5 Highly motivated, but |1 1x4=4
some team members
occasionally slack

E6 Stable requirements 2 2x5=10
expected

E7 No part-time staff will | -1 -1x0=0
be involved

E8 Programming -1 -1x3=-3
language of average
difficulty will be used

Total 15.5

Constant-1=1.4
Constant-2 = 0.03

ECF = Constant-1 + Constant-2 x Environmental Factor Total = 1.4 + (0.03 x 15.5) =

1.865

UCP = UUCP x TCF x ECF =132 x 0.855x 1.865 = 210.4839

If we assume we have a productivity factor (PF) of 30:

Effort estimation (units are person-hours)= 210.4839 x 30 = 6314.517 person-hours

69

6. Domain Analysis

Domain Model

6.1 Concept Definitions

Concept Name Type | Concept Definition
D Prepare a database query that retrieves the user’s requests and
best matches the user’s search criteria and retrieve the records
from the database.

Email Notifier D Notifies the user when another user responds to the post via
email, and when user is promoted to be a Tutor. Also, sends a
confirmation email to a new user so he may start his adventure
on Creddit

Private Chat D Notifies the user when he/she receives a private chat via

Notifier Creddit.

Forum Notifier D Notifies the user when another user responds to the post via
Creddit.

Login Information | K Container for user’s authentication data, such as password and
username.

Login Checker D Verifies whether or not Logln data entered by the user is valid.

Interface Page D Creates/ displays a page that shows the user the current
context, what actions can be done, and outcomes of the
previous actions.

Postprocessor D Filter the retrieved records to match the actor’s search criteria.

Archiver D Assigns a request (i.e., log in credentials, posts, messages,
documents) a tracking number and sends it to the database.

Investigation K List of “interesting” records for further investigation, complaint

Request description, and the tracking number.

Sign Up Checker D Verifies the user’s ID and the email has not been used.

Advance Search K Form specifying the search parameters for database log
retrieval

Vote Maintainer D Increases or decreases the student’s or tutor’s points in the
database.

Promoter D Promotes a student to tutor if the student passes the interview

70

Login Locker D Locks the user account after 5 failed attempts of login.

Account type D The account type notifier notifies an administrator to verify the

Notifier student/faculty/recruiter account

Point Collector K Container for all the points in the database

Tutor Calendar D Verifies if the tutor has a spot for students available for a given

Availability time slot on a given day

Investigator

Post Deleter D Deletes a post if the user decides to delete his own post

Report Collector K Container for all the reports.

Password Resetter | D Resets the password when the user clicks “Forgot Password”

Tutor Time D Register a student for a tutor’s time slot if it is available

Register

Post Creator D Creates a new page with a post if the user decides to create a
post.

Post View Counter | K Container that has the number of points the post has received.

Signout D Logs the user out of his account

Tutor Arrival D Verifies that the tutor shows up to tutor at his designated
times.

Post Comment K Container of the number of comments a post has received

Counter

Student Arrival D Verifies that the student has showed up to the tutoring session

Student Remover D Remove student from the remaining tutoring session if the
student fails to show up to the tutoring session three times.

Tutor Remover D Remove tutor status from student user If tutor fails to show up
to two tutoring sessions without a valid reason

Tutor Schedule D Allows the tutor to cancel / change the time of certain tutor

Editor sessions to allow for flexibility in the event that an unforeseen
circumstance should arise

Student Schedule D Allows the student to notify the tutor that he will not be able to

Conflict Notifier attend a session.

Tutor Rating D Allows students to rate a tutor that he has been taught by.

System

71

Page Deleter D

Deletes a page

Comment Deleter D

Allows the User to delete his own comments

Types “D” and “K” denote doing vs. knowing responsibilities, respectively.

6.2 Association Definitions

Concept Pair

Association Description

Association
Name

Interface Page «—
Database Connection

Database Connection passes the retrieved data
to Interface Page to render data for user
display.

provide data

Archiver «—
Investigation Request

Archiver creates/generates Investigation
Request

generates

Archiver «—- Database
Connection

Archiver requests Database Connection to
store investigation requests into the database

requests save

Database Connection «—

Login Checker

Log in checker requests Database Connection
to verify the user credentials.

requests log in

Archiver «—-
Email Notifier

Archiver requests Email Notifier to send an
email to user about confirmations, requests,
and replies.

requests notify

Archiver «—
Private Chat Notifier

Archiver requests Private Chat Notifier to
notify user a private chat message.

requests notify

Archiver «<— Forum Archiver requests Forum Notifier to notify request notify
Notifier user of an update in their forum post.
Advance Search «— Advance search requests for records from the | searches

Database Connection

database.

Login Information<—
Login Checker

Login searcher validates user input and sends
it to login Checker for validation.

requests login

Sign Up «— Database
Connection

Sign up verifies user information and sends it
to database to process/add user.

requests sign
up

Post Comment Counter
«— Archiver

Records the comment counters of posts to the
archiver to database.

stores
comment
counter

Post View Counter «—
Database Connection

Records the view counters of posts to the
archiver to database.

stores view
counter

72

Tutor Rating System «—
Database Connection

Tutor Rating system request Database
Connection to store new tutor ratings in the
database

requests save

Post Creator «— Archiver

Notifies the Archiver of a new post to be
assigned a tracking number.

requests notify

Student Arrival
«-Student Remover

Student arrival sends a notification to the
remover to validate that the student should be
removed from the tutoring session

requests notify

Tutor Arrival «— Tutor
Remover

Tutor checking sends a notification to the
Tutor Remover to validate that the tutor
should have his status as a tutor removed

requests notify

Archiver « — Vote
Maintainer

Archiver requests vote maintainer to update
the user’s points accordingly

requests save

Login Checker«<— Login
Locker

Login Checker notifies the Login Locker after
the user has entered the wrong password 5
times

requests notify

New User Verifier «—
Email Notifier

Verifier sends a request for notifier to send a
confirmation email to new user.

requests notify

Vote Maintainer « —
Point collector

Vote Maintainer updates the user’s points
accordingly in point collector.

requests save

Student Schedule Conflict
Notifier «— Database
Connection

The Student Schedule Conflict Notifier notifies
the Database connection that a student has a
conflict with his tutoring schedule

requests notify

Tutor Calendar
Availability Investigator
«— Database Connection

Verifies with the database connection if there
is a spot available at a certain time and date
for the student

requests notify

Sign out «<— Database
Connection

Sign out notifies database the user is logging
out

requests logout

Report Collector «—
Database Connection

Report collector request Database Connection
to store all the reports in the database

requests save

Email Notifier «— Email Notifier verifies with the Database requests
Database Connection Connection if a student has accumulated verification
enough point to be eligible to apply for
tutoring
Promoter «— Database Promoter verifies with the Database requests
Connection Connection that the student is now a tutor verification

73

Tutor Schedule Editor
«— Database Connection

Allows the tutor to change his/her schedule in
the Database.

requests
change in
database

New User Verifier
«— Emalil Notifier

New User Verifier notifies the Email notifier to
send a confirmation email to the user

requests notify

Post Deleter «— Page
Deleter

Post Deleter notifies Page Deleter that the post
has been deleted and to delete the page

requests notify

Tutor Time Register
«— Tutor Calendar
Availability Investigator

Tutor Time Register request from the Tutor
Calendar Availability Investigator if the time
slot on that day is available

request notify

Password resetter «—
Login Information

Password resetter requests login information
even though the user is already signed in to
verify whether or not the user truly desires to
reset the password

requests login

Interface Page Interface page prepares the option that allows | prepares
«—-Comment deleter you to delete your comment
Archiver «<— New User When new user is being verified archiver requests
Verifier requests for the new user’s information that verification
has been entered
Advance Search «— Advance search notifies the postprocessor to requests
Postprocessor filter the data that closely matches what the database
user wants.
Tutor time register «— Student registers for tutoring and tutor requests
Tutor calendar calendar availability investigator checks if verification
availability investigator there is an available spot
Comment Deleter «— Comment Deleter notifies the Database request notify
Database Connection Connection that the comment has been
deleted
Sign Up Checker«— The sign up checker notifies the new user request
New User Verifier verifier so that the system can in fact create a | database

new user and add him/her to the database

74

6.3 Attribute Definitions

Concept Attribute Attribute Definition

Notifier (general - Tracking Assigns a tracking number to an event (private chat,

Forum, Email, Number comment, etc.) to store information to the database

Private Chat) and allows tracking on popular/trending/critical

investigation statuses, posts and activities.

Archiver

Investigation

Request

Interface Page User Displays interface to deal with interaction with user
Interface and data.

Login Information Data Data logging has to with the storage or retrieval of
Logging logged data or the logging of data.

Login Checker

Login Locker

Signout

Password Resetter

SearchRequest Search Form specifying the search parameters for database log
Parameters | retrieval and filter the retrieved records to match

Postprocessor search criteria.

Database Data Storage | Data storage deals with the storage of the data.

Connection

Sign Up

Vote Maintainer

Post Creator

Tutor Rating

System

Account Type Data

Notifier Verification

75

New User Verifier

Tutor Calendar
Availability
Investigator

Notifier

Student Schedule
Conflict Notifier

Student Arrival

Promoter

Temporary data stored and will not be stored in Main
database until verified (either by other concept or
admin).

Post View Counter | Data A counter on specific data.
Analyzing

Tutor Arrival

Point Collector

Report Collector

Post Comment

Counter

Student Remover Data Data remover deals with the removal of the data.
Remover

Tutor Remover

Password Resetter

Page Deleter

Comment Deleter

Post Deleter

76

Domain Concepts

jsanbay yaeas

layoayn dn ubig

1sanbay uonebinsaau

JaAIYRY

Jossaooidisod

afied aoepaiu)|

Jayaayy u) Bon

uifoT

JBYNON Wnjo4

JBLION 18y ajenud

JBION [EW3

Jayej abed

uoIoBUUD:) B5EQRJE(]

Priority
Weight

39

27

25

29

29

26

27

25

28

31

32

31

43

32

6.4 Traceability Matrix

Use
Case

uc-1

uc-2

ucC-3

ucC-4

uC-5

UC-6

uc-7

ucC-8

uc-9

UC-10

ucC-11

ucC-12

UC-13

uC-14

77

Domain Concepts

iaysiBay awiy Jon|

lanasey plomssed

J0}28)j00 poday

18)9|a(] 150

Jojebnsanu) Agejesy Jepuajes Jajn]

10}28]100) juiod

JBYNON JUN020Y Jalnioay

IBYYHON JUno20y Ajnoe4

JayooT wbo

Jaljuap Jasn meN

JBIYION Uonowold Jojn|

Jajowol

jsanbay ajon

27

27

21

Priority
Weight

39

27

25

29

29

26

27

25

28

UC-15

UC-16

ucC-17

Use
Case

uc-1

uc-2

ucC-3

uc-4

uC-5

UC-6

uc-7

ucC-8

uc-9

78

Domain Concepts

Jaa|a0 JUSLWILLIOD

washs Buney Jong

ABUION RIguo) 8jnpatyag juapnig

J0Np3 SINpaYRs Join L

Buuojn| - Janowsay Jojn g

Buuon -1snoway Juapng

Buuoin] - Jayoeyn) Juspnis

Buuoin] - Jayaay Jon|

noubig

IBIUNOA) JUSWWDT) 1504

18)UN07) MalA 104

Jojeals) jsod

31

32

31

43

32

27

27

21

Priority
Weight

39

27

25

29

UC-10

UC-11

uC-12

UC-13

uC-14

UC-15

UC-16

ucC-17

Use
Case

uC-1

uc-2

ucC-3

uc-4

79

UC-5 29
UC-6 26
ucC-7 27
ucC-8 25
ucC-9 28
UC-10 31
ucC-11 32
ucC-12 31
UC-13 43
ucC-14 32
UC-15 27
UC-16 27
ucC-17 21

80

7. Interaction Diagrams

Interaction diagrams show the behavior of objects and data in the system. It emphasize

how data is moved and how objects communicate with each other.
The following interaction diagrams below are for use cases described in the Fully Dressed
Descriptions (Section 5.3.4).

