
Software Engineering

Report 3

Automatic Delivery System

Li Liu
Bowen Pan
Tuo Wang
Qiannan Li
Mehmet Aktas
Marc Gamell

Home web page
Code web page

Fall 2012

http://pbwpbw2008.wix.com/autodeliveryrobot
http://code.google.com/p/auto-delivery-system/

Contents

Contribution breakdown 1

Summary of Changes 2

1. Customer Statement of Requirements 4
1.1. Problem . 4
1.2. Automatic delivery system . 5

1.2.1. Simplified system-user interaction . 6
1.2.2. Web and mobile interface . 6
1.2.3. Multiple Delivery . 6
1.2.4. Database of addresses and passwords . 7

1.2.4.1. Barcode scanner . 7
1.2.5. Automatic battery charging . 7
1.2.6. Location Capability . 7
1.2.7. Security concerns . 8
1.2.8. Delivery Confirmation . 8
1.2.9. Automatic failure detection - Maintenance . 8

1.3. Scalability of our solution . 9
1.3.1. Delivery delay . 9
1.3.2. Mutiple-floor deliveries . 9
1.3.3. Multiple-building deliveries . 9

2. Glossary of Terms 10

3. System Requirements 13
3.1. Enumerated functional user stories . 13
3.2. Enumerated non-functional user stories . 15
3.3. Acceptance tests for user stories . 15
3.4. On-screen Appearance Requirements . 21

4. Functional requirements specification 25
4.1. Architectural style . 25
4.2. Stakeholders . 26
4.3. Actors and goals . 26
4.4. Use case diagram . 26
4.5. Use cases casual description . 28
4.6. Traceability matrix . 29
4.7. Use cases fully-dressed description . 29

4.7.1. BookDelivery . 29
4.7.2. MoveRobotToPoint . 31
4.7.3. PositionInspection . 33
4.7.4. SetMotorSpeedL/SetMotorSpeedR . 33
4.7.5. ChargeBattery . 34
4.7.6. Login . 34
4.7.7. Access Delivery Record . 35
4.7.8. Notify Error . 36
4.7.9. Track Delivery Status . 36
4.7.10. Authentication to Robot . 37
4.7.11. Notify Receiver . 38

ii

4.7.12. Obtain Help . 38
4.7.13. Pickup Package . 39
4.7.14. Delivery . 39
4.7.15. ManageUser . 41
4.7.16. EditUserInformation . 41

4.8. Acceptance tests for Use Cases . 42
4.9. System sequence diagrams . 59
4.10. Risk management . 59

5. Effort Estimation Using Use Case Points 69

6. Domain Analysis 71
6.1. Domain Model . 71

6.1.1. Concept definitions . 71
6.1.1.1. Boundary concepts . 71
6.1.1.2. Internal concepts . 72
6.1.1.3. Summary of concepts . 74

6.1.2. Attribute definitions . 74
6.1.3. Association definitions . 76
6.1.4. Traceability matrix . 80

6.2. System Operation Contracts . 80
6.3. Mathematical Model . 87

6.3.1. Track detection . 87
6.3.2. Path resolution . 87

7. Interaction Diagrams 94
7.1. Login and BookDelivery . 94
7.2. PickUpPackage and Delivery . 96

8. Class Diagram and Interface Specification 101
8.1. Class Diagram . 101
8.2. Data Types and Operation Signatures . 103
8.3. Traceability matrix . 111
8.4. Design Patterns . 111

8.4.1. Singleton Pattern . 111
8.4.2. State Pattern . 112

8.5. Object Constraint Language (OCL) . 118

9. System Architecture and System Design 123
9.1. Architectural Styles and Subsystems . 123

9.1.1. Client/Server and Master/Slave Architectures . 123
9.1.2. Three-tier architecture . 124
9.1.3. Facade Pattern . 125
9.1.4. Event-driven Architecture . 125
9.1.5. Summary . 125

9.2. Subsystems . 126
9.3. Mapping subsystems to hardware . 126
9.4. Persistent Data Storage . 127
9.5. Network Protocol . 127

9.5.1. Network between Server and Clients . 130
9.5.2. Network between Server and Robot . 130

9.6. Global Control Flow . 130
9.6.1. Execution Orderness . 130
9.6.2. Time Dependency . 131
9.6.3. Concurrency . 131

9.7. Hardware and Software Requirements . 131

10.Algorithms and Data structures 133
10.1. Algorithms . 133
10.2. Data structures . 135

11.User Interface Design & Implementation 138
11.1. User Interface Design & Effort Estimation . 138
11.2. Interaction of User Interfaces . 138
11.3. Detailed User Interface Implementation . 146

11.3.1. Register and Edit information . 146
11.3.2. Book Delivery . 147
11.3.3. Track Deliveries Status . 147

11.4. Improvement in UI Implementation Compared with UI Design 149

12.Design of Tests 150
12.1. Test cases in Unit Testing . 150

12.1.1. Strategy to Do Unit Testing . 150
12.1.2. Test Cases in Unit Test . 150

12.2. Test Coverage . 151
12.3. Integration Test strategies . 151

13.History of Work, Current Status, and Future Work 153
13.1. History of Work . 153
13.2. Current Status . 154

13.2.1. Communication Mechanism among software components 154
13.2.2. Features in Auto Delivery System . 155
13.2.3. Non-Software Problems and Solutions . 158

13.3. Future Work . 160

Bibliography 162

A. Existing commercial solutions 165
A.1. Traditional system . 165
A.2. Integrated delivery system using pipes . 165
A.3. Drug delivery using robots . 165
A.4. Automated warehouses . 166

B. Interaction Diagram for UC-8 Delivery 167

Software Engineering - Project Report 1

CONTRIBUTION BREAKDOWN

Responsability Li Liu Bowen Pan Tuo Wang Qiannan Li Mehmet Aktas Marc Gamell

Chapter 1 5 10 20 20 10 45
Chapter 2 33 33 33
Chapter 3 10 10 20 20 15 25
Chapter 4 12 12 12 12 12 40
Chapter 5 16 16 16 16 16 16
Chapter 6 10 10 10 10 10 50
Chapter 7. UML diagrams 50 50
Chapter 7. Prose descr. of diagram 50 50
Appendix 2. Alternative solution description 50 50
Chapter 8. Class diagram and description 16 16 16 16 16 16
Chapter 8. Signatures 16 16 16 16 16 16
Chapter 9. Styles 50 50
Chapter 9. Package diagram 50 50
Chapter 9. Map hardware 50 50
Chapter 9. Database 50 50
Chapter 9. Other design aspects 50 50
Chapter 10. Algorithms and data structures 33 33 33
Chapter 11. UI appearance 100
Chapter 11. UI description 100
Chapter 12. Testing design 50 50
Chapter 13. 25 25 25 12 12
Project Management 100

Table 0.1.: Contribution Breakdown for report 3

Responsability Li Liu Bowen Pan Tuo Wang Qiannan Li Mehmet Aktas Marc Gamell

program coding 50 50
unit testing 50 50
Integration test 50 50
Debugging 50 50
Design and Maintain Database 50 50
Data Collection 50 50
Brochure/Flyer Preparation 100
Slides Preparation 50 50
Program Documentation 25 40 17.5 17.5
project Management 16.6 16.6 16.6 16.6 16.6 16.6

Table 0.2.: Contribution Breakdown for demo 1

Responsability Li Liu Bowen Pan Tuo Wang Qiannan Li Mehmet Aktas Marc Gamell

Demo 2 10 10 10 35 35

Table 0.3.: Contribution Breakdown for demo 2

1

Software Engineering - Project Report 1

SUMMARY OF CHANGES

Following are the brief summary of changes in our project:

• In the website design, we update the website(including the new website address and the layout)
and upload the newest information.

• Add Bibliography into Table of Contents

• In Section 1.2.6 Location Capability, we add more explanations about how the tapes helps in guding
the moving way.

• In Chapter 2 Glossary of Terms, we modify the definitions of users and administrators.

• In Section 3.3 Acceptance tests for user stories, we add the alternative case for ACT1 and modify
the following explanations.

• In Chapter 7 Interaction Diagram, we made the following changes:

– In Section 7.1, Login and BookDelivery, we change expressions in explaining the interaction
diagram ’Logn and BookDelivery’

– In Section 7.2, PickUpPackage and Delivery, we modified the description of 5 interaction
diarams in order to better illustrate how these 5 interaction diagrams achieve the use case
PickUpPackage and Delivery together. We add explanations to the initiation factor of these
two use cases, and illustrate how we come up with the PickUpPackage/Delivery algorithm that
can handle with the time-unpredictable circumstance

• In Chapter 8 Class Diagram and Interface Specification, we made the following changes:

– In Section 8.1, Class Diagram, we refined the description of each packages and the relationship
between each other.

– In section 8.2, Data Types and Operation Signatures, we change all ‘partial class diagrams’.
We add classes NonBookedDeliveryException, ServerInitializedException, ServerNonInitial-
izedException and SystemStatus into the partial class diagram ‘Package Logic’; We also add
classes TimeoutException into partial class diagram ‘package resources.communication’; we
also added the description of the resource. datacontroller package.

– We added the Design Patterns in Section 8.4

• In Chapter 9 System Architecture and System Design, we revise description of some architectures
and some system design pattern to make it more readable for reader to understand.

– In Section 9.1, we add explanations to Facade Pattern and Event-driven Architecture, and
how our system implement these patterns.

– In Section 9.4, Persistent Data Storage, we add explanations to how all persistent classes can
be linked together to retrieve full information of a delivery.

– In Section 9.5.2, we use sockets as interface to communicate between robot and server, instead
of HTTP protocol.

– In Section 9.6.3, we add explanations and reference regarding multi-threading using Java RMI

• In Chapter 10 Algorithms and Data structures, we added more detailed descriptions to make this
part more clear.

– In Section 10.2 Data Structures, we add descriptions and plots explaining how hash tables and
linked list can be used into our system.

• In Chapter 11 User Interface Design & Implementation, we re-organize the structure of this chapter
to make it more readable. We also modified description of actual UI implementation and description
of improvements compared with mock-up design.

2

Software Engineering - Project Report 1

• In Chapter 13, we describe the history work, current status (including detailed explanation to the
features of robot and server) and future work.

3

Software Engineering - Project Report 1

1. CUSTOMER STATEMENT OF
REQUIREMENTS

Communication plays an important part in human society and has been always a great challenge to
human being. The fast development of computer network such as Internet provides an incompatible
convenient access and powerful tool for people to get and share the information they need and so we
are unprecedentedly linked with each other in this Information Age. The recent electronic version of
information does tremendously facilitate our communication, but it is not sufficient and may not be
convenient enough in some cases.

As Kevin Ashton put it in 1999:

We’re physical, and so is our environment ... You can’t eat bits, burn them to stay warm
or put them in your gas tank. Ideas and information are important, but things matter
much more. Yet today’s information technology is so dependent on data originated by
people that our computers know more about ideas than things.

Integrating physical objects into the information network and letting them become active participants
in the delivery processes may be the next stage of the communication development. In that sense, our
project comes into stage to help people handle some inadequacies of the Internet and partly implement
the idea of Internet of Things (see [12] and [55]).

1.1. Problem

Typically, in an office building there exists some necessities in terms of transferring packages and docu-
ments, such as:

1. Postman needs to distribute some correspondence to some rooms or a postbox in a daily basis.
Therefore, he or she may need to dispatch this work to another person or the final recipient may
need to check the postbox regularly.

2. Moreover, in some cases, the correspondence is delivered to a wrong person. This introduces
unnecessary delays and worries to both the recipient and the postman/post office.

3. Some collaborators in different offices (sometimes in different floors) need to share documents be-
tween them.

4. Some big file transfers done by regular e-mail or by using a central server and the building network
lasts 2 or 3 hours1.

5. For security reasons, some people do not trust network transfers (even when encrypted) for confi-
dential files. That is why some institutions still prefer internal regular mailing system.

6. Usually, departments have only a centralized powerful printer, which all the members in the de-
partment can share. Therefore, they may need to take a walk to the printing room for maybe a
single paper.

7. Similarly to the printer scenario, in huge buildings there are food courts in which people might like
the delivery service.

140GB file transfer in a perfect 100Mbps network would last about an hour

4

1.2. AUTOMATIC DELIVERY SYSTEM Software Engineering - Project Report 1

Figure 1.1.: Structure of the system.

The same delivery problem can be seen in many other environments. The need of distributing drugs
to all the patients in a hospital can be given as another typical delivery example. There is no need to
say how critical this process is, and how a machine can be used to improve reliability in front of human
mistakes.

The problem that all of these processes or situations have in common is that all are time-consuming
and, therefore, potentially decrease the work efficiency of employees. Moreover, the departments can feel
forced to hire some workers to deal with this kind of service.

1.2. Automatic delivery system

We propose a system that is going to deal with all the situations above! Briefly, our system will enable
users to book delivery services, will locate positions of both the sender and recipient. Eventually, our
system will pick up the object from the sender and will deliver it to its recipient. All these things will be
performed in an automated and secured manner.

We propose to deploy a user-targeted robot aimed to help the correspondence sharing and distribution.
The robot will have moving capability and will be able to hold multiple little packages (it will contain a
box with multiple sections). We will provide convenient ways to users to book a delivery such as web or
mobile interface.

Our system can make user’s lives much more time-efficient and, at the same time, will provide the
department a cost-effective, easy-maintainable solution. Moreover, the system will be scalable in several
aspects, as discussed in detail in section 1.3.

In the next sections you will find how our system will make your life easier! But for the impacient, the
most important features from the user point-of-view are the following:

1. Web and Mobile Interface

2. Multiple Delivery (secure sectioned storage with a locked lid in every section)

3. User Information Storage

4. Barcode Scanner

5. Automatic Battery Charging

6. Security Guarantees

7. Automatic Failure Detection

8. Detection of routes via marks on floor and magnets on important points

5

1.2. AUTOMATIC DELIVERY SYSTEM Software Engineering - Project Report 1

1.2.1. Simplified system-user interaction

As long as the main advantage to the user is to gain efficiency, the points of interaction between the
system and the user will be minimized. The compulsory contact points will be, however:

• The user interface (web and mobile application): to book a delivery pick up or to track a delivery
in progress.

• The keyboard integrated in the robot: to confirm the identity of the sender/receiver.

• The e-mail: to receive notifications such as soon pick up/delivery or possible problems.

• The ‘multi-sectioned’ security box on top of the robot: to deposit or take off the packages/mails.

Another important point to take in mind is the system maintenance. Although our robot will be
designed to be as much autonomous as possible, some situations can’t be avoided without human inter-
vention. That is why the costumer will need to allocate resources for these purposes.

Note that this design helps accomplishing the following goals:

• There is no need to give a training for the final users, because the system will be very intuitive.

• The maintenance team may require some training sessions, just to ensure that they have a clear
picture of the system, which information is given in case of an error, and what the maintenance
team is expected to do in case of a given error.

All the details about these contact points or other features that may ease the user experience are
discussed in the following sections.

1.2.2. Web and mobile interface

Our robot delivery system innovatively allows users to request or to book a delivery service through the
computer [56] in front of their desks or a convenient Android (see [1]) application on their phones (see
[19]).

Our human-robot interaction interfaces will be simpler and more interactive than other systems (see
a detailed comparision of our solution with other systems in section A.2, when talking about the user
interface). Users will get easy access to the system with the user-friendly GUI on the computer or
smartphones. Through this control platform, the users can just click and book a detailed request, and
eventually the robot will appear in front of user’s office to pick up the packages (see [2]).

1.2.3. Multiple Delivery

The auto delivery system should be able to deliver multiple packages [17] at the same time. These packages
might be issued by the same person or by different people, to a single address or different addresses. This
feature brings about two new questions. One is, how can we ensure the recipients of these packages receive
their corresponding packages without being mixed up and getting the wrong ones? Another question is,
how to prevent bad things happen, for example, some recipient take their own package, as well as taking
someone else’s on purpose.

Automatic Delivery System is able to deal with this! The container of the robot is divided into several
partitions, each with a slide and an automatic lock to cover the partition. When a delivery task is assigned
to the system, it generates a six-digit password and send it to the recipient by email or messages. The
recipient needs to enter this six-digit password (or its own username and password) using the keyboard of
the robot. If the system finds this correct, the corresponding cover will be unlocked and the recipient will
be able to access only to his or her package. In this way, different deliveries can be separated physically,
and the recipient will need to be authenticated before accessing its package.

Of course, this multiple delivery issue arises the question of package capacity. Actually the package
capacity will be determinant factor for the maximum number of packages that can be delivered simulta-
neously but the users that cannot be served during the time that the system is fully loaded can then be
scheduled as the prior users whom will be served right after the current task.

In short, the philosophy is here to provide a first come first serve basis delivery service which can be
used for multiple users and packages as far as the capacity allows.

6

1.2. AUTOMATIC DELIVERY SYSTEM Software Engineering - Project Report 1

1.2.4. Database of addresses and passwords

As our system is user-centered. Therefore, the sender user shall do delivery requests based on recipient
names, not based on places. This means that the user only needs to worry about who is the recipient of
the document or package he or she wants to share. The user does not need to worry about where it must
be delivered any more!

To allow this important feature, the customer may need to allocate a responsible for maintaining the
databases. However, to reduce the impact on maintenance costs for our system, the final user shall be
able to modify its own information (password, name, real address) from any of the convenient interfaces.

1.2.4.1. Barcode scanner

This system uses a barcode scanner as a input and package authentication [57] to the robot. A user
will feel to be of great convenience if he or she has more than one item to be dispatched, which all of
them have barcode. When the user scans the barcodes of some item, the robot will receive corresponding
package information (including destination address of each package) stored in the remote database (see
[7]).

After the user put every package into the robot into every partition of the container, and close each
cover. it will leave and dispatch each of them separately. This guarantees the comfort of the user, as he
or she does not need to worry about dispatching all these packages entering each destination individually.

1.2.5. Automatic battery charging

The customer nor the user doesn’t need to worry about the charging of the batteries. The system will
handle this hazard.

When the robot is in low battery situation, the delivery robot can automatically drive to the designated
charging area. The robot charging device will connect the ground charging device automatically and begin
the charging process. When this process is finished, the robot will then automatically go back to the
original area to wait for user’s request. Also, the system will be charged using the inductive method, which
realizes the energy transfer through unconnected coupling mode based on electromagnetic induction.

As the user will see, our robot aims to realize the automation, intelligence and free of human mainte-
nance during the whole charging process (see [60]).

1.2.6. Location Capability

The major function of this robot is that user can use this system to transfer some items from an original
address (derivated from the sender’s name, e.g. Room No. 101) to the destination address (derivated
from the recipient’s name, e.g. Room No. 105). With the capacity of location, including moving ability
and positioning capability, the user can easily assign the robot to come to current location, pickup items,
and heads to designated address without moving a single step!

The robot moves with a controller, an engine and its four wheels. It has a train-like moving track,
which consists one white tape and one black tape lying on the ground (which can be installed easily). We
install the photosensitive sensors in front of the robot. It can sense the reflection of light from the ground
and show the resistor differences between the white and black tapes. By detecting the combination of
light (reflected from the white and black tape) on the floor, the robot can move in a pre-set moving track,
without worrying about got the wrong way, or hit the wall etc.

Meanwhile, whenever the robot is assigned origin and destination addresses by any means (webpage,
barcode scanner or Android app), it is available to detect its current distances from current address to the
original address, or from original address to the destination address, through magnet sensors embedded
on it. In this way, robot will be able to move and go to the address he is supposed to reach.

7

1.2. AUTOMATIC DELIVERY SYSTEM Software Engineering - Project Report 1

1.2.7. Security concerns

As information is important to users, they shall be confident that some principles of information security
are accomplished. Typically, a user may want (see [11]):

1. Confidentiality: prevent the disclosure of information to unauthorized recipients. A given informa-
tion won’t be accessed by anyone who is not the recipient.

2. Authenticity and Integrity: the information will arrive as the sender sent it: without external
modifications

3. Non-repudiation: the final recipient will receive the package, and he can’t deny he or she haven’t.

The environment will be recorded with a camera in order to keep a record of possible malicious actions.
On the other hand, the robot will provide the recipient with a convenient interface (a keyboard), where
he or she needs to type its unique and secret credentials. Only when this is done a green light will indicate
which section or compartment of the box shall he or she open.

The user can see the previous security concerns applied to our system. Sometimes, however, ease-of-
usage is putted aside priorizing security:

1. The recipients shall type its credentials in order to be granted to access its packages

2. As the only persons that can access the packages are the sender and the recipient, and during
the delivery process, the package is situated in a box that will never be opened, the property of
authenticity and integrity are guaranteed.

3. when typing the password and the ‘Confirm’ button, the recipient is guaranting that he or she is
accessing the package. Therefore, the property of non-repudiation is accomplished.

1.2.8. Delivery Confirmation

Now that the robot will be able to reach your office with the mail/package to be delivered, the user will
be able to pick up the mail/package. The user needs to confirm that he or she received the package.
The simpler way to confirm this is to press the ‘Confirm’ button embedded on the robot, much the way
as you signed for a package to a postman. After one confirm, the robot will leave as if the postman will
leave after delivering your package.

In the situation that the recipient is not available or not present at the office, the robot will leave an
electronic message to the recipient, wait for some time at the door (tentatively 2 min), then leave to the
next recipient if still nobody picked up the package. The robot will come to this place for up to three
times, and then give package back to the sender.

This is implemented by updating confirmation information in the database in time after entering the
password correctly and pressing the ‘Confirm’ key, as well as by setting up a timing scheme in case nobody
answers.

1.2.9. Automatic failure detection - Maintenance

However, there are some situations that even the most robust systems can’t avoid. That is why our
system, besides being robust will be fault-tolerant. Some possible situations are:

• It may happen that the robot gets lost (both lose its path or, althought being in the path can’t
find a certain location). If this happens, in most cases the customer won’t need to worry because
our robot will be equiped with path-recovery algorithms. However, if after a predefined amount of
time (e.g. 5 minutes) the robot does not localize itself, a message will be sent to the maintenance
team with the last-known location of the robot.

• Also, it may happen that the robot runs out of battery unexpectedly or some subsystem (such as
the communication module) simply stops working. Note that, in this case the robot won’t be able
to send any message to the rest of the system to ask for help. However, this is not a problem
because the robot is always in contact with the central station. In case the central station can’t
contact the robot in a certain amount of time an error will be reported to the maintenance team.

8

1.3. SCALABILITY OF OUR SOLUTION Software Engineering - Project Report 1

Therefore, the costumer does not need to worry about the malfunction of the system, because if
something goes wrong, the maintenance team will receive an e-mail.

1.3. Scalability of our solution

As introduced in chapter 1.2, our system is scalable in several aspects. In this section we will discuss
what do we mean with scalability and will give some hints about how future projects can handle it.

1.3.1. Delivery delay

On the one hand, our system is scalable in terms of the delivery delay. In case our system receives, in
a given period of time, more requests than which can handle, the senders will experience delays. This
problem can easily become a bottleneck. However, if the costumer finds that the delivery delay is too
high, it can simply add more robots to the network. Our system allows this feature, because there is no
problem (but the cost) of adding more than one robot.

1.3.2. Mutiple-floor deliveries

On the other hand, in the problem description (chapter 1.1) we introduced the fact that sometimes
deliveries must be done in different floors. However, in our approach we proposed a solution that is only
able to deal with single floors.

To deal with the multi-floor problem our system could use the elevator that many buildings have. For
this purpose, the customer only needs to provide the project team an API2 to request the elevator to a
certain floor, to choose the destination floor and to request the current floor of the elevator.

1.3.3. Multiple-building deliveries

Finally, our project can still scale to deal with intra-building deliveries. However, this requires much
more caution:

1. Location via path on the floor is not valid for outdoor environment. This can be solved by placing
a GPS in the robot and having two location systems: when the robot is outdoors, the routes can
be descrived in a map, which the robot can follow via GPS; when the robot is indoors, where the
GPS signal sometimes is very low, the robot can be guided using the path on the floor.

2. As the floor on the outside is typically heterogeneous and have irregularities, the robot must include
much more robust wheels and motors than a indoor-only robot.

2We will try to get this API for the testing building. As long as we think that the elevator provider will not share any of
its APIs, we won’t be able to test this feature.

9

Software Engineering - Project Report 1

2. GLOSSARY OF TERMS

The roles of our system are:

Customer The enterprise or department that might want to deploy our system

User Individuals which will actually use the system (the ‘senders’ and the ‘recipients’ of packages)

Administrator Individuals which will actually maintain the system operation and manage user informa-
tion.

Other terms that may need clarification are (ordered alphabetically):

Arduino Uno It is a microcontroller board based on the ATmega328. It has 14 digital input/output pins
(of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB
connection, a power jack, an ICSP header, and a reset button. It contains everything needed to
support the microcontroller; simply connect it to a computer with a USB cable or power it with a
AC-to-DC adapter or battery to get started. More information can be found in [5].

Arduino Motor controller shield It is a shield based on the L298, which is a dual full-bridge driver
designed to drive inductive loads such as relays, solenoids, DC and stepping motors. It lets one
drive two DC motors with one’s Arduino board, controlling the speed and direction of each one
independently. One can also measure the motor current absorption of each motor, among other
features. The shield is TinkerKit compatible, which means one can quickly create projects by
pluggingTinkerKit modules to the board. More information can be found in [4].

Arduino WiFi shield It is a shield enables Wi-Fi connectivity with an onboard PCB antenna from ZeroG
Wireless. It provides 802.11b connectivity and is a direct drop-on plug-and-play solution to one’s
Arduino Uno.

Automatic delivery system A transport system that allows the senders to deliver mails or packages to
receivers with a more efficient way, without the inconvenience associated with delivering goods
manually. In this automatic delivery system, a sender can book a delivery by visiting its webpage.
A robot will come to the sender’s place to pick up the mail/package and send it to corresponding
receiver without moving a step. The receiver also do not need to move a step to get his/her package
from the robot.

Barcode A barcode [24] is an optical machine-readable representation of data related to the object to
which it is attached. Barcodes represents data by varying the space and width of parallel lines, or
2D patterns like rectangles and dots. In automatic delivery sytem, a barcode may be attached to
a mail or package after it’s corresponding delivery information(sender/receiver’s address, delivery
password) has been stored in the database. After the barcode scanner scanned the barcode, the
robot can move to the receiver’s address for a mail/package delivery.

Barcode scanner A barcode scanner [25] is an electronic device for reading printed in the surface of mails
or packages. Like a flatbed scanner, it consists of a light source, a lens and a light sensor translating
optical impulses into electrical ones. A barcode scanner can be used as an input to the automatic
delivery system to book a delivery.

Central station A general management unit for the automatic delivery system. It is responsible for
interconnecting with robots (including analysing moving paths, receiving input information from
robot etc.), managing webpages, monitoring each delivery cases, and handling with exceptions.

Confirm button A button embedded in the robot to confirm actions, such as the end of password typing
or the end of a pick up or delivery process.

Database A database is a collection of information that is organized so that it can easily be accessed,
managed, and updated. In one view, databases can be classified according to types of content:
bibliographic, full-text, numeric, and images. More information about database can be found in

10

2. GLOSSARY OF TERMS Software Engineering - Project Report 1

[26]. In our system, the database will manage information about users or delivery history, for
example.

Delivery This term can refer (i) to the process of extraction of the package from the box by the receiver
or (ii) to the whole process of delivery (from the booking to the actual delivery).

Delivery booking The main interaction between the user and the system occurs when it requests a
delivery via any of the available interfaces (web or mobile). Thanks to this booking, the robot will
appear in front of the sender’s office to pick up the package.

Delivery notification When a package or mail is going to sent to the receiver, a message similar to “You
have a package that will be delivered soon” will be sent to the receiver several minutes before the
robot arrives at his or her office. This message is a delivery notification and it is used so that the
receiver can get the notice in advance and get prepared for receiving the package or mail.

Delivery service A delivery service refers to a transport service organised by a supplier or a sender to
take goods to receivers.

GPS Global Positioning System [31] is satellite-based system that allows a device on earth to know its
position (with a certain precision).

Inter-building delivery A delivery process where both the sender and the receiver are in different build-
ings.

Intra-building delivery A delivery process where both the sender and the receiver are in the same building
(may or may not be in the same floor).

Keyboard A set of numeric keys embedded to the robot that enables users to enter numbers as “password”
to check the authenticity of the user.

Last-known location of the robot If the robot gets lost, this term refers to the last point (e.g. office
CoRE 623) in which the robot maintained communication with the central server.

Location capability The ability of the robot to know the important points on the building (such as the
offices) and to know how to move from one point to another. This is achieved in our first approach
to the system via location marks.

Location marks Location marks refers to a track laying on the aisle and several magnet chips attached
on the wall in the office building. The track is made up of a line of white tape, which robot move
along the white line, and a line of black tape that prevents robot from getting interfered by other
objects on the road. Magnet chips are used to locate each room by working with sensors in robot.

Mobile interface A web-based user interface working on Android smart phones, where users can view
and execute operations through this application. These operations include: book a delivery, check
status of package/mail, personal information management, and system maintenance.

Mobile robot A mechanical device that can receive instructions about moving to different locations in a
building, carry multiple mail/packages in a secure manner and deliver packages automatically.

Multiple delivery Our system allows multiple delivery. This means that the customer will need to invest
less in robots and the user will experience much less delay in the pick up or delivery process.

Multiple-floor delivery A delivery process where both the sender and the receiver are in different floors.

Package/Letter The correspondence that wants to be transported from one point to another one.

Pick up This process begins when the robot appears in front of the sender’s office. It contains several
steps, such as the sender authentication or the introduction of the correspondence in the robot’s
box.

Properties of security Refers to the confidentiality, authenticity, integrity and non-repudiation proper-
ties of a secure information transfer. See [11] for details.

Sectioned secure-box A delivery box containing several sectioned parts on top of the robot. The sec-
tioned box aims to provide multiple packages or mails delivery to different receivers at the same
time, while guarding safety of each package/mail by connecting the open/close of each section with
password set by the sender.

11

2. GLOSSARY OF TERMS Software Engineering - Project Report 1

System (see Automatic delivery system) The entire set composed of the mobile robot, the central con-
troller or server, the user interface and the location marks.

System exception System exception refers to errors that happened when the system is running. In
Automatic Delivery System, system exception includes, but is not limited to:

• Robot out of track;

• Robot out of power;

• Disconnection between robot and central station;

• System unexpected reboot;

• System unexpected shut down;

• Robot missing target location;

Use case A list of steps, typically defining interactions between a role (known in UML as an ‘actor’) and
a system, to achieve a goal. The actor can be a human or an external system.

User address A sender’s/receiver’s address refers to the room location of the package/mail sender/re-
ceiver. An address is associated with sender’s/receiver’s name, room number, and location of the
door of the room.

User story A brief description of a piece of system functionality as viewed by a user. It represents
something a user would be likely to do in a single sitting at the computer terminal. More information
about user story can be found in [51].

Web interface The actual part of the browser where users can view and execute operations on the inter-
net. These operations include: book a delivery, check status of package/mail, personal information
management, and system maintenance.

Web server A web server [52] refers to the software and hardware that deliver web pages on the request
to clients using the Hypertext Transfer Protocol (HTTP). The sender/receiver/administrator can
visit the webpage and book a delivery, request for current status and system management.

12

Software Engineering - Project Report 1

3. SYSTEM REQUIREMENTS

3.1. Enumerated functional user stories

We will begin extracting the main points of the Customer Statement of Requirements, and refining all
these concepts to obtain the system requirements, that we will present using the more convenient user
story syntax. The final list of the most important functional user stories is shown in table 3.1.

Basically, we can see that the main requirement is the package delivery, so let’s analyze it in detail. The
sender needs to be able to tell the system he/she wants to make a delivery (ST-2). Then, the robot will
come to his/her office to pick up the package (ST-5), but before this, the sender needs to authenticate in
front of the robot (ST-121). Then, the system should notify the receiver that a package/mail is about to
be delivered (ST-6) and, after this, the package must be delivered (ST-7), prior receiver authentication
(ST-132).

Of course, we don’t want the user to re-enter all its information every time he/she uses the system;
that is why we included the register/login subsystem (ST-1). Another convenience for the user is that is
easier to remember the name of the receiver than its address, that is why we included ST-3. As specified
in the CSR, the sender will be able to use a barcode scanner to input the information to the system
(ST-4). Finally, the sender needs to be informed about every step in the delivery (ST-8).

On the other hand, our system will need some maintenance (although not much, as we will discuss later).
ST-10 may seem contradictory, because the role of an administrator is to worry about the maintenance
of the system. However, this user story should be viewed as: the role of the administrator won’t be about
looking constantly at the critical parts of the system and check that all works properly. In contrast, the
system will notify the administrator if something is going wrong. Also, the administrator needs to have
access to all the history of the system (ST-9) and does not want to worry about the charging of the robot
(ST-11). It is not clear whether the user story ST-11 is functional or not, because an opposite user story
(the administrator will take care about the charging of the mobile parts) would be functional.

Note that we proposed only the user stories containing features that we think we will be able to
implement (and test) at the end of the semester. Also, we realize that this list is ambitious and, therefore,
we will priorize the core features and some of the less prioritary may not be finished.

Again, the most important part of the system is the delivery itself. Therefore, ST-2, ST-5 and ST-7
(the core functionality of our system) are the most prioritary: we need to have a working system as
soon as possible. Then, the convenience of the user is one of the priorities of our customer (because we
want the user to use the system, and we need to keep it simple and not to confuse the user with lots of
options and tedious processes) and, therefore, ST-3 is also important, followed by the receiver notification
(ST-6) and the tracking of current/historical deliveries (ST-8, ST-9). The administrator work must be
minimized as soon as possible, for reducing costs (ST-10). Finally, the register/login is not a priority to
our customer3. Also, the barcode scanning and the charging of the system will be done as the last step
(ST-11).

Note that we didn’t assign sizes because some user stories maps to the same system requirement.

1Non-functional requirement
2Non-functional requirement
3Project description webpage shows this.

13

3.1. ENUMERATED FUNCTIONAL USER STORIES Software Engineering - Project Report 1

ID PW User story

ST-1 1 As a sender or a receiver, I can create, manage, modify and login to my user
account to be able to use the system.