Interaction Diagram - UC1 - Posting in Forum

I;mte,-fa,:e pagel |:A5P.NET “ ‘DB Connection | | :Post Creataor

" T 7 -T-
ForumPostRequest) ' . '

Confirm3tudent() 4 0 Py transferinfo - 1 '
L]

i []

' '

, Displayto User e e ve e respnnseﬂ '

(.................. i ¥ g ¥

- L] L]

alt SubmitPostForum() transfer failincomplete * r2ioad form ' '
if trasnfer - :
failed A —— PEE R RS S S eTS A ' P
response:; reload form and notify user to complete form ' "

else SubmitPostForumi) transfer info i fransferinfo * transfer, make post i

Display to User T L T ‘D A ——

D — , , Tesponse 1

L] L] L]
L~ ’

* »> ForumPostRe - : x n

quest()) :

ConfirmFaculty() Py transferinfo - P :
i []

' '

, Displayto User e e ve e respnnseﬂ '

(.................. i ¥ g ¥

- L] L]

alt SubmitPostForum() transfer failincomplete * r2ioad form ' '
if trasnfer - :
failed A —— PEE R RS S S eTS A ' P
response:; reload form and notify user to complete form ' "

else SubmitPostForumi} . transferinfo ; ftransferinfo tansfer, make post I

Display to User . R S D |
i ————— , , Tesponse 1
L]

Figure 7.1 - Interaction Diagram for UC1 Posting in Forum
This sequence diagram shows the steps on how a user will post into the forum and how the

objects will interact. First the forum posting sequence requires to confirm if a user is a
student or faculty user to post as other users don’t have the ability to post. After

confirming, the user will interact with the interface page, which will send the database the

information through ASP.NET. The interface page will get the response, then display it to
the user with the data form post required for the user to fill out. The user will then fill out
the form. If the form submitted is incomplete, the interface page will reload the page and
require the user to adequately fill it out. This loop will continue until the form is filled out
correctly. When the form is confirmed as completed, the info will be transferred to the

archiver for a reference number, then created by the Post Creator.

81

The design pattern for Use Case 1 is Model View Controller (MVC) architectural pattern.
The user submits a form to the controller, which will manipulate the data in the model
server with the new data. Then the interface page will be updated with the new data that
can be seen by the user. The framework is divided as a client server relationship.

However, since this was not discussed in class, the design pattern that is similarly to the
use case is Publish-Subscribe messaging behavioral pattern. Both the receiver and sender
do not know how many users can read their messages or who they are. Since this is a
forum, everyone can read it. The poster is the publisher that will submit postings in the
forum, and the users, who are the subscribers, can view the post once the submission is
published in the forum page.

82

Interaction Diagram - UC2 - Signing up for Tutoring

|:Tuee Time Regater| | Emad Notdier |

[Czer] [ireerface Fage| [T8 Conrecion] [Proxylonlsior {."’" S

Arasit mevicatr
; '
@—] X
CordemStudent() ‘ | !
- lewmmrs L1 e

'

L

| |

T — | '
PageRegueny). TIA%RI AT | | [
. i n LR | ' v
“"Deplay |_I" resgosse o i ' '

10 e38r y | '

. -) N ' »

LoadTuter 1 | ?’3‘-‘?35‘”“"""-'3595“5}”5’1':‘ v

- ——— Aeco—— -

PolieReQRsl) Trawt: ol » < \ » :
— aop——p— H’ l Requestsorecue() | | ’
. € i ' '
oo 0 J " reszorze ?ﬁg'sm‘#.m.. = o%s:) ;bespoash : -
| i
S 2 T rescosse T : ;
alt —}—' I 1 | |
It ve U 1 1 e ' [
if timesiot e - :) : ,
is full Checkavaiabifty() 3 : x
S e ' response, notify user of full scheduié : '

response, Show emor message '

elsel pr—— .
'

SelecTime(LL 5o |

;| f

| RegisterStudent{) L U
’]

!

1 CheckAvaiabdtyy)
L
! —c
: , NotifyStudent
|

- s o

o - S
|
B ! I | response, ! |
B SRR S Crom TRt T ndate scr-;-dule: ’
|
'

| ' nosdy, successfully regisiered
. 1 '

Cisplsy

5 LEes

1

Figure 7.2 - Interaction Diagram for UC2 Signing up for Tutoring
The sequence diagram above was used to clearly illustrate the relations between the
different objects of the system. Initially the system checks to see that the user is a student,
since faculty and recruiters cannot sign up for tutoring. The Database is requested to load
the list of tutors, which is returned as a response from the Interface Page. Once the student
selects a tutor, this sends a request to the Database to load that tutor’s profile. The user’s
schedule and rating are retrieved from the Tutor Rating System and the Tutor Calendar
Availability Investigator, which are returned as a response through the Interface Page. On
the tutor’s profile, the student selects a time to register for. The database checks for
availability through the Tutor Calendar Availability Investigator, and if the time is
unavailable, the user is notified to select an available time. If the time is available, the
student gets registered for that time slot through the Tutor Time Register, which in turn
tells the Email Notifier to send an email to the student confirming the sign up. The student
is also notified via a response through the Interface Page.

In this use case, we have revised the design of signing up to become a tutor to be a safer,
more efficient and correct pattern so that it will now be able to intercept and preprocess
requests so that all access to the real subject is optimized. This is why we have used the
proxy pattern, which was one of the designs discussed in class, allowing our system to
move forward in terms of design.

83

Interaction Diagram UC3 - Sign Up

I Tuser] I:i.ntaf:'a.céa_!a I |:pmxyFa<:L;lty | |:pr{>x3-‘5t1;é.ant | | -proxyEacriter | I CARDWET c.ataba;aﬁnrﬂn%lmﬂ I a-ma.ﬂl\{}tﬂar
H ; T ")
-— e L - . I 1 . | ' ‘ :
= —— —#r 1 load sien up raquest =f. £
confrimFacultyAccount() + Transfer f,lfn ormation t ! > -
L display to user | [EIpOEE i
CeRt] B m - - — 4 — — - - o — — — — 4 — — - s sEssasEedaERn '
| [
fi,ll submit sign up inf nﬂnztmn > | Transfer failkd: incomplata ° reload form :
i =
|— T)
transf s T I Eeeeeee—an |‘ | i i
e . ~ Kespone t 11th uear of wiongimissng infofmation - ' '
alse submit sign vp informatic] Tra.n;ar information | info to utab:‘__?':"lra.nsr'ar P
. display to ser reIponss ! L e
. et facully __'—I'__ T e
- [I :
L 1
- —1 10ad sizn up request : : T i ! i i F
p . 4 —=u_= st form
confirmStudnet Account() } ransfer f,:'n ation t » '
L. display to user | [EIpOnsE i
e B e - —m 4 — — - - o — = — — 4 — = - esmraeees :
alt| submit i w inf | | ! oF :I={.‘. . . - .
= subait sizn up niormation Transfer failed: incomplete reload form 5
1T - } (- p - .
r] l I | ! h
transter R s P H P — _ Ee=ecsoesss ! !
P : Fasponz td nolity wsar of wlong'missing infofmafion - '
alse submit sien vp mformati : Transferinformation ml fo to Hfib:-:?.trm for e
.. Seplay tomser _ S A o e = -
L] Tefirn iﬁrﬂ' Droxy I =t
= - ! !]
- T '
- o " | ool . 1 ' 1 !
load sizn up raquest st £
confirmBecruiter Aceonnt () = = U } Transfer :':h ormation t ' I'|:| :
1 = -
display to user ' rEsponss [
et B — m - — = = = = o — — — — o — — - emmr=EEssseEERECTERE— :
P— — . | T H 5
l?:!l submit sizn vp lf.l_'ﬂd"ﬂgllc'_lﬂ_ L. o ransfer failed: incomplate’ raload formy | .
u T L | & .
transfer T | T [T e AL Emmermmas [[
Failed) Fzspone td notify vser of wiong/missing intofmation - * *
= o M - ey —r £
alse submit sign vp nformati] | Transferinformation info to utab:‘_"‘tra.nrar e
dizplay to vser I L] i
B T 7 " return faculty phoxy © T - response L

Figure 7.3 - Interaction Diagram for UC3 Signing Up
This sequence diagram shows the steps on how a user will sign up for Creddit. First the
signing up sequence diagram requires to know which type of user you are (faculty, student,
or recruiter). It will then load the signUpRequest and transfer the information to the
interface page which will be returned as a response. The user that is signing up will then
submit his or her information. If the transfer is a fail, it means it is incomplete or there is
incorrect information, it will reload the page and tell the user what is wrong. If the sign up
information is correct, it will transfer the information to the archiver. The archiver will
then decide on which action to take and send an email for confirmation. Once the email has
been confirmed there will be a notification of successfully signing up to the interface page
which will be shown to the new user. We use the proxy design pattern in this interaction
diagram for security reasons. This is to ensure that the three types of users (faculty,
student, and recruiter) receive only the access that is permitted.

84

Interaction Diagram - UC4 - Login

[:User| [nterface Page] [DE Cor-v::o-.] [Cogm s | [EH‘):! .\o:x‘orl [Login Lo:ku] [Password Resetter | [Logn |
. o . :
LognnRequest . " .
ConfirmUser() : T
} Display 10 user reEpOnEe
alt SOMEMReQUEs Crecx crecetias 1
T
Doy 1 vser R0 “
Micee vocrosncn sone SRT T A —— . -
L crecentias
I -
— < nooenes LOCK 2000ut Reset DaSSWOre
if incorrect SOMEEDRGRL) | Crecrcrecenas g Eomnncell Ly I e
info is I » "
;"‘:::: | TeEpONSR” rRIRC. MOy UERT T3t TN DISSWONT M35 Deen reset and 300Ut IS Iocked
} xRS Check crecentials r— Logh ’-—~
elee »
Display
to user response: reload, notify user that s/he has successfully login

Figure 7.4 - Interaction Diagram for UC4 Login
The sequence diagram above shows the steps behind the scene of how a user will log into
Creddit. The user is prompted to enter his information via LoginRequest() which the
database connection transfers the information to the interface page. The Login Checker
checks to verify If the user has entered in the incorrect password or not. If the incorrect
information has been entered, the system responses back to the user asking him to
resubmit the correct info. This will loop until the User has entered in the correct
information or the User has entered in the incorrect information 3 times. If the user has
entered the incorrect information 3 times, the system will notify the user that his account
has been locked and the password needs to be reset. The Login Locker will lock the account
that the user was trying to login to, and the Password Resetter will reset the password of
the account. The Email notifier while send the a email asking to reset the password to the
email of the locked account. If the User has entered in the correct information, the User
will be login.

In this use case, Login Checker has been updated to Login state because this design
essentially already entails the state pattern approach. Since the login state requires to be
informed of the state and then respond whether or not the credentials that have been
entered are correct. The state of the user would then be changed which is why the state
pattern is implemented here and makes the design of the system safer.