ST-2 5 As a sender, I can book a delivery without moving from my position to begin
the process of transferring a package between different offices.

ST-3 4 As a sender, I can send a package to the receiver based only on his or her name,
so that I don’t need to care about his or her location.

ST-4 1 As a sender, I can provide the receiver’s information to the system by scanning
the barcode on the mail or package, so that packages that already contains this
information can be processed much easier.

ST-5 5 As a sender, my package will be picked up in my office, so that I don’t need to
deliver it in a required place or directly to the receiver.

ST-6 3 As a receiver, I want to be notified several minutes prior to the arrival of my
package, so that I will be informed about the delivery status.

ST-7 5 As a receiver, my package will be delivered in my office, so that I don’t need
to go look in another required place (such as my mailbox).

ST-8 3 As a sender, I am able to track the status of my delivery and be notified if
problems occur, so that I don’t need to worry about.

ST-9 3 As an administrator, I can have access to the record of every delivery and
acknowledge, in front of a third person, that the delivery was finished correctly
or terminated incorrectly.

ST-10 2 As the administrator, I need to be able to be notified when there are some non-
automatically solvable problems. I don’t want to care about other problems.

ST-11 1 As an administrator, I don’t need to care about the charging of the mobile
parts of the system.

Table 3.1.: Functional User stories

14

3.2. ENUMERATED NON-FUNCTIONAL USER STORIES Software Engineering - Project Report 1

3.2. Enumerated non-functional user stories

In this section, we treat non-functional requirements as user stories (see table 3.2), as done in [46]. We
regard non-functional requirements as “constraints” we put on the system and each constraint we put on
a system narrows the design choices a bit. Trying to put constraints (non-functional requirements) into
the user stories format is a good exercise as it provides a better understanding of who wants what and
why. Besides, we can have a clear picture about the attributes or characteristics of the system.

We already talked about ST-12 and ST-13 when talking about functional user stories. Althought ST-12
and ST-13 are an essential part of our system, we included it in the non-functional user story list because
both are very tied to authentication. Also related to security, the user needs to have confidence about the
quality of the container, in terms of guarantee that only when the system wants to open it, its contents
are available (ST-15).

The user needs to have a little help page available (ST-14), just in case he/she have some issue about
the system workflow.

Note that ST-16 is accomplished immediately with the functional requirements proposed, and therefore
its weight does not matter: it is a usability requirement.

The rest of user stories are about reliability, cost and performance: the server needs to be power-cut
tolerant (ST-17) and condition-independent (ST-19), energy-efficiency of the robot (ST-18), multiple
delivery to satisfy user requirements about timing (ST-21) and, finally, the system needs to be afforable
(ST-20).

Finally, as we discussed in section 1.3, our system is scalable and extendible (ST-22), which are sup-
portability factors.

ST-21 suggests that there should be a minimum Quality of Service guarantees. Therefore, we need to
specify a bussiness policy:

ADS-BP00 - This business policy states that a delivery must be done under certain Quality of Service
guarantees. Tentatively, we will set a maximum delivery time of 15 minutes, since the booking of the
delivery until the delivery itself.

3.3. Acceptance tests for user stories

Acceptance tests are tests conducted to determine if the requirements of the Auto Delivery System(ADS)
is met. Note that acceptance tests are only coarse description about how a user story in ADS is tested.
Use Case Acceptance Tests in Section 3.8 will provide fully dressed test description of each use case.

Acceptance Test Cases for ST-1:

• ACT1.01 Ensure any user to be able to open an account with one specific username and password
through web or mobile interface (pass);

• ACT1.02 Ensure any registered user to log in to his or her account by inputting correct username
and password (pass);

• ACT1.03 Some users can not log in to his or her account by inputting wrong username and password
(fail);

• ACT1.04 Ensure any registered user to be able to modify his or her personal account information
(e.g. name, email address, office location etc.) through web or mobile interface (pass);

Note that in ACT1.02 and ACT1.04, the word “registered” means the user has successfully executed the
step of open an account (as indicated in ACT1.01). We will not test the account management function
of administrator’s accounts in this set of test cases.

Acceptance Test Cases for ST-2:

• ACT2.01 An registered user books a delivery by logging in to his or her account and input booking
delivery information (pass);

15

3.3. ACCEPTANCE TESTS FOR USER STORIES Software Engineering - Project Report 1

ID PW User story

ST-12 3 As a sender, I need to be sure that the receiver will be authenticated before
having access to the package, so that I can be sure that only the receiver have
access to the package.

ST-13 3 As a receiver, I need to be sure that the sender had been authenticated before
sending the package, so that I can know that the sender is who is claiming to
be.

ST-14 1 As a sender or receiver, I want to have access to a help page, so that I can
understand easily how the system works.

ST-15 3 As a sender, I must be sure that the package sent is, at all moments, in a safe
container, and anyone but the receiver will be able to access it.

ST-16 - As a sender or receiver, I need to be sure that the system maintenance time is
less than 1 hour each day.

ST-17 1 As an administrator, I need to be sure about delivery robot is able to keep
its booked records safely and correctly stored at 99% of the day even system
happens to breakdown.

ST-18 1 As an administrator, I should be able to assume delivery robot can use its
energy efficiently and its battery is capable of working as long as 5 hours before
recharging.

ST-19 1 As a customer, I want the automatic delivery system to deliver my packets
even in the case of different floor or building.

ST-20 1 As a customer, I need to spend less than 500 dollars for purchase and 20 dollars
maintenance cost per month.

ST-21 3 As an administrator, I want the system to allow three deliveries at the same
and each delivery costs less than ten minutes, so that the users will be happy
with time cost and less deployed robots.

ST-22 1 As a customer, I need to be sure that I will be able to extend and scale the
solution to a much more useful scenario, such as multi-floor or inter-building
deliveries.

Table 3.2.: Non-functional user stories

16

3.3. ACCEPTANCE TESTS FOR USER STORIES Software Engineering - Project Report 1

• ACT2.02 An registered user can not finish booking delivery process online using web interface or
mobile interface(fail);

Note that ACT2.01 and ACT2.02 focus on the process of booking delivery online, rather than the previous
steps, such as “log in”. By testing whether a booking can be finished online can we assure ST-2 to be
implemented.

Acceptance Test Cases for ST-3:

• ACT3.01 In the process of creating a new account, the office location information will be requested
from the applicant.(pass);

• ACT3.02 In the process of booking a delivery, the sender arranges the delivery destination location
by typing receiver’s name in the booking request.(pass)

• ACT3.03 The robot will deliver the package to the receiver’s correct location(pass)

• ACT3.04 The robot delivers the package to a false location, which is not what the receiver registered
in the system.(fail).

• ACT3.05 Any registered user can always update his or her location information to the system.

Note that each user is able to manage their account information, so it is the user’s obligation to update
his or her location into the system when his or her office location has changed. Only in this way can the
delivery to be more accurate.

Acceptance Test Cases for ST-4:

• ACT4.01 The robot will correctly send package to the receiver after the sender scanned the package
and put it into the robot(pass);

• ACT4.02 The system does not identify the package information when scanning the barcode of the
package (fail);

Note that ST-4 will not be implemented in this semester’s project because of the necessity of decreasing
the complexity of the system. As a result, this test case should only be tested in the future when this
corresponding user story is implemented.

Acceptance Test Cases for ST-5:

• ACT5.01 A robot arrives at the sender’s office to pick up the package for delivering in 5 minutes
after booking a delivery (pass);

• ACT5.02 The sender (who has already booked a delivery online) does not see the robot coming for
picking up packages in 5 min (fail)

• ACT5.03 The sender puts the package in the compartment of the robot and the robot leaves for
delivery to the receiver (pass);

Note that in this set of test cases features regarding “authentication to robot before a sender puts in his
package” and “robot moves from one place to another” will not be tested, even though these features is
of great importance in the process of pickup packages. Detailed testing regarding these two features will
be mentioned in section 3.8.

Acceptance Test Cases for ST-6:

• ACT6.01 A receiver will receive a notification email regarding his or her package to be delivered,
at the time robot picks up package from the sender and starts to deliver (pass);

• ACT6.02 A receiver does not receive any notification email regarding the package before the robot
shipped the package to his or her office (fail)

Note that the email will be sent during the time slot that sender has put the package into a compartment
of the robot and the robot is about to leave for delivery, so what ACT6.01 indicates about the prior
notification will be how much earlier depends on how long it will take for the robot from the sender’s
location to the receiver’s location. Tentatively we make it to be 5 minute.

Acceptance Test Cases for ST-7:

17

3.3. ACCEPTANCE TESTS FOR USER STORIES Software Engineering - Project Report 1

• ACT7.01 The robot arrives at the receiver’s office in 5-10 minutes after picking up package from
the sender’s location (pass);

• ACT7.02 The robot arrives at the receiver’s office more than 10 minutes without a miss between
the robot and the receiver (fail)

Note that the time described in ACT7.01 and ACT7.02 is actually determined by the distance between
sender’s office and the receiver’s office, as well as the average speed of the robot. Also, the term “miss”
in the ACT7.02 indicates the scenario that the robot arrives at the receiver’s office but the receiver is not
available at the moment.

Acceptance Test Cases for ST-8:

• ACT8.01 A sender checks the accurate status of his or her previous delivery request, the normal
status includes “Waiting for Pickup” “Delivery To Receiver” etc. and its corresponding execution
time (pass)

• ACT8.02 A sender receives email notification when the package delivery fails and is about to return
to the sender (pass)

• ACT8.03 A sender receives inaccurate status report in the account system.(fail)

Note that this set of test cases focus on how a sender can track the status of the delivery, rather than
previous steps of online operation, such as login, choose “delivery status check” operation. The inaccurate
status includes when there is returns in the delivery but the sender is not notified about this issue, or
another instance that when a package is delivered but the status still show “delivering” status, and so
forth.

Acceptance Test Cases for ST-9:

• ACT9.01 An administrator logs into the system and checks all delivery information in the system,
sorted by current delivery and history delivery information(pass)

• ACT9.02 An administrator can only check part of the users’ delivery information (fail)

Note that the administrator has higher priority that can see all users’ delivery history and current delivery
information. The delivery information that the administrator can see is the same as what a user can see,
including delivery process, pickup time, delivery time, attempt of delivery and so forth.

Acceptance Test Cases for ST-10:

• ACT10.01 An administrator receives an email when the robot is out of track (pass)

• ACT10.02 An administrator receives an email when the robot is out of power and cannot connect
with charger immediately (pass)

• ACT10.03 An administrator receives an email when a package is returned to the sender but after
three times of return delivery attempt the receiver is still not available;(pass)

• ACT10.04 An administrator receives an email when the robot is out of control by the central
station(pass);

• ACT10.05 An administrator receives an email when system crashes and need to be maintained(pass)

• ACT10.06 Any above exceptions happens when the administrator does not receive any notification
email about that (fail)

Note that the email that the administrator receives includes the category of the exception and the advice
handling with that issue, as well as with the time that the unexpectation happens.

Acceptance Test Cases for ST-11:

• ACT11.01 Ensure the robot to be recharged in recharging station every time the battery is lower
than 20

• ACT11.02 The robot runs until out of battery (fail)

Note that the security of charging need also be considered, but it is not mentioned in this test case,
because ST-11 is a functional user-story, and security reason, such as the temperature, voltage of the
battery etc.

Acceptance Test Cases for ST-12:

18

3.3. ACCEPTANCE TESTS FOR USER STORIES Software Engineering - Project Report 1

• ACT12.01 The receiver inputs his or her account password as an authentication to open the com-
partment for getting packages (pass)

• ACT12.02 The receiver opens the compartment and take out the package without entering the
password (fail).

Note that in the actual implementation, we use a LED with green-red lights as a lock to each compartment
of the container of the robot, in order to decrease the complexity. When a LED is green, it shows that
the cover of the compartment is open and the receiver is able to take out the package. When the LED
turns red, it shows that the compartment has been locked and no one could take out anything from the
compartment in the robot.

Acceptance Test Cases for ST-13:

• ACT13.01 The sender inputs his or her account password as an authentication to open the com-
partment for putting in packages (pass)

• ACT13.02 The sender puts in the package in one of the compartment in the robot without inputting
any password (fail)

Note that when a LED is green, it shows that the cover of the compartment is open and the sender is
able to put in the package. When the LED turns red, it shows that the compartment has been locked
and no one could put in anything into the compartment in the robot.

Acceptance Test Cases for ST-14:

• ACT14.01 Any user is able to open the help page on the web interface or mobile interface(pass)

• ACT14.02 Any user is able to search key words in the search bar of the help page.

• ACT14.02 Help page is not accessible by web interface or mobile interface(fail)

Note that the help page includes basic instructions about how to use the system. A search bar is available
for user to search information.

Acceptance Test Cases for ST-15:

• ACT15.01 Any compartment of the container in the robot is kept close all the time unless after
authentication to the robot by a sender or receiver (pass)

• ACT15.02 When the LED turn green at the time where no sender or receiver ever authenticates,
the system will notify police and administrator.(pass)

Note that ACT15.01 and 15.02 focus on safe guard of each compartment – LEDs. A compartment is
regarded as open when LED on it turns green, and is regarded as closed when LED turns red.

Acceptance Test Cases for ST-16:

• ACT16.01 Maintenance time of each day is less than one hour (pass)

• ACT16.02 Maintenance time of each day is more than one hour(fail)

Note that we assume that if maintenance time per day is lower than one hour, it means user do not need
to worry about the time that the system is not in service. The serving time of each day will generally be
determined by weather, office condition, battery and power supply, as well as maintenance time. So the
time of maintenance every day might be subject to change.

Acceptance Test Cases for ST-17:

• ACT17.01 All user information and data can be restored after system breaks down due to backup
of user data (pass)

• ACT17.02 User Information lost in severe breakdowns of system (fail)

Note that the system will use backup mechanism to prevent system unexpectedly shutting down or
crashing.

Acceptance Test Cases for ST-18:

• ACT18.01 In the case of full load, the robot can work as long as 5 hours before charging battery(pass)

• ACT18.02 In the case of full load, the robot can work less than 5 hours before charging battery
(fail)

19

3.3. ACCEPTANCE TESTS FOR USER STORIES Software Engineering - Project Report 1

• ACT18.03 In the case of idle status, the robot can stay as long as 10 hours before charging bat-
tery(pass)

• ACT18.03 In the case of idle status, the robot can stay less than 10 hours (fail)

Note that in ACT18.01 and ACT18.03, “full load” means the robot is moving all the time, as well as
signals communicating with central station; In ACT18.02 and ACT18.04, “idle status” means the robot
rarely moves, and the time slot of signal communication becomes very long.

Acceptance Test Cases for ST-19:

• ACT19.01 Ensure delivery process to be completed when sender and receiver are in different floors
of the same building (pass)

• ACT19.02 Ensure delivery process to be completed when sender and receiver are in different build-
ings (pass)

• ACT19.03 Ensure delivery process to be completed when bad weather happens(pass)

ST-19 might not be implemented in this project, considering what we can achieve in a full semester. In
the case ST-19 can be developed, ACT19.01 and ACT19.02 should be tested.

Acceptance Test Cases for ST-20:

• ACT20.01 Ensure delivery process to be completed when sender and receiver are in different floors
of the same building (pass)

• ACT20.02 Ensure delivery process to be completed when sender and receiver are in different build-
ings (pass)

• ACT20.03 Ensure delivery process to be completed when bad weather happens (pass)

Note that ST-20 might not be implemented in this project, considering what we can achieve in a full
semester. In the case ST-19 can be developed, ACT19.01 and ACT19.02 should be tested.

Acceptance Test Cases for ST-21:

• ACT21.01 One-time cost of the system will be less than 1000 dollars(pass)

• ACT21.02 Daily cost of the system will be less than 5 dollars(pass)

Note that the one-time cost includes cost of the central system, robot, setting the website and mobile
interface, and laying out tracks. Daily costs contains electric costs and maintenance cost.

Acceptance Test Cases for ST-22:

• ACT22.01 Schedule multiple delivery requests as first come, first server basis, more requests should
wait in line (pass);

• ACT22.02 When delivery and Pickup happened at the same time, delivery comes prior to Pickup
(pass)

• ACT22.03 A Sender can give multiple packages to robot at the same time (pass)

• ACT22.04 A receiver can get multiple packages at the time robot arrives at his or her office (pass)

• ACT22.05 A receiver receives packages that do not belong to him or her(fail)

Note that in the case of multiple delivery at the same time, ACT22.01 tests how the system will handle
with multiple book delivery request; ACT22.02 tests with how the system will react when receiver of last
delivery case and sender of current case happen to be the same person; ACT22.03 tests with how the
system will handle when the sender has multiple packages waiting to be pick up; ACT22.04 tests with
the case that an receiver receives multiple packages at the same time.

20

3.4. ON-SCREEN APPEARANCE REQUIREMENTS Software Engineering - Project Report 1

Figure 3.1.: Create user account

3.4. On-screen Appearance Requirements

Figures 3.1, 3.2, 3.3, 3.4, 3.6 and 3.5 show the screen appearance scheme that the customer provided to us.
These figures describes the appearance of the user account creation, the delivery history, the appearance
of checking the status of a concrete delivery and how to modify an account information.

21

3.4. ON-SCREEN APPEARANCE REQUIREMENTS Software Engineering - Project Report 1

Figure 3.2.: Delivery book

22

3.4. ON-SCREEN APPEARANCE REQUIREMENTS Software Engineering - Project Report 1

Figure 3.3.: Delivery book

Figure 3.4.: Delivery status

23

3.4. ON-SCREEN APPEARANCE REQUIREMENTS Software Engineering - Project Report 1

Figure 3.5.: Delivery status

Figure 3.6.: Modify user info

24

Software Engineering - Project Report 1

4. FUNCTIONAL REQUIREMENTS
SPECIFICATION

4.1. Architectural style

Different global architectures of the system gives different user experience to the system. Therefore,
we will begin descriving the architectural style of the system. The system will be composed of 3 main
components: the central station, the robot and the location marks.

1. The central station will be the responsible, basically, of:

a) keeping track of the robot location

b) storing the user’s information (such as room, name, username, password)

c) serving the web page to the users and the android application back-end and receive user’s
feedback

d) keeping track of each individual delivery process (origin, destination, time to pick up, time to
deliver...)

e) planning pick up processes and deliveries to optimize the path

f) sending e-mails to the senders/recipients when the robot is approaching their room

g) sending e-mails to the maintenance team when a hazardous situation accurs

2. The mobile robot will be the responsible, basically, of:

a) waiting for the central station to request a movement to a certain point

b) moving from one point to another one following the location marks

c) to provide a numerical keyboard to allow user authentication

d) to provide a secure sectioned box with a secure locked lid in every section

e) to provide a barcode scanner to the user

3. The development team will place convenient location marks to:

a) indicate the robot which path to follow. For this purpose, we will use black and white adhesive
tapes.

b) indicate the robot which are the most notable points (such as rooms or the charging station).
For this purpose, we will place some magnets strategically in order to allow the robot locate
such important points.

In order to implement the central station we will need a web server and a database management system.
We plan to use web-services to provide a convenient interface to the back-end application and a regular
dynamic webpage/android application that will call them. We will need regular mechanisms (such as
mail or mudd unix commands) to send e-mails automatically.

In order to implement the robot, we will use a structure similar to a simple remote control car with a
little sectioned box on top of it. For our project, we won’t buy a professional box with lids that can be
automatically locked and unlocked. The process of opening and closing each concrete lid will be simulated
by a led in front of each section of the box: a green light will mean that the lock have been released, and
no-light will mean that the lid is locked (and, therefore, we can assume that the content is secure).
Our robot will be automated using an Arduino Uno [5], an Arduino Wifi shield [6] and possibly an
Arduino Motor controller shield [4].

25

4.2. STAKEHOLDERS Software Engineering - Project Report 1

4.2. Stakeholders

The stakeholders of our system are:

End user The end user can be both the sender or the receiver of a package, and have a direct interest in
our system: use it, its functionality.

Customer The customer can be the organization who will deploy our system, and is interested in its cost
and the timeline to deploy it.

Administrator The administrator can be the individual or team who will take care that the system is
working properly, and will be in charge to solve the issues with the system (or contact the supploer,
if the issue is not easily solvable).

Supplier The supplier (our team) will be the manager, the architect, the developer and the installer of
the system.

4.3. Actors and goals

The actors of our system can be splitted between human and non-human. The human actors are the
sender, the receiver and the administrator. The non-human actors are the two motors and the four
sensors:

User The end user of the system.

Sender The end user that will use the system to send a package/mail.

Receiver The end user that will receive a package/mail with our system.

Administrator The manager that will be in charge of keeping the system in working order.

Timer The timer will control the schedule of the robot and make it go to pick up at a certain point or
delivery in another one.

MotorL The left motor of the robot

MotorR The right motor of the robot

ReflectiveOpticalSensorL Along with ReflectiveOpticalSensorR, will detect the path that the robot needs
to follow.

ReflectiveOpticalSensorR Along with ReflectiveOpticalSensorL, will detect the path that the robot needs
to follow.

MagneticSensorL Along with MagneticSensorR, will detect the position of the robot.

MagneticSensorR Along with MagneticSensorL, will detect the position of the robot.

BatteryLevelIndicator Will detect the charging level of the robot’s battery.

StatusLEDs Will emulate the individual lock mechanisms in the segmented secure correspondence con-
tainer.

Buzzer Will be equipped in the robot and will be useful to emit sounds.

The User actor may seem a broad term to the reader. However, we think that it must be included as
a parent of Sender and Receiver because these two specific actors can share some features.

On the other hand, we included the Timer because, as we will discuss later, it will initiate full use
cases.

4.4. Use case diagram

In figure 4.1 we show the use case diagram for our system.

An approach to gather the use cases from the user stories is to find a single virtual use case that
descrives the entire flow of the usage (sketchy use cases). The coarse-grain use case for our system is the

26

4.4. USE CASE DIAGRAM Software Engineering - Project Report 1

Figure 4.1.: Use case diagram.

action of delivering a package from a sender to the receiver. Of course, we need to decompose this broad
virtual use case in several real use cases.

One of the most important decisions that we did when designing the system was to separate this big use
case in, basically, 3 smaller ones: BookDelivery, PickUpPackage and Delivery. Althought all three must
be performed in order, we decided that not necessarily consecutively. In other words, if three senders
book a delivery, the robot can pick up two of them, delivery one of them, pick up another one and finally
delivery two, if this sequence reduces the path.

Note that although the NotifyError may seem to be initiated by a timeout interval, we think that
Timer is not the correct actor to initiate it, because the timeout interval will be controlled by the system
(use case MoveRobotToPoint).

Note that the ManageUser use case can be used by three actors: the sender, the receiver (both are
the end user) and the administrator. However, the system will behave different depending on who is
initiating the use case. If the sender or the receiver are initiating it, the system will allow to manage
their own account. If the administrator is invoking it, the system will allow to manage all the accounts.
Note also that this use case have three extensions to add, edit or remove a user.

Althought we know that a use case descrives the interaction between an actor and the system (and,
therefore, an actor would need to initiate it), we included several second tier use cases that are not
initiated by any external actor, but are included in (and, therefore, initiated by) other use cases. We
specified these use cases to refine or detail a bit more the interaction between use cases.

First, we thought that the use cases SetMotorSpeedX and PositionInspection were too fine-grained to
be included in our diagram, and should be individual steps in the MoveRobotToPoint use case. However,
we divided MoveRobotToPoint in three use cases because (i) we think that this use case is very huge
in comparison with the others and, (ii) we thought that having many actors related to a single use case
would be confusing.

Note that we decided to use inheritance (in front of extension) as the relationship between ManageUser

27

4.5. USE CASES CASUAL DESCRIPTION Software Engineering - Project Report 1

and AddUser, EditUserInformation and RemoveUser because the 3 latter share common functionality.

4.5. Use cases casual description

Following we descrive the actual use cases that we detected:

UC-1 BookDelivery Allows the sender to book a delivery. This is the action that begins the sketchy
coarse-grain use case that we mentioned.

UC-2 TrackDeliveryStatus Allows sender and receiver to check the delivery status of package or mails.
By logging in the system, sender and receiver can check their delivery histories and can have
an access to any delivery to see detailed delivery information, such as the package location and
corresponding status at each specific time.

UC-3 ObtainHelp Allow sender or receiver to obtain help using web interface or mobile interface. Derived
from user story ST-14.

UC-4 ManageUser It allows the administrator to get access to modify the system account settings like
to add user, remove user and to edit user information. The administrator can log in only if he or
she provide the correct and administrative-level account. Extension point: the administrator has a
option to further add user, remove user or edit user information. Derived from user stories ST-1

UC-5 AccessDeliveryRecord To check the delivery status and history (for user and administrator) and
edit the record if necessary (administrator only).

UC-6 Login To log into the system as an authenticated person.

UC-7 PickUpPackage Allows a sender to send his or her package right at his or her office. Derived from
User Stories: ST-5, ST-9, ST-15;

UC-8 Delivery Allows the system to notify receiver and make mobile part of the system (robot) move
from sender’s location to the corresponding receiver’s location, authenticate receiver and give the
package to the receiver.

UC-9 EditUserInfomation It allows the administrator to modify the user information after he or she logs
in the system with valid account. The administrator can update the newest information of Email
and office address and so on. It’s crucial for nowadays position and other information change is
frequent in the office. (optional sub use case, extend UC-: ManageUser) Derived from user stories
ST-1

UC-10 AddUser It allows the administrator to create an new user account after he log in with valid
account. The administrator should input the information like First Name, Last name, Email address
and Office address to finish add a new user account (optional sub use case, extend UC-: ManageUser)
Derived from user stories ST-1

UC-11 AuthenticationToRobot Allows a sender/receiver to be authenticated before sending the package
or mail. A sender/receiver needs to provide credentials of a valid password before he or she deliv-
er/receiver the package or mail by/from the robot. For simplicity, the password will be the same as
the sender/receiver’s login password. An invalid entry will result in an error notification and failure
of opening the mailbox, and the sender/receiver will be prompted again for password entering.
When the count of failed attempts exceeds the maximum allowed number, an error notification will
be made and this delivery/receiving task failed.

UC-12 NotifyReceiver Allows a receiver to be notified about the delivery several minutes before the
arriving of a package or mail. The notifying message is sent to the receiver automatically. This is
available only to registered receivers.

UC-13 NotifyError To notify the administrator and users there are errors occur in the delivery system.

UC-14 ChargeBattery Allows the system to automatically charge the battery of the delivery machine.
For the system to be robust and autonomous, automatic battery charging is critical. A battery
level indicator is one actor (initiator) such that its indication is used as an input to the system to
decide when to activate and use this functionality. Another actor associated with this functionality

28

4.6. TRACEABILITY MATRIX Software Engineering - Project Report 1

is StatusLEDs which will be used to show the system is in the automatic battery charging state.
Derived from user story ST-13.

UC-15 MoveRobotToPoint The system will need to move the robot from its current position to a given
point. This use case allows the system to move the robot from one point to another one, if other
use cases requires it.

UC-16, UC-17; SetMotorLSpeed, SetMotorRSpeed In order to move a robot, the system will need
to specify which is the speed of each motor in the robot (left-right). This use case descrives the
interactions to achieve this goal.

UC-18 PositionInspection While moving the robot from one point to another one, the system will need
to check whether it is in the final position or not. This use case will accomplish this function.

UC-19 RemoveUser It allows the administrator to delete the user account after he or she logs in the
system with valid account. It’s necessary for administrator to update the newest information if
some people leaves the position. (optional sub use case, extend UC-4: ManageUser) Derived from
user stories ST-1

4.6. Traceability matrix

Req PW UC7 UC12 UC8 UC2 UC3 UC1 UC5 UC4 UC10 UC9 UC19 UC15 UC11 UC6 UC13 UC16 UC17 UC18 UC14

ST-1 1 x x x x x
ST-2 5 x
ST-3 4 x
ST-5 5 x x x x x
ST-6 3 x
ST-7 5 x x x x x
ST-8 3 x
ST-9 3 x
ST-10 2 x
ST-11 1 x
ST-12 3 x
ST-13 3 x
ST-14 1 x

Max PW 5 3 5 3 1 5 3 1 1 1 1 5 3 1 2 5 5 5 1
Total PW 5 3 5 3 1 9 3 1 1 1 1 10 6 1 2 10 10 10 1

Table 4.1.: Traceability matrix

The traceability matrix is shown in table 4.1. Note that we included some non-functional requirements
(ST-12, ST-13 and ST-14) because they all have some use case associated.

The use cases can be sorted as follows, in terms of priority:

UC15, UC16, UC17, UC18 > UC1 > UC11 > UC7, UC8 > UC12, UC2, UC5 >
UC13 > UC3, UC4, UC10, UC9, UC19, UC6, UC14

As we can see, the most important use cases are the ones that makes the robot move and go from one
point to another one. This is easily explainable, as these part is related for both picking up and delivering
a package. Following these, the BookDelivery use case and, farther, the AuthenticationToRobot use case.

4.7. Use cases fully-dressed description

4.7.1. BookDelivery

Table 4.2 shows the details of the BookDelivery use case, and the flow of events or interactions is defined
as follows:

1. include::Login(UC-6)

2. ← System shows a table of options, including “book a delivery”.

29

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

BookDelivery

Related requirements ST2, ST3
Initiating actor Sender
Actor’s goal To schedule a delivery process and specify the receiver/receivers.
Participating actors -
Preconditions The sender is a registered user
Success end condition One or several deliveries have been scheduled, and registered in

the schedule database.
Failed end condition User cancelled the booking or failed to enter the required data

before timeout interval.

Table 4.2.: Summary for the use case UC-1: BookDelivery

3. → Sender selects the option “book a delivery”.

4. ← System shows (i) a screen with a list of the starred receivers by the sender, (ii) a searchbox for
searching the receiver by name or by office/building.

5. Sender

a) → selects a receiver from the starred list

b) → searches a receiver using a name, or a portion of it

i. System

A. 1. ← finds and returns more than one result to the search
2. → User selects one receiver.

B. 1. ← does not find any match and returns an error telling this.
2. → User clicks continue
3. ← System go to step 4.

c) → searches a receiver using its office and building

i. System

A. 1. ← finds and returns more than one result to the search
2. → User selects one receiver.

B. 1. ← does not find any match and returns an error telling this.
2. → User clicks continue.
3. ← System go to step 4.

6. ← System shows a list of estimated pick up times (in HH:MM format)

7. → User selects its desired pick up time.

8. ← System asks if the user wants to book more deliveries.

9. User

a) → wants to book another delivery.

i. ← System adds the current book delivery in a temporary buffer and returns to point 4.

b) → does not want to book another delivery.

i. ← System shows a confirmation screen with the list of all the booking delivery requests
in the temporary buffer.

ii. User

A. 1. → confirms
2. ← System books all the temporary requests and goes to the main menu (step 2).

B. 1. → discards the bookings
2. ← System discards all the requests and goes to the main menu (step 2).

30

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

Comments

Note that the main success scenario (book a single regular delivery) is composed by:

1 2 3 4 5a 6 7 8 9b.i 9b.ii.1 9b.ii.2

This corresponds to 6 different screens to book a delivery1. However, as we described the interaction
between the System and the Sender, we do not necessarily need to implement it this way. Moreover, we
will reduce the user experience to the minimum: after the login, the booking screen will appear (booking
is the main usage of the web/mobile interface) with a list of starred receivers and the 2 search boxes.
The user will click on the receiver, probably in the starred list, and the name will move to the first entry
of an empty table (booking table). The time to be picked up will be ASAP (as soon as possible) by
default. To confirm the single delivery, the user only needs to click to the confirm button at the end of
the page. We reduced the experience to 3 clicks2 and 2 screens. To book multiple deliveries, instead of
pressing the global confirm, the user will press the confirm button at the end of the current row (1st row,
in the example), in the booking table. Then, the user will be allowed to choose another receiver (without
changing the screen) and repeating the process until the global confirm is pressed.

Notes

In the step 4 the concept of starred receivers of a given sender is introduced. However, a Bussiness
Policy must be defined to precise its meaning:

ADS-BP01: this Business Policy specifies that the starred contacts will be composed by the union of
the set of the 5 most recently contacted and the set of the 5 that have been contacted more times.

The whole step 5c) does not specify where (at which database) the system looks at the office/building
introduced by the sender. This is clarified by the next Business Policy:

ADS-BP02: this Business Policy specifies that, given an existing address (building and office), if there
is no receiver associated to it, the address can’t be used to book a delivery.

The loop in step 9.a.i can be infinite. This can be exploited by a malicious user to send repeatedly
book deliveries and make the buffers of the server grow and grow. As this can cause issues such as DoS
[27], we need to specify a Business Policy to prevent this:

ADS-BP03: this Business Policy specifies that, one sender can only have 50 non-served book deliveries.

ADS-BP04: this Business Policy specifies that the sender have 30 minutes to book all deliveries. If
this timeout has gone by, the session will expire.

ADS-BP05: when a delivery is booked, a timeframe is specified. The system will begin moving the
robot for picking up the package after timeframe − TAB , where TAB is a constant specified during the
deployment of the system specifying the time between points A (in this case, current point of the robot)
and B (in this case, sender’s office).

4.7.2. MoveRobotToPoint

Table 4.3 shows the details of the MoveRobotToPoint use case, and the flow of events or interactions is
defined as follows. Is important to note that this case is designed to be re-entrant (i.e. to be initiated as
many times as wanted in parallel).

1. → The use case is initiated passing a reference to the destination point (pd), which can be either:
the user parameter (the sender address or the receiver address) or the initial point (if invoked just
when the last delivery is finished).

2. System checks current robot position pc in the database.

a) If the robot is in the initial position, system continues to step 3.

b) If the robot is not in the initial position (i.e. it is moving)

1Login - Book - Starred - Time - No multiple - Confirm
2Login - Starred receiver - Confirm

31

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

MoveRobotToPoint

Related requirements ST5, ST7
Initiating actor Other use cases will include this.
Actor’s goal To specify the destination address.
Participating actors -
Preconditions The destination address exists in the database. The robot must

be correctly aligned to the track before the first initialization of
this use case.

Success end condition The robot reaches the destination.
Failed end condition The robot can’t reach the destination in a timeout interval.