85

Interaction Diagram - UC5 - Career Posting

-User I |:|merfacepﬁge| |:pruxyStudenl“:pruxyFacuIty"pruxyRecru'rter| ASP NET | :Database Connection :Post Creator 1 :Email Netifier |

- ’_'I?adCareerPageRe_guest(;- transfer info Ly
confirmFaculty() i [g T x =
confirmRecruiter() '-:__I.::‘_|5_E>I_a.y_tu.u.s_»gr_._. i e e M ¢ 5 o T e i it o e:."E?EU.”S.E...J
| CareerPostRequest() . . transferinfo » o
... Display to user L I_I . I_I i S5 e ._:_FF‘_SPE'TSF_._J
alt sumbiCareerforml) 3 % : i “ transfer failincomplete | reload form
if I i 1
transfer e e e T R e e e e e o ke i S R e e
failed ‘response: reload form notify user to complete form T
else Eﬂmbﬂ(-‘v_ﬂﬁf?[fﬂwﬂ_; . . " trangferinfo __y o transfer i"f?'. i“transfer make post
.~ Disolgv to user I i e o o A o e e] —
. I i 4 ' . response ¥ ¢
T
- g I0adCareerPageReguest() - transfer info .
confirmStudent) [| : . v =
I'f. I}ispl_ay_tu user i] = . ' response J
MUESt } . " . obtain post infuma-.tiun ; o
| Display to user) L] . . | .. Tesnonse_ i
| isubmitResume(} _ 4 . . tag resume to post o g :
'| i 5 5 == - (| sendEmailSignal() 2
] L = e WY
Display to user 3 = s ' - r;:fspunse
WEemes s e ey T HE e e e e e R E W e e e e e e e G A e e e e e e e e E S TR

Figure 7.5 - Interaction Diagram for UC5 Career Posting -
*Note: This feature is currently not implemented due to time constraints. Therefore, this
feature will not be updated until further notice.

A sequence diagram is used for this use case because it clearly shows how the objects
interact with each other. It illustrates the communication between the functions of the
system and the user directly. Faculty or Recruiter users are allowed to access the Tutor
page and post a new Career option. It sends a posting request to the database and it will
sent back the posting form through the interface page. The user submits the completed
form back to the database and the new data will be archived with a tracking number. This
new data is now sent to the Post Creator to publish the new posting into the Career Page. It
is important to note that a user cannot comment on these posts. They are strictly for
viewing purposes and if a student is interested, then he/she would user would use the
contact information given to find out more about the opportunity listed. If the user
submitted an incomplete form, then the database will notify the user to re-submit the form.
This loop will continue until the form is filled completely. The system would then ask
whether or not the faculty user is satisfied with the given information he/she provided by a
confirmation asking yes/no. Student users may access the Career Page with the database
sending the posting information to the user through the interface page. This allows users to
select a post to view, after the database obtains the information through the archiver. If
Student submit resume to specific posting, database and archive will tag it to the
corresponding post and notify Email notifier to send an email to the post owner. In the case
that the position is a scam or not recommended, it could be flagged as inappropriate and
that given post would be reviewed by the admin.

86

This use case is based under Proxy Design Pattern. Proxy is used for security reasons. It is
to check if the user have access to certain privileges in the Career Page. The proxy is used to
check if the user is a faulty or recruiter. If they are, then they have the privileges to post a
career opportunity. If the user is a student, they have the access to submit resumes and
view career posts. Otherwise non-Creddit users cannot access the page.

87

8. Class Diagrams and Interface Specification

8.1 Class Diagram

Database Connection searches in

- post: Post
- comment: Comment

- accountType : Account

- notification : Notifier
-trackingNumber. integer
-referenceNumber: integer

Archiver

+assignTrackinghumber(post : Post(), comment: Coment) - integer
+assignReferenceNumber(account : Account) - integer

Notification

Notifier System ~nofification: string

Searcher

+ searchitopics : string, comments © string
keyword : string) : Query

+ search(q:Query) : result]

+ doesExistitrackingNumber : string) - boolean

Interface Page

+ createPage(): void
+ deletePage(): void

Account

~trackingNumber : integer e e
+sendEmall(email : string, subject string, message : string) : void - referenceNumber: intager GECET ERRETT
+ double) - nofificationType: string e
+ deleteNotificaton(trackinghumber: double) : void + string, integer, - schoal: string

notificationType: string) - void
+ getNotification(trackingNumber: double) string

- referenceMumber - integer

- lastLogin: string

- accountType: string

+ createAccount(name: string, password: string, email: string
school: string, accountType: stiing) - void

+ editAccount(name: string, passward: string, email: string,
school: string) : void

+ deleteAccount(referenceNumber: integer): boolean

+ authenticate(smail: string, password: string): boalean

Post 1 exists ind Forum System 1 evsts 1 Comment
- post: string + getPoints(points: float) - void -comment string Faculty Admin
- trackingNumBber : integer + createComment({comment: string) void - trackingNumber : integer

X ~ degree: string - paszcode: string

- referenceNumber: integer + getComment(commentReference: integer) - string - referenceNumber: integer
~time: double + deleteComment(commentReference: integer) : void -time: double = GEREINTED.E S0
- points: float + createPost(post: sting) : void - points: float e + editPasscode(passcode:string): void
+editPostpost: string) : void + getFostiposiReference. integer) - string editComment{post string) : void + editDepantment(depanment: string): void

+ deletePost(postReference: integer) - void
+upvote(paint float) - float
+ downvote(point: float) : float
Point System

+ pointDecay(points : float, lastLogin: string) float

+ checkRewards(points : float) . string

+ getPoints referenceNumber: integer) float

+ updatePoints(referenceNumber: integer) : float

Student

- major: string
- schedule: array

- points : float

+ editMajor(major: string). void

+ editSchedule(schedule: amay): void

Tutor System Tutor
+ rateTutor(referenceMumber: integer) - double ~rating : double
+checkTutor(referenceNumber: integer) - array - students: array

+addTutor(referenceNumber. integer) : void

+ deleteTutor(referenceNumber: integer) : void

8.2 Data Types and Operation Signatures
DB: Connection

+ addStudents(referenceNumber: integer). void

ion] Create

Class that stores the essential variables for the forum to the database class.

e post: Post
A single instance of a post.

e comment: Comment
A single instance of a comment.

88

e accountType: Account
A single instance of an account.

o notification: Notifier
A single instance of a notification.

e trackingNumber: integer
A tracking number for an instance of a post, comment, account, or
notification.

o referenceNumber: integer
A reference number that links a post, comment, notification, and account
with each other.

Searcher
Class that allows user to search website using specific keywords.

e createQuery(topics: string, comments: string, keyword: string) : Query
Requests for information from the database that matches the user’s search

query.

e search(q:Query): result[]
Displays the result of the search query.

e doesExist(trackingNumber: string) : boolean
Checks if the search query matches the data from the database and returns a
boolean value.

Archiver
Assigns and retrieves posts/comments/accounts using tracking numbers and reference
numbers through PHP or mySQL script connecting to database.

e assignTrackingNumber(post: Post(), comment: Comment) : integer
Assigns a tracking number to everything that entails posts, accounts,
comments, and notifications

o assignReferenceNumber(account: Account) : integer
Assigns a reference number to posts, accounts, comments, and notifications
to make clear connections.

89

Notifier System
Class that keeps track and creates of notifications to send.

o sendEmail(email: string, subject: string, message: string) : void
Sends an email to the user whenever another user replies to a post or
comment.
Sends an email to the user whenever it is the first time signing up for a new
account (a confirmation email)
Sends an email to the user whenever the user is eligible to become a tutor.

o sendNotification(name: string, notification: string) : void
Sends a notification request to a user account.

e deleteNotification(trackingNumber: double) : void
Delete a notification when user sees it.

Point System
Class that defines the point system and monitors the points and rewards of each user.

e pointDecay(points: float, LastLogin: string) : float
Function which decays points if a user hasn’t logged into their account in a
long time. Also decays the value of a user’s votes if they upvote/downvote
too frequently.

e checkRewards(points: float) : string
Function which tracks a user’s current points and returns the tier of that user
when they reach a reward tier.

o getPoints(referenceNumber: integer) : float
Function which returns the current points that the user has.

e updatePoints(referenceNumber: integer) : float
Function updates the points of the user to the most recent point value.

Notification
Class that keeps track of every notification with its content and tracking number.

e notification: string
The content of the notification to be sent.

90

trackingNumber: integer
A tracking number assigned for an instance of a notification.

referenceNumber: integer
A reference number that links a post, comment, notification, and account
with each other.

notificationType: string
A string that holds the type of notification.

editNotification(notification: string, rreferenceNumber: integer, notificationType:
string) : void
Function that edits the notification’s properties (reference number,
notification type, and

getNotification(trackingNumber: double) : string

Forum System
Class that defines the forums, including creating and deleting comments and posts,
accessing the points attached to those comments and posts.

getPoints(points: float) : integer
Return the points the post/comment received.

createComment(comment: string) : void
Create a comment in the forum to put into database through archiver.

getComment(commentReference: integer) : string
Return the comment with the inputted comment reference number.

deleteComment(commentReference: integer) : void
Delete the comment with the inputted comment reference number.

createPost(post: string) : void
Create a post in the forum to put into database through archiver.

getPost(commentReference: integer) : string
Return the comment with the inputted comment reference number.

91

o deletePost(postReference: string) : void
Delete the post with the inputted comment reference number.

e upvote(points: float) : float
Add one point to the account’s points and return the new points.

e downvote(points: float) : float

Subtract one point from the account’s points and return the new points.

Post
Class that keeps track of every post with its content and tracking number.

content: string
The content of a post, defined every time a post is created.

o trackingNumber: integer
A tracking number assigned for an instance of a post.

o reference number: integer
A reference number for the account that created the comment.

e time: double
Holds the time the post was posted.

e points: float
Holds the number of upvote/downvote points this post has received.

e editComment(comment: string) : void
Function which changes the post string to what user inputs.

Comment
Class that keeps track of every post with its content and tracking number.

e content: string
The content of a comment, defined every time a comment is created.

o trackingNumber: integer
A tracking number assigned for an instance of a comment.

o reference number: integer

92

A reference number for the account that created the comment.

e time: double
Holds the time the comment was posted.

e points: float
Holds the number of upvote/downvote points this comment has received.

e editComment(comment: string) : void
Function which changes the comment string to what user inputs.

Interface Page
Class that creates and deletes a new page for new posts, signup, and etc.

e createPage() : void
Create a new page with the request.

e deletePage() : void
Delete an existing page.

Account
Class that contains and handles a user account’s information.

name: string
Contains the first and last name of the user account.

e password: string
Contains the password of the user account.

e email: string
Contains the email of the user account.

e school: string
Contains the school/university of the user account.

o reference number: integer

93

An individual reference number for the account to differentiate users.

e createAccount(name: string, password: string, email: string, school: string,
accountType: string, degree: string, major: string, company: string) : void
Creates an account with the given input data, assigning it a reference number
to track the account.

e editAccount(name: string, password: string, email: string, school: string,
accountType: string, degree: string, major: string, company: string) : void
Function used to change any data above the user wishes to change about
their account.

o deleteAccount(referenceNumber: integer): boolean
Function which deletes the account and returns the result.

e authenticate(email: string, password: string): boolean
Function which authenticates the user sign in and returns the result.
Faculty
A faculty account for professors and other faculty users.

e degree: string
Contains the graduated degree of user.

department: string
Holds the department the faculty is affiliated with.

editDegree(degree: string) : void
Allows faculty to edit/update their degree.

editDepartment(department: string) : void
Allows faculty to edit/update the department they’re affiliated with.