Table 4.3.: Summary for the use case UC-15: MoveRobotToPoint

i. If the robot is already going to a position pd1 and the new destination (pd) is between the
current position (pc) and pd1, the system delays the movement to pd1 and continues to
step 3.

ii. Else, the system waits until the robot finished the current positioning and then continues
to step 2.

3. → System checks if the robot is in the destination point (using use case PositionInspector).

a) ← If yes, both motors’ speed is set to zero by System (using use cases SetMotorLSpeed and
SetMotorRSpeed) and continue to step 7.

b) If not, continue on step 4.

4. → System checks if the sensors are aligned to the track (using use case PositionInspector).

a) ← If yes, both motors’ speed is set to its maximum value (using use cases SetMotorLSpeed
and SetMotorRSpeed).

b) ← If not and is disaligned to the right, decrease the speed of left motor and set right motor
speed to maximum (using use cases SetMotorLSpeed and SetMotorRSpeed).

c) ← If not and is disaligned to the left, decrease the speed of right motor and set left motor
speed to maximum (using use cases SetMotorLSpeed and SetMotorRSpeed).

d) ← If not, and the alignment haven’t been found for a specified amount of time, try to recover
the path.

5. System waits a specified amount of time.

6. Go to step 3.

7. The system instructs the Buzzer to make a sound to notify the user (Sender or Receiver).

8. If some position was delayed in step 2, resume it (go to step 3).

Comments

Note that the main success scenario (book a single regular delivery) is composed by:

1 2a [3b 4a 5] [3b 4a 5] [3b 4a 5] ... [3b 4a 5] 3a 7 8

Notes

Note that this flows specifies that the robot will need to run some path-recovery algorithm. As this
algorithm can be only refined testing it in the concrete environment, we will specify this part in a next
stage of the product lifetime.

In the step 5 there is a unespecified amount of time:

ADS-BP06: this Business Policy specifies that the amount of time to wait between to accesses at the
value must be smaller than 1/10 seconds, but not too smaller, because noise could interfer to the value
of the sensors.

32

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

PositionInspection

Related requirements ST5, ST7
Initiating actor Other use cases will include this.
Actor’s goal To check the position of the robot.
Participating actors -
Preconditions The system can access the sensors in the robot.
Success end condition The position is checked correctly.
Failed end condition -

Table 4.4.: Summary for the use case UC-18: PositionInspection

SetMotorSpeedL/R

Related requirements ST5, ST7
Initiating actor Other use cases will include this.
Actor’s goal To change the speed of the left/right motor of the robot.
Participating actors -
Preconditions The system can access robot’s motor. It is working properly.
Success end condition The speed of the motor is correcly set.
Failed end condition -

Table 4.5.: Summary for the use case UC-16/17: SetMotorSpeedL/SetMotorSpeedR

4.7.3. PositionInspection

Table 4.4 shows the details of the PositionInspection use case, and the flow of events or interactions is
defined as follows.

1. ReflectiveOpticalSensorL and ReflectiveOpticalSensorR provides its value to the System.

2. MagneticSensorL and MagneticSensorR provides its value to the System.

Comments

Note that there is no failure case, because the precondition specifies that the use case should begin
only if the system can access the sensors

As this simple approach can’t limit the effects of noise, we plan to refine it when defining the system
sequence diagrams.

4.7.4. SetMotorSpeedL/SetMotorSpeedR

Table 4.5 shows the details of the SetMotorSpeedL and SetMotorSpeedR use cases, and the flow of events
or interactions is defined as follows.

1. System specifies the speed that wants to set to the motor.

2. MotorL or MotorR is set to the specifies speed.

Comments

Note that the speed regulation control may require special treatment depending on the motor device
used in the robot. A typical technique in these kind of applications is the Pulse Width Modulation (see
[47]).

33

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

ChargeBattery

Related requirements ST-13 stated in Table 3-1.
Initiating actor BatteryLevelIndicator.
Actor’s goal To notify the system about the delivery machine battery charge

level once this level is below the specified critical limit by sending
warning messages.

Preconditions The delivery machine should spend its batter charge until charge
level goes below the limit.

Postconditions The delivery machine state is affected by the change of its task
order.

Table 4.6.: Summary for the use case UC-14: ChargeBattery

Login

Related requirements ST1, ST2, and ST11 stated in Table 3-1
Initiating actor Any of: sender, receiver, administrator.
Actor’s goal To log into the system as an authenticated person.
Participating actors Keyboard, Panel, Displayer, Operating Interface, names/keys

stored in the system database.
Preconditions The valid names/keys stored in the system database is non-empty;

The system operating interface works normally. The user has
already created a user account in the system.

Postconditions Data can be added or altered by user logs into the system.

Table 4.7.: Summary for the use case UC-6: Login

4.7.5. ChargeBattery

Table 4.6 shows the details of the ChargeBattery use case, and the flow of events or interactions is defined
as follows. Is important to note that this case is designed to be re-entrant (i.e. to be initiated as many
times as wanted in parallel). Flow of Events for Main Success Scenario:

1. → BatteryLevelIndicator detects the battery of the delivery machine to be lower than two different
previously decided charge limits and sends a corresponding warning message to the system.

2. ← Once the system takes the message sent by BatteryLevelIndicator, it is going to give a decision
about what to do next. This decision stage is important because if the warning is received while
the delivery machine is currently doing some given tasks, task of automatic charging of delivery
machine battery needs to be scheduled carefully by considering the remaining battery life and the
urgency of the current tasks.

We need to be more specific about the “decision stage” of the system for the battery level warning.
First battery warning message (BWM 1) will be the indication of battery is going to finish in 15 minutes.
This warning is going to be used to give some time to order the delivery tasks and automatic charging of
the battery. Second battery warning message (BWM 2) will be the indication of battery is about to be
finished. Once the system gets this message it should make the delivery machine to quit its current task
and immediately go to the specified charging area.

4.7.6. Login

Table 4.7 shows the details of the Login use case, and the flow of events or interactions is defined as
follows.

Flow of Events for Main Success Scenario:

34

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

Access Delivery Record

Related requirements ST2, and ST11 stated in Table 3-1.
Initiating actor Any of: sender, receiver, administrator.
Actor’s goal To check the delivery status of current delivery or check the de-

livery history of the past deliveries.
Participating actors Keyboard, Panel, Displayer, Operating Interface, Delivery records

stored in the system database.
Preconditions • The set of delivery records stored in the system database is non-

empty and correct. • The user/administrator successfully log into
the system. • The system operating interface works normally.

Postconditions Delivery records can be displayed chronologically in the displayer.
• The administrator can edit the delivery records in the system..

Table 4.8.: Summary for the use case UC-5: Access Delivery Record

1. → Sender/Receiver/ Administrator use computers, cell phones or other device connected to the
internet. (a) Sender/Receiver inputs correct user name and password and log into the system as a
user successfully. (b) Administrator inputs “admin” and special code to log into the system as an
administrator.

2. ← System (a) verifies that the key is valid, and (b) signals to the actor the key validity.

Flow of Events for Extensions (Alternate Scenarios):

1. → Sender/Receiver inputs incorrect user name and password.

2. ← System (a) detects error, (b) marks a failed attempt, (c) signals to the actor, (d) if the failed
times equal three, block the login dialog box for the actor.

3. → Sender/Receiver (a) supply a valid user name/password, (b) if the login dialog box is blocked,
contact the administrator.

The user story of ST1, ST2, and ST9 stated in Table 2.1 require that user or administrator can access
to the user account, so we should decide that anyone who want to access the user account should be
authenticated by log into the system.

4.7.7. Access Delivery Record

Table 4.8 shows the details of the Access Delivery Record use case, and the flow of events or interactions
is defined as follows.

Flow of Events for Main Success Scenario:

1. →(a) Included UC-6: Login. (b) The administrator edits the records..

2. ← System (a) displays the delivery records chronologically in the displayer.

Flow of Events for Extensions (Alternate Scenarios):

1. ← System display “There are no delivery records for you” to the log-in user.

2. → The user contact with the administrator to find out the problem.

3. ← System forbid administrator accessing/editing the delivery record.

4. → The administrator reset the system.

The user story of ST2 require that user can check the delivery status of current delivery and the delivery
history of the past deliveries and the story of ST9 require that administrator can check every delivery
record of each user and edit the record if it is necessary, so we should decide that authenticated person
can be access to delivery record.

35

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

Notify Error

Related requirements ST12 stated in Table 3-1.
Initiating actor System.
Actor’s goal To notify the administrator and users there are errors occur in the

delivery system.
Participating actors Displayer, Email.
Preconditions The delivery system meet some problems it cannot solve itself

such as mechanical problems, missing ways.
Postconditions

Table 4.9.: Summary for the use case UC-13: Notify Error

UC-2 TrackDeliveryStatus

Related User Stories ST-10
Initiating Actor Any of: Sender, Receiver
Actor’s Goal To check the delivery status of a package or mail
Preconditions Sender/Receiver are registered user
Success End Condition Sender/Receiver has access to his or her specific delivery status

Table 4.10.: Summary for the use case UC-2: TrackDeliveryStatus

4.7.8. Notify Error

Table 4.9 shows the details of the Notify Error use case, and the flow of events or interactions is defined
as follows.

Flow of Events for Main Success Scenario:

1. → The delivery system meet some problems it cannot solve itself such as mechanical problems,
missing ways.

2. ← System (a) sends the error notification to the administrator, (d) displays the error notification
to any log-in users.

The user story of ST10 requires that administrator and user should be notified when there are some
non-automatically solvable problems, so we should decide that administrator can receive notification
email about the problem of the system and user can find the notification about the error after logging
into the system.

4.7.9. Track Delivery Status

Table 4.10 shows the details of the Track Delivery Status use case, and the flow of events is defined as
follows:

1. Include Login (UC-6)

2. ← System shows a screen containing a list of options, including “Check delivery status”.

3. → Sender/ Receiver selects the option “Check delivery status”.

4. ← System shows a screen with (i) a list of deliveries (including time, date, sender, receiver, type
and current status) within n days (default n is 10, and it can be changed by user by using the
selection box), (ii) a select box for user selecting a valid day number, (iii) a search box for user
searching the specific delivery.

5. Sender/Receiver

a) → selects one delivery status

36

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

UC-11 Authentication to Robot

Related User Stories ST-6, ST-9, ST-11
Initiating Actor Any of: Sender, Receiver
Actor’s Goal To be authenticated by the robot and can open the mailbox in

robot for delivery/receiving.
Participating Actors LED, Administrator, Timer
Preconditions: The set of valid keys stored in the system database is non-empty.

The counter of authentication attempts equals zero.
The LED is red indicating invalidity.

Success End Condition Sender/Receiver successfully open the mailbox in the robot for
delivery/receiving.

Failed End Condition Sender/Receiver failed to open the box and a delivery failure will
be reported. The robot stops this task and continues next task.

Table 4.11.: Summary for the use case UC-11: AuthenticationToRobot

b) → changes the day number to any valid number

i. ← System goes to step 4.

c) → searches using a word (such as name or delivery type, or a portion of it).

i. System

A. 1. ← finds and returns one or more than one results associate to the using word
2. → Sender/Receiver selects one specific delivery status

B. 1. ← does not find any match, (a) returns to an error telling this and (b) display a
continue botton.
2. → Sender/Receiver clicks continue.
3. ← System goes to step 4.

6. ← System shows a screen of detailed information about one specific delivery, including the package
location and corresponding status at each specific time. And this display is continuously updated.

Comments Note that the main success scenario (check the delivery status of package or mails) is
composed by:

1 2 3 4 5a 6

4.7.10. Authentication to Robot

Table 4.11 shows the details of the Authentication to Robot use case, and the flow of events or interactions
is defined as follows:

1. ← System prompts the sender/receiver for identification, e.g., alphanumeric key

2. Sender/Receiver

a) → enters valid identification key

b) → enters an invalid identification key

i. ← System detects error, marks a failed attempt and increases the counter in the database.

ii. ← System check whether the counter of failed attempts exceeds the maximum allowed
number

A. If yes, System (a) report unsuccessful delivery/receiving to administrator, and (c) take
charge of the next delivery work.

B. If not, go to Step 1.

37

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

UC-12 NotifyReceiver

Related User Stories ST-7
Initiating Actor Timer
Actor’s Goal To notify receiver about the package or mail before arriving.
Participating Actors Receiver
Preconditions Receiver is a registered user.
Success End Condition Receiver receives the notification email from system.

Table 4.12.: Summary for the use case UC-12: NotifyReceiver

UC-3 ObtainHelp

Related User Stories: ST - 14
Initiating Actor: User
Actor’s Goal: To obtain guidance about how this system works, and what a user

need to do to finish the delivery process
Preconditions: The user have access to the internet
End Conditions: The user obtain orientation information about the system

Table 4.13.: Summary for the use case UC-3: ObtainHelp

3. ← System (a) verifies that the key is valid, (b) signals to the LED of the key’s validity

4. ← System signals the Timer to start turn LED to invalidity timer countdown. 5. → Sender/Receiver
opens the mailbox for sending/receiving mail or packages

Comments Note that the main success scenario (To be authenticated by the robot and can open the
mailbox in robot for delivery/receiving.) is composed by:

1 2a 3 4 5

4.7.11. Notify Receiver

Table 4.12 shows the details of the Notify Receiver use case, and the flow of events is defined as follows:

1. ← System signals to the Timer to start the timer countdown at the beginning of the delivery.

2. → After a specific time, System sends a notification email to receiver automatically.

3. → Receiver receives the notification email

Comments Note that there is no failed end condition, because the preconditions specify that the
receiver is a registered user in this system. For system simplicity, we defined that registered user will
successfully received the notifying message if there is no system non-automatically error.

4.7.12. Obtain Help

Table 4.13 shows the details of the Obtain Help use case, and the flow of events is defined as follows:

1. ← System signals to the Timer to start the timer countdown at the beginning of the delivery.

2. → After a specific time, System sends a notification email to receiver automatically.

3. → Receiver receives the notification email

Flow of Events for Main Success Scenario:

1. → The user visit webpage of the system or open the mobile application of the system;

2. → The user click the “Help” link;

38

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

UC-7 PickUpPackage

Related User Stories: ST-5, ST-9, ST-15
Initiating Actor: Timer
Actor’s Goal: To drive the robot to the sender’s office, request authentication

to the sender, verify and pickup package from the sender
Participating Actors: Sender
Preconditions: 1. The sender is registered in the autoDelivery System;

2. The sender has successfully booked a delivery in the system;
Success End Conditions: The sender put the package in one compartment of the container

in the robot, then the robot leave for delivery;
Fail End Conditions: If any of the closed compartment of robot is opened during this

process, an alert will be sent to the administrator;

Table 4.14.: Summary for the use case UC-7: PickUpPackage

3. ← The help page is shown in the web page or mobile application

The help instruction includes: What is AutoDelivery System, How to book a delivery, How to register
for an account, what to do when a robot is here to pick up your package, how to authenticate to the
robot, how to receive a package etc.

4.7.13. Pickup Package

Table 4.14 shows the details of the Pickup Package use case, and the flow of events is defined as follows:

Flow of Events for Main Success Scenario:

1. → timer initiates the robot to move from current location to the sender’s office.

2. Include::MoveRobotToPoint(UC-15);

3. Include::AuthenticationToRobot(UC-11);

4. → The sender put his or her package into the open compartment of container in robot;

5. → The sender acknowledges the system that the process of pick up is finished by pressing the button
in the robot and the system store the status that the package has been picked up

6. ← The mobile system(robot) leave for delivery to the receiver;

This use case facilitates the sender’s delivery process, because the sender will not need to go to a
centralized “post office” to mail his or her package. Instead, the mobile part of the system (robot) will
come to the sender for a pick-up. The prerequisite of this use case is that the sender has already finished
the “book a delivery” process in the system. The system will drive the robot to come to the sender’s
office, request for the sender to input password of his or her own account (the same account as when
he or she log in to his account). The LED of a free compartment of the container (which is not in use
currently) will turn green (as an indication that the cover is open). Here we use a LED with color of red
or green in each compartment of the container to indicate the compartment to be locked or open, instead
of using real lock equipment in order to simplify the design. Then the sender is able to put his or her
package into the opened compartment. After that, the sender presses the button as a confirmation to the
system that the pickup has finished. The robot will leave the sender’s office and head to the receiver’s
office for a delivery.

For the possibility that the sender may not be available at the time the robot arrives at the sender’s
office, which includes several scenarios, will be implemented later.

4.7.14. Delivery

Table 4.15 shows the details of the Delivery use case, and the flow of events is defined as follows:

Flow of Events for Main Success Scenario:

39

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

UC-8 Delivery

Related User Stories: ST-6, ST-7, ST-8, ST - 15
Initiating Actor: Timer
Actor’s Goal: To notify receiver, drive the robot to receiver’s location, authen-

ticate and open the container to give package to the receiver
Participating Actors: Receiver
Preconditions: 1. The sender booked a delivery from the system.

2. The Package has been successfully picked up from the sender
by robot.

Success End Conditions: The robot opens the compartment containing receiver’s package.
The receiver picked up the package and the robot leave.

Fail End Conditions: 1. If the receiver is not in his office, the robot will wait for one
minute, mark as first false attempt and leave;
2. If false attempt is greater than three, the robot will return the
package to the sender;

Table 4.15.: Summary for the use case UC-8: Delivery

1. → The timer initiates the mobile parts of the system to start the Delivery process;

2. ← The system send receiver an email to notify receiver about the package;

3. ← The system drives the robot to move to the receiver’s office(Include:: MoveRobotToPoint(UC
-15));

4. ← When the robot arrives at the location, the system wait for the receiver to response and in one
min,

5. → the receiver comes to authenticate(Include::AuthenticationToRobot(UC-11));

6. →The receiver take out package from the open compartment;

7. → The receiver press the button as a confirm that delivery is finished;

8. ← The robot leave the receiver’s office and continue the remaining task;

Flow of Events for Extensions(Alternate Scenarios):

• 5a. The receiver doesn’t come to the robot because of unavailability in one min(first attempt or
second attempt)

1. ← The system set the “first/second attempt failure” flag to this delivery and leave for next
task;

2. ← The system will assign a second delivery to the person when there is no task waiting.

• 5b. The receiver doesn’t come to the robot for the third delivery attempt to the receiver;

1. ← The system will send an email to the sender about an return of the package;

2. ← The system will move the package back to the sender’s office.

During the delivery process, the system will first send a notification email to the receiver about the
delivery. Then the system will driver the robot to the receiver’s office and wait for the receiver to input
his or her password (the same as the account password). The compartment that contains the package will
not open until receiver inputs correct password of his or her account. Then the LED of the corresponding
compartment will turn green, indicating that the compartment is open and ready for the receiver to
take out the package. The receiver needs to press the confirm button on the robot when he has taken
the package out of the compartment. The LED of this compartment will turn red as “locked” and the
delivery process finishes. In case of failing to deliver the package to receiver, for example, the receiver
is not in his or her office while the robot arrives, robot will wait for one minute, mark this trial as first
attempt and leave for the next task. The robot will return the package to the sender if the system has
tried three times to the receiver but still failed.

40

4.7. USE CASES FULLY-DRESSED DESCRIPTION Software Engineering - Project Report 1

UC-4 ManageUser

Related User Stories: ST-1
Initiating Actor: Administrator or user
Actor’s Goal: Allows the administrator to view the user’s information and pro-

vide optional choice of adding user, removing user and edit user
information

Preconditions: User is authorized as a Administrator or user and login in with
valid account: include Login (UC-6)

Success End Conditions: The Administrator can get access to user information interface in
the system.
The user can get access to his or her own information

Fail End Conditions: The administrator fails to update the user information.

Table 4.16.: Summary for the use case UC-4: ManageUser

4.7.15. ManageUser

This flow specifies how a administrator or user can get access to the ManageUser interface (see table
4.16). Here is a extension point at the flow procedure 5. Although the administrator and user both will
be shown the ManageUser interface that contains three option selection, these options somehow have the
different responsibilities and authorities.

Flow of Events for Main Success Scenario:

1. → Include : Login

2. ← System displays main user interface (UI).

3. → Administrator/User selects “ManageUser” the system UI.

4. ← System displays a menu containing a list of user information and option selections: add user,
remove user and edit user information.

5. → Administrator/User selects desired option.

a) Selects Add User, Include AddUser (UC-10).

b) Selects Edit User Information, Include EditUserInformation (UC-9).

c) Selects Remove User, Include RemoveUser (UC-19).

d) Selects Cancel

i. ← System goes back to Step 2

6. ← System records and updates the newest information

4.7.16. EditUserInformation

This use case illustrates the procedure of editing user information (see table 4.17). For the administrator,
he or she has access to all user items and has the right to edit all user information items. For the user, he
or she only has access to his or her own user information and has the right to update. After confirming
edition, the new edited information will automatically be updated in the system database.

Flow of Events for Main Success Scenario:

1. →The administrator or user select the option ManageUser on the ManageUser interface

2. The system

a) ← display all users item for the administrator to edit.

b) ← display user himself or herself information for the user to edit.

3. Two options:

41

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

UC-9 EditUserInformation

Related User Stories: ST-1
Initiating Actor: Administrator or user
Actor’s Goal: Allows the administrator to edit the user’s information

Allows the user to edit his or her own information
Preconditions: User is authorized as a Administrator or user and login in with

valid account: include Login (UC-6)
Postconditions: The Administrator can get access to user information interface

in the system The user can get access to his or her information
intefface in the system.

Fail End Conditions: The administrator or user fails to update the user information.

Table 4.17.: Summary for the use case UC-9: EditUserInformation

a) → The administrator or user edit the desired text information

b) → The administrator selects the confirm button option

4. ←The system validate the information and update.

4.8. Acceptance tests for Use Cases

Next we will describe the acceptance tests that the custormer will need to run when the use case is
implemented to convince him/herself that it is working.

Table 4.18 shows the details of the test case for the main success scenario of the BookDelivery use case.
Alternate flows such as search by name (table 4.19), search by address (table 4.20), multiple delivery test
(table 4.21) or timeframe test (table 4.22) are shown. Fail use case’ tests are also descrived (see table
4.23).

Note that with these use case’s tests we are not exhaustive at all, because, for example, some paths
are not tested (e.g. multiple delivery searching by name). However, this will be tested deeply with unit
and integration tests.

On the other hand, the test shown in Table 4.18 also includes the testing of the main scenario of the
use cases UC-15 MoveRobotToPoint, UC-18 PositionInspection and UC-16/17 SetMotorSpeedL/R.

From the flow of events or interactions in Track Delivery Status use case, we can see that there are a
main success scenario and several alternate scenarios. Here we fully test these four scenarios by providing
four specific test cases. The table 4.25 shows the test case TC-2.1, which is used to test the main success
scenario of UC-11 Authentication to Robot, and the main success scenario is user or sender successfully
checks the delivery status of a package or mail.

Table 4.26 shows the details of test case TC-2.2, which is used to test an alternate scenario in UC-2
Track Delivery Status. The track delivery UI will automatically displays a menu containing 10 day’s
delivery information. If a user wants to change the default 10 days and check for the delivery information
for specific days, he or she can change the day number to achieve this. System works similarly as the
default set.

Table 4.27 shows the details of test case TC-2.3, which is used to test another alternate scenario in
UC-2 Track Delivery Status. The user may want to check delivery information quickly through searching.
If user searches a valid word, system will display a list delivery information associated with the valid word,
and then the user can select the specific delivery for delivery status track.

Table 4.28 shows the details of test case TC-2.4, which is used to test another alternate scenario in
UC-2 Track Delivery Status. If during the searching, user enters an invalid word, system will shows a
menu saying that there is no delivery matches to that word. User can then click the Go Back button to
return to the main menu.

42

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-1.01

Use case tested UC-1 BookDelivery, main success scenario. UC-
7 PickUpPackage. UC-15 MoveRobotToPoint.
UC-18 PositionInspection. UC-16/17 SetMotor-
SpeedL/R.

Pass/fail criteria The test passes if the sender books a single de-
livery, the system confirms that is stored in the
database and the robot appears in front of the
sender’s office.

Input data The user needs to choose a valid starred receiver
and ASAP as a time frame.

Procedure Expected result

Setup: A sender logs in correctly. Run test TC-
1.01 in order to have one or more starred re-
ceivers.

The system show a list of options, possible with
the BookDelivery as a default. The system shows
a list of starred receivers (at least 1)

1. Sender selects the book delivery option from
the menu (if this option does not appear in the
front page).

The system shows a list of receivers.

2. Sender selects a receiver from the starred list. The selected receiver should become now the re-
ceiver for the current booking. The system shows
possible timeframes to pick up the package.

3. Sender selects the nearest time frame pick up
(ASAP).

The user can book more deliveries.

4. Sender does not book multiple deliveries. The system shows the selected receiver and pick
up timeframe in the summary.

5. Sender confirms selection The system should show a aknowledgement mes-
sage, and the robot should appear in front of the
office in the selected timeframe.

6. continue testing like in TC-1.01 (PickUpDeliv-
ery, main success scenario).

Table 4.18.: TC-1.01 Test case for UC-1: BookDelivery

43

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-1.02

Use case tested UC-1 BookDelivery, alternative scenario 5.b).
UC-7 PickUpPackage.

Pass/fail criteria The test passes if the sender books a single de-
livery, the system confirms that is stored in the
database and the robot appears in front of the
sender’s office.

Input data The user needs to search for a non-starred receiver
using his/her name and ASAP as a time frame.

Procedure Expected result

Exactly as in TC-1.01, except step 2 is substi-
tuted by:
2.1 Sender searches an existing receiver’s name. The system shows a list of matches (in our case,

our searched receiver must appear).
2.2 Sender chooses the searched receiver The selected receiver should become now the re-

ceiver for the current booking. The system shows
possible timeframes to pick up the package.

Table 4.19.: TC-1.02 Test case for UC-1: BookDelivery

TC-1.03

Use case tested UC-1 BookDelivery, alternative scenario 5.c).
UC-7 PickUpPackage.

Pass/fail criteria The test passes if the sender books a single de-
livery, the system confirms that is stored in the
database and the robot appears in front of the
sender’s office.

Input data The user needs to search for a non-starred receiver
using his/her address and ASAP as a time frame.

Procedure Expected result

Exactly as in TC-1.01, except step 2 is substi-
tuted by:
2.1 Sender searches an existing receiver’s address
(building and office).

The system shows a list of matches (in our case,
our searched receiver must appear).

2.2 Sender chooses the searched receiver. The selected receiver should become now the re-
ceiver for the current booking. The system shows
possible timeframes to pick up the package.

Table 4.20.: TC-1.03 Test case for UC-1: BookDelivery

44

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-1.04

Use case tested UC-1 BookDelivery, alternative scenario 9.a).
UC-7 PickUpPackage.

Pass/fail criteria The test passes if the sender books multiple de-
liveries, the system confirms that is stored in the
database and the robot appears in front of the
sender’s office.

Input data The user needs to select several starred receiver
and ASAP as a time frame.

Procedure Expected result

Exactly as in TC-1.01, except that step 4 is sub-
stituted by:
4.1 The user wants to book another delivery (up
to 5)

The system returns to step 1.

4.2 Continue to step 1.

Table 4.21.: TC-1.04 Test case for UC-1: BookDelivery

TC-1.05

Use case tested UC-1 BookDelivery, alternative scenario 7). UC-
7 PickUpPackage.

Pass/fail criteria The test passes if the sender books a single de-
livery, the system confirms that is stored in the
database and the robot appears in front of the
sender’s office in the selected timeframe (with an
error of ±5 mins).

Input data The user needs to search for a starred receiver
and a time frame different than ASAP.

Procedure Expected result

Exactly as in TC-1.01, except step 3 is substi-
tuted by:
3. Sender selects a random time frame pick up
different than ASAP.

The user can book more deliveries.

Table 4.22.: TC-1.05 Test case for UC-1: BookDelivery

45

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-1.06

Use case tested UC-1 BookDelivery, error scenario 5.b.i.B).
Pass/fail criteria The test passes if the sender looks for a non-

existing user and the system confirms correctly
handles the exception and shows the main screen.

Input data The user needs to search for a non-existing re-
ceiver using his/her fake name.

Procedure Expected result

Setup: A sender logs in correctly.
1. Sender selects the book delivery option from
the menu (if this option does not appear in the
front page).

The system shows a list of receivers.

2. Sender searches for a fake name. The system says that the name searched was not
found.

3. Sender acknowledges the error message. The system shows the expected output of step 1.

Table 4.23.: TC-1.06 Test case for UC-1: BookDelivery

TC-14.1

Use case tested UC-14 ChargeBattery, main success scenario.
Pass/fail criteria The Test passes if a) The system is informed when

the battery charge limit is under the first speci-
fied limit by BWM 1 and when the battery is
about to finish by BWM 2. b) The system orders
the current tasks and automatic battery charging
task making sense to the designed strategy when
it receives the BWM 1. c) The system goes into
automatic battery charging mode (blocking the
current tasks of the delivery machine and it goes
to specified charging place) when it receives the
BWM 2.

Input data Actor BatteryLevelIndicator should send the
BWM 1 and BWM 2 to the system correctly.

Procedure Expected result

1. Setup: System is loaded by considerable num-
ber of delivery tasks and it begins to take action
according to the tasks.

Delivery machine schedules and goes its way to
deliver the assigned packets.

2. BatteryLevelIndicator sends the warning mes-
sage, BWM 1, to the system.

System sends the corresponding directive to the
delivery machine and delivery machine orders its
current delivery tasks and automatic charging
task based on the designed strategy. (This so-
called “designed strategy” is a future work).

3. . BatteryLevelIndicator sends the warning
message, BWM 2, to the system.

System sends the corresponding directive to the
delivery machine and delivery machine blocks its
current tasks and goes to specified automatic
charging area and charge itself .

Table 4.24.: TC-14.1 Test case for UC-14: ChargeBattery

46

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-2.1

Pass/fail Criteria The test passes if the user selects one specific de-
livery status, and system shows the detailed de-
livery information of that specific delivery.

Input Data Clicking the Status Checking function in the web
user interface (UI).

Procedure Expected result

Set Up: Sender/Receiver is registered user, and
has logged in the web user interface successfully
by using the valid key.
Step 1: User selects the Status Checking function
in the web UI.

System shows a screen with a list of deliveries
(including time, date, sender, receiver, type and
current status) within 10 days.

Step 2: User selects one specific delivery status System shows a screen of detailed information
about the specific delivery, including the package
location and corresponding status at each specific
time.

Table 4.25.: TC-2.1 Test case for UC-2: TrackDeliveryStatus

TC-2.2 UC-2 alternate scenario

Pass/fail Criteria: The test passes if the user selects the default day
number to any valid number n, and selects one
specific delivery status afterwards; system shows
the detailed information of the specific delivery.

Input Data: Clicking the Status Checking function in the web
user interface (UI).

Procedure Expected result

Set Up: Sender/Receiver is registered user, and
has logged in the web user interface successfully
by using the valid key.
Step 1: User selects the Status Checking function
in the web UI.

System shows a screen with a list of deliveries
(including time, date, sender, receiver, type and
current status) within 10 days.

Step 2: User changes the default day number to
any valid number n

System shows a screen with a list of deliveries
(including time, date, sender, receiver, type and
current status) within n days.

Step 3: User selects one specific delivery status System shows a screen of detailed information
about the specific delivery, including the package
location and corresponding status at each specific
time.

Table 4.26.: TC-2.2 Test case for UC-2: TrackDeliveryStatus

47

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-2.3 UC-2 alternate scenario

Pass/fail Criteria: The test passes if the user searches using a valid
word (such as a colleague’s name or a portion of
it), system shows the detailed information of the
specific delivery.

Input Data: Clicking the Status Checking function in the web
user interface (UI).

Procedure Expected result

Set Up: Sender/Receiver is registered user, and
has logged in the web user interface successfully
by using the valid key.
Step 1: User selects the Status Checking function
in the web UI.

System shows a screen with a list of deliveries
(including time, date, sender, receiver, type and
current status) within 10 days.

Step 2: User searches using a colleague’s name or
a portion of it

System shows a screen with a list of deliveries
associating with the colleague’s name.

Step 3: User selects one specific delivery status System shows a screen of detailed information
about the specific delivery, including the package
location and corresponding status at each specific
time.

Table 4.27.: TC-2.3 Test case for UC-2: TrackDeliveryStatus

TC-2.4 UC-2 alternate scenario

Pass/fail Criteria: The test passes if the user searches using an in-
valid word (such as a fake name), system shows
a not found message and a Go Back button.

Input Data: Clicking the Status Checking function in the web
user interface (UI).

Procedure Expected result

Set Up: Sender/Receiver is registered user, and
has logged in the web user interface successfully
by using the valid key.
Step 1: User selects the Status Checking function
in the web UI.

System shows a screen with a list of deliveries
(including time, date, sender, receiver, type and
current status) within 10 days.

Step 2: User searches using a invalid word, such
as a fake name

System shows a message saying that search not
found and displays a Go Back button.

Step 3: User clicks on the GO Back button Systems shows a screen just like that the result
in Step 1.

Table 4.28.: TC-2.4 Test case for UC-2: TrackDeliveryStatus

48

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-11.1 UC-11 main success scenario

Pass/fail Criteria: The test passes if the user enters a valid key,
and system confirms that the key is stored in
the database. The LED indicate validity and the
mailbox can be open for delivery or receiving.

Input Data: Numerical numbers

Procedure Expected result

Set Up: The counter of authentication attempts
equals zero; the set of valid keys stored in the
system database is non-empty
Step 1. User types in the valid key The LED turned green to indicate successful au-

thentication. The mailbox can be open to deliv-
ery or receiving.

Table 4.29.: TC-11.1 Test case for UC-2: TrackDeliveryStatus

TC-11.2 UC-11 alternate scenario

Pass/fail Criteria: The test passes if the user enters invalid keys
within the number of maximum allowed at-
tempts, the LED indicates invalidity, the system
prompts user to enter again.

Input Data: Numerical numbers

Procedure Expected result

Set Up: The counter of authentication attempts
equals zero; the set of valid keys stored in the
system database is non-empty
Step 1. User types in an invalid key The LED kept red to indicate failure. System

prompts user to type in again.
Step 2. User types in the valid key The LED turned green to indicate successful au-

thentication. The mailbox can be open to deliv-
ery or receiving.

Table 4.30.: TC-11.2 Test case for UC-2: TrackDeliveryStatus

Authentication to Robot. From the flow of events or interactions in Authentication to Robot use case,
we can see that there are a main success scenario and two alternate scenarios. Here we fully test these
three scenarios by providing three test cases. The table 4.29 shows the test case TC-11.1, which is used
to test the main success scenario (sender and receiver are authenticated by the robot and can open the
mailbox in robot for delivery/receiving) of UC-11 Authentication to Robot.

Table 4.30 shows the details of test case TC-11.2, which is used to test an alternate scenario in UC-11
Authentication to Robot. The alternate scenario tested is that if a user enters invalid keys, but within
the maximum allowed failed attempts, system will detect invalidity and prompts for entering again. As
long as the valid key is entered, the authentication is confirmed.

Table 4.31 shows the details of test case TC-11.3, which is used to test another alternate scenario in
UC-11 Authentication to Robot. This scenario is that if a user continuously enters invalid keys exceeds
the maximum allowed failed attempts, system will detect invalidity all along. For the last time an invalid
key is entered, the robot will give up this task and leaves to continue other delivery.

Pickup Package. This use case includes one test case (see table 4.33). This test case tests whether the
robot will arrive at the sender’s office, “open” the compartment when the password is correct and leave
when the sender finishes putting packages into the compartment and press the confirm button. As this

49

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-11.3 UC-11 alternate scenario

Pass/fail Criteria: The test passes if the user continuously enters in-
valid keys for n times (n equals to the maximum
allowed attempts number), the LED indicates in-
validity all along and the robot leaves for another
task for the last time.

Input Data: Numerical numbers

Procedure Expected result

Set Up: The counter of authentication attempts
equals zero; the set of valid keys stored in the
system database is non-empty
Step 1. User types in an invalid key The LED kept red to indicate failure. System

prompts user to type in again.
Step 2. User continuously types in invalid keys
for k times (k equals to the maximum allowed
attempts number minus 1)

Just like step 1, similar result happens for m
times (m equals to the maximum allowed at-
tempts number minus 2). For the last time, the
LED kept red all the time and robot gives up this
task and leaves to continue other tasks.

Table 4.31.: TC-11.3 Test case for UC-2: TrackDeliveryStatus

TC-3.01 UC-11 UC-3, main successful scenario

Pass/fail Criteria The test passes if the help page can be opened
Input Data: User press “help” link in the website or mobile

application

Procedure Expected result

Step 1. User (sender/receiver or anyone who is
capable to visit the webpage or open the mobile
application);
Step 2. Choose the “Help” link; System show
a “help” page containing: What is AutoDelivery
System, How to book a delivery, How to register
for an account, what to do when a robot is here
to pick up your package, how to authenticate to
the robot, how to receive a package etc.

There is only one test case for UC-3. The prereq-
uisite is that the user (any person who is willing to
get to know about this system) is able to connect
to the Internet. After the user visit the webpage
or open the mobile application of this system, he
or she will notice a “help” link in the screen. By
clicking the link the user will be able to obtain
help about knowing how this system works.

Table 4.32.: TC-3.01 Test case for UC-3: ObtainHelp

50

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-7.01 UC-7, main successful scenario

Pass/fail Criteria The test passes if the sender successfully put the
package into one compartment of the robot’s con-
tainer and the robot leaves for delivery.

Input Data: Book Delivery is complete

Procedure Expected result

Step 1. Book delivery is complete; The system will drive the robot from current loca-
tion to the sender’s place after the sender booked
a delivery in the system;

Step 2. Wait for robot to come to the office
Step 3. The sender inputs password of the ac-
count;

The LEDs will turn green when sender inputs cor-
rect account password as an indication that the
box is open;

Step 4. Wait for the box to open after typing
correct password;
Step 5. Put in the package in the box;
Step 6. Press the button as a confirm of finishing
pickup process.

The LED will turn red and the system will drive
the robot leave the sender’s location for the re-
ceiver’s location after the sender press the confirm
button.

Table 4.33.: TC-7.01 Test case for UC-7: PickupPackage

use case includes two other use cases (UC-15 MoveRobotToPoint and UC-11 AuthenticationToRobot),
the test case mainly tests whether the system will mark the status as “pickup Package” finishes and goes
for the next step –Delivery, after the sender has pressed the button for confirmation.

This test case (see table 4.34) tests the successful scenario of UC-8 - receiver is available to receive the
package. During this process, the receiver will first receive a notification email, and type in password
when the robot comes. After LED of the corresponding compartment turns green, he or she is able to
take the package out of the compartment and press the button in the robot as a confirmation.

This test case tests (see table 4.35) the condition that the receiver is not available at the first time or
the second time the system is going to delivery the package to the receiver. After Pickup Package from
the sender, the system wills send a notification email to the receiver about delivering this package. If at
the time the receiver is not available or not in his or her office, the system will make the robot wait at the
receiver’s office for one minutes. If in this one minute, the receiver comes back or is available, and start
to input the password, the robot will continue to operate as a successful scenario; If the receiver does not
respond to the system in this one minute, the robot will leave for the next delivery task (if possible) or
wait at default position (if idle) and try delivering the package to the receiver for a 2nd time after 30min.
If the 2nd time delivery attempt still fails, the robot will try a 3rd time.

This test case (see table 4.36) tests the condition that the receiver is not available when the robot
arrives at the receiver’s office for the 3rd time. The robot will arrive at the receiver’s office, and wait for
one minute. If during this time period, the receiver starts to enter his or her password, then the robot
will verify the password, and turn LED to green if password is correct. Then the receiver can take the
package from the compartment and press the button for confirmation as the delivery finishes. This test
case mainly tests the condition that the user is still not available at this time. The robot wait for 1
min and the system will send a notification to the sender about returning this package, since the system
regard this case as “unable to delivery”. The system then will drive the robot to the sender’s place to
return the package.

Table 4.37 is the acceptance test for the user case ManageUser. After any authorized user login in with
valid account and password, they are prompted to the main interface of the ManageUser. As the priority
difference, the administrator can get access to all user’s information while the users can manage their
own account. Here is a extension point from the ManageUser of three sub user case that to AddUser,

51

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-8.01 UC-8, main successful scenario

Pass/fail Criteria The robot successfully give the package to the
corresponding receiver and leave receiver’s loca-
tion;

Input Data: Pickup Package is complete

Procedure Expected result

Step 1.Pickup Package is complete. The system will send an notification email to the
receiver after Pickup Package is complete;

Step 2.The receiver receive the email notification
about the package.

The system will drive the robot to the receiver’s
location;

Step 3.The receiver wait for the robot to come;
Step 4.The receiver inputs password by the key-
pad of the robot;

The LED within the compartment that contains
the receiver’s package will turn green after the
receiver has input the correct password;

Step 5.The receiver take out the package from the
compartment that has a LED with green light.
Step 6.The receiver press the button in the robot
as a confirm of finishing Delivery process.

The robot will leave for the next possible task
after the receiver press the confirm button;

Table 4.34.: TC-8.01 Test case for UC-8: Delivery

TC-8.02 UC-8, alternate scenario (5a.)

Pass/fail Criteria The robot leaves the receiver’s office with his or
her package safely stored in previous compart-
ment in the case that the receiver is not in the
office for the first or second time.

Input Data: Pickup Package is complete;
The robot comes to the receiver’s location for a
first or second attempt to delivery.

Procedure Expected result

Step 1. Pickup Package is complete. The system will send an notification email to the
receiver after Pickup Package is complete;

Step 2. The receiver receives the email notifica-
tion about the package.

The system will drive the robot to the receiver’s
location (at first or second attempt to delivery);

Step 3. The receiver is not in his or her office or
are not available at the moment robot arrives (for
the 1st or 2nd time to delivery).

The robot will wait at the receiver’s office for 1
min for the receiver to take the package; The
robot will leave for a next attempt to delivery
(after finishing another pending task or after 30
min) if the 1 min time slot has expired;

Table 4.35.: TC-8.02 Test case for UC-8: Delivery

52

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-8.03 UC-8, alternate scenario (5b.)

Pass/fail Criteria The robot leaves the receiver’s office with his or
her package safely stored in previous compart-
ment in the case that the receiver is not in the
office for the 3rd delivery attempt and the robot
will return the package back to the sender.

Input Data: Pickup Package is complete;
The robot has finished two delivery attempts to
the receiver but both failed.

Procedure Expected result

Step 1. Pickup Package is complete. The system will send an notification email to the
receiver after Pickup Package is complete;

Step 2. The receiver receives the email notifica-
tion about the package.

The system will drive the robot to the receiver’s
location (at 3rd attempt to delivery when both
1st and 2nd attempt both failed);

Step 3. The receiver is not in his or her office or
is not available when the robot tries to delivery
the package to the receiver for the 3rd time.

The robot will wait at the receiver’s office for
1 min for the receiver to take the package; Af-
ter 1 min time expires, the system will send an
notification email to the sender about returning
this package; The system drives the robot to the
sender’s office and return the package;

Table 4.36.: TC-8.03 Test case for UC-8: Delivery

RemoveUser and EditUserInformation. As the three user cases are logically the same, we only choose
the click on EditUserInformation button to finish the test and leave the other two out.

Tables 4.38, 4.39 and 4.40 are the acceptance test for the optional sub user case EditUserInformation,
which extends from the Manage User. For the administrator, as the system identification in the Man-
ageUser, he has the priority to edit every user information. As for the users in the second table, they
only have the authority to edit their own information. For the last table, both the administrator and
user can choose cancel edit and go back to the main interface of ManageUser if they don’t want to edit
the information. As for the acceptance test of user case RomoveUser and AddUser, the procedure,their
relative priority difference and corresponding system response are somehow quite similar to the user
EditUserInformation, so we will not further list and explain them all in the following.

53

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-4.01 UC-4, main successful scenario with 5b

Pass/fail Criteria The test passes if the administrator or user suc-
cessfully modifies user account information into
the system

Input Data: The person is a registered user or administrator

Procedure Expected result

Step 1. The registered user or administrator logs
in successfully;

The system will display the manage user interface
to the user;

Step 2. The user/administrator clicks the “Man-
age User” link;

The system will display the “Edit User Informa-
tion” Interface to the user;

Step 3. The user/administrator edits user infor-
mation

Table 4.37.: TC-4.01 Test case for UC-4: ManageUser

TC-9.01 UC-9, main successful scenario

Pass/fail Criteria The test passes if the administrator modify the
information in the EditUserInformatio interface
and the system validates and update the infor-
mation.

Input Data: A user needs to edit user information

Procedure Expected result

Step 1 The administrator clicks the EditUserIn-
formation button;

The system will display the EditUserInformation
window to the user;

Step 2 The administrator clicks on one user. The system will display the interface of this user
Step 3 The adminstrator inputs the new informa-
tion and click on the confirm button.

The system validates the information and update
it to the database.

Table 4.38.: TC-9.01 Test case for UC-9: EditUserInformation for administrator

TC-9.02 UC-9, alternate scenario

Pass/fail Criteria The test passes if the user modify his or her infor-
mation in the EditUserInformatio interface and
the system validates and update the information.

Input Data: A user needs to edit user information

Procedure Expected result

Step 1 The administrator clicks the EditUserIn-
formation button;

The system will display the EditUserInformation
window to the user;

Step 2 The administrator clicks on his or her own
user.

The system will display the interface of this user.;

Step 3 The adminstrator inputs the new informa-
tion and click on the confirm button.

The system validates the information and update
it to the database.

Table 4.39.: TC-9.02 Test case for UC-9: EditUserInformation for user

54

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-9.03 UC-9, alternate scenario

Pass/fail Criteria The test passes if the administrator or user mod-
ify the information in the EditUserInformatio in-
terface and the system validates and update the
information.

Input Data: A user needs to edit user information

Procedure Expected result

Step 1 The administrator or clicks the EditUser-
Information button;

The system will display the EditUserInformation
window to the user;

Step 2 The administrator or user clicks on the
cancel button.

The system will close of the EditUserInforma-
tion window and display the interface of the
MangeUser.;

Table 4.40.: TC-9.03 Test case for UC-9: EditUserInformation for administrator or user

TC-6.01

Use case tested UC-6 Login, main success scenario 1.
Pass/fail criteria The test passes if the user enters a name/pass-

word that is contained in the database and suc-
cessfully log into the system as a user.

Input data Correct user name and password.

Procedure Expected result

1. Type in a registered user name The user name displays in the login dialog box.
2. Type in a correct password System prompt out a dialog box shows the login is

successful with “Welcome, User XXX”; the user
successfully access to the database of the system.

Table 4.41.: TC-6.01 Test case for UC-6: Login

TC-6.02

Use case tested UC-6 Login, main success scenario 2.
Pass/fail criteria The test passes if the user enters “admin” and a

special code and successfully log into the system
as an administrator.

Input data Admin, special code for administrator.

Procedure Expected result

1. Type in “admin” The “admin” displays in the login dialog box.
2. Type in a special code for administrator System prompt out a dialog box shows the login

is successful with “Welcome, administrator”; the
administrator successfully access to the database
of the system.

Table 4.42.: TC-6.02 Test case for UC-6: Login

55

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-6.03

Use case tested UC-6 Login, alternate scenario.
Pass/fail criteria The test failures if (a) the user enters wrong user

name and/or password with less than three times
and be notified the error and input again; (b)
the user enters wrong user name and/or pass-
word three times and found the input dialog box
is blocked.

Input data Incorrect user name and password

Procedure Expected result

1. Type in a unregistered user name. The user name displays in the login dialog box.
2. Type in a password for another registered user. System prompt out a dialog box shows the login

is unsuccessful with “Sorry, the user name/pass-
word you entered is wrong, please enter again”.

3. Type in a registered user name. The user name displays in the login dialog box.
4. Type in an incorrect password. System prompt out a dialog box shows the login

is unsuccessful with “Sorry, the user name/pass-
word you entered is wrong, please enter again”.

5. Type in a unregistered user name. The user name displays in the login dialog box.
6. Type in a password randomly. System prompt out a dialog box shows the login

is unsuccessful with “You have entered the wrong
user name/password three times and have been
forbidden to log into our system today. We are
sorry for any inconvenience it brings to you”.

Table 4.43.: TC-6.03 Test case for UC-6: Login

TC-5.01

Use case tested UC-5 Access Delivery Record, main success sce-
nario 1.

Pass/fail criteria The test passes if the user can find the delivery
records stored in the system database after log-
ging into the system.

Input data Correct user name and password.

Procedure Expected result

1. Log into the system as user Access to the user account and find the delivery
records display chronologically.

Table 4.44.: TC-5.01 Test case for UC-5: Access Delivery Record

56

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-5.02

Use case tested UC-5 Access Delivery Record, main success sce-
nario 2.

Pass/fail criteria The test passes if the administrator can find and
edit the delivery records stored in the system
database after logging into the system as an ad-
ministrator.

Input data Correct user name and password.

Procedure Expected result

1. Log into the system as administrator. Access to the data base .
2. Step 2. Enter a user name. All delivery records of this user list chronologi-

cally.
3. Delete a delivery record from the user account
.

The selected delivery record of this user is deleted
from the record list.

Table 4.45.: TC-5.02 Test case for UC-5: Access Delivery Record

TC-5.03

Use case tested UC-5 Access Delivery Record, alternate scenario
1.

Pass/fail criteria The test failures if the user cannot his delivery
records stored in the system database.

Input data User name and password.

Procedure Expected result

1. Log into the system as user. Access to the data base and the system display
“There are no delivery records for you”.

Table 4.46.: TC-5.03 Test case for UC-5: Access Delivery Record

TC-5.04

Use case tested UC-5 Access Delivery Record, alternate scenario
2.

Pass/fail criteria The test failures if the administrator cannot ac-
cess the delivery records of the users.

Input data Admin and special code for administrator.

Procedure Expected result

1. Log into the system as administrator. Access to the data base .
2. Enter a user name. There is no reaction of the system.
3. Repeat step 2 several times by using different
user name.

There is no reaction of the system.

Table 4.47.: TC-5.04 Test case for UC-5: Access Delivery Record

57

4.8. ACCEPTANCE TESTS FOR USE CASES Software Engineering - Project Report 1

TC-5.05

Use case tested UC-5 Access Delivery Record, alternate scenario
3.

Pass/fail criteria The test failures if the administrator cannot edit
the delivery records of the users.

Input data Admin and special code for administrator.

Procedure Expected result

1. Log into the system as administrator. Access to the data base.
2. Enter a user name. All delivery records of this user list chronologi-

cally.
3. Delete a delivery record from the user account. There is no reaction of the system.
4. Repeat step 3 several times by using different
user name.

There is no reaction of the system.

Table 4.48.: TC-5.05 Test case for UC-5: Access Delivery Record

TC-13.01

Use case tested UC-13 Notify Error, Main success scenario.
Pass/fail criteria The test passes if (a) the administrator can re-

ceive notification email about the problem; (b)
the user can find the error notification by logging
into the system.

Input data Admin and special code for administrator.

Procedure Expected result

1. Taking apart the delivery system The delivery system becomes several parts.
1. Booking a delivery The administrator can receive notification email

about the problem .
1. Logging into the system as a user. The error notification display.

Table 4.49.: TC-13.01 Test case for UC-13: Notify Error

58

4.9. SYSTEM SEQUENCE DIAGRAMS Software Engineering - Project Report 1

4.9. System sequence diagrams

Figure 4.2 shows a complete system sequence diagram for the BookDelivery use case. Specifically, it
descrives the main success scenario of the use case.

Figure 4.3 shows the equivalent diagram for the MoveRobotToPoint use case. Note, however, that it
describes also the functionality of use cases SetMotorSpeed and PositionInspection (which is very sim-
ple). For space reasons the Actors MagneticSensorR and ReflectiveOpticalSensorR have been eliminated
(behaves the same as MagneticSensorL and ReflectiveOpticalSensorL, respectively).

For UC-2 Track Delivery Status use case, one system sequence diagram representing the main success
scenario is shown in the Figure 4.5 .Note that in this diagram, loop iteration, which delineates a fragment
that may execute multiple times, is used. Besides, alternative selection (such as select one delivery and
searches one delivery) is also drawn in this diagram.

For UC-11 Authentication to Robot use case, two system sequence diagrams representing the main
success scenario and another alternate scenario (burglary attempt scenario) are drawn in the Figures 4.6
and 4.7, respectively. Figure 4.7 shows “UML” loop iterations, which delineates a fragment that may
execute multiple times.

4.10. Risk management

We detected a possible point of attack in BookDelivery use case. We solved it by placing a Business
Policy: “one sender can only have 50 non-served book deliveries”.

We also detected a more general point of failure of the system: what if the system loose its path and
can’t recover it? Our solution is to send an e-mail to the administrator.

59

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.2.: System sequence diagram for the main usage case of the BookDelivery use case.

60

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.3.: System sequence diagram for the main usage case of the MoveRobotToPoint use case.

61

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.4.: System Sequence diagram for the casual case of ChargeBattery use case

62

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.5.: UML System sequence diagrams for the main success scenario of UC-2 Track Delivery Status

63

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.6.: UML System sequence diagrams for the main success scenario of UC-11

Figure 4.7.: UML System sequence diagrams for the alternate scenario of UC-11

64

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.8.: Sequence diagram for main success scenario of package pick up mechanism, UC-7

65

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.9.: Sequence diagram for main success delivery, UC-8

66

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.10.: Sequence diagram for failure delivery due to maximum number of attempts, UC-8

67

4.10. RISK MANAGEMENT Software Engineering - Project Report 1

Figure 4.11.: Sequence Diagram for ManageUser use case, main success scenario

Figure 4.12.: Sequence diagram for Add, Edit or Remove user use cases, main success scenario

68

Software Engineering - Project Report 1

5. EFFORT ESTIMATION USING USE CASE
POINTS

As Professor’s book suggests in Section 4.6.1, use case points are one approach to measure the software
size. Also, we need to know the teams’ velocity (or productivity), which means how fast the team make
progress in the design. Thus, we can use the following equation to derive the project duration:

DURATION = UCP ∗ PF (5.1)

Note that the productivity point here is the individual development hours per use case points. We
assume the PF=28 for caculation simpleness. For the USE Case Points (UCP), it’s a method to estimate
the person-hours based on the corresponding user cases. Here is the equation:

UCP = UUCP ∗ TCF ∗ ECF (5.2)

PTS UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10 UC11 UC12 UC13 UC14 UC15 UC16 UC17 UC18 UC19
UUCP 1.5 1 1 1 1 1 1.5 1.5 1 1 1 1 1 1 2 2 2 1 1
TCF 0.9 0.8 0.7 0.7 0.8 0.7 0.9 0.9 0.7 0.7 0.7 0.8 0.8 0.7 0.7 1 1 0.7 0.7
ECF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
UCP 1.35 0.8 0.7 0.7 0.8 0.7 1.35 1.35 0.7 0.7 0.7 0.8 0.8 0.7 1.4 2 2 0.7 0.7
PF 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28

Table 5.1.: Unadjusted Use Case Points, Technical Complexity Factor, Environment Complexity Factor and Produc-
tivity for UC1 to UC18

All the multiple factors are shown in above table. They are Unadjusted Use Case Points(UUCP),
Technical Complexity Factor(TCF), Environment Complexity Factor (ECF)and Productivity Factor(PF)
namely.

The UUCP measures the complexity of the functional requirement. In the 19 use cases of our project,
the most important and complex 3 ones are UC15: MoveRobotToPoint, UC16:SetMotorSpeed and UC17:
PositionInspoection. They realize the main functionality of the our delivery system. Therefore, we give
them the factor value of 2. The second most complex important user cases are UC11: Authentication-
ToRobot, UC7: PickupPackage and UC8: Delivery. They are highly related to the delivery process and
thus we give them the factor value of 1.5. Other use cases such as Obtainhelp, ManageUser are relatiely
easy to realize and has less complexity. According to these, they are assigned as 1. Next is the Technical
Complexity Factor (TCF), it measures the complexity of the nonfunctional requirement. According to
our project complexity, we assign the factor value between 0.5 to 1. Identically to the UUCP assignment
method, we give the hardest 3 ones the value 1 and give the rest the value 0.8 and 0.7, which based on
their nonfunctional complexity. For the Environment Complexity Factor (ECF), we estimate each group
member’s experience level and available time, we assign the value 1 to each of the use cases. Note that
we consider the group members’ experience and available time differences and then get the average. For
the productivity factor, we assume it’s 28 person-hours per use case point, as the requirement assumes.
By using the equation above, we can obtain the sum of duration:

DURATION =

19∑
i=1

(UCP)i ∗ PFi (5.3)

After caculating, the sum of duration of 19 use cases are 19.95*28, which equals 560 hours. Note that
this 560 hours include the things such as answering the emails, attending the meeting, writing the report,

69

5. EFFORT ESTIMATION USING USE CASE POINTS Software Engineering - Project Report 1

preparing for the demo and so on. We assume we work 50 hours per week, which means we will complete
our project in 560/50 = 11 weeks. As our team has 6 members, we have totally 3360 hours for the whole
design cycle.

70

Software Engineering - Project Report 1

6. DOMAIN ANALYSIS

6.1. Domain Model

To build the domain model we will revisit the fully-dressed description of the use cases, because we will
be able to find or derive from there all the important concepts about the system. After this we will assign
the required attributes and associations.

6.1.1. Concept definitions

6.1.1.1. Boundary concepts

Specifically, we will begin by analysing the boundary concepts. Therefore, we will begin analyzing the
actors and their interactions with the system. As stated before, there are two kinds of actors: humans
and non-humans. All the non-human actors (excepting the timer) are sensors or actuators in the robot,
so we can deduce a first set of responsibilies about accessing/controlling them (and a possible concept to
associate with):

• R1: operate the motors (MotorsOperator)

• R2: operate the buzzer (BuzzerOperator)

• R3: operate the status LEDs (StatusLEDsOperator)

• R4: access at the value of the reflective optical sensors (ReflectiveOpticalSensorsAccessor)

• R5: access at the value of the magnetic sensors (MagneticSensorsAccessor)

• R6: access at the level of battery charge (BatteryLevelIndicatorAccessor)

• R7: access at the value of the pressed keys in the numerical keyboard (NumericalKeyboardAccessor)

Note that we could have splitted more some concepts: for example, instead of including MotorsOperator
we could be used MotorLOperator, MotorROperator (like we did in the use cases). However, we think
that we can assign the task of controlling both motors’ speed to the same ‘worker’ or to different workers
that does exactly the same. The same can be applied to several other concepts.

Note also that is difficult to classify the role of the concepts that access sensors into a ‘Do’ or ‘Know’
something. However, as the mission of the sensors is to know some isse, the goal of the concept that
access to it is purely a communication role: they are an interface. Therefore, we can classify them as
‘Interface’-type concepts, as the book implies.

There is no such a direct way to identify boundary concepts related to human actors. Therefore, we
will begin by detecting the responsibilities stated in the use case discussion:

• R8: display the information to the user via his/her computer

• R9: communicate several things to the user (such as which section of the secure box should he/she
use, or failure entering the password) via the robot.

• R10: allow the user to interact with the system via his/her computer

• R11: allow the user to type the password and confirm pickup/delivery in the robot.

• R21: Send an e-mail to the receiver to notify a delivery.

• R22: Send an e-mail to the administrator, to notify an error.

71

6.1. DOMAIN MODEL Software Engineering - Project Report 1

As we can see R8 and R9 are related to the communication to the user and R10 and R11 are aimed to
aquire information from the user.

Let’s now map all the responsibilities into real concepts. One approach is to group them all in the sets
Interface {R9, R11, R21, R22} and InterfaceRobot {R1, R2, R3, R4, R5, R6, R7, R8, R10}. About the
Interface concept, we think that model perfectly the reality, excepting the fact that the interface should not
handle with e-mails. Therefore, we decide to sepparate in Interface {R9, R11} and EmailNotificator
{R21, R22}. However, although we think that InterfaceRobot may be too broad to model the domain
clearly, considering one concept for each responsability would end with too many very-simple concepts.
That is why we decided to keep only the three broad-based concepts to handle with boundaries: Interface,
EmailNotificator and InterfaceRobot.

6.1.1.2. Internal concepts

Now that we defined the boundary concepts, let’s focus on the internal part of our problem domain.

‘Know’ concepts
To ease the internal concept identification we will try to find first which responsibilities there are that
can be mapped to a ‘know’-like concept. Again, we will continue the analysis of the discussed use cases
to obtain these responsibilities:

• R12: Keep the list of users registered in the system with all the associated information with the
account.

• R13: Keep the record of every delivery done, with all of its details.

• R14: Keep record of the mapping between the location marks and the corresponding office.

• R15: Keep record of pending deliveries, with its own priority.

• R16: Keep record of robot’ current and last positions.

• R17: Keep record of recent state of the sensors (order of ms or s), in order to avoid noise. Also
implement Business Policy ADS-BP06.

• R18: Keep information about the status of track detection.

• R27: Keep information about starred contacts for each user (business policy ADS-BP01).

• R28: Implement the limit on business policy ADS-BP03 (one sender can only have 50 non-served
book deliveries).

• R37: Determine which section of the secure box is empty, which contains what, and which should
be allocated for a new delivery.

Every requirement have the same goal: keeping information. However, each of them specifies a very
differentiated set of data. Therefore, we think that every requirement here should be directly mapped
to one single concept, obtaining: UserList (R12), DeliveryHistory (R13, R27), FloorMap1 (R14), Pend-
ingDeliveries (R15, R28), RobotPosition (R16), Filter (R17), SecureBoxContents (R37).
However, we think that R18 is more suitable to be an attribute of the controller of track detection, that
we will probably define later. On the contrary, we think that R16 should be a standalone concept, because
it is not only related of path resolution, but also to provide hint to the administrator in case the robot
gets lost. A similar argument can be apparent for the R17 requirement: we could map in an attribute of
the boundary InterfaceRobot concept. However, we think that it might be a separate concept because
it’s role does not adjust adequately to the one in InterfaceRobot. R27 will be assigned to the ‘know’
concept DeliveryHistory, which actually have the knowledge about which are the starred receivers for a
given sender. Note that we are aware that the starred process can be improved by precalculating the
starred contacts and storing it in a separate data structure (cache). However, as this is a design decision,
not related to domain analysis, we will refine our decision later. R28 may seem to be assigned to ‘know’
concept PendingDeliveries. As this concept has the knowledge needed to check this, we think that needs
to check this condition and discard further book requests.

Note that in order to accomplish R12 through R16 we can use the concepts of simple relational database,
which is a design decision. However, in order to implement R15 it may be more efficient to use a data

1We considered R14 as FloorMap (and not BuildingMap) because in this project we are only considering one-floor delivery.

72

6.1. DOMAIN MODEL Software Engineering - Project Report 1

structure such as a priority queue updated with dynamically-adaptable priority. This last feature will
allow the system to guarantee a minimum Quality of Service because old requests can become prioritary.
We can use a simple Round-Robin algorithm in order to implement the adaptable priority. At design
time we will need to specify these issues.

‘Do’ concepts
Now that we defined boundary and know-like internal concepts, lets focus on do-like concepts.

Before focusing on the problem, however, it is important to note the architecture of our system. It
is composed by a central node and a robot, both communicated by a wireless network. Due to this
composition, and user stories such as ST-102 force the system to have redundant concepts.

Having the latter architecture in mind, we will discover responsibilities by re-reading the fully-dressed
description of use cases. Specially, the great majority of responsibilities can be derived from the BookDe-
livery, PickUpPackage and DeliveryPackage:

• R19: Maintain the status of the user session (implementing too the ADS-BP04 business policy).

• R20: Show the help page to the user when requested.

• R23: When a user searches a receiver (by name, room...), locate all matches.

• R24: Check the password introduced in the robot.

• R25: Check the password introduced when logging in.

• R26: Manage users and user information.

• R29: When managing users, distinguish between the role of administrator and the role of user.

• R30: Make the robot follow the track.

• R31: Make the robot stop at the correct point.

• R32: Start buzzer to notify the user that the robot is waiting for him.

• R33: Maintain a regular contact (from the central server) to the robot, in order to speed up robot
failure detection.

• R34: Open the section that is required (in our approach, turn on the LED associated with the
section we want to open).

• R35: When the battery level is low, priorize a movement to go to charging station.

• R36: Determine when to pick up and delivery each package. Needs to be able to recalculate it
on-fly, because a delivery may be booked meanwhile the robot is already moving. Note that this
responsibility includes the implementation of ADS-BP05 business policy.

• R38: When picking up or delivering packages, determine when the user can be considered idle, and
the robot can continue with other deliveries.

• R39: Determine when an initially failed pickup or delivery must be re-tried.

• R40: Determine when a package must be returned to the sender.

• R41: Determine when a booking must be discarded (e.g. after 3 attempts to pick up the package).

• R42: Detect a robot failure

• R43: Allow ‘commands’ to go from the central server to the robot, and allow responses to them to
fo from the robot to the central server.

• R44: Coordinate the work and delegate the work requested by users.

• R45: Distribute the work requested by the central server on the robot.

Now, we will try to identify the concepts that can handle these responsibilities.

As suggested in the book, we will have a controller concept that will be responsible of delegat-
ing/scheduling the work requested by the actors to other concepts. However, as the architecture specifies
two working units, we will have one controller for each unit: RobotController and ServerController. The

2As the administrator, I need to be able to be notified when there are some non-automatically solvable problems. I don’t
want to care about other problems.

73

6.1. DOMAIN MODEL Software Engineering - Project Report 1

main controller will be the ServerController, which will be in charge of coordinating all the work and
delegating sub-jobs to the RobotController (R44). The latter will manage lower level responsibilities,
more tied to the robot domain (R45, R31, R32, R34).

The summary of ‘Do’ concepts discovered is:

• ServerController (R44)

• SessionController(R19, R20, R23)

• DeliveryCoordinator (R35, R36, R38, R39, R40, R41)

• PasswordChecker (R24, R25)

• ServerCommunicator (R33, R42, R43)

• UserManager (R26, R29)

• RobotController (R45, R31, R32, R34)

• RobotCommunicator (R33, R43)

• TrackFollower (R30)

R19, R20 and R23 are assigned to a new concept: SessionController, because it is its responsibility to
control each user interaction with the system. R24 and R25, however have been assigned to a separate
concept (PasswordChecker), because this role is differentiated from the session. As R32 is very simple
and only implies accessing at the buzzer when certain condition happens, we will assign it to the concept
that is aware of this condition: RobotController. The same reasoning is valid for R34. We assigned
the responsibility R33 to two concepts, because this responsability must be distributed in both the
robot and the server. As the task mainly implies communication between both, we assigned it to the
communicators: ServerCommunicator and RobotCommunicator. R26 and R29 cannot be assigned to the
ServerController because both problems are complex enough to qualify for a separate concept. Note that
all responsibilities related to robot movement planification (R35, R36, R38, R39, R40, R41 which point
should go now, which should go later...) have been assigned to a single concept. Although this may seem
a lot of responsibilities for a single concept, we think that refining this to a smaller concepts is a design
decision, so we will do in next iterations of the project. Finally, R30 have been assigned to a standalone
concept due to its complexity.

6.1.1.3. Summary of concepts

After the discussion that led us identify the concepts, we summarize all these in figure 6.1.

6.1.2. Attribute definitions

The RobotPosition has four attributes: the last known position (important point, such as Office 123), the
current position (in case it is stopped), the position it is going to, and an attribute to indicate whether
it is stopped or not . This is useful for the server to maintain a record of the approximate position where
the robot could be.

SecureBoxContents stores the identifier of the delivery associated with each section of the secure box.
Another option would be to store only a reference to the Sender and to the Receiver, but storing the ID
of the communication itself allows deducing the sender and the receiver.

PendingDeliveries contains the information about deliveries that are already pending and DeliveryHis-
tory contains the information about finished deliveries.

FloorMap stores the pair {pointNum, Name} for each important point in the floor. One example could
be 1, “Office 623”.

The UserList contains the ID, name, password, e-mail address and a reference to his/her office for each
user in the system.