Admin
A admin account which has special editing/moderator privileges in the site.

e passcode: string
Contains a authorization code to confirm admin user is genuine to access
moderating privileges in features.

94

o editPasscode(passcode: string) : void
Allow change/update in passcode for admin.

o confirmPasscode(passcode: string) : boolean

Return authorization confirmation when user input matches passcode.

Student
A student account for currently studying students in college.

e major: string
Contains the major the student is currently pursuing.

e schedule: array
Holds an array of all the classes the student is currently taking.

e points: float
Holds the compiled upvotes/downvotes the student has compiled.

e editMajor(major: string) : void
Function that allows student to update and edit their pursued major.

e editSchedule(schedule: array) : void
Function that allows the student to update their schedule.
Tutor
A tutor account that inherits student account.

e rating: double
Contains the current rating the tutor has.

e students: array
Holds the array of all the students the tutor teaches.

e addStudents(referenceNumber: integer) : void
Adds a student under the tutor to the students array.

Tutor System
Handles the methods of the tutor page.

o rateTutor(referenceNumber: integer) : double

95

Rates tutor based on the accumulated ratings from the other users.

e checkTutor(referenceNumber: integer) : array
Checks whether or not the tutor is available or not to tutor.
Checks whether or not the given user is in fact a tutor or not.

e addTutor(referenceNumber: integer) : void
Admin adds a tutor to the database when the user is eligible and verified to
become a tutor.

e deleteTutor() : void
Tutor or Admin deletes a tutor from the database when the tutor decides to
resign or loses privileges

8.3 Traceability Matrix

Classes
Domain Concepts Y A R ™ Y R R -
P 5 8 & &5 & & 2| 5 & 2 5| § § 2
B g R/ E £ 2| B £ El 2 - =
@ el 8 B B = m m 9 = P
= ol € = F ¢ £ T & | <L
5: = & = E
= (]
@ & 8 o
E <L
=
o
0
Database Connection X | X | X | X X | X | X | X [X [X
Email Notifier X X
Forum Notifier X
Login Information X
Login Checker X
Interface Page X | X
Postprocessor X X X
Archiver X | X
Investigation Request X X X
Sign Up Checker X X

96

Advance Search

Vote Maintainer

Promoter

Login Locker

Point Collector

Tutor Calendar Availability
Investigator

X

Post Deleter

Report Collector

Password Resetter

Tutor Time Register

Post Creator

X | X[X|X|[X

Post View Counter

Signout

Tutor Arrival

Post Comment Counter

Student Arrival

Tutor Remover

Tutor Schedule Editor

Student Schedule Conflict
Notifier

Tutor Rating System

Page Deleter

Comment Deleter

97

8.4 Design Patterns

Although our system can be refactored to match any of the design patterns we learned in
lecture, we believe that the proxy and the pub-sub patterns most accurately describes our
system. The proxy pattern is as simple as it seems: requests are intercepted and
preprocessed to enable safe, efficient, and correct access to the real subject. The pub-sub
pattern is also quite simple as it is focused on detecting events instead of making decisions
and issuing orders to Doers/Subscribers. Because our project is a web application, the user
input occurs primarily through the mouse or the keyboard. Our Ul is responsible for
receiving these inputs and then calling the appropriate methods to fulfill these calls. As a
result, there is a focus on the other objects’ work: deciding when it is appropriate to call
each one. However, our system does not currently support reversible actions, which would
be implemented in the future as it would make certain aspects of our website optimal for
the user. For instance, a reversible action would be useful if the user would want to delete
an account that was accidently created.

Our system also makes use of the proxy pattern. As we learned in lecture, a proxy object
pre-processes requests before forwarding them to subjects when appropriate. In order for
the users to have access to certain features that we have in our website, like having the
privilege to become a tutor, it is safer to have a proxy pattern to ensure that these
processes are handled correctly. In our project, it is definitely possible to implement the
majority of the patterns due to the fact that our system is quite complex and can be
designed in various ways. Unfortunately, due to time constraints, we have implemented a
few of patterns that we have gone over. If we are to continue our project in the future, we
would definitely include more of the design patterns that we have gone over in class so that
our system is moving in the right direction.

98

8.5 Object Constraint Language (OCL)

Class Invariant Precondition Postcondition

DatabaseConnection | Database is Information is sentto | Information has been
always the database retrieved from the
available for database
access

Searcher Database is The information being | The items that match the
always searched must already | search is returned or no
available for | exist results found is returned
access

Archiver Database is Obtain location of new | New data has been
always data tagged with a tracking
available for number
access

InterfacePage Database is The necessary The page loads the
always information must be necessary information
available for | retrieved from the onto the page
access database

Notification Database is Event that sends outa | User will see notification
always notification through email
available for
access

Account Database is Require inputted User account will be
always information will be created and verified.
available for | stored into database.
access

Faculty Database is Require degree and Store information into
always department database and allow
available for | information access to certain features
access

Admin Database is Require password Confirm password to
always input access information
available for
access

Student Database is Require to be a Store information into

always

student that is part of
a university

database and allow
access to certain features

99

available for

access
Tutor Database is Require tutor name, Confirm and add student
always student name name under tutor time
available for session
access
TutorSystem Database is Tutor must be Ratings and reviews are
always available in database displayed for students to
available for | and ratings must be view before choosing
access checked tutor sessions
PointSystem Database is There must exist a The upvote or downvote
always comment or post that | should register in the
available for | reflects the current system and the new
access value of points value will show
Comment Database is The inputted The statement will be

always
available for
access

statement will be
taken into database

displayed and stored
into database

Forum System

Database is
always
available for
access

A post is created or
already created

New comments and
posts are shown

Post

Database is
always
available for
access

The inputted
statement will be
taken into database

The statement will be
displayed and stored
into database

Notifier System

Database is
always
available for
access

A notification is made
to send to specified
email

Email is sent to user

100

9. System Architecture and System Design

9.1 Architectural Styles
Client/Server Architecture is a model that helps simplifies the development of the software
by dividing the process into client and server. This model is our main architectural design,
because this architecture aims at allowing access for one or more clients to several
resources or functionalities in a central server; it separates our system requirements into
two easily programmable systems. First, the client, which acts as the User Interface,
requests data from the server, and waits for the server’s response. Secondly, the server,
which authorizes what privileges each user is granted based on their account type.

In the Client/Server model, there are many types of tiers available to describe the system
architecture. These tiers are meant to physically separate applications into different
concentrations that can be distributed between client and server. Typically, the tiers are
categorized by application, presentation, and data processing. Usually the tiers are
separated as presentation, middle, and data. Presentation tier is where users interact with
the applications. MIddle tier is the communication medium for both presentation and data
tier. Data tier is where the data is located, saved, and modified.

Creddit will have a 3-tier Client-Server architectural style as we have a presentation tier,
logic tier, and data tier. Starting from the lowest tier, Creddit has a data tier to store and
retrieve user information, emails, chat information, forums, etc. The middle tier, which is
the logic tier, coordinates and moves information back and forth between the data and the
presentation tier. The logic tier also evaluates, decides, and processes commands. The top
most tier is the the presentation tier. The presentation tier translates tasks and results into
something a user can understand. It will translate it to a webpage in which the user can
easily navigate. For example, the user will enter information and hit “login” on the
presentation tier, the presentation tier will send it to the logic tier and the logic tier will
decide what to look for. After it decides what it wants, it sends it to the data tier and will
retrieve the user information from the data tier. The logic tier will then decide if the
information sent from the presentation page matches with the data, and return a result of
successful or unsuccessful login.

9.2 Identifying Subsystems
Three subsystems are created to help achieve the architectural style.

1. Website (Front End): This subsystem deals with user interactions, where the clients
may interact with the server through the Creddit website. It maintains the display
and connection between the database and user commands to retrieve and send data.

2. Application: This subsystem is the connection between the users and the data with
the technical operations. It consists of the functions that is needed to connect the
front end and back end.

3. Database (Back End): The database subsystem handles data management and
notification alerts. It maintains the flow of data processes.

101

Website (Front end):
* Interface Page

—'Lppl.lt ations:
Emozil Notifier
» Private Chat Nofifier * Password Resetter
» Forum Notifier * Tutor Time Begister
= Account Type Notifisr * PostCreator
* Student Schedule Conflict Notifier * Signout
» Logm Checker * Tutor d'.:m-e.l
» Signup Checker » Smdent Arrival
» PostDeleter + Student Remover
* PageDelster + Tutor Remover
» Comment Deleter » Tutor Schedule Editor
» Logm Locksr + Tutor Rating Svstem
e Votz Maintzsiner . PDstpmcesmr
* Tutor Calendar Availability * Archiver
- * Promoter

Investigator

D atabas e (Back end):
DE: Connsction

Point Collector

Logim Information
Investigation Request
Beport Collector

Post View Counter
Post Comment Counter

Figure 9.1 - Subsystems

9.3 Mapping Subsystems to Hardware
Creddit will be accessible anywhere that web access exists. This means the client in our
client/server relationship will be a web client. A web browser is an example of a web client,
and can be remotely access from the server via HTTP. This web client/server model will
need to be run across multiple computers, or subsystems. A web browser will be used to
request the various data from our server, as well as the creation of post. The database will
be saved on hard-drives, which will be located in the server computer.

9.4 Persistent Data Storage

Creddit will require data, such as post and information to outlive requests and
sessions. Data will be stored in a MySQL database as a relational database management
system. Because there is potential for the database to grow very quickly over time, it will be
saved on hard drives. The MySQL database will consist of multiple tables. The main tables
will be a tutor table, forum table and user table. The tutor table will used for the tutoring
feature. The user table will contain all the information about the users such as their
account type and personal information. The forum table will contain the information
related to posting or commenting on the forums. There are many more tables included
below. However, they do not represent all of the tables needed for this system

102

Account Table:
The Account Table contains all the user information that is filled when the user creates an
account on Creddit.

Column Mame Datatype P MM UQ BIMN UM ZF AI Default
email VARCHAR(45) [[o [

school VARCHAR(45) [(o o I

degree VARCHAR(45) [(o o I

password VARCHAR(45) [(o o I

salt VARCHAR(45) O 0 B0 B B 8 B sow
saltedpassword VARCHAR(45) O 0 B0 B B 8 B sow
accountType VARCHAR(45) [(N I

point INT[11) (O O]
votecount INT[11) O O] ‘ooooooooooo’
code INT(7) [T O
Emailverified INT[11) (O O]
registeredTutor VARCHAR(45) [] O B @ E none
registeredCourse VARCHAR(45) [] O B @ E none
pointwell DECIMAL(10,5) O O] ‘ooooo.oooo0

Figure 9.2
registeredTutor: Records that student has registered under a tutor for a tutoring session
when they sign up.

registeredCourse: Records that student has registered under s specific class when they sign
up.

The purpose of having these two types is the make sure that the student has taken this
course under a specific tutor before they are allowed to post a review. When a student
wishes to post a review on a tutor, the system will check that they have signed up for the

course as well as the tutor. Both are necessary because one tutor may teach more than one
class.

Forum Table:

The Forum Table contains the information on each discussion post. The forumld is needed
to track the post.

103

Column Name Datatype P./N. W B. W Z AL Default
forumid INT(11) vy OO
post VARCHAR(1000) T 00 OO0 [0 OO O 0 UL
name varcHar(as) O 00 00 [00 OO O Nuw
dateTime DATETIME JUO 00 200 N
accountld INT(11) 0000 00O N
point INT(11) OO0O00000:w
accountType VARCHAR(45) L 00 0O OO O nuw
vote VARCHAR(10000) O M O O OO O
goooooo
Figure 9.3
Reviews Table:
The Reviews Table holds the rating and reviews of the tutor.
Column Name Datatype P. N U.B. U Z Al Default
accountld INT(11) U0 0 000
reviews VARCHAR(100) M WM O 0O OO O
rating INT(2) O8O0 H 000
Figure 9.4
Subject Table:
The Subject Table contains information on subject categories.
Column Name Datatype P. N. U. B. U. Z. Al Default
subject_id BIGINT(30) YMODOUOOW
subject_name VARCHAR(45) T & [E good
Figure 9.5

104

Thread Table:
The Thread Table contains the information on the comments. Each comment can be
referenced back with the threadld.

Column Name Datatype P. N. U. B. U. Z. Al Default
threadId INT(11) MMM OO0O™
forumid INT{11) OO0 0O 00O N
comment varcHar(10000) O OO0 00 OO 00 O wuw
name vARCHAR(45) L L0 L0 00 00 00 L0 muw
dateTime DATETIME OO0 0O0O0OO N
acoountld INT(11) 0000000 N
accountType vercHAr(4s) L L0 L0 L] L0 L) L0 o
point INT(11) oo ogoog-w
vote VARCHAR(10000) (] ¥ [0 H goog-
Figure 9.6

Time Table:
The Time Table contains information on the available times the tutor offers.

Column Name Datatype P. N. U. B. U Z. Al Default
course_id INT(11) Mo O00O00d
timeld INT(32) VMO ODDW
time DATETIME OMOOO0O0O
O [] O
Figure 9.7

timeld: holds the identification number for the time of a specific course and tutor. The purpose of
the identification code is so that there can be multiple times for a class.

time: holds the actual time and date for that course under a specific tutor.

Tutor Table:
The Tutor Table contains information about the tutor.

Column Name Datatype P. N. U. B. U. Z. AI Default
acoountld INT(11) sMLDUULOW
name VARCHAR(45) L ¥ O O O
course_id INT(11) OO0 0000
Course_name VARCHAR(45) L w L [L0 L
goooooo
Figure 9.8

105

Tutorcourse Table:
The Tutorcourse Table contains information about the available courses the tutor offers.

Column Name Datatype P. N. U. B. U Z. AT Default

subject_id INT(11) Uw D0 oOUl

subject_name VARCHAR(45) L WMIO O OOD

course id INT(11) W oW O

Course_name VARCHAR(255) [# [0 [|

accountld INT(11) OO0 0 000 N

name VARCHAR(45) I I F L L NuL
Figure 9.9

9.5 Network Protocol
Since the only form of communication between the server and the client is the website, we
decided to use PHP because it is standard in creating dynamic web pages Furthermore, it
works well with relational database management systems. We chose SQL because it is the
standard RDMS used to manage and manipulate large amounts of data. Lastly, we use
HTML because, with the release of HTML 5, HTML has become one of the most powerful
and simple markup languages for developing web pages.

9.6 Global Control Flow

Execution Orderliness:

The system is defined as event-driven because the processes are determined by the flow of
events depending on user inputs. The user will interact with the system. The server will
wait for the user to make an action before any data is processed. The user can perform any
actions in any order as long as they have already logged into Creddit.

Time dependency:

The point system is a periodic real-time system, where the time constraint is 7 days.
The newsfeed is an real-time system, where the most popular forum are updated daily.
These real-time systems will update the database at exact defined times.

Concurrency:
As a website, multithreading must be supported. It is expected that there will be concurrent

users accessing the website or the database. Multithreading is also needed in chatrooms,
tutorings, and other sharing features between users.

106

9.7 Hardware Requirements

User-end:
The user end will need an up-to-date web browser. All information is stored on a database,
so the user will only need minimal temporary disk storage.

Back-end:

The back-end system will need will require a database with to store all the information,
such as, user data, forum posts, chats, emails, and etc. The back-end system will also be
handling a large amount of traffic, so high bandwidth network connection will be required.

107

10. Algorithms and Data Structures

10.1 Algorithms

Creddit point system requires an algorithm that will allow the upvote/downvote system to
be relevant but will also guard against potential threats such as users who might try to
abuse the upvote/downvote system. The algorithm Creddit has developed resolves both
these issues. Our algorithm uses an exponential function that determines how many points
a student will get from an upvote or downvote. If a user upvotes/downvotes frequently,
the conversion of his upvotes/downvote to the amount of points given for that
upvote/downvote will decrease at an exponential rate. In other words, if the system
realizes that the user upvotes/downvotes very frequently, this would mean that the user is
spamming the value of an upvote/downvote. Therefore, the system would lessen the value
of the corresponding user’s upvotes/downvotes simply due to the fact that the user would
not be giving a clear distinction of what he/she likes/dislikes or is spamming which could
lead to inaccuracies. The more the user spams, the smaller the value of each point becomes.
This method stops users from abusing the upvotes/downvotes system by lessening the
impact of their votes. These values assigned to the upvote/downvotes are reset every
week.

UPDATE: The algorithm has been updated to be based on a vote count system that will
determine how many points are given per vote. For example, if the vote count is less than
ten, the point worth is equal to one. If the vote count is between the numbers 10 and 55,
then the point worth is equal to e”-(voteCount/100). If the vote count is greater than 55,
each vote is worth 0.15. These points are collected by the point well which will determine
when a user is eligible to become a tutor. The point well is invisible to the users and is
different than the point amount that is shown when the user logs in. The point value
attributed to each account and has its own column on the table within the database.

For the search page, the algorithm that is implemented is by using the Levenshtein distance
algorithm along with some other functions. First, the string that is input into the search bar
is parsed and tokenized. Then, we also parse and tokenize all the comments, posts, tutors,
and tutor courses within the database. We then compare the input string tokens to all of
the database tokens and see how similar they are using Levenshtein’s distance algorithm. If
they are similar, we then display the results.

10.2 Data Structures
The main data structure of our system is going to be a relational database executed through

108

MySQL, a relational database management system. The benefits of this database is its use of
tables and the ability to quickly search through these tables based on “keys”, specific
shared information, that connects the tables together. A relational database is great
because it accepts a large amount of data like we expect from such a large-scale website
and it also supports queries, which will be made frequently through use of the search bar.
Everything from account information to schedules will be stored within the SQL database,
linking pertinent information together through use of reference numbers to link to
accounts and tracking numbers to link to posts. We chose to use a MySQL database for it’s
efficient handling of large amounts of data and it’s ability to store this data in an organized
way.

109

11. User Interface Design and Implementation

Preface

The original screen mock-ups that we created in report 1 part 3 where to get a
general idea of how the website would look like and how it would be navigated. It is much
easier to focus Creddit in the direction we want it to go once there are visuals of it. We have
cleaned the pictures up and removed some of the features and account types that will not
be implemented in Creddit. We have removed the following features: Documents, Resume
Builder, Jobs/Research/Recruiters, Chat, and the account type Recruiter. Also, we have
improved the appearance of the hand drawn pictures. The user effort has the
same. Creddit has been designed to look sleek and intuitive thus it is very easy to navigate.

1. User Interface Design

Credat-Home Pag: % Ed - slEl
« Cc N localhost oe@B O =

Newsfeed:

210 AM

T e et
“'“ L /612015

Figure 12.1.1a

110

2. The Forums (UC-1)

J | Creddit - Forum x

localhost

« Ccf

Points Post User Time Added
1 tdead I el as : (usless doesn sttes and ' ob Saget (Student pEals
: and eel a . Kinc : tain any substates a ! ust 1o Bob Saget (Student)
- S 11:20:34 PM
e end of the Chapler states that § bccess o iinicd ’ f ca e e deadiock 5152015
2 Kyujin Kim (Student) L
xpand 5 xplain how y e ca: 11:19.40 PM
These are mull avOid fa ditions when several tasks require data re rona lar plece of
5/5/2015
1 n wh t sinly used are a poll based and an 1 ev K Howcanyou Kyuin Kim (Student)
5 i 111920 PM
believe It says a thread ha N ve, and Dead an 0t ate b k .
1 8 Kyuin Kim (Student)
0 hronized X) 1 don't se this is a share an a > ex ! T : K wa Kyujin Kim (Student)
progras dea sy) ipoint of app a applicati
1 e e i SivL PN B0 5ot & CheE Fcc 101 riRats dii TS Bob Saget (Student s
erful esp et allows an af make mter h the database w frectir h a page b 11:15.49 PM
cu amming Is a v ! { programming ! essc active applications du
5/52015
0 reat gning Operating Systems in the Ke e mpart oncurrent Programming is - Bob Saget) el
J 0 S 11:15.00 PM
eads. A lhread is a seque I are a sing: ess space with other threads thus they can read a
me vara d data structure

ven domain is a P aw) g P
g 5 " 3 " 1and bu . ires and data
. 2 x 2 A 7 BT s Bob Saget (Student)
. he tex value is an intangie i at ex d space, and " ange”, howev o
3 ars, and sirings as exa bibusly, we & & charkied by Variows Bob Saget (Student) SpanD
3:33:26 PM

212AM

~

Figure 12.2.1a

| Creddit - Comment x

5/6/2015

Jonatran

localhost T d

« Ccf

Points: 1

QA* © o]

1 am not sure if the book goes into this, but a closely related topic to concurrent programming is the idea of asynchror Asynch
programming is the idea of issuing asynchronous calls to some sort of endpoint or applqcahon What this al\ows an applicallon to do is fire an
asynch. call to some back end point and set a callback method to perform some sort of action once the call returns. This is very powerful esper.uany
on the web since it allows an application to make interactions with the database without affecting the user with a page refresh for instance.

reason this is related to concurrent programming is because multiple asynch. calls can be Issued to performs various operations and then (helr
results can be caught in a callback if needed.

by Bob Saget (Student) on 5/5/2015 111549 PM

Points- O Wl any of these asynchronous cais effect the concurrency of the program? I'm sure resources may clash in the system siowing the process down? 111616 3
£

agree with Pawel using asynchronous programming is very helpful in the area of conc progras entioned, before it enables us to i
s s the database and get information, o push information before using it in the next ine of code. Using this type of programming also helps make the e 4

user experience better as while using the asynchronous call we can have something like an progress bar 10 let the user know that the Chao %

program ing (ke accessing the database)

1 think what you're talking about is something like AJAX What happens to update Information without a page update Is the foowing: The client runs

Javascript code from the server that launches a new HTTP request (but does not cause a page refresh) The server does something based on the e
points. o ParaMeters in this call and responds with some kind of data (usually XML, the X in AJAX) The client Javascript knows the format of the data f wil recetve Kyupn o 5050

and uses it 1o update information on the page. If the site wants a page or component to constantly update, it wil send Javascript 1o the cient that runsa Kim o

1o0p that sends these requests out at some rate. This whole process is not exactly an Intern
name and taked about in the same way in many different applications

as

tandard but it is a common enough pattern that it h

Post Comment:

You must be logged in to comment and vote in forum!