UserManager contains an attribute of the current logged users that are managing profiles. Server-
Controller does not have a numPending attribute for each user, because this concept can deduce this
information from PendingDeliveries.

74

6.1. DOMAIN MODEL Software Engineering - Project Report 1

Figure 6.1.: Concept diagram for the Automatic Delivery System.

The DeliveryCoordinator will have one attribute waiting, in order to know its state: it is waiting for
a delivery to finish or it can accept and allocate deliveries. It also contains the priority of the current
delivery, which is a system parameter derived from the QoS constraint and the battery charging constraint.

ServerController will know the state of the robot too, using isRobotHealthy (to know if server can
reach it) and communicating with RobotPosition.

Finally, SessionController contains attributes tied to the user interaction with the system, such as
isLoggedIn (to know if the user was logged in correctly), isManaging, isBooking and isTracking(to know
the action of the user), isAdmin (to know wheter the user is the administrator or not), numDeliveries (a
derivated attribute from PendingDeliveries to know the number of Deliveries that the user have booked),
nonConfirmedBookings (to know the non confirmed bookings). Special mention requires the logging in.
As we discussed, we included a passwordchecker to check whether the password introduced by the user is
correct or not. On the other hand, we mentioned the maximum number of attempts when talking about
the Login use case. Therefore, we need to include two attributes to handle this: numOfLoginAttempts
and maxNumOfLoginAttempts. One can think that the correct concept to place these two attributes is
PasswordChecker. However, this concept is unique in the system, but there will be several users trying to
access to the system. Therefore, we need a concept that will be materialized/instantiated for each user
trying to acces the system. This concept is the session controller.

Let’s move now to the robot’s concepts.

RobotCommunicator will maintain the status of the communication in the attribute isServerHealthy.

Filter concept must maintain the current state for each sensor. Also, in order to filter the inputs it can
maintain an accumulated state and update it every time it checks the actual input. The currentState
attribute will only be updated when the same value have been repeated for more than a specified number
of times.

The InterfaceRobot will maintain the keys that have been pressed in the numerical keyboard and the
current value for outputs.

75

6.1. DOMAIN MODEL Software Engineering - Project Report 1

TrackFollower must maintain the state of the algorithm for tracking and following the line. More details
about this algorithm and its states are provided in section 6.3.1.

Finally, RobotController will contain: isMoving will be useful for determining whether the robot is
moving or is waiting for instructions; openedSection will store which section has been opened; and
current/last/destinationPosition will store where the robot will go, where it has been and where it is, if
it is stopped.

6.1.3. Association definitions

Associations of different concepts mentioned in 5.1.1 are described in Tables 6.1 and 6.2. Note that
these association and related concepts derive from Use cases UC-1 to UC-19. Instead of illustrating
concepts and their associations for each use cases, we use a full table to describe all related concepts and
associations in the system. This is because we believe that we separate the whole system into 19 use
cases (it’s a lot!), as a result, some of them are so easy to understand, while some of them have very
strong coupling that it’s hard to separate one from another.

The system has two main kinds of inputs. One is from humans, including registered users, administra-
tors and non-registered visitors. The other is from non-human objects, including sensors (motor sensors,
light sensors, magnet sensors) and keypad inputs. At the same time, interactions between human/non-
human inputs and outputs are web page or mobile application, which is called Interface, and another
kind of interface, which is called InterfaceRobot, to indicate robot-related interations with human. These
kind of interations may include generating ‘buzz’ sound and opening designated section of secure box.

From the system point of view, it is mainly divided into two parts, server part and robot part. Interfaces
to interact between these two parts are ServerCommunicator in the server side, and RobotCommunicator
in the robot side. The communication between ServerCommunicator and RobotCommunicator is mainly
to send/receive signals containing operating messages from each side and guarantee QoS of wireless
communication.

In the server part, it is composed of Interface, EmailNotificator, SessionController, PasswordChecker,
UserManager, RobotPosition, SecureBoxContent, DeliveryHistory, PendingDeliveries, DeliveryCoordina-
tor, ServerController, FloorMap, UserList and ServerCommunicator. Among all these concepts and their
associations, ServerController, SessonController, and DeliveryCoordinator play an important role in han-
dling with requests, determining next operations and general management. For the SessionController, it
is the core concept regarding web operation, whenever a user wants to add an account, modify his/her
user information, or book a delivery, the SessionController will gather request from the user and dispatch
them into other modules. For example, when a user request booking a delivery, SessionController will
add the delivery ID into PendingDelivery queues. For the association of DeliveryCoordinator with other
concepts, it is the decision maker of which delivery needs to be done next, and what the robot needs to
do in the next step. Take the initialization of pickup package as an example, when waiting status become
false, that is, when the robot is ready for another delivery, the DeliveryCoordinator will assign the first
delivery ID in the PendingDelivery queue for as the next delivery task, then, it will access RobotPosition
to obtain current location of robot, access FloorMap to determine how the robot will get from current lo-
cation to the sender’s location, send instructions to the Robot through ServerController about the ‘move’
instructions. For the server controller, it is in charge of sending instructions to robot, creates new delivery
if necessary (e.g. when one delivery trial fails and needed to be delivered again), updating RobotPosition
and DeliveryHistory and notify EmailNotificator to send email to user about a email about to come.

From the robot part, it is composed of RobotCommunicator, RobotController, TrackFollower, Filter
and InterfaceRobot. RobotCommunicator transfer message to RobotController, then RobotController
will interact with the TrackFollower, if the message is about making robot move; the RobotController
will interact with InterfaceRobot if the message is about to turn on a LED, or trigger the buzz. Filter
will sample and obtain sensor states. TrackFollower will request state information from the Filter about
sensors to move to the designated position or stop immediately.

The final domain model diagram is shown in figure 6.2.

76

6.1. DOMAIN MODEL Software Engineering - Project Report 1

Concept Pair Association Description Assoc. name

SessionController
⇔ Interface

SessionController accesses information from the Interface about
user information and possibly updates these information

Accesses, up-
dates

SessionController
⇔PasswordChecker

SessionController activates and uses PasswordChecker in order to
verify user’s identification in the case user needs to log in

Activates, uses

SessionController
⇔PendingDeliveries

SessonController updates and stores booking information to Pend-
ingDeliveries in the case a user books a delivery

Updates, stores

ServerController
⇔ SessionCon-
troller

SessionController notifies new booking information to the Server-
Controller. ServerController may also creates new booking de-
livery to the SessionController in the case the pickup or delivery
process failed at this time and need to re-do the process, or de-
livery failed for three times and a package need to be returned to
the sender

Notifies new
booking, creates

ServerController
⇔ Password-
Checker

ServerController activates and uses PasswordChecker in the case
a sender or a receiver enters his/her password for authentication

Activates, uses

PasswordChecker
⇔ UserList

Password checker requests password from UserList to check
whether the password that the user inputs in the robot’s keyboard
is consistent with expected password

Requests pass-
word

SessionController
⇔ UserManager

SessionController activates and uses UserManger to provide de-
tailed user management function (such as add or remove user ac-
count)

Activates

UserManager ⇔
UserList

UserManager accesses and creates UserList when a user choose to
add an account. UserManager accesses and modifies UserList to
change user’s information

Accesses, cre-
ates, modifies

SessionController
⇔ DeliveryHis-
tory

SessionController accesses DeliveryHistory to get information
about delivery history, in the case user want to log in and check
delivery information

Accesses

DeliveryCoordinator
⇔ RobotPosi-
tion

DeliveryCoordinator accesses RobotPosition to evaluate current
position of robot and determine action of next step for the robot
(move, stop or enter error state)

Accesses

ServerController
⇔ RobotPosi-
tion

ServerController updates position information to RobotPosition,
in order to store current detailed position status

Updates

DeliveryCoordinator
⇔ SecureBox-
Content

DeliveryCoordinator accesses and updates SecureboxContents in
the case the sender just put a package into an available section of
secure box or a receiver just takes a package out from a section

Accesses, up-
dates

ServerController
⇔ DeliveryHis-
tory

ServerController updates DeliveryHistory by transmitting deliv-
ery checkpoint (such as finish pickup, begin delivering, package
delivered) to the DeliveryHistory

Updates

DeliveryCoordinator
⇔ DeliveryHis-
tory

DeliveryCoordinator updates delivery history information to De-
liveryHistory for refreshment

Updates

Table 6.1.: Association Definitions (part 1)

77

6.1. DOMAIN MODEL Software Engineering - Project Report 1

Concept Pair Association Description Assoc. name

ServerController
⇔ DeliveryCo-
ordinator

ServerController starts DeliveryCoordinator at the beginning of
running a queue of delivery task; DeliveryCoordinator notifies
ServerController about the robot’s action, i.e. what should robot
do next, to move or to stop.

Starts, notifies
robot action

PendingDeliveries
⇔ DeliveryCo-
ordinator

PendingDeliveries pop up the first delivery information in the
queue to the DeliveryCoordinator in the case ‘waiting status’ is
false, i.e. the robot is idle and ready for next task

Retrieves, up-
dates, deletes

DeliveryCoordinator
⇔ FloorMap

DeliveryCoordinator accesses FloorMap to get the correspondent
office location according to the designated sender or receiver

Accesses

DeliveryCoordinator
⇔ FloorMap

UserList request information from FloorMap to get name for a
PointNum

Request Name
for a PointNum

ServerController
⇔ ServerCom-
municator

ServerController contact with ServerCommunicator to sending
and receiving message

Sends and re-
ceivers

ServerCommunicator
⇔RobotCommunicator

ServerCommunicator sends and receives signals to RobotCommu-
nicator so that Server side and robot side can interact with each
other

Sends and re-
ceivers

TrackFollower⇔
Filter

TrackFollwer requests values from Filter so that it can get sensor
states (especially those sensors regarding motor and light)

Requests values

RobotController⇔
TrackFollower

RobotController controls the start and stop of the robot by send-
ing start/stop instruction to trackfollower

Starts and stops

RobotCommunicator⇔
RobotCon-
troller

RobotCommunicator notifies messages from server side and re-
quests sending messages to server (as an intermediary)

Notify messages
from server and
request sending
messages to
server

RobotController⇔InterfaceRobotRobotController updates outputvalues to InterfaceRobot in the
case LEDs need to be turned on of turn off (as an indicator that
section is open or close)

Update output
values

RobotController⇔
Filter

RobotController requests sensor values(especially magnetic sensor
value) in order to dectect current location

Requests values

Filter⇔InterfaceRobotFilter requests values from InterfaceRobot to request information
about state of each input sensor

Requests values

Table 6.2.: Association Definitions (cont.)

78

6.1. DOMAIN MODEL Software Engineering - Project Report 1

Figure 6.2.: Domain model diagram for the Automatic Delivery System.

79

6.2. SYSTEM OPERATION CONTRACTS Software Engineering - Project Report 1

UC PW D
el

iv
er

y
H

is
to

ry

S
ec

u
re

B
ox

C
on

te
n
ts

R
o
b

o
tP

o
si

ti
o
n

P
en

d
in

gD
el

iv
er

ie
s

D
el

iv
er

y
C

o
o
rd

in
a
to

r

In
te

rf
a
ce

E
m

ai
lN

o
ti

fi
ca

to
r

S
er

ve
rC

on
tr

o
ll

er

F
lo

o
rM

a
p

S
es

si
o
n

C
on

tr
o
ll

er

P
as

sw
o
rd

C
h

ec
ke

r

U
se

rM
an

ag
er

U
se

rL
is

t

S
er

ve
rC

om
m

u
n

ic
at

o
r

R
o
b

ot
C

o
m

m
u

n
ic

a
to

r

R
o
b

ot
C

o
n
tr

o
ll

er

In
te

rf
a
ce

R
o
b

o
t

T
ra

ck
F

o
ll
ow

er

F
il

te
r

UC1 9 x x x x x x x
UC2 3 x x x x x x x
UC3 1 x
UC4 1 x x x
UC5 3 x x x x x x x
UC6 1 x x x x
UC7 5 x x x x x x x x x x x x x
UC8 5 x x x x x x x x x x x x x x
UC9 1 x x x
UC10 1 x x x
UC11 6 x x x x x x x
UC12 3 x
UC13 2 x
UC14 1 x x x x x x
UC15 10 x x x x x x x x
UC16 10 x x x x x x x
UC17 10 x x x x x x x
UC18 10 x x x
UC19 1 x x x

Max PW 9 5 10 9 5 9 5 10 10 9 9 1 9 10 10 10 10 10 10
Total PW 25 10 40 25 11 21 10 62 40 16 22 4 26 47 47 57 47 20 30

Table 6.3.: Traceability matrix

6.1.4. Traceability matrix

The traceability matrix for is shown in Table 6.3.

6.2. System Operation Contracts

Table 6.9 shows the system operation contracts for Track Delivery Status. Given that the actor fulfilled
the preconditions for this operation, the operation postconditions specify the guarantees of what the
system will do. The precondition for a user is that he or she should log in first, request tracking status;
and the ‘interested delivery’ information, such as sender, receiver, and date is stored in the system
database. Given these preconditions, user can check the interested delivery information in the web user
interface (UI). After that, tracking request in Session Controller is reset to false.

Table 6.10 shows the contracts for the operation Authentication to Robot. The system should be fair, so
each user should be allowed the same number of attempts (MaxNumofAttempts). Thus, the precondition
for a new user is that NumofAttempts equals to zero. Besides, if NumofAttempts does not exceed the
MaxNumofAttempts, the precondition of authentication operation is satisfied. The postcondition for the
system is that, after the current user ends the interaction with the robot, the NumofAttempts is reset to
zero and current instance of the password object is destroyed.

Table 6.11 shows the contracts for the operation Notify Receiver. If actor fulfilled the preconditions
for this operation, the operation postconditions will specify what the system will do. The precondition in

80

6.2. SYSTEM OPERATION CONTRACTS Software Engineering - Project Report 1

Name: BookDelivery

Responsibilities Enables the user to book a delivery system.
Cross References UC-1
Preconditions a) An authenticated user logged in to the system. b)The user

made a delivery request and the delivery machine arrived to a
place where the user can book his/her delivery without moving
from its position. c) The user is currently in his/her place to
book his/her delivery.

Postconditions The delivery request is completed and the delivery task of the
package booked by the user is issued to the delivery machine task
queue.

Table 6.4.: System Operation Contracts for BookDelivery

Name: MoveRobotToPoint

Responsibilities Moving the robot to a desired location.
Cross References UC-15
Preconditions a) A desired destination point of the delivery machine is decided

by the system. b)Desired location is within the working field
of the delivery machine. c) System is able to find the current
position of the delivery machine without any exception. d) Move
to destination task is at the top of the delivery machine task queue.
e) Nothing is preventing the mobility of the delivery machine.

Postconditions Delivery machine moves to the desired location point and ready
to fetch the next task from its task queue.

Table 6.5.: System Operation Contracts for MoveRobotToPoint

Name: SetMotorRSpeed & SetMotorLSpeed

Responsibilities Sets the rotation speed of the motor 1 which is in the right side
of the robot.

Cross References UC-16 UC-17
Preconditions a) The system decides to change the speed of motor 1—2.

b)Desired speed of Motor 1—2 is within the acceptable limits
which is governed by the specifications of the motors going to be
used. c) Motor 1—2 is working properly. d) Speed of the Motor
1—2 can be effectively configured by a corresponding driver.

Postconditions Speed of the Motor 1—2 is changed to the desired level.

Table 6.6.: System Operation Contracts for SetMotorRSpeed & SetMotorLSpeed

81

6.2. SYSTEM OPERATION CONTRACTS Software Engineering - Project Report 1

Name: PositionInspection

Responsibilities Checks the position of the delivery machine and corrects its posi-
tion if necessary.

Cross References UC-18
Preconditions he reflective sensors and magnetic sensors mounted on the delivery

machine is working properly and their values can be received and
processed at a remarkable frequency for the fineness of the position
inspection.

Postconditions Position of the delivery machine is inspected and necessary deliv-
ery machine position correction task is issued to delivery machine
in a way that the other tasks of the delivery machine is interrupted
by this task. In other words, position correction task is inserted
at the bottom of the delivery machine task queue.

Table 6.7.: System Operation Contracts for PositionInspection

Name: ChargeBattery

Responsibilities Performs the automatic charging feature of the system.
Cross References UC-14
Preconditions a) Battery level indicator is working properly and its output show-

ing the charge level of the battery as percentage level can be re-
ceived by the system. b)System receives a 1st or 2nd (explained in
the fully dressed explanation of UC-14)level battery level warning
from the battery level indicator. c) There is a previously specified
charging place appropriate for the delivery machine. d) There is
no electricity cut happening during this operation.

Postconditions Delivery machine battery is fully charged and ready to continue
its task queue.

Table 6.8.: System Operation Contracts for ChargeBattery

Operation: Track Delivery Status

Preconditions • IsLoggedIn in Session Controller is true.
• IsTracking in Session Controlle is true.
• The “interested delivery” nformation (ID, Sender, Receiver
Date) is stored in the system database (Delivery History or Pend-
ing Delivery).

Postconditions • IsTracking set false in Session Controller
• Specific delivery status is displayed in the User Interface.

Table 6.9.: System Operation Contracts for Track Delivery Status

82

6.2. SYSTEM OPERATION CONTRACTS Software Engineering - Project Report 1

Operation: Authentication to Robot

Preconditions • Set of valid passwords stored in the system database is non-
empty.
• NumofAttempts = 0, for the first attempt of current user.
• NumofAttempts ¡ MaxNumofAttempts

Postconditions • NumofAttempts = 0, if the entered password ∈ Valid keys.
• Current instance of the password object is archived and de-
stroyed.

Table 6.10.: System Operation for Authentication to Robot

Operation: Notify Receiver

Preconditions • IsBooking in the Session Controller is true.

Postconditions Receiver receives the notifying message.

Table 6.11.: System Operation for Notify Receiver

this operation is that the sender firstly have finished booking delivery, IsBooking in the Session Controller
is true. Given this preconditions, system will automatically send a notifying message to receiver saying
that his or her package is on the way.

Table 6.12 indicates the system operation contract for ObtainHelp. For the function of providing help
instructions to user, the implementation is quite easy and clear. There is no precondition for the system
if the user is visiting the user interface and is willing to obtain help. After the user click ‘Help’ link in
the web interface, it will turn to help page, which contains instructions about how to use the Automatic
Delivery System.

Table 6.13 indicates the system operation contract for PickupPackage.For the function of pickup
package for the sender, certain preconditions and postconditions must be guaranteed. The system should
wait for the ‘waiting status’(which is an attribute of concept ‘DeliveryCoordinator’) to become ‘False’,
which means the robot is now ready for new pickup and deliveries, before doing the ‘Pick up Package’
operations. Another precondition is there exists pending deliveries in the queue, which means there
are ‘Pickup’ work waiting to be done. Also, Pickup package need one section from the secure box to
contain package, so at least one section should be available. Other preconditions include both server
and robot should be able to communicate with each other. After picking up the package, the system
enters the process of delivering the package which just picked up from the sender, so any other delivery
service should be pending, so ‘waiting status’ should become true. Also, this delivery is no longer in
line waiting for picking up, so the delivery ID should be canceled from the pending delivery queue. This
new delivery ID should be linked with the section number that contains the package. We should always
guarantee communication between server and robot available if certain operations is related to robots.
So IsRobotHealthy and IsServerHealthy should always be true under this circumstance.

Table 6.14 indicates the system operation Delivery(for success scenario). For the function of Delivery
package to receiver, certain preconditions and postconditions needed to be accomplished. Before Delivery
is executed, We should guarantee the waiting status is still true, in this way, no other instructions will

Operation: ObtainHelp

Preconditions None

Postconditions User interface switches to help page.

Table 6.12.: System Operation Contracts for ObtainHelp

83

6.2. SYSTEM OPERATION CONTRACTS Software Engineering - Project Report 1

Operation: PickupPackage

Preconditions • Waiting status = False;
• Pending Deliveries set 6= ∅;
• Available Sections set of SecureBox 6= ∅;
• IsRobotHealthy = True;
• IsServerHealthy = True.

Postconditions • Waiting status = true;
• Last DeliveryID is excluded from Pending Deliveries set;
• New ID linked with section number x is added in the Secure-
BoxContents set;
• State of confirmbutton = invalid;
• IsRobotHealthy = True;
• IsServerHealthy = True;

Table 6.13.: System Operation Contracts for PickupPackage

Operation: Delivery (for success scenario)

Preconditions • Waiting status = True;
• IsRobotHealthy = True;
• IsServerHealthy = True;
• IsRobotHealthy = True;
• Destination Position = receiver’s location.

Postconditions • Waiting status = False;
• The link between finished delivery ID and it’s package section
is excluded from the SecureBoxContents set;
• Update Delivery History, delivery of certain ID should be
marked as ‘finished’;
• state of confirmbutton = invalid;
• IsRobotHealthy = True;
• IsServerHealthy = True.

Table 6.14.: System Operation Delivery (for success scenario)

84

6.2. SYSTEM OPERATION CONTRACTS Software Engineering - Project Report 1

Operation: UserManage
Responsibilities Display the user or administrator with the option of add

user, remove user and edit user information

Preconditions The user or adminstrator gets authorization from system
IsManging=0; IsLoggedIn=0
IsAdmin=0 —for Administrator
IsAdmin=0 —for users

Postconditions The user chooses one of options from the system interfacee
IsManaging=1; Is LoggedIn=1
IsAdmin=1 —for Administrator
IsAdmin=0 —for users

Table 6.15.: System Operation UserManage

Operation: AddUser
Responsibilities To add a new employee information to the system database

Preconditions The employee information is not in the system
IsManging=1; IsLoggedIn=1
IsAdmin=1 —for Administrator
IsAdmin=0 —for users

Postconditions The system database records the new empolyee information
IsManaging=1; Is LoggedIn=1
IsAdmin=1 —for Administrator
IsAdmin=0 —for users

Table 6.16.: System Operation AddUser

be called to make the robot move to other place for a package pickup. Also the system should set
destination position to the receiver’s location (this is obtained from the FloorMap with point number
and it’s corresponding point name). Also, communication between server and robot should always be
ensured. After finishing Delivery operation, the waiting flag should be marked as ‘False’, so subsequent
delivery task will be assigned and robot will move on for the future work. Also, since the section that
contain last receiver’s package has been emptied, so the status of this section should be marked as
‘available’ now for future delivery use. The system should also update delivery history for this entire
delivery process is finished. At the same time, we should always guarantee the communication between
robot and server is normal, since all previous operations is dependent on the communication between
these two objects.

This UserManage contracts express the attibute of SessionController in the main domain model. Every
users are equally provides with login window when he or she want to get access to the UserManage
interface. Sytem will then automatically authenticate whether the user is adminstrator or not. The
precondition is that the IsManaging and Isloggedin are zero at the start points. After success login, the
IsManaging and Isloggedin are equal to 1, and IsAdmin equal to 1 for adminstrator and equal to 0 for
users.

In the preconditions for the operation add user (table 6.16), the status value of IsManaging and
Isloggedin is 1 for user or adminstrator.Differences value of IsAdmin exists between user and adminstrator.
in the postconditions, the status value remains the same for users has not logged out and still has the
authorization to manage the user information

85

6.2. SYSTEM OPERATION CONTRACTS Software Engineering - Project Report 1

Operation: RemoveUser
Responsibilities To remove an existing employee information to the system

database

Preconditions The employee information is in the system
IsManging=1; IsLoggedIn=1
IsAdmin=1 —for Administrator
IsAdmin=0 —for users

Postconditions The system database remove the previous empolyee information
IsManaging=1; Is LoggedIn=1
IsAdmin=1 —for Administrator
IsAdmin=0 —for users

Table 6.17.: System Operation RemoverUser

Operation: Login

Preconditions The valid names/keys stored in the system database is non-empty;
OperatingInterfaceStatus =Normal;
The user has already created a user account in the system.
numOfAttempts < maxNumOfAttempts
numOfAttempts = 0, for the first attempt of the current user

Postconditions numOfAttempts = 0, if the entered user name/password Î valid
user name/password
current instance of the user name/password object is archived and
destroyed
LoginStatus=Success

Table 6.18.: System Operation Login

Operation: AccessDeliveryRecord

Preconditions The delivery record stored in the system database is non-empty;
OperatingInterfaceStatus=Normal;
LoginStatus=Success.

Postconditions Delivery records can be displayed chronologically in the displayer;
Administrator can edit the delivery records in the system.

Table 6.19.: System Operation Access to delivery record

Operation: NotifyError

Preconditions SystemStatus=problem;
LoginStatus=Success, for user;

Postconditions Administrator receives notification email about the problem;
User finds the notification after logging into the system.

Table 6.20.: System Operation NotifyError

86

6.3. MATHEMATICAL MODEL Software Engineering - Project Report 1

6.3. Mathematical Model

Basically, our system needs two mathematical models, descrived in the following sections.

6.3.1. Track detection

In this part, the question, “How will the robot will follow the path ?”, is going to be answered.

Our system will assume the track formed basically by two lines on the road will be provided. This track
is going to be simple plain white line for the delivery machine to follow. White line will be recognized
and followed by the help of two optical sensors . We need two optical sensors to achieve turning the
machine and also to keep the machine follow the line in a smooth manner (figure 6.7) rather than making
zig zag (figure 6.8). We mean by smooth manner that the machine moves almost in a straight line and
makes small oscillations aroung the moving axis so that these oscillations are almost negligible for the
movement and the scene. There are simply 2 things which need to be considered while detecting the
track and maintaining a successful path follow;

1. The machine movement should be step oriented. To explain more, system should firstly detect its
position related with the track and then direct the machine to do a corresponding movement. This
can be understood by considering two simple scenarios.

a) By getting ’1’ (representing the sensor is sensing the white line) from both optical sensors,
system understands the road is flat and the machine needs to go forward (figure 6.4).

b) By getting ’1’ from one of the sensors and ’0’ from the other this means the machine is going
away from the path which is bad. So correspondingly system directs the machine to move
again into path (figure 6.5).

2. If the machine gets out of track (figure 6.6) and cannot sense any line with its optical sensors,
system should be warned by the machine and the machine should go into ’wait’ state. In this state,
machine suspends all of its tasks and waits for the administrator to fix the problem by removement
of the machine on the track.

The general moving states of the delivery machine is as the following (figure 6.3).

6.3.2. Path resolution

In this part, the strategy of the system for pick up and hand in packages operations of each delivery task
will be presented.

A path (figure 6.9) is simply the road which has a starting and an ending point. In our case starting
point will be the current position of the delivery machine once the delivery task is fetched. The ending
point will be the specific places arranged in the users’ offices for pick up and hand in operations. This
specific place can be simply anywhere appropriate for the user to be able to receive or submit his/her
packages without moving his/her desk.

The problem of path resolution for the delivery machine can be simply conceived as a shortest simple
path problem. Of course to utilize from this previously solved shortest path problem, our system should
be able to first extract the movement map as a simple graph. Vertices of the graph in this case are
possible destionations of the machine and the edges are the roads between these possible destionations.
Also we need to define a positive ”weight” for each edge of the graph for the sake of representing distances
between the destinations.

System is going to create the graph by the input of the vertices, connection and edge weights entered
by the administrator. Automatic map (graph) extraction is omitted because it is redundant in the sense
that the working environment of delivery machine will not be dynamic and large. The destinations in
actual road are represented by the ’magnets’ which are put on the machine track in a logical way.

After the graph formation of the working environment, path resolution turns into a simple shortest path
problem. There are many algorithms for solving this problem (reference [48]) but we will use Dijkstra’s
algorithm. Even though there are some other more efficient algorithms used but we chose Dijkstra’s since

87

6.3. MATHEMATICAL MODEL Software Engineering - Project Report 1

Figure 6.3.: Finite state machine showing the moving cases of the delivery machine and their interactions.

Figure 6.4.: Representation of the machine going forward case.

88

6.3. MATHEMATICAL MODEL Software Engineering - Project Report 1

Figure 6.5.: Representation of the machine turning case.

Figure 6.6.: Representation of the machine going out of path case.

89

6.3. MATHEMATICAL MODEL Software Engineering - Project Report 1

Figure 6.7.: Representation of the machine making unstable zig zags while moving.

90

6.3. MATHEMATICAL MODEL Software Engineering - Project Report 1

Figure 6.8.: Representation of the machine making small zig zags while moving.

91

6.3. MATHEMATICAL MODEL Software Engineering - Project Report 1

Notation Explanation

c(x,y) Link cost from node x to y; = ∞ if not direct neighbors
D(v) Current value of cost of path from source to dest. v
p(v) Predecessor node along path from source to v
N’ Set of nodes whose least cost path definitively known

Table 6.21.: System Operation Contracts for BookDelivery

Figure 6.9.: Representation of a simple path of the machine 1.

it is simple to implement, fast and the maps of the working environment for our system is not so complex
at all. To briefly explain Dijkstra’s shortest path solution algorithm;

Dijkstra’s Algorithm is a Link-State Routing Algorithm. It computes the least cost paths from one
node (’source’) to all other nodes which means basically it gives forwarding table for that node. Actually
since we want to want to find the forwarding path to just one vertex, we will slightly modify this algorithm
for it to find the path to just one destination for each time a path resolution requested. Therefore, it will
be efficient performance wise since path resolution to one vertice requires just one iteration.

Before presenting Dijkstra’s algorithm, some notation should be introduced first.

Depiction of the Dijkstra’s Algorithm in pseudo code can be found in the followings (figure 6.10)
(reference [54]). Also an example to show how Dijkstra’s Algorithm works to find the shortest path
between ’u’ (source) and ’z’ (destination) can be found in the followings (figure 6.11) (reference [54]).

92

6.3. MATHEMATICAL MODEL Software Engineering - Project Report 1

Figure 6.10.: Dijkstra algorithm.

Figure 6.11.: Dijkstra example.

93

Software Engineering - Project Report 1

7. INTERACTION DIAGRAMS

We will describe the most important use cases: BookDelivery, PickUp and Delivery.

7.1. Login and BookDelivery

The interaction diagram for BookDelivery use case is simply showing the interaction between the objects
for logging in stage of the user and delivery booking by the user.

Firstly for the logging in stage, the interactions happening are as follows;

• Once the user launches the program it will be welcomed by a simple ‘login’ screen. In this screen
user will be asked to enter his/her unique username and password for authentication. After the
username and the password is entered in the related parts and the login is initiated, ServerController
will be urged to create the SessionController which is responsible for managing this login process.

• Once the SessionController is created, it is going to create the PasswordChecker object to use it as a
inquiry to the database of UserList. SessionController uses the checkPassword(username, password)
function of the PasswordChecker to find out whether there is a user with the entered username and
if there is whether the password is correct.

• After the result of this user authentication done by the PasswordChecker, SessionController interacts
with the user interface to show the corresponding messages (“Login success message” or “Login
failed message”) to the user.

After the user is successfully logged in, the next stage is the delivery booking. The interactions
happening for this part are as follows;

• Once the user makes a search for the target user by writing the his/her name, this request is handled
by the SessionController. For handling this request, SessionController inquires the database of
UserList and if the query results in success, SessionController tells the Interface to show the name
of the target user in the target user list.

• Then user can select which user s/he wants to add it to the target user list. This addition of the
selected user to the target list and showing this addition to the user in the interface is also handled
by the similar interaction in 4. between the SessionController and the Interface.

• The searching and selecting steps (previous two steps) can be repeated till the user finds all receip-
ients he/she want to send packages to. After finishing adding target users to the target user list,
user can start book deliveries by clicking the ‘confirm’ button in the window. The confirmation of
the user is handled again by the SessionController

After the deliveries-to-be booked are confirmed, the interactions happening will be as follows;

• Once the user initiates the confirmation of the book delivery requests related with the target list
s/he created, SessionController will handle this confirmation request and call the book delivery size
check function of the ServerController. This is simply checking whether the user is trying to book
more deliveries than the previously specified delivery limit for each user. This limiting is necessary
for the system to be fair serve for every user.

If the ServerController’s so-called checking function inspects that the user is trying to go beyond the
limit, the confirmed deliveries will not be booked by the system. In that case, a corresponding error
message will be shown to the user. Else these confirmed deliveries are booked by the ServerCon-
troller via adding these deliveries to the database PendingDeliveries. After this successful booking
operation, again first the ServerController informs the SessionController and SessionController in-
forms the user about the success.

94

7.1. LOGIN AND BOOKDELIVERY Software Engineering - Project Report 1

Figure 7.1.: Interaction diagram for the Main part of the book delivery use case scenario.

95

7.2. PICKUPPACKAGE AND DELIVERY Software Engineering - Project Report 1

7.2. PickUpPackage and Delivery

As long as this two use cases have similar functionality and are very tied, we will describe both together.
Figure 7.2 shows the main part of the interaction diagram for these two use cases from the perspective
of ‘server’ side. Figure 7.3 shows the interaction diagram to obtain the package information with highest
priority, which is abbreviated as ‘getMostPrioritaryDelivery’. This is an important function to complete
the process of PickUpPackage or Delivery in the server side. Detailed description of this function can be
found later in this section. Figure 7.4 explains how the use case moveRobotToPoint works, which means
how the robot can move from one office to the next one and interact with the server. Figure 7.5 shows
interaction diagrams of how the server and robot behave when the robot has arrived at the PickUpPackage
or Delivery location and wait for picking up the package or giving the package to recipient. Figure 7.6
describes how the robot is capable of following the black line which was set up as track of the robot.
In the following paragraphs we will describe the full functionality for these two important use cases –
PickUpPackage and Delivery. We will also discuss the decisions that helped achieve this.

First, the serverController creates an instance of the DeliveryCoordinator concept1, and when this
happens the pickUpPackage/Delivery use case begins. Note that if we consider the system as a whole,
the ‘initiating’ actor for both use cases is the Timer, because no human factors participate in the initiating
part of these use cases. However, if we focus a bit more on the internals of the system, i.e. from the
perspective of the system, the Timer is not the only one that initiates the PickUpPkacge or Delivery
use cases: there are prerequisites that some sequence must happen before a concrete PickUpPackage or
Delivery use case starts. A simple scenario could be, for example, that the delivery must be booked and
the robot needs to be stopped in the initial point. As were discussed in Chapter 6 and the multiple
delivery User Story, this would bring about very bad performance, because the time needed for previous
deliveries can be unpredictable and we might have no idea for how long the robot will go back to the initial
point. Therefore, we improve the algorithm by allowing the initiation of a PickUpDelivery/Delivery when
the robot is in the middle of another delivery process. In other words, we can’t just calculate a “pick
up/delivery” plan (e.g. go to point 1, then to point 4, then to point 6 and finally to point 10; finally,
return to point 0) and make the robot follow this fixed route. It’s not flexible enough. We want the
system to be able to calculate the route dynamically. At a first glance, this can be done basically by two
methods:

• Every time a pickup/delivery is booked, recalculate the long-term route.