213AM

5/6/2015

Figure 12.2.1b

111

B3 - ol
@O0 =

| Creddit - Forum x

« [| localhost

3 x ! ! : hich th t] he € Chao (Student)
153.04 PM
) - . 501120
an sense feal events such as g nd causing even! L ages on a scree urning device . Mario (Studen
% P : 5 o i 1:51:20 PM
: ba : 3) and 4 ing unstructu , N
5 e hitg 2 : y e nere are m NosaL d es (e.g Kyupn Kim (Student
a , i : 50.40 PM
tde to utiiize al tree indexin was invented by Mich ser, Martin 4 ! ki
4 ar \ | was expiained that fractal tree ve on B 3y data is stored on the disk What mal
bitty to scal ans that Tokutek f ow the data he typ ata tha
) g ¢ gina finte ! X 1 me - .
- 1:48:40 PM
e 24 e : jest-ba hronou: m Tt based
ntirely on the event based model hity dejs or s bing" 1o an action to watt for da SHI015
5172015
0 xamp e in N ai the read a hack, which o 1 whe 2 arv 4 € vt Student)
o))) abeth Chao (Student) ot

Post in Forum

217 AM

=l Pl s

Figure 12.2.2a

| Creddit - Comment x

« CnH localhost ¢

T ¥ rons 1

I am not sure if the book goes into this, but a closely related topic to c: is the idea of g. Asynch
programming is the idea of issuing asynchronous calls to some sort of endpoint or application. What this allows an apphcatlcn 'to do is fire an
asynch. call to some back end point and set a callback method to perform some sort of action once the call returns. This is very powerful espemany
on the web since it allows an application to make interactions with the database without affecting the user with a page refresh for instance. T

reason this s related to concurrent programming s because multiple asynch. calls can be issued to performs various operations and then their
results can be caught in a callback if needed

- by Bob Saget (Student) on 5/5/2015 111549 PM

ned, before it

ming. AS he me:

using asynchronous programming is very helpful in the area of concurrent progr
or push information before using f in the next line of code. Using this type of
the asynchronous call we can have something fike an
essing the database)

gree with P
enables us 0 access the database and get informatio
programming also heips make the user experience better as while us
Indeterminate progress bar (o let the user know that the program is doing something (like ac

Student

Aiready Voted Points: 1

412872015

sure resources may clash in t siowing the

= Will any of these & ronous calls effect the concurrency of the program? I'm sur 3 =
Points: (> sian Faculy 111616 3
process down?

ns 1o Update information without a page update Is the following: The
P request (but does not cause a page refresh) The server does

1 think what you're talking about Is something ke AJAX. What happ
client runs Javascript code from the server that launches a new HT

something based on the parameters in this call and responds wilh some kind of data (usually XML, the X in AJAX) The cllent Javascript oy 472820
Points 0 knows the format of the data it will receive and uses it 1o update information on the page. If the site wants a page or component to (‘_ Student 1117:30 §
constantly update, i wil send Javascript to the client that runs a loop that sends these fequests out at some rate. This whole process s not PM
exactly an internet standard but it is a common enough pattern that & has a name and taked about in the same way in many different
appacations.
Post Comment:
as Bob Saget(Studer
Post Comment

220 AM
5/6/2015

Figure 12.2.2b

112

W1 Creddit- Comment x

g [| localhost 7 read?t

successfull

Points: 2 Upv

| am not sure if the book goes into this, but a closely related topic to concurrent programming is the idea of asynchronous programming. Asynch
programming is the idea of issuing asynchronous calls to some sort of endpoint or application. What this allows an application to do is fire an
asynch. call to some back end point and set a callback method to perform some sort of action once the call returns. This is very powerful especially
on the web since it allows an application to make interactions with the database without affecting the user with a page refresh for instance. The
reason this Is related to concurrent programming is because multiple asynch. calls can be issued to performs various operations and then their
results can be caught in a callback if needed

by Bob Saget (Student) on 5/5/2015 111549 PM

1 agree with Pawel using asynchronous programming is very heipful in the area of concurrent programming. As he mentioned, before it
enables us 10 access the database and get information, or push information before using 1 in the next ine of code. Using this type of
programming aiso heips make the user experience better as while using the asynchronous call we can have something like an
indeterminate progress bar to et the user know that the program s doing something (like accessing the database)

n
Arready Voted Points: 1 Student

. Will any of these asynchronous calls effect the concurrency of the program? I'm sure resources may clash in the system siowing the = Sk
Points: 0 i Faculy 111616 3
- 55 down?

pr

| think what you're talking about is something like AJAX. What happens to update information without a page update s the following The
client runs Javascript code from the server that launches a new HTTP request (but does not cause a page
something based on the parameters in this call and responds with some kind of data (usually XML, the X in

resh) The server does
JAX) The client Javascript 4728020

Kyuin <
= t W Points: 0 knows the format of the data i wl receive and uses It 1o update information on the page f the sie wants a page or component to o Swdent 114730 5
constantly update, i will send Javascript to the client that runs a loop that sends these requests out at some rate. This whole process is not M
exactly an internet standard but it is a common enough pattern that ft has a name and talked about in the same way in many different
apphcations.

Post Comment:

as Bob Saget(Student)

Using this type of programming also helps make the user experience better as while using the asynchronous call we can have something ike an indeterminate progress bar ta let the user know that the
program is doing something (ke accessing the database)

Post Comment

221 AM
5/6/2015

Figure 12.2.3a

W1 Creddit- Comment x

.= C & | [} localhost:37472/Thread?t

Points. 2 Upvote successfull

| am not sure if the book goes into this, but a closely related topic to concurrent programming is the idea of asynchronous programming. Asynch
programming is the idea of issuing asynchronous calls to some sort of endpoint or application. What this allows an application to do is fire an
asynch. call to some back end point and set a callback method to perform some sort of action once the call returns. This is very powerful especially
on the web since it allows an application to make interactions with the database without affecting the user with a page refresh for instance. The
reason this is related to concurrent programming is because multiple asynch. calls can be issued to performs various operations and then their
results can be caught in a callback if needed

by Bob Saget (Student) on 5/5/2015 111549 PM

1 agree with Pawel using asynchronous programming is very heipful in the area of concurrent programming. As he mentioned, before it

412812015
enables us 10 access the database and get information, or push information before using f in the next ine of code. Using this type of Elzabeth _ &
Aready Voted Points: 1 Student 11:16:59 4
programming aiso heips make the user experience better as while using the asynchronous call we can have something fike an Chao o
indeterminate progress bar to et the user know that the program s doing something (like accessing the database) 8
412812015
., Wil any of these asynchronous calls effect the concurrency of the program? I'm sure resources may clash in the system siowing the
Points. 0 i« Blah Faculy 111616 3
: process down? Fa

1 think what you're talking about is something like AJAX. What happens to update information without a page update is the following: The
client runs Javascript code from the server that launches a new HTTP request (but does not cause a page fefresh) The server does
Something based on the parameters n his cal and responds wh some kind of data (usually XML, the X in AJAX) The clent Javascript 41262015
S t W Points 0 knows the forn it will receive and uses it 1o update information on the page. If ants a page or companent to K Stdent 114730 5
constantly update. it wil send Javascript to the client that runs a loop that sends these requests out at some rate. This whole process fs not M
)y an internet standard but i is a common enough pattern that & has a niame and talked about in the same way in many diferent
appications.

e dat

e

2 ¥ Pos o Usng s e of programmng also helps make the user experience betir 35 il usg the asynchvanous cal we can have somethng T
Points 0 Studen

ke an indeter

(ke accessing the database) Sag

rogress bar 1o let the user kn e program is doing something

Post Comment:

Posting as Bob Saget(Student): Posting comment was s

22 AM

5/6/2015

Figure 12.2.3b

113

J i Credat-Forum %\ ==l - oIEE

€ 5 C i Dlocalhost c@O =

err inan ag g
2 ex etermin enomena are i ena in which th be det] ence. Whe Elzabeth Chao (Student)
15304 PM
) - . 501120
an sense feal events such as g b nd causing events u ages on a scree urning device " Mario (Studen
2 P ¢ 5 o i 1:51:20 PM
; ba : 3) and 4 ing unstructu , N
1 e hi e b r r . e nere are many f t NoSQL databases (.. key- Kyupn Kim (Student
i A 5040 PM
tder to utiize fractal tree indexin was invented by Mich partin] ! skin
; ar \ | was expiained that fractai tree ve on B 3y data is stored on the disk What mal
bitty to scal ans that Tokutek how the data he typ ata tha
1 atly explain t uestion is what a ne r 1 ML diagrams? How Kyle Clark (Student)
e 24 e Not jest-ba hronou: m it based
ntirely on the event-based mode dejs or I bing" 1o an action at for d e
5172015
0 xamp fie in N 2t the read 1 a vack, which o 1 whe 2 armiv ' € abeth Chao (Student)
) 4 . AS 14816 PM

Forum Post:

Posting as Bob Saget(Student)

K unique is i is ability to scale horizontally. This means that Tokutek focuses on how the data is store, not on the type of data that is being stored. This is true with MySQL or
MongoDB for Instance. As @ matter of fact Tokutek actually forked implementations of both MySQL and 10ngoDB and Improved making the copper and silver diamonds a big butt?

Post in Forum

Credatt

. 223AM
- al PilA

5/6/2015

Figure 12.2.4a

12 Creadit-Forum = \ ==l - oIEE

« [| localhost

Recent:

Points Post Time Added

5672015

0 e g sord Tl et SOL o i of 0 Touaok sl oted e Bob Saget (Student ey
1 o b i e e i ‘ ; ; b Sagat S0
. X 5 ypus Bob Saget (S i
o S P o e s572015
2 o ufin Kim (Stude
2' dous not expand on this, Can somecne pleese ex this w the case Sy ok Studaat 111940 P
‘ ays b ! esoiution on a pa o) 62015
1o h ocking raech ’ o103 n wver) Kyvjin Kim (i
1 chent R Seye s thmhac B ey Shrees etk b, A, mad Dont s i Bhers st ikt nvieble, Block? Gae someceie Velly il vy (e, (tindert
0 rized (heyBock " . P emaphly v b X (Student
am not sure ok " ey related curvent progrann s 5 programm
wogramring ia the dea of issuing X . ; pplication. W an appiicatior
P {2 callback me dorm son f act » turms, This s ve s 52015
2 powerh especally an application to mak " the databa i affect pogs TSRO, (Stadent 111549 P
' ; & s O T Lo whop " 6 St 52015
progamming. T s ad dotiog OpmraingSysans i e Kara iporan st of Concuen ingla B Sagt S
O | ik et N St o s A s b : mena, & s o Sost
b g the .
3w . hat these types can be changed by various op Bob Saget (Student
peisasy tocs that sy cboseye . e si o st X e
P Ke\YoLi(Stk 22337 PM

224 AM
5/6/2015

Figure 12.2.4b

114

3. Providing Tutoring (UC-2)

]
€ 5 C fi [localhost37472/Tut o e B O =

Tutor
Subjects:
w Art

s English
= History
»Math

= Science

© 2015 - Creddit

~ ol et

Figure 12.3.1a

W1 Creddit - Tutor =\

L € f [localhost

o
mn

Tutor
Subjects:
= Art
= Art History
ENzabetn Chao
= English
s Writing
= History
@ US Histary
» World History
= Math
+ Cakulus
Calculus 1
Multivariable Calculus
= Differential Equations.

= Science
Physics

= Chemistry

Kyle Clark
Biology

© 2015 - Creddit

Figure 12.3.1b

115

W1 Creddit - TutorPage x

=

W1 Confimation Page x

=

c#

c#

= - clEE

[localhost:3747.

= Back i Tulurs

Tutor : Elizabeth Chao
Subject: Art History

Rating: Noll

Reviews;

v Fating

No reviews have been posted yet!

Tutoring Schedule

S Me Tuowe Ta B fa

Please select one of the available times
51472015 4:00:00 PM

I is your desired Sme, click confirm

Confirn

© 2015 - Creddit

Figure 12.3.2a

[localhost:3747.

Congratulations!

ou are now registered for a tutoriag session for Art History with Elizabeth Cltao

Back o Tutors

Figure 12.3.2b

116

W1 Creddit - TutorPage x

+ € & [localhost37472/Tutor

<Backin Tulors
Tutor : Kyle Clark
Subject: Chemistry

Rating:4

Reviews;

Very helgral

B o (Limit 100 oy

Kyle s a helpful and fantastic tutod

Give a rating (110 5): 5

Submit

Tutoring Schedule
s s

There are no available times.

© 2015 - Creddit

-l Pl

Figure 12.3.3a

W1 Creddit - TutorPage x

+ € & [localhost37472/Tutor

- SN
@0 =

= Back i Tulurs

Tutor : Kyle Clark

Subject: Chemistry

Bating: 4.5
Reviews;

eviews Fating
Fyte s a helgful and fantastic ol |5
Very helptul &

Post o review Limit 100 characters|

Give a rating (1 to 5): |

Subrit

Tutoring Schedule

There are no available times.

© 2015 - Creddit

Figure 12.3.3b

117

4. Sign-up (UC-3)

Creddit - Register x |

« [| localhost t/Registe C

Register

Create a new account

Full Name

Account Type © Student
Faculty
Email
SchoollUniversity
Degree/Major
Password
Confirm password
Register

© 2015 - Creddit

229 AM

A
= DA o

Figure 12.4.1a

W1 Creddit - Register %\
« € [localhost:3747. int/Regist]

Register

Create a new account

Full Name

The full name field is required.

Account Type Student
Faculty

Emall

SchooliUniversity

DegreelMajor
The DegreeMajor field is req

Password

The password field s required

Confirm password

The canfi password field is required

Register

© 2015 - Creddit

Figure 12.4.1b

118

Creddit - Register _ x \ M Inbox (850) - jonyar. % | M CREDDIT Confirmati %

<+ Ccf localhost

Register

Create a new account

Full Name Jonathan Yang

AccountTyps * Student

Faculty
Email | scizzor21@gmail. com
SchoollUniversity | Rutgers

DegreaMajor | ECE

Password

Confirm password

Register

5 - Creddit

233 AM

Al PilA

5/6/2015

Figure 12.4.2a

J/ | Creddit- Register x \(MIABGK(850) = Jonyan % 11 CREDDIT Confitmat % [e [OY x|

& C & [localhost t/Registe .

Register

Create a new account

Full Name Ivan Marsic
Account Type Student
«Faculty

Email

SchoollUniversity | Rutgers

DegreaMajor | ECE

Password

Confirm password

Register

2015 - Creddit

33 AM
5/6/2015

Figure 12.4.2b

119

ECTI =3 - SEN

« cH localhost o 0=
Login
Email
Password
Email ut Emall Veerifier
Vesifcation
Login

Figure 12.4.3a

T T G i T e [oo =] x|

€ £ |8 https//mail google.com P 0 =
Google

Gmail ~ 10f7,533

CREDDIT Confirmation Email

Inbox {63} credditse@gmail.com 2:31 AM (0 minutes ago)
Important t -

Sent Mail

Drafts (75)

Spam (20)
More labels ~

1.38 GB (9%) of 15 GB used Torms - Privacy
Manage Last account activity: 4 minutes ago

R

[Search peopie.___| e
Albert Park
Amy Chen

Brian Chang

Eva Wu
Helen He

James Yoon

L]
L]
[]
@ Eddie Lin
®
[]
L]
®

Pastor Tim

- 18181074

232 AM

<l Pe A o

Figure 12.4.3b

120

| Creddit - Log in x

« C & [localhost

M Inbox (850) - jonyan. x

T CREDDIT Confitmatl X7 | Creddit - Log in x

Login
Your Faculty account is under review. Please check your email and wait 2-3 business days.,
Email marsic@rutgers edu

Password

Login
Register if you dont have an account!

© 2015 - Creddit

Figure 12.4.4a

O hitps/fcontentsak. x | O https;/fcontent.sak. x

€ & C & & hitps//mail. google.com/mail/u

RUTGERS

The State University
of New Jersey

Mail ~

I Inbox (42)
Starred
Important
Sent Mail
Drafts (1)

More labels ~

jonyang7777

© https://contentsak. x | Q) hitpsy/fcontentsak. x | w Travelling salesman %

- a o [| | W - More *

CREDDIT Faculty Verification Email Inbox x =

credditse@gmail.com 2:35 AM (0 minutes ago) - s

tome |=

Please send a proof of employment at your University (i.e. Paystub, Certificate, Faculty Identification Card, etc.) to
credditSE @gmail.com with the Subject 'Faculty Verification'. Your account will be reviewed by a CREDDIT administrator.

Using 0 GB Program Policies

Last account activity: Jan 25
Powered by (GO g]c

P T e A e T ey | - foi=] x|

0=

o jy375@scarletmail rutgers.edu ~

10f58 < >

-

credditse
credditse@gmail.com
= -

Show details

Figure 12.4.4b

121

©
mn

5. Login (UC-4)

= M Inbox (850) - jonyar. x | M CREDDIT Confirma

Creddit - Log in

= c#

localhost

Login

Email | ssei@gmail com

Password

Login

if you don have an account

© 2015 - Credit

-l Pl

©
mn

Figure 12.5.1a

ol
Bo

%) | Creddit - Log in x|

x| Creddit - Login

= M Inbox (850) - jonyan x | M CREDDIT Confirma

Creddit - Log in

cocH

localhost:
Login
Incomect username of password,

Email

Password

Login

if you dont have an account!

© 2015 - Creddit

Figure 12.5.1b
122

| Creddit - Log in % ' M Inbox (850) - jonyar x | M CREDDIT Confirmat: x /' | Creddit - Log in x
L € A [localhost37472/Account, i Q

Login

Email | assi@pmail com

Password |

Login

if you dont have an account!

© 2015 - Creddit

Figure 12.5.2a

| Creddit-Login % | MInbox (851) - jonyan * | M CREDDIT Confirmat. % 1| Creddit-Login %) | Creddst - Home Pag x - sIEN
€ & C i [localhost37ar °

Newsfeed:

Points Post User Time Added

The three main states of threads are New

Alive, and Dead. | don't understand why a new thread object cannot yet run, thus making it different

5/5/2015
14 from alive and dead. | feel as though the New state is kind of useless. It doesn't contain any substates and it's only purpose is just to confirm ~ Bob Saget (Student) 11:20:34 PM
that it was just created, If a thread is aiready going to change to Alive/Dead staes anyway, what's the point of having a New state?
On page 174 the text says "A value is an Intangible individual that exists out side time and space, and is not subject to change", however it then /52015
3 goes on to list Ints, chars, and strings as examples. Obviously, we know that these types can be changed by various operations in the code. In Bob Saget (Student) 3'33 26 BM

vh

change

t way does the text mean to say that they are not subject

| am not sure if the book goes into this, b

josely related topic to concurrent programming is the idea of asynchronous programming.
Asynch. programming is the idea of issuing asynchronous calls to some sort of endpoint or application. What this allows an application to do is
fire an asynch. call to some back end point and set a caliback method to perform some sort of action once the call returns. This is very powerful 5/5/2015

Z Bob Saget (Student
especially on the web since it allows an application to make interactions with the database without affecting the user with a page refresh for 0. () 11:15:49 PM
instance. The reason this is related to concurrent programming is because multiple asynch. calls can be issued to performs various operations
and then their results can be caught in a callback if needed.
The end of the chapter states that "control of access to shared resources itself can introduce probiems, e.g.. it can cause deadiock”, but it does 5/5/2015

2 ¥ = m 9 Kyujin Kim (Student)
not expand on this. Can someone please explain how this wou the case 11:19:40 PM
| believe it says a thread has only three states? New, Alive, and Dead and then there are substates runnable, block? Can someone verify that RS 5/5/2015

1 Kyujin Kim (Student)
am interpret this correctly? 11:19:07 PM
There are multiple ways to avoid race conditions when several tasks require data resolution on a particular piece of memory. One of those ways 51512015

1 is through locking mechanisms, in which two of the mainly used ones are a poll based and another an event based lock. How can you Kyujin Kim (Student) AT 1500
determine when the event based lock is too slow to implement, when a spinlock might actually have significant performance gains?
Concurrent Programming is a very useful type of programming it allows the ease of use of multiple processors and reactive applications due to
the fact the user expects a fast response from the system, allowing different parts of the processor to react due to the fact of concurrent 5152015

0 programming. This Is used greatly in designing Operating Systems In the Kernel Level. One important feature of Concurrent Programming is Bob Saget (Student) 11:15:09 PM
threads. A thread is a sequence of processor Instructions which can share a single address space with other threads thus they can read and :
write the same program variables and data structures
In listing 5-6 on pages 279-281 | was confused about the critical regions. Why are the locks necessary after synchronized (keyFront_) and " 5/5/2015

0 9 pag 9 i 2 e % e _ Kyujin Kim (Student)
synchronized (keyBack) | don't see how this is a shared structure. Can anyone help exemplify why it could be a problem if the lock was re 11:18:55 PM

In the domain types, | understand there are different types/versions of domains. The two main ones are given domain and designed domain.

Given domaln is ing we can de

pe of problem domain where the properties are given. It is not som

ign it (like a precondition that is given

2:40 AM
5/6/2015

Figure 12.5.2b

123

12. Design of Tests

The following test cases will be programmed and used for unit testing: Login, Sign up,
Posting, Tutor Session, and Advance Search. This section will only describe how the test
cases are designed. For further details, the algorithms and user interface requirements will
be tested in the demo.

Integration Test links all to most unit tests into one testing component of the system. For
this system, the Integration Testing strategy that will be used is Vertical Integration. This
method is the better approach to develop user stories in parallel. Each cases starts with the
user working on the acceptance tests, which will test a particular user case. It seems
reasonable to write the unit tests based on acceptance tests and use cases because there
are necessary code that is relevant to it.

irwal id-key [5 =ma=zNumOfattampts]
o signal-ladure
."l-j"r -‘.-\".
|_|w-.':| Id-[kﬁ"l . : v invalid-key
. signak-fatlure |5 >m fthumD'l.Pntten;Els] '
Logm = Attempts —— Email notifier of
. blocked account
""“mk
‘\-;
valid-key | 1. ;
signal-success f W
y
}j/ ||:|_||:j _hE.ljr Bl OEkEd
L _,-f‘-] _in s
_ SIOMal-SUECEss
Successfully | l
Loggedin |~ ®

Figure 13.1 - State Diagram of Account Authenticator (Login)

Account Authenticator State Diagram:
o States {Blocked, Attempts, Login, Successfully Login}
o Events {valid-key, invalid-key}
e Valid Transitions {Login — Successfully login, Login— Attempts, Attempts—
Attempts, Attempts— Successfully login, Attempts— blocked}

124

In this test case, the Account Authenticator will be tested to verify if users can access their
respective account successfully. The test will cover the different attempts of successes and
failures in logging into the system.