• Every time the robot reaches a point, look if there are pending deliveries from that point.

The first approach might seem more suitable, because the second one introduces some problems apparently
non-easily solvables. However, if we analyze the problems that arise with the first approach we will see
that most of them are outside of the control of the system. For example, what if the sender/receiver
doesn’t appear in the specified period of time, during the pickup/delivery? Then, the whole long-term
route will be affected. These kind of problems would make the routes to be recalculated again and again.
On the other hand, the second approach can be easily implemented by defining two simple constraints:

• The robot will always follow a definite path.

• The robot will always move around if there are pending pickup/deliveries. If not, the robot will
stay in point 0.

Note that the first was already defined as a global constraint of the system in the first report. Then, we
only need to achieve the second goal, which can be implemented with simple controls (in comparison of
the controls needed for the first approach). For this reason we decided to choose the first approach. This
decision makes the control for the PickUp/Delivery use cases to be initiated only once, when the system
starts. This ‘control’ will dynamically initiate the actual concrete use cases when needed.

1Note that we are not talking about classes here, we are dealing with concepts.

96

7.2. PICKUPPACKAGE AND DELIVERY Software Engineering - Project Report 1

Figure 7.2.: Interaction diagram for the Main part of the pick up and delivery use case scenario.

Figure 7.3.: Interaction diagram for the getMostPrioritaryDelivery function.

97

7.2. PICKUPPACKAGE AND DELIVERY Software Engineering - Project Report 1

Figure 7.4.: Interaction diagram for the moveRobotToPoint function.

Figure 7.5.: Interaction diagram for the concrete actions that the system does when picking up and delivering an
object.

Figure 7.6.: Interaction diagram for the part in charge of following the line.

98

7.2. PICKUPPACKAGE AND DELIVERY Software Engineering - Project Report 1

Let’s see the mechanism to do this. As you can see in the main scenario diagram, there is an infinite
loop that repeats the following procedure forever:

1. The first thing to do is to check if there are pending deliveries. We also check for the robot position,
because it is used in almost all cases. An alternate solution is not to obtain the robot position yet,
and wait until it is needed.

2. On the one hand, if there are no deliveries:

a) The main goal is to arrive to point 0 in order to charge the battery while waiting for new
deliveries (we can’t let the robot stay in the middle of the corridor). Therefore, if the robot is
in point 0, the only thing we need to do is to wait a certain amount of time before going to
the beginning of the loop.

3. On the other hand, if there are deliveries:

a) First, we thought that it would be a good idea to send a confirmation e-mail to the re-
ceiver/sender in order to let him/her know that the robot was approaching. However, for
simplicity we decided not to do that and send only one email to the receiver when a delivery
is booked.

b) We need to make the robot move to the next point.

c) As discussed, we need to check whether the robot needs to stop at the point that he approached
or not. To do so we will check the most prioritary delivery. Note that in the computation of
priorities the actual position of the robot will be a parameter that increases the priority of the
near deliveries.

i. First, we will achieve the list of the pending tasks and the current position of the robot.

ii. For each task, we will calculate the distance between the position of the robot and the
point where the robot should go to fill the pickup/delivery. This value will be d.

iii. For each task, we will calculate its priority, following the formula: pf = dmax/d + p,
where pf is the final priority (real number between 0 and 2) and p is the priority that
was specified by the user (number between 0 and 1). dmax i the maximum distance than
can be between two points. With this formula the distance is as important as the priority
specified by the user.

iv. We will return the most prioritary delivery (the one that have greater pf).

d) If the point of the most prioritary delivery is the current point, then we need to pick up
or deliver the package. Note that, to do so, in the diagram, we compare the position of the
delivery with the next position of the robotPosition variable. Note that this works, because the
robotPosition variable haven’t been updated with the new position, so it is already pointing
to the previous point.

i. To do so, first we will ring the buzzer (note that the robot is stopped in the position we
are interested in).

ii. Then, the system starts a time counting.

iii. If the user does not appear in a certain amount of time (timeout), the robot will send a
message to the server.

iv. On the main success scenario, however the user will enter the password and will press
enter.

v. When this happens, the robot sends the password to the server, which will check it.

vi. Just after this, the server will retrieve/update the information about which package is in
each secure box section.

vii. The server will send a command to the robot to make it open the correct tray.

viii. When the user finishes, he/she will press enter in the robot and the server will know that
the pick up/delivery was done correctly.

99

7.2. PICKUPPACKAGE AND DELIVERY Software Engineering - Project Report 1

ix. In this case the system will change the state of the concrete delivery. If it was in the state
of booked, it will be now in the picked up state. If it was in the picked up state, now it
will be in the delivered state.

e) If it is not the most prioritary, we can just return to the beginning of the loop.

Note that with this solution the robot will remain at the point 0 when there are no deliveries. On the
other hand, new deliveries are allowed to be booked meanwhile the robot is moving. Such new deliveries
are processed with a really simple, functional and easy-to-maintain algorithm.

Note also that with our approach the robot may be stopped a period of time in each point, waiting for
the server to decide if he must stay there or he must continue. However, as the response time of the server
will be faster (order of ms), this stop will not be noticable. Furthermore, in the final implementation, if
this is a problem we can just let the robot non stop at the point, but notify the server that it is in that
point. Then, when the server knows if the robot must stop in the point or not, notifies the robot again,
and he will stop or not. Again, as the response time will be low, the robot will not stop too far from the
‘magnet’ (the robot will still be in front of the corresponding office).

100

Software Engineering - Project Report 1

8. CLASS DIAGRAM AND INTERFACE
SPECIFICATION

8.1. Class Diagram

Figure 8.1 illustrates classes and their associations in the project. Each class has some kind of intercon-
nections with one or more other classes. Due to the complexity of the class diagram, we first draw a class
diagram with class names only (without their detailed data types and operation signatures). Then we
split the big picture into five small pieces, and include detailed class data type and operation signature
information in these five parts. Besides, for simplicity, we omitted several insignificant classes such as
TimeoutException, NonBookedDeliveryExcetption in this whole class diagram, and leaved the detailed
description of these classes in next section.

From the class diagram we can see that there are mainly two parts. The classes and packages in the first
column are classes and packages in the server/client side, and the other column of classes and packages
are from the robot-side. The coding of these two will be done separately. From the Sever side, total 37
classes consist 3 main layer: presentation, logic, and resource layer. Among these layers, the resource
layer can be split into 3 smaller sub-layers in according to their functionality: resource.communication,
resource.data, resource.datacontroller. The functionality of each layer is explicit just as the layer’s name
shows, resources layer works like a database and is mainly used to store and fetch data; logic layer mainly
takes charge of controlling and presenation layer is responsible for showing different web interface with
customer. The relationship between each layer is also simle: based on database, logic layer manipulates
customer’s request and communicate with customer through presentation layer. The detailed description
of each layer is as follows:

There are 11 classes in the presentation layer, which means these classes take charge of showing different
kinds of web interfaces with customer and of implementing the function of communication between the
system and the customer. These classes are the AdminCreateFloorMapView, AdminMainView, Admin-
ViewDynamicMap, BookDeliveryView, ClientController, ClientControllerInterface, DeliveryStatusView,
LoginView, RegisterView, SystemStatusView and UserMainView. Among these classes ClientController
is the main class which implements the Login state conversion of user.

Another layer in this system is the Logic Layer. In this layer algorithms of several Control Unit is imple-
mented. These classes include DeliveryCoordinator, EmailChecker, ServerController, ServerControllerIn-
terface, ServerInitializedException, ServerNonInitializedException, SystemStatus. They help implement
the flow of how the Central Station received a new delivery order, put it into the queue, dispatch the
order, send robot to sender’s or receiver’s location, password check and notification.

The last layer in the system is the Data Layer. This layer deals with storing and fetching data and
encapsulation of data. The classes that store data are ADSUser, BookedDelivery, Box, DeliveryedDelivery,
Delivery, DeliveryStep, Office, PickedUpDelivery and RobotPosition. By communicating with these
classes, the system can record, know, or update any of the data to make a judgment. The classes
that is the encapsulation of data include DeliveryHistory, FloorMap, Persistance, RobotPositionAccessor,
SectionedBox and UserController. These classes encapsulate previous lower-level data into higher-level
structure, such as generating floor map from the Office, or generating DeliveryHistory from the class
BookedDelivery, DeliveredDelivery and PickedUpDelivery. Especially, the class Persistance is used to
communicate with MySQL database.

From the robot-side, we also have a three-tier architecture: presentation layer, logic layer and resources
layer. The presentation layer implements the function of inte-connection with the user, such as ringing
the buzzer and record keypad input. The second layer is the logic layer, which handles with moving/stop
information from the server and execute instruction to the lower-level of robot actuators to move or

101

8.1. CLASS DIAGRAM Software Engineering - Project Report 1

Figure 8.1.: Class diagram

102

8.2. DATA TYPES AND OPERATION SIGNATURES Software Engineering - Project Report 1

stop. It will also detect current location fo robot and report to the server-side. The lowest-level layer
is called resources layer, with the same name as that in server-side. This layer contains three packages,
communicator, SensorsAndActuator, and data package.Among these three package, communicator is used
to communicate with robot communicator. The subpackage SensorsAndActuators contains classes whose
names are MagneticSensor, ReflectiveOpticalSensorLeft, ReflectiveOpticalSensorRight, MotorLeft, and
MotorRgight. Thsee classes functions separately to sense magnetic signal and light signals,or motivating
the robot to move. The last subpackage ”data” includes classes named Filter, FloopMap and Office. These
classes updates information from the sensor and server-side in reference for movement of the robot.

8.2. Data Types and Operation Signatures

The detailed class specification in UML notation of each class is shown in the Partial Class Diagram
(Figure 8.2, Figure 8.3, Figure 8.4, Figure 8.5, and Figure 8.6). For simplicity, we will introduce our
class functions and operations in the package order. In this whole system, we build three main packages,
from the up to down direction, they are presentation package, logic package and data package, in which
data package is split to three smaller packages according to their function: data, datacontroller and
datacommunication. The meaning of these five packages is explicit as their names. Presentation meanings
the interface with users, logic controls the transaction of data and interfaces. We first introduces the
first package Logic, and 8 classes (Delivery Coordinator , EmailChecker, Non BookedDeliveryException,
ServerController , ServerControllerInterface, ServerInitialized Exception, ServerNonInitialized Exception,
SystemStatus) consist of it. The detailed explanation of classes in the logic package is:

1. Delivery Coordinator: Delivery Coordinator works like a coordinator to help with the delivery
process. In this class, we will check the validity of sender and receiver by comparing the input from
user with the data stored in the database will check the validity of the priority. We also will check
whether there are pending deliveries in the system before your current delivery, and the delivery
was executed differently during theses two situations. Besides, we will check the location of robot
when you want to de a delivery, in this way, the robot can pick up and deliver correctly. In a word,
the DeliveryCoordiator class is used to helping and controlling the delivery process.

2. EmailChecker: EmailChecker is a simple class and its main purpose is to check the whether the
email address the user entered is in a valid email form.

3. NonBookedDeliveryException: This class defines the exception of nonbookdelivery, such as when
the sender name is not correct, the priority has a value smaller than 0, which is used to ensure the
correct process of booking delivery.

4. ServerController: ServerController works in an important role of controlling the whole system. This
class helps us to bind the remote object’s stub in the registry. It also works to initialize the whole
system, initialize with the testing Data which are inserted to the database by persistence. What’s
more, it has other important functions, such as checking whether the login is correct, stopping
server, registering correctly, booking delivery, searching user and check whether the searching is
correct. Also, we can get user delivery list, the system status, user delivery details through this
class.

5. ServerControllerInterface: ServerControllerInterface, as the name of it, it is an interface for server.
We can create Office and clear office, initialize system, bookdelivery by this interface.

6. ServerInitialized Exception & ServerNonInitialized Exception: These two classes are exceptions,
and by properly using exceptions, the whole system can work smoothly. These two classes are used
to check in different situations whether the server is initialized or is not initialized.

7. SystemStatus: System Status class is used to detect the position of robot and whether the robot in
moving at a specific time.

The Presentation package has 11 classes, and they are AdminCreateFloorMapView, AdminMainView
, AdminViewDynamicMap, BookDeliveryView, ClientController, ClientControllerInterface, DeliverySta-
tusView, SystemStatusView, UserMainView , LoginView, RegisterView

103

8.2. DATA TYPES AND OPERATION SIGNATURES Software Engineering - Project Report 1

Figure 8.2.: Partial class diagram (Part1 of 5): Package‘Logic’

104

8.2. DATA TYPES AND OPERATION SIGNATURES Software Engineering - Project Report 1

Figure 8.3.: Partial class diagram (Part2 of 5): Package ‘Presentation’

105

8.2. DATA TYPES AND OPERATION SIGNATURES Software Engineering - Project Report 1

Figure 8.4.: Partial class diagram (Part3 of 5): Package ‘reource.communication’

1. AdminCreateFloorMapView: This class implements the user interface between admin and the
system when the administrator wants to create a floor map according to current offices location. In
this class, we are able to create map, clear map and draw action.

2. AdminMainView: The user is prompted with this interface after login as a administrator. It
prompts the administrator with the main interface with options such like dynamic view of map

3. AdminViewDynamicMap: It prompts the administrator with the dynamic location change of the
robot.

4. BookDeliveryView : It prompts the user the BookDelivery interface allowing to order deliveries
with the GUI. The user is prompted with options of search the receiver by name or office address.
The corresponding information will prompt in the bottom blank.

5. ClientController: ClientController is an important class and it runs as a state machine. Totally we
have 11 states in this state machine. which are:

a) STATE NON LOGGED IN: The client terminal will go into this state when the user has not
yet logged in. In this state, the User Interface will show up log-in window, waiting for user to
input username and password.

b) STATE REGISTERING: The client terminal will go into this state if the user click the ‘register’
button in the log-in window. In this state, the system will record personal information that
the user has input for registering.

c) STATE BOOKING: The client terminal will go into this state if the user is trying to book a
delivery, such as searching for possible recipient and choosing recipients to be delivered.

d) STATE EDITING: The client terminal will go into this state if the user has logged into the
system and tries to edit his/her personal information.

e) STATE SHOWING HELP: The client terminal will go into this state if the user wants to
show help and instructions about how this system works. Currently we do not have the
implementation of this state because of time limit. However we do reserve this state for future
adding up this feature.

f) STATE VIEWING DELIVERY HISTORY: The client terminal will go into this state if the
regular user has successfully logged in and click the ‘Track Status’ tab of the main menu. In
this state, the system will show a list of delivery history to the user.

g) STATE ADMIN MAIN: The client terminal will go into this state if the administrator has
input his/her administration username and password and successfully logged in.

h) STATE ADMIN CREATING FLOOR MAP: The client terminal will go into this state if the
administrator has logged in and tries to create a floor map of a certain office area.

i) STATE VIEWING DELIVERY HISTORY DETAIL: The client terminal will go into this state
if one regular user has logged in, clicked the ‘Track Status’ tab, and double-clicked one specific
delivery history item. Detailed delivery history information will show up in the window, such
as current delivery status, delivery id, etc.

106

8.2. DATA TYPES AND OPERATION SIGNATURES Software Engineering - Project Report 1

Figure 8.5.: Partial class diagram (Part4 of 5): Package ‘resource.data’

107

8.2. DATA TYPES AND OPERATION SIGNATURES Software Engineering - Project Report 1

Figure 8.6.: Partial class diagram (Part5 of 5): Package ‘resource.datacontroller’

108

8.2. DATA TYPES AND OPERATION SIGNATURES Software Engineering - Project Report 1

j) STATE ADMIN VIEWING DELIVERY HISTORY: The client terminal will go into this state
if the administrator has logged in, clicked the ‘Track Status’ tab, then he or she is able to see
all delivery history in the system.

k) STATE ADMIN VIEWING DELIVERY HISTORY DETAIL: The client terminal will go into
this state if the administrator has logged in, clicked the ‘Track Status’ tab, and double-clicked
one specific delivery history item, then detailed delivery information will show up on the
window.

This class helps us to initiate connection with server, change from one state to anonther state to
maintain reasonable interaction with user. In this class, we are able to register, book, edit, searching
help and so on.

6. ClientControllerInterface: ClientControllerInterface is the interfaces that prompts users to login,
register, enter password to transfer to other states.

7. DeliveryStatusView: This class offers us the operations with delivery status. In this class, we can
view the detailed delivery table; also, we can reset, add, and remove delivery details.

8. SystemStatusView: It prompts the users with options of the status of robot and server. The user
can get the location or moving status from the interface.

9. UserMainView: The user is prompted with this interface after login. It is the main user interfaces
that prompts with options with book deliveries and track status.

10. LoginView: It initiates at the beginning of the program. The user is prompted with the interface
with username and password blank to fill in. Also user can click the register button to create new
account

11. RegisterView: The user is prompted with this interface after choosing the options of register on the
Login interface. The user is prompted with information blanks such as First Name, Last Name,
Room, Email, Username, Password, Repeat Password.

The data communication package is consist of ServerCommunicator and TimeoutException.

1. ServerCommunicator: This class is build to help to communicate with the server.

2. TimeoutException: This class is an exception, indicating that the scenario when the user did not
entering the correct password in a limited time, the delivery demand cannot be satisfied, this
exception ensures that the validity of sender or receiver.

There are 9 classes in the data package, and they are ADSUser, BookedDelivery, Box, DeliveredDelivery,
Delivery, DeliveryStep, Office, PickedUpDelivery, RobotPosition, respectively.

1. ADSUer: This class defines the data type of user information (name, password, email, etc) and
relative operation in Auto Delivery System.

2. BookedDelivery: This class defines the booked delivery

3. Box: Defining the data structure of mail box of the system.

4. DeliveredDelivery: Defining the delivered delivery.

5. Delivery: Depicting the process and participants of booking and picking a delivery.

6. DeliveryStep: Providing the basic information of a delivery.

7. Office: Defining the data structure of office where is assumed to be the place of receiving mails/-
packages.

8. PickedUpDelivery: Defining the picked up Delivery

9. RobotPosition: Defining the data structure of the robot position and the process of tracking the
position of the robot.

The datacontroller package is consist of 6 classes, and they are DelieveryHistory, Persistance, FloorMap,
Secotionedbox, RobotPostionAccessor, and UserController, respectively.

1. DelieveryHistory: This class mainly used to assist delivery. It’s main function is to record the
delivery history, to check whether there are pending deliveries, and get the most priority delivery.

109

8.2. DATA TYPES AND OPERATION SIGNATURES Software Engineering - Project Report 1

2. Persistance: This class is mainly used to communicate with the database and accomplish multi-
threading work.

3. FloorMap: This class defines the detail of robot’s map, including the srart point, the distance from
current to destination, the links between each offices, etc.

4. Secotionedbox: This class mainly used to check whether the status of boxes, including whether the
box is full or not, allocating and deallocating the box.

5. RobotPositionAccessor: This class is used to detect and set the robot’s position status, such as
detect whether the robot is moving, getting the current position, and updating the current robot
position to the next point.

6. UserController: This UserController class is used to check the authentication of users, including
check the password and the login status. it is also used to help user control, such as registering,
removing users, finding users, ect.

Next is the packages of the robot-side classes. In this side, we also have three layers as the server
system side: they are namely robotLogic layer, robotPresentation layer and robotResource layer. First
let’s introduce the classes in the robotLogic layer

1. RobotPositionInspector: This class mainly is responsible for tracking robot position and status

2. RobotController: This class mainly distribute the work requested by the central server to robot

Next is the robotPresentation layer. In this layer, we have two classes: keyBoardReader and LEDdriver

1. keyBoardReader: This class mainly gets access to the value of pressed keys in the numerical key-
board

2. LEDDriver: This class mainly operates the LEDs status of the robot

The last layer is the resources layer. We divide this packages into three subpackages namely re-
sources.communication, resources.data. First is the communication subpackages, it contains one class:
Robot Communicator

1. Robot Communicator: This class maintains a regular contact from the central server to the robot
and allows commands and responses between robot and server.

Second is the data subpackages, it contains 3 classes: the Filer,Floormap and Office.

1. Filter: This class keeps record of recent state of the sensors to avoid noise.

2. Floormap: This class records map data of the office floor.

3. Office: This class restore the data of office where is assumed to be the place of receiving mails/-
packages.

In the SensorAndActuator sub-package, we have classes which are named MagneticSensor, Reflec-
tiveOpticalSensorLeft, ReflectiveOpticalSensorRight, MotorLeft and MotorRight

1. MagneticSensor The class MagneticSensor mainly functions as periodically collecting data sensed
by the magnetic sensor embedded on the surface of robot. in the robot

2. ReflectiveOpticalSensorLeft This class ReflectiveOpticalSensorLeft mainly functions as periodically
sensing the left-side light sensor and collecting the data about whether the robot moves along the
left-side white tape. Note that the left-side sensor data collection should synchronize with the data
collection with ReflectiveOpticalSensorRight to guarantee the robot is moving along the track.

3. ReflectiveOpticalSensorRight This class ReflectiveOpticalSensorRight mainly functions as period-
ically sensing the right-side light sensor and collecting the data about whether the robot moves
along the right-side white tape. Note that the right-side sensor data collection should synchronize
with the data collection with ReflectiveOpticalSensorleft to guarantee the robot is moving along
the track.

4. MotorLeft This class execute the actual motivation to drive the left motor of the robot. It will se
t up robot movement by setting parameter levels of selected pins to drive the left-side motor.

5. MotorRight This class execute the actual motivation to drive the right-side motor of the robot. It
will set up robot movement by setting parameter levels of selected pins to drive the left-side motor.

110

8.3. TRACEABILITY MATRIX Software Engineering - Project Report 1

Domain Concept D
el

iv
er

y
C

o
or

d
in

at
o
r

E
m

a
il
C

h
ec

ke
r

S
er

ve
rC

o
n
tr

ol
le

r

S
er

ve
rc

on
tr

o
ll
er

In
te

rf
a
ce

S
y
st

em
S
ta

tu
s

A
d
m

in
C

re
a
te

F
lo

o
rM

a
p
V

ie
w

A
d
m

in
M

a
in

V
ie

w

A
d
m

in
V

ie
w

D
y
n
am

ic
M

ap

B
o
o
k
D

el
iv

er
y
V

ie
w

C
li
en

tC
o
n
tr

o
ll
er

C
li
en

tC
o
n
tr

o
ll
er

In
te

rf
ac

e

D
el

iv
er

y
S
ta

tu
sV

ie
w

L
o
g
in

V
ie

w

R
eg

is
te

rV
ie

w

S
y
st

em
S
ta

tu
sV

ie
w

U
se

rM
a
in

V
ie

w

S
er

ve
rC

o
m

m
u
n
ic

a
to

r

T
im

eo
u
tE

x
ce

p
ti

o
n

A
D

S
U

se
r

B
o
o
ke

d
D

el
iv

er
y

B
ox

D
el

iv
er

ed
D

el
iv

er
y

D
el

iv
er

y

D
el

iv
er

y
S
te

p

O
ffi

ce

P
ic

ke
d
U

p
D

el
iv

er
y

R
o
b

o
tP

o
si

ti
o
n

D
el

iv
er

y
H

is
to

ry

F
lo

o
rM

a
p

P
er

si
st

a
n
ce

R
o
b

o
tP

o
si

ti
o
n
A

cc
es

so
r

S
ec

ti
o
n
ed

B
ox

U
se

rC
o
n
tr

o
ll
er

K
ey

b
o
a
rd

R
ea

d
er

L
E

D
D

ri
ve

r

R
o
b

o
tC

o
m

m
u
n
ic

a
to

r

R
o
b

o
tC

o
n
tr

o
ll
er

R
o
b

o
tP

o
si

ti
o
n
In

sp
ec

to
r

F
il
te

r

S
en

so
rR

ea
d
er

DeliveryHistory X X X X X
SecureBoxContents X X
RobotPosition X X
PendingDeliveries X
DeliveryCoordinator X X X
Interface X X X X X X X X X X X
EmailNotificator X
ServerController X X
FloorMap X X
SessionController X
PasswordChecker X
UserManager X
UserList X X X
ServerCommunicator X X
RobotCommunicator X
RobotController X
InterfaceRobot X X X
TrackFollower X
Filter X

Table 8.1.: Traceability Matrix from Domain Concepts to Class Diagram

8.3. Traceability matrix

Table 8.1 indicates how the softwares classes evolved from the domain concepts in the first report. As
shown in the table, some concepts will directly map to the corresponding classes. Like the ServerCom-
municator it maps to the ServerCommunicator class. In the domain analysis, it’s defined as checking the
communication status of the server-robot interaction. It remains the same functionality.

For most of the domain concepts we listed, they evolve two or more classes. A simple reason for
this is some domain concepts are complexed and less realistic for us to programme within one class. For
instance, The domain concept interface has the responsibility of communicating several things to the users.
However, when it comes to the class part, we find that this concept should be deivided into the following
the classes AdminMainView, AdminCreateFloorMapView, BookDeliveryView, SystemStatusView and
UserMainView, Login View, Register View, UserMainView and so on. AdminMainView prompts the
administrator with the main interface; AdminCreateFloorMapView prompts the administrator with the
dynamic location of the robot; BookDeliveryView prompts the user the BookDelivery interface allowing
to order deliveries within the GUI; SystemStatusView prompts the users with the status of robot and
server; UserMainView is the main user interfaces that prompts with options with book deliveries and
track status. These classes specify different aspects of role the Interface plays and it makes the software
more well-constructed.

As from the matrix, we also incorporate two domain concepts into one class. For the domain concepts
PasswordChecker and UserManager, we first thought they are two different concepts and played different
roles to the system. In the domain analysis of report 1, PasswordChecker has the responsibility to
check the password introduced when logging in. UserManager has the responsibility of checking user
information and then distinguishing the user and administrator. After then, we find that there is no need
to separate them into two classes, so we write these two check function into a class called UserController,
which designs to check the password and whether it’s administrator or not at the same time.

8.4. Design Patterns

In this section we are going to discuss about two design patterns in our system, which are Singleton
Pattern and State Pattern.

8.4.1. Singleton Pattern

Singleton Pattern is a pattern that restricts the instantiation of a class to one object only. In our system,
we have many classes using this kind of design pattern for the benefit of coordinating actions across the

111

8.4. DESIGN PATTERNS Software Engineering - Project Report 1

Figure 8.7.: User Interface in state STATE NON LOGGED IN

Figure 8.8.: User Interface in state STATE REGISTERING

whole system.

• in class DeliveryCoordinator, we initialize the object singleton of this class as a private static
member. The constructor of this class DeliveryCoordinator() is a private method, so it cannot
be called outside this class.Hence the instantiation of this class can be only one object, which is
‘singleton’ itself.

• in class ServerController, we initialize the object singleton of this class as a private static
member. And with the same from class DeliveryCoordinator, the constructor is private, so it
cannot be called outside this class.

• In classe ServerCommunicator, the singleton pattern is also designed the same way, initializing
the object of this class as a private static member.

When other classes need to use the object of the class with singleton design pattern, they call public
static function getInstance() of this class to obtain the instance of this class. It is a good way to reduce
coupling and complexity among classes and layers.

8.4.2. State Pattern

We are going to discuss the state pattern in our system, though currently in our Java code, we have
not implemented this pattern yet. In the following page we will first show how our state machine is
implemented in our system, and then we will propose how this can be improved by using state pattern.

Currently, in the class ClientController, we maintain a state machine in charge of communication
between server and controller. We have 11 states in total. What we use to distinguish between dif-

112

8.4. DESIGN PATTERNS Software Engineering - Project Report 1

Figure 8.9.: User Interface in state STATE BOOKING

Figure 8.10.: User Interface in state STATE EDITING

113

8.4. DESIGN PATTERNS Software Engineering - Project Report 1

Figure 8.11.: User Interface in state STATE VIEWING DELIVERY HISTORY

Figure 8.12.: User Interface in state STATE ADMIN MAIN

114

8.4. DESIGN PATTERNS Software Engineering - Project Report 1

Figure 8.13.: User Interface in state STATE ADMIN CREATING FLOOR MAP

Figure 8.14.: User Interface in state STATE VIEWING DELIVERY HISTORY DETAIL

115

8.4. DESIGN PATTERNS Software Engineering - Project Report 1

Figure 8.15.: User Interface in state STATE ADMIN VIEWING DELIVERY HISTORY

Figure 8.16.: User Interface in state STATE ADMIN VIEWING DELIVERY HISTORY DETAIL

116

8.4. DESIGN PATTERNS Software Engineering - Project Report 1

ferent states is the final integer value of each state. For example, the final integer value of state
STATE NON LOGGED IN is 1, and the final integer value of state STATE REGISTERING is 2. Gen-
erally speaking, these states control which user interface to show to the user and listening for possible
events to change to other states. These states are:

• STATE NON LOGGED IN: The user interface corresponds with this state can be seen from
figure 8.7. In this state, the client will listen to the event of clicking ‘Register’ or ‘login’ button,
and jump to the STATE REGISTERING or STATE BOOKING or STATE ADMIN MAIN state.

• STATE REGISTERING: The user interface corresponds with this state can be seen from
figure 8.8. In this state, the client will listen to the event of clicking ‘Register’ button to go
to the state STATE BOOKING, or listen to the event of clicking ‘Back’ button to go to the
STATE NON LOGGED IN state.

• STATE BOOKING: The user interface corresponds with this state can be seen from figure 8.9.
In this state, the client will listen to below events:

– when the user clicks button‘Edit Info’, the state machine will go to state STATE EDITING

– when the user clicks button ‘Logout’, the state machine will go to state
STATE NON LOGGED IN

– when the user clicks tab ‘Track Status’, the state machine will go to state
STATE VIEW DELIVERY HISTORY

• STATE EDITING: The user interface corresponds with this state can be seen from figure 8.10.
In this state, the client will listen to the event of clicking button of ‘Edit Confirm’ or ‘Back’, then
the state machine will go back to state STATE BOOKING.

• STATE SHOWING HELP: The user interface and state jump algorithm of this state in left to
be finished, because of the time limit of this project.

• STATE VIEWING DELIVERY HISTORY: The user interface corresponds with this state
can be seen from figure 8.11. In this state, the client will listen to below events:

– when the user clicks button ‘Logout’, the state machine will jump to state
STATE NON LOGGED IN.

– when the user clicks tab ‘Book Delivery’, the state machine will jump to state
STATE BOOKING

– when the user clicks any row of delivery history information, the state machine will jump to
state STATE VIEWING DELIVERY HISTORY DETAIL.

• STATE ADMIN MAIN: The user interface corresponds with this state can be seen from figure
8.12. In this state, the client will listen to below events:

– when the user clicks button ‘Create Floor Map’, the state machine will jump to state
STATE ADMIN CREATING FLOOR MAP

– when the user clicks button ‘Logout’, the state machine will jump to state
STATE NON LOGGED IN

• STATE ADMIN CREATING FLOOR MAP: The user interface corresponds with this state
can be seen from figure 8.13. In this state, the client will listen to the user clicking button ‘Back’
and jump to state STATE ADMIN MAIN.

• STATE VIEWING DELIVERY HISTORY DETAIL: The user interface corresponds with
this state can be seen from figure 8.14. In this state, the client will listen to below events:

– when the user clicks button ‘Logout’, the state machine will jump to state
STATE NON LOGGED IN.

– when the user clicks tab ‘Book Delivery’, the state machine will jump to state
STATE BOOKING

• STATE ADMIN VIEWING DELIVERY HISTORY: The user interface corresponds with
this state can be seen from figure 8.15. In this state, the client will listen to below events:

117

8.5. OBJECT CONSTRAINT LANGUAGE (OCL) Software Engineering - Project Report 1

– when the user clicks button ‘Logout’, the state machine will jump to state
STATE ADMIN MAIN, STATE NON LOGGED IN.

– when the admin clicks any row of delivery history information, the state machine will jump to
state STATE ADMIN VIEWING DELIVERY HISTORY DETAIL.

– when the admin clicks the button ‘Status’, the state machine will just to state
STATE ADMIN MAIN

• STATE ADMIN VIEWING DELIVERY HISTORY DETAIL: The user interface corre-
sponds with this state can be seen from figure 8.16. In this state, the client will listen to below
events:

– when the user clicks button ‘Logout’, the state machine will jump to state
STATE ADMIN MAIN STATE NON LOGGED IN.

– when the admin clicks the button ‘Status’, the state machine will just to state
STATE ADMIN MAIN

From the above description we can see that the state machine is kind of complicated, and the class
‘ClientController’ which contains these states are really big. We cound find better ways of handling with
this complicated state machine jumping algorithm. One of the improvement may be using state design
pattern.

State design pattern can reduce the coupling of difference states in one big class. What we can do is
to separate each state as a class, and these 11 classes will all implement the interface, which could be
named as ‘ClientStateMachineInterface’. This interface well encapsulate the complex algorithms in this
state machine. Whenever an event is triggered, what the object of user interface (which can be regarded
as Context) need to do is to call the method handle() on its current state. That is to say, the object of
user interface only need to provide current state to the ClientStateMachineInterface whenever it receives
a request() call to handle some certain events. This would be much easier to maintain and when we
change the contents of some certain state, contents of other states don’t need to change.