.) [nformation Approva Email
Sign Up — - - Se-nd confirmation email

Confirmation

Successfully
Signed up

Notifies system of successful confirmation

Figure 13.2 - State Diagram of Account Creator (Signup)

Account Creator State Diagram:
o States {Confirmation, Email Notifier, Sign up, Successfully Signed up}
o Events {Information Approval, Invalid Email/SIgnal Failure, notifies system, sends
confirmation}
e Valid Transitions {Sign up = Email Notifier, Email Notifier - Email Notifier, Email
Notifier — Confirmation — Successfully Signed up}

In this test case, the Account Creator will be tested to verify if user can create a new
account successfully. The test will cover the success scenario of creating an account and
will test the Email Notifier as well when the creation of an account fails.

. Uploading post
Posting Post Successful

Figure 13.3 - State Diagram of Post Creator (Posting)

Post Creator State Diagram:
o States {Posting, Post Successful}

125

o Events {upload}
e Valid Transitions {Posing — Successfully Signed up}

In this test case, the Post Creator will be tested to verify if user can post or upload a new
discussion successfully. The test will cover the success scenario of creating a post since the
rate of failure is at the minimum to zero.

Student joins tutor session

Tutor — &

‘ Tutor joins tutor
session .

Tutor/Student has ailed

joined the tutoring Failed to B

]session - Arrive 3<timesfailedtoaryv Remove

Confirm Arrival - - Failure to arrive for session

Valid Tutor
Session

Figure 13.4 - State Diagram of Session Validator (Tutor Session)

Session Validator State Diagram:
o States {Student, Tutor, Confirm Arrival, Valid Tutor Session, Failed to Arrive,
Remove}
o Events {joining, fail to arrive}
e Valid Transitions {Student/Tutor — Confirm Arrival, Confirm Arrival — Valid Tutor
Session, Confirm Arrival — Failed to Arrive, Failed to Arrive - Remove}

In this test case, the Session Validator will be tested to verify if the approved users joined

the specified tutor session successfully. The test will cover the success scenario of starting
a tutor session and the fail scenario of creating a tutor session.

126

4 Return Results

Found results for input requested

Input being searched r_ Searching

Failed to find results for input requested

No Results
Found

Figure 13.5 - State Diagram of Searcher (Advance Search)

Searcher State Diagram:
o States {Input, Searching, Return Results, No Results Found}
o Events {input searching, failed to find results, found results}
e Valid Transitions {Input = Searching, Searching — Return Results, Searching = No
Results Found}

In this test case, the Searcher will be tested to verify if the users can search keywords

successfully. The test will cover the scenarios of finding search results and displays them to
users.

127

13. History of Work, Current Status, and Future
Work

Our group has decided that the role of project management will be split equally
among our members, however Nathan del Carmen will be tasked with the responsibility to
ensure that the members are completing their work on time as well as making sure that all
the deadlines are met. We have decided to meet every Wednesday morning at 10:00 am at
the Reading room library at SERC. There we review the work that is to be done that week,
review professor and TA’s emails, split the work, brainstorm about what needs to be done
and how we will accomplish it and ensure that everyone is on the same page with regards
to where our project is heading and the direction we want to take it. Nathan del Carmen
will also be in charge of configuration management. If we believe that it is necessary to
meet again, we meet on Thursday or Friday. Our group keeps in touch using the group
messenger app that Facebook provides.

13.1 Merging the Contributions from Individual Team Members

Luckily every member of our team had a time slot in which we could all meet at the same
time. This allowed for excellent communication throughout the group and everyone was
onboard with any changes that happened. We had decided early on that the report would
be done in Times New Roman. Main topics would be done in 20 font bolded, subtopics
would be 12 font bolded, and everything else is 12 font un-bolded. Our work was
conducted through Google Docs so all members were able to work on the project at the
same time and ensure everyone was consistent. After passing the 100 page mark on Report
1, Google Docs became unusable due to the slowness of the application. For Report 2, we
created another Google Doc to store the report. Google Docs does not allow you to convert
it into a PDF, thus we needed to move the report into Microsoft Word in order to convert it
to a PDF. However when we copied the Google Doc into Microsoft Word, the alignment of
pictures, numbers of pages, and other format issues arose. Jon Yang was in changes of
correcting all these issues and held the master copy of each iteration of the report.

13.2 Project Coordination and Progress Report

Our classes and functions implemented above with the multiple systems in place will be
split up between our members. Some cases which are already functional on our site are the
basic forum functionalities, a simple point system, account type handling, sign up and log
in. These functionalities are still bare bones, thus are implemented but not yet fully
functional or finalized to a degree of user acceptance. More testing must still be done to
make sure all the current acceptance tests passes to prevent any bugs/glitches from
occurring. We currently plan on expanding our website by adding the basic functionalities
of the tutoring section while continuing to clean up our current functionalities before the
demo presentation. Our plan for the presentation is to show a clean functional basic update
of all the working functionalities we currently have in place, including every features’ code,
database, SQL scripts, and system functions. In terms of project management activities, our
responsibilities for each feature/use cases are broken down below in our “Breakdown of
Responsibilities” section.

128

Update: The cases that are currently functional on our site are the search bar, tutor page,
basic forum functionalities, a more complex point system, account type handling, sign-up
and login. These functionalities are starting to become more and more like the design that
we intended for it to look like. At this point, it would probably still need more testing to be
done to make sure that all the previous and the current acceptance tests pass. We plan on
expanding our website hopefully implementing the chat system or the documents feature
while continuing to clean up our current functionalities. Our plan for the future is to show a
clean functional basic update of all of the existing functionalities as well as the search bar.
In terms of project management activities, our responsibilities for each feature/use cases
are shown below in our “Breakdown of Responsibilities” section.

13.3 Plan of Work
Comtems laway Eebruary

Proposal Project Proposal —
Report 1 Customer Statement of Requirements

System Requirements

Functional Requirements Specifications

User Interface Specification

Domain Analysis -—

Plan of Work * >
Report 2 Interaction Diagrams -~

Class Diagrams & Interface Specification

System Architecture and System Design

Algorithm and Data Structures

User Interface Design and Implementation

Design of Tests

il
-
E
;

i

i

I

Project Management and Plan of Work
First Demo Interface Design

Database Structure *

Eystem Architecture Design -

First Demo Debugging *
Report 3 Report Format -—

Effort Breakdown =

Reflective Essay -—
Second Demo Algorithm Design “+ >

Testing -
Add Specific Features -

Second Demo Debugging ———

ey

Yy v w

b

A4

129

a. Breakdown of Responsibilities
All team members contributed equally.

Report Distrubution

Project Management (16 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Sec.1: Interaction Diagrams (30 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Sec.2: Class Diagram and Interface 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%

Specification (10 Points) 100%
Sec.3: System Architecture and System 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%

Design (15 Points) 100%
Sec.4: Algorithms and Data Structure (4 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%

Points) 100%
Sec.5: User Interface Design and 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%
Implemention (11 Points) 100%
Sec.b: Design of Tests (12 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Sec.7: Plan of Work (2 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Sec.8: Refrences (-5 Points) 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29%| 14.29% 100%
Total Points that could be aquired 100

Points Aquired 14.29 14.29 14.29 14.29 14.29 14.29 14.29 100.00

Responsibility Allocation

20
18
16

14
12
10

Nathan del Elizabeth KawaiChu Kyle Clark Kyujin Kim JonYang Daniel Lee
Carmen Chao

Responsibility Allocation
(Max Points Earned)

o N B~ oo

Team Member Name

13.4 Breakdown of Responsibilities

Our team is divided into three sub-teams of groups two, two, and three. Each
subteam is responsible for their own product (forum, tutor/point system), while all groups
will collectively work on one more topic (search). Each subgroup will include necessary
UML diagrams and charts. Each subgroup will meet at least one-to-two times a week, and
the entire group will meet biweekly. More meetings will be scheduled if found necessary.
The subgroups/entire group will meet in meetings that last 1-3 hours long. Each meeting
will have a planned agenda specifying which topics to cover. General meeting discussions
will start of with (1) filling in on what everyone is working on/did, then it will proceed with
(2) particular issues and questions that need to be resolved, and last it will conclude with
(3) future plans and what to do. Each week a different member will lead the meeting to
ensure everyone is on track and everyone is doing their job.

The subgroups split into the following:

130

Forum: Team A (Kyujin Kim, Daniel Lee)
UC-1 - Posting in Forum — Kyujin Kim
UC-13 - View Forum — Daniel Lee
UC-14 - Saving Draft Forum Post — Daniel Lee
UC-15 - Autosave Comments — Kyujin Kim

Tutor/Point system: Team Alpha (Kawai Chu, Elizabeth Chao, Nathan
DelCarmen, Jonathan Yang)
UC-2 - Signing up for Tutoring — Elizabeth Chao
UC-9 - Upvoting/Downvoting — Kawai Chu
UC-10 - Becoming a tutor — Nathan DelCarmen, Jonathan Yang
UC-11 - Point decay — Kawai Chu
UC-12 - Point reset — Elizabeth Chao
UC-16 - Update Schedule — Nathan DelCarmen
UC-17 - Check Tutoring Signups — Nathan DelCarmen

Login/Signup: Team 1 (Kyle Clark, Nathan DelCarmen)
UC-3 - Sign Up — Kyle Clark
UC-4 - Login — Kyle Clark

Search: Team A / Team Alpha / Team 1
UC-6 - Using the Search Bar — Jonathan, Nathan, Kyle

Note: We have decided that we will be focusing our efforts on these features, the forms, the
tutor and point system, login and signup, and the search bar. We believe these are the features
that are the ones that are the most vital to our website and key to its survival. Other features
such as the career post, the chat, and the email were deemed unessential.

131

14. References:

1. Randi Weingarten is President of The American Federation Of Teachers
http://blogs.edweek.org/teachers/classroom ga with larry ferlazzo/2013/02/respon
se how peer assistance can improve teacher practice.html

1. How Bad Is the Job Market for the College Class of 2014?
http: //www.slate.com/blogs/moneybox/2014/05/08 /unemployment and the class of
2014 how bad is the job market for new college.html

1. We will use this website to find a search bar and use it in our project.
http://www.dmoz.org/Computers/Open Source/Software/Internet/Search Engines/

1. We will use this website to obtain a grasp of how wikipedia works and extract ideas
from it.
http://en.wikipedia.org/wiki/List of wiki software

1. This is the basic outline of what must be done in our project, and we have followed the
descriptions precisely.
http://www.ece.rutgers.edu/~marsic/Teaching/SE /reportl.html

132

http://blogs.edweek.org/teachers/classroom_qa_with_larry_ferlazzo/2013/02/response_how_peer_assistance_can_improve_teacher_practice.html
http://blogs.edweek.org/teachers/classroom_qa_with_larry_ferlazzo/2013/02/response_how_peer_assistance_can_improve_teacher_practice.html
http://www.slate.com/blogs/moneybox/2014/05/08/unemployment_and_the_class_of_2014_how_bad_is_the_job_market_for_new_college.html
http://www.slate.com/blogs/moneybox/2014/05/08/unemployment_and_the_class_of_2014_how_bad_is_the_job_market_for_new_college.html
http://www.dmoz.org/Computers/Open_Source/Software/Internet/Search_Engines/
http://en.wikipedia.org/wiki/List_of_wiki_software
http://www.ece.rutgers.edu/~marsic/Teaching/SE/report1.html