8.5. Object Constraint Language (OCL)

The following are the OCL for each class:

CLASS DeliveryCoordinator:

1. Invariants: there are some deliveries need to be coordinated
context DeliveryCoordinator inv:
self.thread>0

2. Pre-conditions: Must have data about delivery process stored in the data base
context DeliveryCoordinator : Boolean
pre: self.storeddataavailable == true

3. Post-conditions: is empty/input from user and the data stored in the database is mismatch.
context DeliveryCoordinator : Boolean
post: self.storeddataavailable == false

CLASS EmailChecker

1. Invariants: the email address the user entered must be in a valid email form

2. Pre-conditions:the user must enter an email address
context EmailChecker: Boolean
pre: self.emailenterd == true

3. Post-conditions: no email address input/the input email address is invalid
context EmailChecker: Boolean
post: self.emailenterd == false

CLASS NonBookedDeliveryException

1. Invariants: the delivery information must be corrected

118

8.5. OBJECT CONSTRAINT LANGUAGE (OCL) Software Engineering - Project Report 1

2. Pre-conditions: Must have data about delivery process stored in the data base
context NonBookedDeliveryException: Boolean
pre: self.storeddataavailable == true

3. Post-conditions: is empty/input from user and the data stored in the database is mismatch.
context NonBookedDeliveryException: Boolean
post: self.storeddataavailable == false

CLASS ServerController

1. Invariants: the system can be initiated
context ServerController inv: self.STATE SYSTEM INITIATED==1

2. Pre-conditions: the remote object’s stub must be bound in the registry
context ServerController : Boolean
pre: self.stubbound == true

3. Post-conditions:the system cannot be initiated or controlled
post: self.STATE SYSTEM INITIATED==0 self.ServerController==NULL

CLASS ServerControllerInterface

1. Invariants: N/A

2. Pre-conditions: N/A

3. Post-conditions: N/A

CLASS ServerInitializedException

1. Invariants: the system must check in different situations whether the server is initialized or is not
initialized
context ServerInitializedException inv: self.statuschecked==true

2. Pre-conditions: the system can be initiated
context ServerInitializedException:
pre: self.STATE SYSTEM INITIATED==1

3. Post-conditions:the system cannot be initiated/cannot check the exception
context ServerInitializedException:
post: self.STATE SYSTEM INITIATED==0 self.ServerController==NULL

CLASS ServerNonInitializedException

1. Invariants: the system must check in different situations whether the server is initialized or is not
initialized
context ServerController inv: self.statuschecked==true

2. Pre-conditions: the system can be initiated
context ServerNonInitializedException:
pre: self.STATE SYSTEM INITIATED==1

3. Post-conditions:the system cannot be initiated/cannot check the exception
context ServerNonInitializedException:
post: self.STATE SYSTEM INITIATED==0 self.ServerController==NULL

CLASS SystemStatus

1. Invariants: the system must detect if the robot is moving or not
context SystemStatus inv: self.ismoving =NULL

2. Pre-conditions: the system can detect the position of the robot
context SystemStatus: Boolean
pre: self.PositonDetected==true

3. Post-conditions: the system cannot detect the position of the robot
context SystemStatus: Boolean
post: self.PositonDetected==false

CLASS AdminCreateFloorMapView

119

8.5. OBJECT CONSTRAINT LANGUAGE (OCL) Software Engineering - Project Report 1

1. Invariants: the administrator can create floor map according to current offices location
context AdminCreateFloorMapView inv: self.ArrayList =NULL

2. Pre-conditions: the system can detect current position and can be initiated
context ServerController : Boolean
pre: self.PositonDetected==true self.STATE SYSTEM INITIATED==1

3. Post-conditions: the system cannot detect current position/cannot initiated
context AdminCreateFloorMapView:
post: self.PositonDetected==false self.STATE SYSTEM INITIATED==0

CLASS AdminMainView

1. Invariants: the user can use administrator interface if log in as administrator
context AdminMainView inv: self.ArrayList =NULL

2. Pre-conditions: the user can log into the system
context AdminMainView: Boolean
pre: self.LogIn==true

3. Post-conditions: the user cannot log into the system
context AdminMainView: Boolean
post: self.LogIn==false

CLASS AdminViewDynamicMap

1. Invariants: the administrator can view the dynamic location change of the robot
context AdminViewDynamicMap inv: self.dynamicview==true

2. Pre-conditions: the remote object’s stub must be bound in the registry and the system can be
initiated
context AdminViewDynamicMap:
pre: self.stubbound == true self.STATE SYSTEM INITIATED==1

3. Post-conditions: the system cannot detect current position of the robot/cannot initiated
context AdminViewDynamicMap:
post: self.stubbound == false self.STATE SYSTEM INITIATED==0

CLASS BookDeliveryView

1. Invariants: the user can book a delivery after logging into the system
context AdminMainView inv: self.ClientControllerInterface==1

2. Pre-conditions: the user can log into the system
context AdminMainView: Boolean
pre: self.LogIn==true

3. Post-conditions: the user cannot log into the system
context AdminMainView:
post: self.LogIn ==false self.ClientControllerInterface==0

CLASS ClientController

1. Invariants:the system can initiate server connection

2. Pre-conditions: the system can be initiated
context ClientController: int self.STATE SYSTEM INITIATED==1

3. Post-conditions: the system cannot be initiated
context ClientController: int self.STATE SYSTEM INITIATED==0

CLASS ClientControllerInterface

1. Invariants: N/A

2. Pre-conditions: the system can initiate server connection

3. Post-conditions: the system cannot initiate server connection

CLASS DeliveryStatusView

1. Invariants:the system can initiate server connection

120

8.5. OBJECT CONSTRAINT LANGUAGE (OCL) Software Engineering - Project Report 1

2. Pre-conditions: the system can be initiated
context ClientController: int self.STATE SYSTEM INITIATED==1

3. Post-conditions: the system cannot be initiated
context ClientController: int self.STATE SYSTEM INITIATED==0

CLASS SystemStatusView

1. Invariants: the system must prompt the users with options of the status of robot and server.

2. Pre-conditions: the user can log into the system
context SystemStatusView: Boolean
pre: self.LogIn==true

3. Post-conditions: the user cannot log into the system
context SystemStatusView: Boolean
post: self.LogIn==false

CLASS UserMainView

1. Invariants: user is prompted with main view interface after login

2. Pre-conditions: the user can log into the system
context UserMainView: Boolean
pre: self.LogIn==true

3. Post-conditions: the user cannot log into the system
context UserMainView: Boolean
post: self.LogIn==false

CLASS LoginView

1. Invariants: N/A

2. Pre-conditions: N/A

3. Post-conditions: N/A

CLASS RegisterView

1. Invariants: N/A

2. Pre-conditions: N/A

3. Post-conditions: N/A

CLASS RobotStub

1. Invariants: the system must provide clear view of the robot’s motion during the delivery process

2. Pre-conditions: the remote object’s stub must be bound in the registry and the system can be
initiated
context RobotStub:
pre: self.stubbound == true self.STATE SYSTEM INITIATED==1

3. Post-conditions: the system cannot detect current position of the robot/cannot initiated
context RobotStub:
post: self.stubbound == false self.STATE SYSTEM INITIATED==0

CLASS ServerCommunicator

1. Invariants: N/A

2. Pre-conditions: N/A

3. Post-conditions: N/A

CLASS TimeoutException

1. Invariants: Must indicate the scenario when user enter mismatched user name and password 3
times.
context AdminMainView inv: self.InvalidEnter==3

121

8.5. OBJECT CONSTRAINT LANGUAGE (OCL) Software Engineering - Project Report 1

2. Pre-conditions: Must have data about user information correctly stored in the database
context DeliveryCoordinator : Boolean
pre: self.storeddatacorrect == true

3. Post-conditions: database is empty/the stored user information is incorrect
context DeliveryCoordinator : Boolean
post: self.storeddatacorrect == false

CLASS ADSUser

1. Invariants: Must be a registered user with user name, password, address, email, etc.

2. Pre-conditions: Must have registered before
context ADSUser: Boolean
pre: self.registered customer ==true

3. Post-conditions: haven’t registered before
context ADSUser: Boolean
post: self.registered customer ==false

CLASS BookedDelivery

1. Invariants: Must have a serial number of booking
context BookedDelivery inv: self.SerialVertionUID==true

2. Pre-conditions: N/A

3. Post-conditions: N/A

CLASS Box

1. Invariants: Must have space available
context Box inv: self.box = FULL

2. Pre-conditions: Must not be full.
context Box: int self.BoxSpaceAvailable ¿0

3. Post-conditions: Is occupied/has less spots available.
context Box: int self.BoxSpaceAvailable == 0

122

Software Engineering - Project Report 1

9. SYSTEM ARCHITECTURE AND SYSTEM
DESIGN

9.1. Architectural Styles and Subsystems

As our application is kind of complex in terms of architecture, we use several architectural styles together
modeling the system. In this section we will begin discussing the architectural styles of our system from
a higher level and then decompose it into several pieces and discuss one by one.

As is shown in figure 9.1, we can generally identify the structure of our system – it is composed of
three main parts:

• the client side

• the server side

• the robot

9.1.1. Client/Server and Master/Slave Architectures

From this section, we will discusss about architectural styles in a more specific way. Here we categorize the
communication mechanism among the three subsystems (client, server, and robot) into two architectural
styles:

• Client/Server Architecture: In order to set up communication between the client and the server, we
are using a typical client/server architecture. This architecture aims at allowing access for one
or more clients to several resources or functionalities in a central server. Please note that a client
here refers to a Java application in a PC, and multiple clients are allowed to communicate with the
central server at the same time. Another proposal of communication architecture could be some
parallelized shared architecture (such as P2P). However we are not using this parallelized shared
architecture, because the advantages that this kind of architectures can provide, such as scalability,
are not critical in our system. Also, a client/server architecture works more stable and is far easier
to implement.

• Master/Slave Architecture: We have defined a master/slave architecture [39] [40] to set up commu-
nication between the server and the robot. Please note that this architecture is different from mas-
ter/worker architecture [41], which is used to parallelize allocating workload, such as Map-Reduce.
In our system the robot will wait for commands sent from the server, execute each command and
finally return the result, or notify error, to the server.

Figure 9.1.: Overview of the system

123

9.1. ARCHITECTURAL STYLES AND SUBSYSTEMS Software Engineering - Project Report 1

Figure 9.2.: Mapping of the client/server and master/slave architecture styles in our system.

Figure 9.3.: Mapping of the 3-tier architectural style in our system.

As we can see, our approach (see figure 9.2) can support multiple clients and, in the future, it will be
easier to add more robots into our system.

9.1.2. Three-tier architecture

From the perspective of entire system, i.e. from both the server part and the robot part, we would like to
refine our design by separating the modules of user interface, data processing, and data storage(as well as
communication logic) and make them run individually, thus changing one part won’t have great influence
on other function modules, which is good for reducing system complexity. Therefore, we are using a
two-stack 3-tier architecture (figure 9.3). The 3-tier architecture [50] is one kind of N-tier architecture,
and is well suited to separate the roles of three components of the system: the user intercase (presentation
layer), the logic of the system (business rules, logic tier) and the data (typically data tier). The advantage
of this structure includes the fact that each layer communicates only with its immediate surroundings
(enabling the minimal coupling of software [49]), and the fact that the system is inherently modular [42],
eliminating many disadvantages of monolithic software, such as having difficult maintaining the system
[43]).

In our system, we have instantiated this pattern. We also extend the meaning of the data layer into
the resources layer, with broader definitions compared with data layer. The resources layer in server side
include several submodules: data, dataController and communications, as is shown in figure 9.4. This
layer handles with data structure encapsulation, communication with robot part and client, as well as
storing data. The resources layer in the robot side also include several submodules: communication,
sensorsAndActuators and data. The last subpackage of these three, data, will not be in charge of
maintaining a redundant copy of the data identical to data submodule in the server. It will store only the
information needed for the emergency autonomous positioning of the robot in case the communication
between robot and server fails. The sensorsAndActuators are the software submodule that directly
monitor the change of sensors (magnet sensors and optical sensors), and that drive the motor to move or
stop.

The interface between user and system in the ‘client’ side would be the Java application running in
the form of a window. Interface between user and system in the ‘robot’ side are the LEDs and the
keyboard located on the surface of the robot. They are used as basic authorization and communication
between the user and the system. The submodules LEDDriver and KeyboardReader,who are responsible
of controlling these two interfaces, will be included in the presentation layer in the ‘robot’ side.

124

9.1. ARCHITECTURAL STYLES AND SUBSYSTEMS Software Engineering - Project Report 1

Figure 9.4.: Detail of the resources tier in our system.

9.1.3. Facade Pattern

Now let’s focus on the logic layers of server and robot. These layers are the cores of the system, in the
sense that they implement the business rules of our system. In order to simplify the interaction between
other layers and logic layers, we use a kind of design pattern, which is the Facade pattern.

Facade pattern means ‘the face of the building’. This pattern can be explained as ‘people walking in
the road have no knowledge of what is inside, such as the wiring, the pipeline, etc. What they can see
is only the ‘glass face of the buiding’ [30]. In Java programming, this pattern can be implemented by
using an interface to show the ‘glass face’ of one or several classes, so that other classes can only see
the interface, hiding all complexities of these classes. For example, in the server part, we defined an
interface ServerControllerInterface in logic layer. This interface displays a friendly face of all methods in
class ServerController. Thus, in the presentation layer of server, we can use an object of this interface in
the class ClientController, to call methods in ServerController, without too much coupling of these two
classes. This pattern aims at making a module easier to use, more readable, so that it can reduce the
dependencies of the internal structures of the module.

Note that we have not used the Facade pattern in the resources layer (which is the bottom layer of
our three-layer structure) or any sub-packages, because the interface would become unreadable and many
different operations would be mixed without any sense.

9.1.4. Event-driven Architecture

We are also using event-driven architecture in the ’robot’ part. Event-driven architecture is a software
architecture pattern promoting the production, detection, consumption of, and reaction to events [29].
This architectual pattern typically consists of event emitters, and event consumers. Event emitters are
those parts in a system which could trigger some kinds of events, and event consumers are those part
which are capable of react to certain events.

In our design, the event emitters would be the sensors (including magnet sensors, and optical sensors),
the timer, and keyboard on the surface of the robot, as well as the ’filter’ that can correctly sense this
event happening. Event consumers are mainly the robot-controller, and server-controller in the server
part, whose responsibility is to react according to these events. For example, when the magnet sensor
detects a magnet was near the robot, the event ’robot approaching the next office location’ is triggered,
then the robot-controller will react as sending stopping instructions to motors, and communicate with
robot to decide whether to wait at this point to pick up package/delivery package or move on to the next
point (we assume this point is not the ’home’ point where the robot will stay at this point if no pending
deliveries)

9.1.5. Summary

To sum up, the architectural patterns and styles used are listed below:

• Client/Server Architecture

• Master/Slave Architecture

• 3-tier Architecture

• Facade Pattern

125

9.2. SUBSYSTEMS Software Engineering - Project Report 1

Figure 9.5.: The subsystems of our system. UML package diagram.

• Event-Driven Architecture

The combination of these architectural patterns makes our system easy to understand, build and
maintain.

9.2. Subsystems

In the previous section we have already discussed the subsystems that our system have. In figure 9.5 we
can see the package diagram including a package for each subsystem.

9.3. Mapping subsystems to hardware

As is shown in previous sections and figure 9.5, the subsystems can be easily mapped into the hardware
components:

• The ServerLogic and ServerResources packages are allocated in the central server.

• The RobotPresentation, RobotLogic and RobotResources packages are allocated in the robot (Ar-
duino board).

• The ServerHTMLPresentation is allocated in the server, and the user needs a web browser to access
this presentation. Please note that we are not going to implement this feature in this semster due
to time limitation. The ServerHTMLPresentation will be considered as one part of future work.

• ClientStandalonePresentation package is allocated in client’s PC.

• Finally, the AndroidPresentation is allocated in the Android-based smartphone in the form of
app. Please note that we are not going to implement this feature in this semester because of time
limitation. The Android client app will be considered as one part of future work.

126

9.4. PERSISTENT DATA STORAGE Software Engineering - Project Report 1

Figure 9.6.: The persistent entities

9.4. Persistent Data Storage

As we want our system to be fault tolerant, we need to make sure data information can be stored and
updated in an appropriate pattern:

• The sytem need to store all the information regarding current and past deliveries or users in a
persistent storage

• all the operations involving the information must operate using transactions:

– at low level accesses: when updating a single value from the storage, all modern relational
SQL databases allow transactionality

– at higher level: we only want to update the information about a delivery if, and only if, the
designated delivery information to be updated has already finished.

The easiest way to do it is using a relational database, such as MySQL and store all the information
in form of tables.

Therefore, we will need to store the classes in the ServerResources.Data subpackage: ADSUser(We
abbreviate ‘Users in Automatic Delivery System’ as ‘ADSUser’), Box, Delivery, DeliveryStep (which
will represent also its subclasses BookedDelivery, PickedUpDelivery and DeliveredDelivery), Office and
RobotPosition. This is represented in figure 9.6. Figures 9.7, 9.8, 9.9, 9.10, 9.11 and 9.12 represent
the fields we need to store for each class. The classes can be linked together by sharing some common
fields. For example, the classes Box, Delivery, DeliveryStep, Office and RobotPosition all have the field
‘ID’, thus by inquiring the ID of a specific delivery, we can know information of all these fields. Another
example is that Delivery Class have the fields RECEIVER USERNAME and SENDER USERNAME, so
by inquiring these user names in class ADSUser, the system can get the user information according to
the names in the RECEIVER USERNAME and SENDER USERNAME fields.

In order to access the DBMS we will not use direct low-level SQL instructions, as many programs used
to use. On the contrary, we will use much modern techniques that delegate the persistance of the classes
to dedicated libraries. In our case, as we will develop in Java, we will use the subset of the Java Enterprise
Edition [36] in charge of data persistance: Java Persistance API (or JPA) [37]. The second version of
this API (JPA2, which is implemented in libraries such as EclipseLink [28], which can be used in regular
Java Standard Edition applications) allows the addition of Java annotations [35] in the classes that the
programmer wants to be automatically persisted (see [38]). The most relevant annotations includes
@Entity (to define a persistent class), @Id (to define the primary key), @OneToOne, @ManyToOne and
@OneToMany (to define relationships between persistent entities).

9.5. Network Protocol

Our system has three main components: server part, client part and robot part. All of these parts
have one class as an abstraction interface responsible for the communication (as can be seen in the class
diagram part). In this scheme, there are two communication channels necessary for the operation of the
system. One of them is the channel between the server side and the client side and the other one is the
channel between the server side and the robot side (see figure 9.13).

127

9.5. NETWORK PROTOCOL Software Engineering - Project Report 1

Figure 9.7.: ‘ADSUser’ persistent class. Detailed field list.

Figure 9.8.: ‘Box’ persistent class. Detailed field list.

Figure 9.9.: ‘Delivery’ persistent class. Detailed field list.

128

9.5. NETWORK PROTOCOL Software Engineering - Project Report 1

Figure 9.10.: ‘DeliveryStep’ persistent class. Detailed field list.

Figure 9.11.: ‘Office’ persistent class. Detailed field list.

Figure 9.12.: ‘RobotPosition’ persistent class. Detailed field list.

129

9.6. GLOBAL CONTROL FLOW Software Engineering - Project Report 1

9.5.1. Network between Server and Clients

As the communication protocol between the Server and the Client side, we chose to use Java RMI. The
main reason of this choice of ours is that Java RMI allows any Java Object type to be used and also it
allows both the client and server to dynamically load new object types as required (reference [33]) while
other protocols and simple Java sockets allow only simple data types or defined structures to be used
as the communication data. In that sense, Java RMI is more powerful than any other. Also positive
feedbacks from the users of Java RMI API are also important factors for us to choose it as network
communication protocol between Server part and client part.

Using RMI enables us, the developers, to spend our time on thinking about the core functionalities of
the system rather than doing some further implementations to make communication on primitive data
types and to make the communication robust. In brief, RMI introduces wide freedom to the developers
in terms of design and implementation decisions.

9.5.2. Network between Server and Robot

We use a WiFi shield (reference [22]) in the robot side to connect the robot side with the internet through
WiFi. Then we will be able to control the robot part by simply accessing the client over the internet
from the server part. The access point providing the internet for this communication can be a wireless
access point already installed and used by people in the working environment.

Since the communication data between the server and the robot will not be Java objects (as is the case
for the communication between the server and the client side) but simply primitive data types, such as
‘strings’, and also since we do not have any other important communication considerations (e.g. energy
efficiency, low interference etc.) and constraints (i.e. communication channel is indoor so there are no
difficulties related with outdoor wireless communication such as line of sight, fading etc.), we simply use
Internet layer sockets to function as interface to communicate between robot and server.

As one can notice during the explanation above, we did not make any thinking about the security of
the communication channel between the server and the robot. The reason of this attitude of us is that
our system-to-be does not need a more secured channel than that of provided by the 802.11 standards
(reference [23]). The wireless access point will be accessed by both the server and the robot by using
simple WEP based authentication as the other users. The rest will be taken care of 802.11 standards.

9.6. Global Control Flow

In this part, some important aspects about the control of the system will be introduced.

9.6.1. Execution Orderness

• In Server Side
Both client in the user PC and the robot can be regarded as ‘users’ of the server. Hence, server
provides some functionalities for these two users and these functionalities are executed based on the
requests done by the users. Server side provides an interface to its users and waiting for its users
to request some functionalities.

• In Client Side
The user of this side is the people who are using the system. This side is event-driven such that
once the user launches this side of the system, he/she is forced to give some desired inputs to the
system generating the corresponding events (e.g. mouse clicks to the user interface buttons and
guided areas) and client side changes its state according to these events and their results. The
detailed state diagram explaining the event-operation of the client side can be understood (figure
9.14).

130

9.7. HARDWARE AND SOFTWARE REQUIREMENTS Software Engineering - Project Report 1

• In Robot Side
The tasks of this part are done in an event-driven manner and the events are generated by the
server side. Main functions of this part are movement of the robot to a particular place, hand in
and pick up packages related operations.

9.6.2. Time Dependency

There is only one time dependency in our system which is in the robot side. After the robot reaches to
the office for pick up or hand in operations a timer will be started and the buzzer will start to ring, to
notify the sender or receiver for a fixed amount of time. When it reaches timeout, the robot will postpone
this picking up package or delivering package to a later time and continues with other tasks.

9.6.3. Concurrency

The server side of our system is able to provide services to multiple clients concurrently. This is achieved
by the multi-threading mechanism provided by the API Java RMI (Remote Method Invocation). Java
RMI provides a kind of policy which can be described as follows: In the server part, calls originating
from different clients Virtual Machine will execute in different threads. From the same client machine it
is not guaranteed that each method will run in a separate thread [44].

9.7. Hardware and Software Requirements

In this part, the resources that the system depends upon will be presented.

• Server Side Requirements
In the server part, system needs a server computer for providing the main functionalities of the
system. For an average working environment, our system needs only an average machine which can
run mysql database, java seamlessly and have wifi capability. In that sense, an average computer
in the market would be enough to serve as a server to our system. So we can summarize the
requirements of the server machine as follows;

1. Mysql database should be installed

2. Java Runtime Environment (JRE) should be installed

3. Wifi capability should be present on the machine (i.e. necessary for the communication between
the server and the robot as explained in part e).

• Client Side Requirements
Users of the system will be able to use the functionalities provided by a simple java interface. In
that sense, any average computer be a proper machine for the client side purposes. So for the client
side part of the program to run correctly, the user machine should have the following requirements;

1. Java Runtime Environment (JRE) should be installed

2. Internet access should be present

• Robot Side Requirements
What we call as “Robot” is the delivery machine itself and we designed it to be as cheap and
as efficient as possible to accomplish the system-to-be’s main functionalities. We will use one of
the most popular board microcontroller family, arduino. In that sense, our delivery machine will
be a simple example of mobile robot which is controlled by the arduino microcontroller. For the
robot side to be able to accomplish the functionalities which are explained previously, the following
requirements should be present;

1. Arduino microcontroller board (reference [3])

2. Numeric keypad (reference [21]) (i.e. for the user to interact with the system)

3. Wifi Shield (reference [22]) (i.e. to create the communication channel between the server and
the robot side; look part e for more explanation)

131

9.7. HARDWARE AND SOFTWARE REQUIREMENTS Software Engineering - Project Report 1

Figure 9.13.: Overview of the communication channels between the main system components

Figure 9.14.: State diagram representing the design of the transition between the view classes according to the user
interaction with the system.

4. Motor Driver (reference [18]) which will be used to drive two motors of the robot for the sake
of moving it properly.

5. 3 Reflective Optical Sensors (reference [16]) which will be used for the detection of the track
(two parallel white lines drawn on the floor).

6. 2 Magnetic Sensors (reference [20]) which will be used for the detection of office locations in
the working environment.

The most important requirement of this part is obviously a well-thought and well-designed software
logic used for programming the arduino controller for manipulating all the hardware parts mentioned
above. We, the developers, will guarentee that function normally.

132

Software Engineering - Project Report 1

10. ALGORITHMS AND DATA STRUCTURES

10.1. Algorithms

In this section, we will describe detailed algorithm of path resolution. Note that in Section 5.3 Mathe-
matical Model in report 1, we described two math models used in our system, which are track detection
and path resolution. As the first mathematical model has been detailed explained in report 1, with
illustration and diagrams of state machines, we are not going into any further discussion about the first
math model. What we will focus on is the critical algorithm that determines how the robot selects path
to implement the work of picking up packages from the sender and delivering packages to the receiver.

As stated in chapter 1 of report 2 and Section of report 1, there are several prerequisite for the
algorithms to function normally:

1. The robot moves clockwise as long as it is moving

2. The corridor of the floor is a closed loop, where the robot can move to its starting point after move
through the way all along the loop

3. The path that robot move through is covered with WIFI

The robot will report message to the server each time he arrives at a stopping point located by a
magnet and detected by the magnetic sensor in the robot. Then the server will master the robot to
start the algorithm of path resolution. This algorithm will be executed infinitely as long as the robot
has the power to maintain his movement and the connection between robot and server is maintained.
Figure 10.1shows the activity diagram of how the algorithm is implemented. The starting point (black
point in the diagram) of the algorithm in the activity diagram is each location point that the robot will
stop, i.e the “real” starting point or each office that is shown as nodes in a floor map. The end point
of the algorithm in the algorithm diagram is the end of the life cycle of this algorithm. So generally the
algorithm describes the process in the time period between the moment of starting to move at current
point and the moment of just arrive at next point.

Next we will illustrate each procedure of the algorithms step by step. The steps described below are
in accordance with the activity diagram.

1. Step 1: the server will obtain a list of pending deliveries or pickups from the database

2. Step 2: the server will obtain position of the robot

3. Step 3: the server will judge whether there is pending tasks. If there is no pending deliver-
ies(including pick-ups and deliveries of package), go to step 4; else go to step 8

4. Step 4: the server will check whether current point is starting point (HOME of the robot). If it is,
go to step 1 if it’s not, go to step 6

5. Step 5: the server will send messages to make the robot sleep for 0.5 seconds; then go to step 15

6. Step 6: The server will instruct the robot to move to the next point

7. Step 7: After the robot has moved to the position, the robot will update the next stopping position.
Then go to step 15

8. Step 8: the server will instruct the robot to move to the next point

9. Step 9: the server & robot will update the next robot position that it is actually locate in currently

10. Step 10: the server will obtain most prioritary delivery, taking both the priority of the original
value of the package and the position of the robot

11. Step 11: check whether current location equals to the location with the highest priority calculated
in the former step. If the answer is yes, go to step 12;If the answer is no, go to step 15

133

10.1. ALGORITHMS Software Engineering - Project Report 1

Figure 10.1.: Checklist Chart

134

10.2. DATA STRUCTURES Software Engineering - Project Report 1

Figure 10.2.: 1-D reference arrays with typical words and 2-D array stored user names

Figure 10.3.: linked list with user accounts

12. Step 12: execute the delivery/pickup process. In this process the robot will ring the buzzer, wait
for the sender/receiver to input his/her password and do the pickup/delivery

13. Step 13: check whether the delivery/pickup process has finished successfully. If yes, go to step 14;
if no, go to step 15

14. Step 14: Update the delivery status into the system

15. Step 15: algorithm ends

10.2. Data structures

Data structures are necessity for any efficient software system. Our auto delivery system has all different
types of complex data structures like arrays, linked lists, hash tables, stacks, and queues.

Our system uses arrays (see figure 10.2) because of their short processing time and arranging all items
at equally spaced addresses in computer memory. Array is a data structure consisting of a collection of
elements (values or variables), each identified by at least one array index or key. An array is stored so
that the position of each element can be computed from its index tuple by a mathematical formula. In
our system, we use two-dimensional array to store user account information and one-dimensional array
as reference, and so user can search the information they need such as user name and mailing address
by inputting some typical words. Since there should be numerous accessing to our system everyday from
different users, we should concern about the performance of the system in term of the responding time.

Linked lists (see figure 10.3) are other data structures that our system includes. This structure allows
for efficient (the expected computing time is O(1)) removal or insertion of elements from any position
in the sequence, and so provides dynamic use of memory. In our system, common user can create new
accounts, add/edit personal information to the current account, delete the account if he/she wants; and
the administrator can add/delete some records to/from the delivery history list. If we use linear list,
these operation will time consuming (the expected computing time is O(nlogn)).

In computer science, a hash table (see figure 10.4) or hash map is a data structure that uses a hash
function to map identifying values, known as keys, to associated values (e.g., mapping a name to a
telephone number). Thus, a hash table implements an associative array. The hash function is used
to transform the key into the index (the hash) of an array element (the slot or bucket) where the
corresponding value is to be sought. In our system, we need to map key of users’ accounts, to their
personal information, such as password, first name, last name, address, and Email; and map some key
numbers to delivery records.

135

10.2. DATA STRUCTURES Software Engineering - Project Report 1

Figure 10.4.: Hash table of delivery records (record index, sender, receiver, booking time, delivery priority, delivery
status), Hash (key) = record index mod 11.

Figure 10.5.: Stack of pending delivery and push-pop operation

Stack (see figure 10.5) is an area of memory that holds all local variables and parameters used by any
function. In our system, when there is free memory space, the stack will be created for operations need
to storing information such as booking new delivery.

136

10.2. DATA STRUCTURES Software Engineering - Project Report 1

Figure 10.6.: Delivery queue and FIFO mechanism

As for queue (see figure ??), our system uses FIFO (first in first out) method. An example is that,
when two deliveries have the same priority (the sender can set the priority from 1 to 5 when books a
delivery), the delivery booked first will be processed first.

137

Software Engineering - Project Report 1

11. USER INTERFACE DESIGN &
IMPLEMENTATION

11.1. User Interface Design & Effort Estimation

In this section we will explain step by step the graphical interface design of the most important use cases
and will also estimate the user effort using the design.

Firstly, we will discuss about User Interface design of the use case Book Delivery. In section 4.7.1 we
already talked about how to minimize the user effort in this concrete use case, but here we will repeat
everything step by step:

• After the login, the booking screen will appear (booking is the main usage of the web/mobile
interface) with a list of starred receivers and the 2 search boxes, as seen in figure 11.1.

• The user will click on the receiver, probably in the starred list, and the name will move to the
first entry of an empty table (booking table), as seen in figure 11.2. Note that a When to pick up?
question has appeared with a default value ASAP.

• To confirm the single delivery, the user only needs to click to the confirm button at the end of the
page.

• To book multiple deliveries, instead of pressing the global confirm, the user will press another
receiver from the starred list/search result table. The user will be allowed to repeat the process
until the global confirm is pressed.

• Note that if the user searches something, the elements from the starred list will disappear, and in
the same table the results will appear.

With this approach we reduced the experience to 3 clicks1 and 1 screen. To book multiple deliveries,
1 extra click is needed if receiver is in the starred or 2 extra clicks if the user need to search.

Given the detailed flow of events shown in UC-2 Track Delivery Status, we can see that there are
6 different screens (Login, Check for 10 days, Check for n days, Search, Status display, Go Back) to
accomplish this use case. Actually. For simplicity, we will reduce the user experience to the minimum
and only focus on the several important situations. After login and selection of delivery status check,
user can view the recent delivery information. If he or she wants to check one specific delivery, he or she
can search for the result. After clicking the specific delivery, detailed information, including the package
location and corresponding status at each specific time, can be tracked. See Figures

By clicking Help link, any person who is interested in the auto delivery system is able to visit help page
of the system (figure 11.7). The help page consists of a search Bar and a Contents Bar. In the Contents
Bar, the items include “Welcome”, “Index of Glossary”, and “Contact us”; when a user click the “Index
of Glossary” item, the right side of the page will show several terms about details instructions about the
system, which includes “Auto Delivery System”, “Book a Delivery”, “Register for an account”, “Send
your package”, “Receive your package” and “Authentication”. A user can click any of the link to obtain
instructions about the terms or operations in relation to the auto Delivery System.

11.2. Interaction of User Interfaces

From this section, we will show the actual implementation of User Interface. We use figure 11.13 to show
the interactions between different user interfaces. Our software begins with a simple login window. As we

1Login - Starred receiver - Confirm

138

11.2. INTERACTION OF USER INTERFACES Software Engineering - Project Report 1

Figure 11.1.: First step of BookDelivery

Figure 11.2.: Second step of BookDelivery

139

11.2. INTERACTION OF USER INTERFACES Software Engineering - Project Report 1

Figure 11.3.: Interface 1. A screen contains a list of deliveries (including time, date, sender, receiver, type and current
status) within 10 days (10 is default, and it can be changed by user by using the selection box). A search
box for user searching the specific delivery is shown on the right top.

Figure 11.4.: Interface 2. A screen of detailed information about one specific delivery, including the package location
and corresponding status at each specific time. And this display is continuously updated.

140

11.2. INTERACTION OF USER INTERFACES Software Engineering - Project Report 1

Figure 11.5.: Interface 3. After searching, a screen shows a list of delivery information associated with the searching
word.

Figure 11.6.: Interface 4. After an invalid search, a screen shows that there is no match between the delivery and the
searching word, a Go Back button is shown at the screen.

141

11.2. INTERACTION OF USER INTERFACES Software Engineering - Project Report 1

Figure 11.7.: Interface 1. Help page.

Figure 11.8.: ManageUser use case, interface for users

142

11.2. INTERACTION OF USER INTERFACES Software Engineering - Project Report 1

Figure 11.9.: ManageUser use case, interface for administrators

Figure 11.10.: Add user use case

143

11.2. INTERACTION OF USER INTERFACES Software Engineering - Project Report 1

Figure 11.11.: Edit user information use case

Figure 11.12.: Remove User use case

144

11.2. INTERACTION OF USER INTERFACES Software Engineering - Project Report 1

Figure 11.13.: Interaction diagram for the User Interface

145

11.3. DETAILED USER INTERFACE IMPLEMENTATION Software Engineering - Project Report 1

Figure 11.14.: Interface diagram for register and edit

can see, the user and administrator are prompted with different interfaces after login, so we will discuss
the user’s experience using this application separately, from the perspective of regular user and from the
perspective of administrator.

• For a regular user, he or she is prompted with user main interface with two main options to choose
from: Book Delivery and Track Status. When the user choose the tab ’Book Delivery’, he/she
can search the key words regarding the name or office number of recipient, then the search result
will show up in an itemized pattern on the right box. The user can choose one or more (up to
three) recipient into the Lower box ’Target List’, and by clicking ’Confirm all’ button, all deliveries
in the ’Target List’ will be booked into the system. The user can also choose another tab ’Track
Status’ in the main window, he/she can see a list of recent tracking history including items of
Time booking, Sender, Receiver and Priority. The user can also see detailed status information of
a specific delivery by double-clicking one delivery in the box. Detailed Tracking information will
show detailed status of one delivery, such as one package may be in the state of ’BookedDelivery’,
which means the delivery has been booked but not been picked up.

• For the administrator with authorization, he or she will be prompted with administrator main
interface with three options: create floor map, track robot position and view all deliveries with
detail information. We define a simple language for administrator to create the plane graph of the
office floor. For tracking robot position, we set up a dynamic picture monitoring the position and
status of our delivery robot constantly. Also, the administrator has the priority to view the all the
user’s delivery records.

11.3. Detailed User Interface Implementation

In this section, we will discuss detailed user interface implementation, and we will show how users can
get through the main functionalities of these usewith least effort and greatest convenience.

11.3.1. Register and Edit information

This is the user effort estimation of Register and Edit information, see figure 11.14
For register a new user

1. One Click on the register button

146

11.3. DETAILED USER INTERFACE IMPLEMENTATION Software Engineering - Project Report 1

Figure 11.15.: Interface diagram for BookDelivery

2. Fill in the information by keyboard and One click on Confirm

For edit existing usr information

1. Enter the username and password by keystrokes and one Click on the login button

2. Click on the Edit button on the top of UserMainMenu window

3. Fill in the information by keyboard and One click on EditConfirm button

11.3.2. Book Delivery

Next is the user effort estimation of Book Delivery, see figure 11.15 For users to realize one or more
delivery booking

1. Enter the username and password by keystrokes and one click on the login button

2. Click on the BookDelivery tab button

3. Enter part or whole information about receiver, one click on confirm

4. Choose the target people by double click on the right and up side of target list

a) Double click on the target list in the middle textfield of the interface to cancel the chosen one

5. One click on the confirm all to finish booking delivery or deliveries

11.3.3. Track Deliveries Status

Next is the user effort estimation of TrackStatus, see figure 11.16 and 11.17

1. Enter the username and password by keystrokes and one click on the login button

2. Click on the TrackStatus tab button

There only need one more step to see the delivery detail

1. Double click on the record label to show the details in the bottom of the ver window

147

11.3. DETAILED USER INTERFACE IMPLEMENTATION Software Engineering - Project Report 1

Figure 11.16.: Interface diagram for ViewDeliveryHistoryDetails

Figure 11.17.: Interface diagram for UserViewDeliveryHistory

148

11.4. IMPROVEMENT IN UI IMPLEMENTATION COMPAREDWITH UI DESIGNSoftware Engineering - Project Report 1

Therefore, as we can see from the floowing procedure. To register, user need two mouse clicks with
some information input. To edit, the user need 3 mouse clicks with some information imput. To book
delivery, user need 5 clicks for one delivery and 5+2n clicks for n deliveries. To track status, the user
need 2 mouse clicks to show deliveryhistory and 1 more click to show detail. As a result, it basically
satisfy our initial requirement demand.

11.4. Improvement in UI Implementation Compared with UI Design

We consider the user effort estimation when we program and design the actual interfaces. In our mock-up
design, we dipict a lot of interface. However, when it comes to the real interface design, we make changes
to reduce user’s mouse click and keystrokes to most extent.

• In the phase of user interface design, we did’t set up the prority options to distinguish different
urgency degree and importance of mail deliveries. This may lead to big inconvenience for people
who wants to send urgent package to someone or the package is of great importance and must be
send prior to other packages. We add a drop down bar so that it’s simple and fast for user to set
up the priority value for his/her booking delivery. This priority number will be referenced when
multiple packages are pending to be picked up or delivered, and package with greater priority will
be delivered in a shorter time.

• In the mock-up design, we separate the BookDelivery and TrackStatus into two different windows.
However, in interface design, we use the tab button to realize two main functionalities into one
window. For users, there is only one or less mouse click to reach either BookDelivery window or
TrackStatus window.

• For the BookDelivery part, we simplify the user effort of keystrokes by providing function through
searching by name or by office number. For example, if we want to send a package to Marc Gamell
in office 607, we don’t need to enter the whole name and office number. Users can type a m or
mga then click on confirm button, then choose the correct one by one mouse click from the possible
answers shown at the right text field.

• In the mock-up design, we initially aim to create an interface that specifies the delivery details.
However, as the figure 11.13 shows, we incorporate this table into the bottom of deliveryhistoryview
interface. Users can easily check the detail information only to one-mouse click on the record label,
then the detail information will come out in the bottom textfield area.

149

Software Engineering - Project Report 1

12. DESIGN OF TESTS

12.1. Test cases in Unit Testing

12.1.1. Strategy to Do Unit Testing

In this section, we will discuss about the strategy we are going to use in unit testing, the method on how
to choose test cases and the description of test cases.

In Section 2.3 Acceptance tests for User Stories, we have designed several acceptance tests for each
user stories. Each of them represents a coarse way of testing some specific user-stories. For example,
user story No. 3(ST-3) says ”As a sender, I can send a package to the receiver based only on his or her
name, so that I don’t need to care about his or her location”. The corresponding acceptance test cases in
report 1 include testing whether name and office information will be requested in the registration period,
whether requested name will appear on the search result, and whether name and office information could
be modified by each user in the system.

Similarly, in Section 3.8 from Report 1, we draw several tables to test cases for some important use cases.
For example, Test Cases for UC-1: BookDelivery illustrate in a very detailed manner on how the Use case
BookDelivery could be tested, by dividing this into six scenarios. We may want to implement our unit
test by using existing test cases illustrated in report 1 as previous stated. However, current developing
progress and our system characteristics also need to be taken into consideration: As already detailed
illustrated in Chapter 3 of this report, our system is composed of three main parts: Central Station
(know as the ”server”), user computer, and the robot. Meanwhile, we use server/client architecture
for connection between central station and client-computer, and we use master/slave architecture for
connection between central station and the robot, testing each test cases in acceptance test of user stories
or from test cases of user-stories may seem to have too much coupling among the server, client and the
robot. Another reason is that currently the hardware materials to assemble the robot are not ready
yet, thus no detailed implementation will be done in the robot side before demo1. Gathering all these
information, we decided to choose a more detailed way to do the unit test compared to the two methods
mentioned before. Since we are writing codes using Java IDE NetBeans, we choose to use the JUnit tool
installed in this IDE to do the unit testing. We will write test codes in accordance with main packages
and classes in the functional codes.

12.1.2. Test Cases in Unit Test

JUnit test fixture is a Java object, and we can use the @Test annotation to write each testing method for
the class we would like to test (reference [13]). We plan to write test code just in this way to test public
methods in classes we defined in the code (the code that contributes to the functions of the system). The
test cases that we are going to implement are categorized in this way:

1. Test Cases in package ”presentation”: As functional codes in this package can be differentiated
into two parts: client-side control logic and drawings of user-interface, we will handle differently
according to these two types of classes.

In class ClientController, which handles with all state changing regarding showing different user-
interface windows, we will run the method that initiate some certain state (such as entering the
LOG IN state), and see if the state indicator has changed to the corresponding state.

In classes about showing interface to the user, we would like to test in the way that initiate the
constructor of the user-interface class, and see whether the interface will actually show up.

150

12.2. TEST COVERAGE Software Engineering - Project Report 1

2. Test Cases in package ”logic”: As this package handles with the main logic in server-side, such
as sending indication to manage user account, getting delivery information that has the highest
priority, we are going to test whether these logics are correct. For example, we would like to pre-
enter some delivery information and robot position, and test whether the logic about get most
prioritary delivery can be executed correctly. We are also going to test using pre-defined database
information as stubs, to detect whether the server-side can communicate correctly with database.

3. test Cases in package ”resources.controller”: Functional codes in this package handles with commu-
nication interface between server and robot. Since the real communication protocol has not been set
up yet, we are going to test this part by detecting whether communication interface can correctly
receive information from the server.

4. Test Cases in package ”resources. data”: Codes in this packages defines some low-level data struc-
tures and basic transitions and interface to higher level. Our test will do the following thing: define
some data structure, and test whether the interface and transition works! (such as testing whether
the toString of a specific data type works)

5. Test Cases in package ”resources.datacontroller”: As this package handles with the set-up and
interaction to the database and some direct control to the data passed from upper level (such as
check whether username and password is correct), we will test codes in this packages by checking
whether these control actually works (such as we update the position of robot and see whether it
is actually updated from visiting database).

12.2. Test Coverage

Code Coverage can describe the degree to which the source code of a program has been tested (reference
[9]). It can create a loop of revising the code by doing such things (reference [15]):

1. measuring code coverage

2. write tests

3. run tests

4. fix bugs

5. repeat the loop

We used the EMMA Code Coverage plugin tool to do the code coverage.

12.3. Integration Test strategies

With regard to the integration test, we are going to choose the ”big bang” integration approach. Specif-
ically, we will do the integration test using the ”Bottom Up” Integration approach. We choose this
method because our system (here we refer to the server/client-side), has the 3-tier architecture. There-
fore, it would be more convenient if we test from the bottom layer’s resource layer, to the upper layers,
which is the logic layer, until at last, the presentation layer.

The classes in resource layer, which is the bottom layer of our architecture, should be tested first. Each
class in this package should have already been tested as part of unit test.

Then we can do integration test from the upper level, which means doing testing from the perspective
of logic layer. In this layer, we will do three integration tests, as states below:

1. Delivery Coordinator integration test: In this integration test, we will try to write a driver to drive
delivery coordinator to coordinate with several deliveries. The test stub will be the whole lower
layer of resources.

2. System Status integration test: In the system status integration test, we will try to write a driver to
drive the System Status checker to check information about robot position, status of robot moving,
and the user’s position. The stub will be the whole lower layer of resources.

151

12.3. INTEGRATION TEST STRATEGIES Software Engineering - Project Report 1

Figure 12.1.: IntegrationTest Flowchart

3. Server Controller integration test: In the Server Controller integration test, we will put even delivery
coordinator and system status checker into the integration stub as well as with resources layer. We
will write driver to drive system controller to do bookdelivery, delivery/pickup, and system status
view together as a full integration test of server side.

In the upper-most layers’ presentation layer of the system, the integration test will be done as below: all
two lower-level layers’ logic layer and resources layer will be treated as a whole stub. we will write drivers
to drive each view (each window that interacts directly with the user), and testing inter-connection with
the stub.

Figure 12.1 shows an example of doing integration test with Delivery Coordinator. As we can see in
the picture, Delivery Coordinator and its lower-level resources layer is treated as an integral entity to be
tested. Test drivers activates the delivery coordinator, and the delivery coordinator use the test-stub’
the whole resource layer to check the correctness of delivery coordination.

152

Software Engineering - Project Report 1

13. HISTORY OF WORK, CURRENT
STATUS, AND FUTURE WORK

13.1. History of Work

In this section, we are going to discuss the history of our work. We will review how we have accomplished
each milestone in our project.

• September.7-September.22: At the beginning of this semester, we discussed and set up the
general topic of our project: an automatic system aiming at delivering packages in the office building.
Then we start writing proposal of our project. We include our solutions regarding office delivery
and claims general user experience we will supply to the user. On September. 22, we finished and
submitted proposal.

• September.23-October.3: During this time, our group was focusing on finishing part 1 of report
1. We were refining customer statement requirement from our proposal, gathering and organizing
user stories we would like our system to have. We have specified the features of our system from a
general way into more specific functional and non-functional requirement by discussing what kind
of user stories we would have.

• October.4-October.10: Our group was focusing on finishing part 2 of report 1. We expanded
our functional and non-functional user-stories into 19 use cases. Then we draw use case diagrams
and test cases according to each use case. Also, we draw system sequence diagrams which contains
interaction between actors and system, such as how a user can get involved in picking up package.
What’s more, we also designed our user interface, such as window of log-in, booking delivery, and
viewing delivery status.

• October.11-October.14: Our group was mainly doing design analysis of this system. We draw
the domain model, which contains domain concepts in the server part and concepts in the robot part.
We are also analysing mathematical model which would be used in our system, such as algorithm
to make the robot follow the track, and the algorithm to maintain a picking up/delivering package
order. On October. 14, we submitted our report 1, which means we have basically finished design
part of the system from a higher level.

• October.15-Nov.9 Our group was doing paper work and programming in parallel at this time.
We drew interaction diagrams for several important use cases, such as BookDelivery and PickUp-
Package, by using our domain concepts mentioned in report 1. We figured out what the concrete
relationshiop between important domain concepts. We also finish the class diagram and interface
specification, which contains detailed class description in our system. Another paper work we
were working at is the system architecture, which contains all architectures, data storage methods,
network connection methods we are using in our system. At the same time, we were doing pro-
gramming in the server side and client side. We were using the 3-tier architecture and Server/Slave
architecture to program the client, server, and resources (which are three main packages in the
server/client side). On Nov. 8 we submitted our part 2 of report 2. On Nov.9 we did our demo
No.1 in the class. In the demo, we showed full feature in the server side and client side. A user
is able to register, log-in, book a delivery, and view delivery status by using the system. We also
created a robot stub (which is a graphical stub as a window) in the demo to show what the robot
will behave in our system. We left the actual implementation of robot part to the demo No. 2.

• Nov.9-Nov.15 Our group was doing remaining part of report 2, including algorithm and datastruc-
ture, user interface implementaion analysis and design of tests. We illustrated how our mathematical
model in report 1 has evolved into this detailed algorithm of managing the process of picking up
packages or delivering packages. We were also discussing the improvements we had made of our

153

13.2. CURRENT STATUS Software Engineering - Project Report 1

actual user interface compared with original design and mock-ups. On Nov. 15, we submitted
report 2 of the project, which matches the our goal and requirements of the class.

• Nov.16-Dec.12 We were focusing on the implementation of the robot. We implement the whole
robot step by step. In the first step, we were doing hardware connection and basic debugging to
the Arduino board. We were trying to make the motors connected with the wheels of the robot
being about to run and stop; In the second step, we were trying to make the robot follow the line,
which is the black tape we set up as a tray for the robot to follow. We set up six optical sensors and
programming the follow-the-line algorithms referencing the interaction diagrams and algorithms
analysis in report 2; In the third step, we set up magnet sensors, and LEDs as open/close sign of
each section in the robot; In the last step, we were trying to make the robot move smoothly and
being about to connect with the server side. On Dec. 12, we were doing demo 2 of our system. We
presented our system with almost-full features implemented to the class. From the server side, our
system is able show an interface with users to handle with their delivery requests and manage user
information. From the robot side, our system is about to interact with user by moving the robot
to the office of the sender to pick up the package, and then moving to the receiver to delivery the
package. Our system also has the feature of multiple delivering,which means that multiple delivery
requests can be handles at the same time. We were also doing merging of report 1 and report 2,
and revise each chapter according to the requirement and reviews from other groups.

• Dec.13-Dec.15 Our group was doing remaining work of report 3. We were doing effort estimation
of this project to evaluate duration and velocity of this project. We were also doing design pat-
tern description and OCL(Object Constraint Language) description of report 3. On Dec. 15, we
submitted report 3, which matches our goal and requirement of the class.

13.2. Current Status

In this section, we are going to talk about current status of our project after demo 2. We will discuss
about the communication mechanism among software components of our current Auto Delivery System.
Then, we will illustrate what kind of features we have implemented and shown in the demo 2. Especially,
we will talk about the movement and function of the robot part, because it is the main component we
are focusing on during the second-half of the semester. Further more, as the robot itself is an embedded
system containg a lot of hardware and other non-software techniques, we will discuss the main non-
software problems we faced when developing the robot and how we fixed this problems and bugs.

13.2.1. Communication Mechanism among software components

As we can see from figure 13.1, our Auto Delivery System contains the following software components(from
the higher level): Java Server, MySQL database, Java client, PHP+AJAX+jQuery client, JEE wrapper,
Arduino robot, Motor and Speaker.

In Demo 1, three components of our system can running normally, which are Java Server, MySQL, and
Java client. The communication mechanism between MySQL and JavaServer are JPA (Java Persistent
API). We use JPA to store, update, and fetch information to MySQL database. We use Java RMI to
communicate between Java Server and Java Client. By using Java RMI, the in-fact remote objects can
be treated as local ones, and it also support multi-threading.

Please note that the other parts of the software components are all finished during the time between
first demo and second demo. We add another kind of website client - PHP+AJAX+jQuery client. In
order to make this client able to communicate with Java server, we need a JEE wrapper to encapsulate
data in the web client so that it can send and receive message using Java RMI with the Java Server.
Note that the PHP+AJAX+jQuery client use CGI (Comman Gateway Interface) to pass data back and
forth to and from the JEE wrapper.

What’s more, we also developed the robot with Arduino. The Java Server communicates with the
Arduino WiFi shield using TCP protocol. We create a TCP package each time when a server need to
send a message to the robot, and each time when a robot need to return information to the server. This

154

13.2. CURRENT STATUS Software Engineering - Project Report 1

Figure 13.1.: Communication among Software Components in ADS

is not fast but can reduce the definite timeout when using socket communication between Java Server
and Arduino WiFi shield. The Arduino board use PWM output to control the Motor and Speaker.

13.2.2. Features in Auto Delivery System

Currently, our system has below implemented features, which contains almost all features in the use cases.

From the server/client side, our system has the following implemented features:

• The system can show up a log-in window to the user from the user’s computer, or visit the website.
The user can choose to log-in, or register, by using this window.

• The system can provide searching function for the user to search for receivers using a few words of
his/her name or office location.

• The system can provide “Book Delivery” function to the user, when the user choose one or more
names in the search result pane, and click ‘Confirm’. Note that Deliveries that are booked can be
more than one at the same time.

• The system can provide the user delivery history information if he/she clicks the ‘Track Status’ tab
in the main menu.

• The system can provide the administrator delivery history information of all users in the system.

• The administrator can draw a floor map before the system is put into work in a designated floor of
the office building.

From the server/robot side, we are going to first explain what our robot and the map is like, then
we will discuss the features of the robot one by one.

As we can see from 13.2, Below we listed several components in the robot, which are:

• A: Motors: There are two motors in our robot. They are in charge of doing the actual ‘moving’
and ‘stopping’ operations driven by the Arduino Motor Driver. For example, if we want the robot
to move forward, then we set the two motors running at the same speed. If we want the robot
to turn left, then we stop the left motor, or let it run in a very low speed, while driving the right
motor running at a higher speed. In this way, the robot is capable of turning left. The method of
making the robot turn right is similar. Please note that we simplify the original four-wheel design

155

13.2. CURRENT STATUS Software Engineering - Project Report 1

Figure 13.2.: Components in robot

Figure 13.3.: Floor Map in demo 2

156

13.2. CURRENT STATUS Software Engineering - Project Report 1

to only two-wheel design, in this way, the turning and ‘following the line’ will be much easier to
control and achieve.

• B: Section Open/Closed Indicators 1: As we can understand from meaning of the sticker
‘Section 1’, the two LEDs closed to the ‘Section 1’ are indicators for the open and close status of
this section. When the ‘green LED’ is turned on by the controller, it means that Section 1 is open,
and users are available to put package into this ‘Section’ or take package out from this ‘Section’
(Currently there are no real sections with a ‘cover’ and a ‘lock’ in our robot, and we only show the
control logic for each section). When the ‘red LED’ is on, it means this section is closed.

• C: Section Open/Closed Indicators 2: This part indicates the control logic of Section 2, with a
red LED and a green LED next to the sticker ‘Section 2’. Detailed description is similar as Section
Open/Closed Indicators 1.

• D: Section Open/Closed Indicator 3: This part shows the control logic of Section 3, with a
red LED and a green LED next to the sticker ‘Section 3’.Detailed description is similar as Section
Open/Closed Indicators 1.

• E: Speaker (Buzzer): This part is one of the output to the user of this system. When the robot
arrives at an office and want to pick up a delivery or deliver some package to the person in this
office, the speaker will ‘buzz’ once and wait for the person to come.

• F: Arduino boards: The Arduino boards are the core parts of robot. Three boards, which are
ARduino Mega 2560, WiFi shiled and Motor shield, are connecting together. Arduino Mega 2560
is the controller. WiFi shield is in charge of communicating with the server, and motor shield is
used for controlling two motors we have.

• G: Optical Sensors and Magnet sensors: In the back of the robot, there are totally 6 pairs of
optical sensors and white leds, and 2 magnet sensors. We use optical sensors and leds to detect the
track (which is a circle of black tapes on a white paper, we will discuss this later). We use magnet
sensors, which is technically magnet switches, to detect the magnet located near each office. When
the magnet switches sense a magnet, the system will know the robot arrive at a new office.

• H:Power Supplier for motor shield: This power supplier is used to give power to the motor
shield.

• I: Power Supplier for Arduino Mega 2560: This power supplier is used to give power to the
Arduino Mega 2560 controller.

• J: Button: In our system this button have multiple functions. It is used to ‘simulate’ as password
checking process, because the keyboard we bought cannot work properly. This button is also used
as ‘Confirmation’ button when the sender has put his/her package into one section of the robot or
when a receiver has take his/her package from one section of the robot.

As we can see from the figure 13.3, the offices located on this floor are office 602, office 603 and office
604. There is also a ‘Starting Point’ where the robot will start from and stop at when there is no deliveries
pending. We use black line tapped onto the white paper to simulate the ‘track’. The robot will move
exactly along the track because of the white LEDs and optical sensors located on the bottom of the robot.
There is a magnet in each of the office, as well as the ‘starting point’. Magnet sensors located on the side
of the robot will detect these magnets and stops at the office if needed.

Now we will begin discuss about the features implemented in the server/robot side.

• The robot moves according to the circular black line which was set up first as the track of the robot.
The robot will stop for a short period of time whenever the magnet sensor detect the magnet nearby.
It will send message to the server and update location information in the server side.

• The robot will stop and ring buzzer at the office where it needs to pick up the package from this
office or delivery the package to this office. If the sender or receiver didn’t appear and press the
‘button’ to authenticate password until timeout, the robot will leave and move to the next point.

• The server will send an email to the receiver when a delivery is booked by the sender.

• The robot will request password authentication before the sender can put package into the robot
or before the receiver can get package from the robot. Password authentication is finished from the
server side by communication between the robot and the server. What now the sender or receiver

157

13.2. CURRENT STATUS Software Engineering - Project Report 1

need to do is to press the ’button’ as a sign of password checking process. We assume authentication
will always pass because we need further steps for pickup/delivery, while currently the keypad is not
available to use. What we do now is to send the user’s correct password to the server as if he/she
has input them. Then the server will authenticate and send ”open the section” instruction to the
robot. The designated section that is going to be used by the sender or the section containing the
receiver’s package will ‘open’. Because there is no real section in the robot, what we will see is the
green LED of corresponding section will be on after the server send message to the robot.

• The robot will request the sender/receiver to press the button again when he/she has put package
into the section or take package from the section. Pressing this button is regarded as a confirmation
that the interaction between the robot and this person is over at this time, and the robot is available
to leave or execute the next PickUp/Delivery.

• The robot will go to the package PickUp/Delivery with highest priority when multiple deliveries
are pending. This is to say, when new deliveries are booked, the robot will recalculate the book-
ing/delviering priority when it arrives at the next available office location. As the communication
between the robot and server are now quite low (using TCP package), the robot will wait at each
office location for the response from the server about what the next pickup/delivery office location
would be.

• The robot is able to handle with multiple deliveries and even new booked deliveries was added
during the time the robot is executing other delivery work. For example, when the robot finished
delivery to the person in Office 603, this person at the same time booked a delivery using his pc.
Then the robot will stay at this point and request a new password authentication to this person.
He will need to press the button again and when the green LED of a designated section is on he/she
put the package into the section and press the button again for confirmation.

• The robot reports updates to the server so that delivery status updates will be shown on the main
menu when the user request it.

13.2.3. Non-Software Problems and Solutions

In this section, we are going to discuss the non-software problems we were facing and how we solve these
problems.

• Problem and Solution to Motor shield not working continuously

P: We could not make the motors run continuously. They were cutting off regularly, no matter how
we change the software-controlled speed of the motor.

S: we thought the problem is with the motor shield itself, because the motor shield is not made
from Arduino, but some other brands claiming to be compatible with the Arduino board. Then
we bought another motor shield, which is original made from Arduino, and saw that the problem
still persists with the new motor shield. Then we are trying hard to find other possible reasons to
this problem. One interesting thing is that, when Mehmet, one of our group members, accidentally
touch the motor shield while it is running, it seems that the ‘cutting off’ problem disappeared.
Finally we figured out that this is because when touching the motor, the body acts as a capacitor
and it can reduce the noise brought about in the robot system. Thus, after several trials of capacitor
soldering between the tabs of the motor (from small capacitance values to larger). Then Right
motor begin working seamlessly once we connected one 100pF and 10pF parallel (110pF totally).
And the left motor become perfectly running by just one 10pF capacitor might.

The problem is due the high frequency noise coming from the power supply and the whole system
of motors and capacitors begin to act like a simple RLC high frequency filter whose cutoff frequency
is found by us by trial and error method.

• Problem and Solution to Wireless connection between robot and server

P: The TCP connection (between the robot and the server) reset happens randomly. This problem
is also encountered during demo. As a bug of Arduino Wifi shield, a TCP connection cannot last
more than around 13secs. We see this phenomena from the log printing of terminal.

158

13.2. CURRENT STATUS Software Engineering - Project Report 1

S: To try to solve this issue, creating one TCP connection for every send/receive session is used. A
cost of this is to introduce additional delays because synchronizing packets between the server and
the robot take a lot of time.Also, the Wifi shield of arduino is not really fast about transmitting and
receiving! This approach is a reasonable way to solve this problem in most of cases, while we admit
it is not that efficient since the data transmitted between the robot and the server at one packet
was really small. This is to say, we are using long connection sync overhead for small amount of
data. However, it’s an available way of solving this problem.

• Problem and Solution to Wifi shield library

P: Wifi shield library has also a critical bug. By using this library one cannot create and keep two
connections alive. The reason that we tried to use two connections at a time is to find another
effective way of solving the previous problem. Long delay introduced by sending TCP packet one
by one is a criticle issue for making the robot react fast and be ‘smart’ enough.

S: We tried to make server to send a message asking for response from the robot side, to keep
the connection between the server and the robot. The message is just like saying ”Are you still
active ?”, and the messages is sent from the server for every 5sec to make the TCP connection
alive. If at least one pile of data is transmitted over the created connection within each possible
13secs interval, then the problem of automatic connection reset seemed to be resolved. However,
this approach introduced another problem. If robot sends a message indicating “I am alive !” and
another message “I reached a node !” message consecutively within a small time interval, then
server may possibly get wrong message corresponded to to this message because this is not exactly
what the server expect to receive. To solve this we tried to open two TCP tunnels (sockets) with
different ports and transmit these two kinds of messages over different tunnels. But it did not work
because of this freaking bug of Arduino Wifi shield (Not allowing more than one connection at a
time). That is why we keep using the solution of previous problems, which is, to create an TCP
connection for every send/receive session.

• Problem and Solution to the debugging messages causing loop running slow

P: Debugging messages in arduino loop slows a lot of the loop. We were using serial debugging
between the robot and the server for sending some debugging messages from the robot to the server.
But since this communication is done serially it was really slow. And also in arduino side program,
there is a function called “loop()” which can be thought as a main function with a difference that it
is running forever, as long as there is power supply. When we used these debugging messages in the
loop() this made the loop() to be run not as frequently as it should be. That is why robot begins
to not working as expected. The operations begin not to be done very frequently but instead, very
slowly. That is why robot begins to work inconsistently and react incorrect to the optical sensors
and have trouble folloing the track.

S: Simply try not to use so many serial debug output.

• Problem and Solution to the 4-wheels cannot working

P: We chose a 4 wheeled large case for our robot for the sake of being consistent with the expected
result of our goal of making this project. That is to say, our robot need to be strong enough to
carry multiple packages at the same time. Using 2 wheeled small circular robot might not be very
convincing in terms of providing a strong robot to carry packages, but we could not achieve to turn
effectively with the 4 wheels because of mechanical reasons.

S: We at first tried to find a small caster to use at the front side of the robot instead of having two
wheels and asked the mechanical engineering people to get one of those but the ones that they came
up were really big for our robot. Then we decided to use a teflon ball (at the front side), instead
of two front wheels, which can slide easily on the floor map. Thanks to the guys in mechanical
engineering department.

• Problem and Solution to the minimum motor speed

P: The motors that we got started working at a very large speeds, even we have change it to the
minimum spped. That is why, we could not make the robot move with slower speeds. The possible
reason of this, is again wheels road grab power, motor power, weight of the robot, the floor that
the robot is moving, which are in the field of mechanical engineering.

159

13.3. FUTURE WORK Software Engineering - Project Report 1

S: Try to optimize the movement of the robot on the floor by making it to go at high speeds, instead
of trying to lower its speed.

• Problem and Solution of having difficulties to tune the PID parameters

P: Since the robot was moving at large speeds as stated in previous problems, and the modified
wheel philosophy (2 wheels and teflon ball) was not the best scheme, we had many trouble to
make the robot follow the line and move smoothly on the floor. The solution is simply to tune the
parameters of the PID but since we had a small range of speed difference between the right and left
wheel (i.e. this speed difference between the right and the left motors are the parameter making the
robot turn) and since the robot cannot move as smooth as possible because of mechanical design,
tuning parameters of PID was very painful.

S: We tried to achieve the best movement behaviour after many trials.

• Problem and Solution to non-smooth Line follower

P: Since we used magnets on the floor as a representation of the nodes (offices), and since the reed
switches used to sense these magnets are mounted beneath the robot case, these magnets should
be placed really close to the line. That brings up another problem which is the possible collision
between the robot and the magnets while the robot is moving. That is an undesirable thing to us
because it can make robot stop, go outside of the line etc.

S: To not allow this happening, we mounted reed switches on the back side of the robot and make the
robot move as accurately as possible in the sense that two wheels at the back side would not collide
with the magnets. That comes with tradeoff between the movement accuracy and smoothness. We
chose the accuracy over the smoothness and tune the PID parameters according to that.

• Problem and Solution to keypad not working

P: The keypad that we bought from amazon did not work, even when it is connected to the pc.

S: Since we did not have enough time to order another one, we chose to discard this and try to
simulate the interaction between the user and the robot (generally for password request purposes)
by using a simple switch. Of course, this limited us from showing every feature of our system that
we developed (e.g. we could not show the case of user entering a wrong password) but that is
another tradeoff we had to decide; time vs. quality.

13.3. Future Work

In this semester, we have implemented basic server-side management, storage, communication, client-
side user-interface and event-reaction, and robot-side locationing and picking up/delivering packages.
We believe this to be an interesting topic and we would be definitely happy to extend our current design
to a much more functional, error tolerent, and creative system. Below are some of our ideas that may be
able to fulfill in the near future.

• Multiple-platform support: We plan to develop the Android application, and MacOS applica-
tion of the client side. Currently we only have java application which can be well used in personal
computer, as long as the computer has installed Java Runtime Environment. In the future we plan
to extend the client termimal from computer to modern mobile terminals, such as Android phone,
iPhone, and iPad.

• Multiple-floor & Multiple-building: We plan to make our system capable of delivering pack-
ages among different floors, and even different buildings. We have planned the ways of achieving
this, such as making the robot take the elevator and choose which floor as it would like to go to, or
using hinged crawler to go up and down the stairs.

• Speech Recognition: We think there might be multiple ways to book a delivery, or user
authentication. One of them might be speech recognition. By installing video cameras, speech
sensor, and motion sensor such as Kinect sensor, our robot can recognize what people are saying
by there speech and gestures (see article [34] for reference). Hence, booking a delivery might just
need to say a simple sentence to the robot ”Give this package to John”, then the delivering will
start. The user authentication can also be done by the recognizing voice of the sender or receiver.

160

13.3. FUTURE WORK Software Engineering - Project Report 1

• An Internet of Things: The Delivery service might ultimately become an internet of things.
Just as the article have stated, deliveries would be possible over a wide area using a series of hops
and would be a physical implementation of the “packet switching” model that directs data across
the internet [32]. The patterns of delivery might be diverse, no matter it’s using a robot that moves
along the road, or a drone that flies in the sky. Yet these patterns have something in common,
which are unmanned and multi-hopped. A small package can be delivered from China to United
States by multiple unmanned delivery machines in several hours. Delivery machines will swap the
package in certain nodes, give it to the other machines that takes charge of the next part of route,
as well as refill power to start its next work. Then in several relays the package is delivered to the
receipient without any worker in the middle of the process. We hope our auto delivery system can
ultimately accomplish the system we depicted above.

161

Software Engineering - Project Report 1

BIBLIOGRAPHY

[1] Android user interface. URL: http://developer.android.com/guide/topics/ui/index.
html.

[2] Arduino design. URL: http://arduino.cc/forum/index.php/topic,6595.0.html.

[3] Arduino mega 2560 r3. URL: http://www.amazon.com/Arduino-MEGA-2560-R3/
dp/B006H0DWZW/ref=sr_1_1?s=electronics&ie=UTF8&qid=1350484606&sr=
1-1&keywords=arduino+mega+2560+r3.

[4] Arduino motor shield. URL: http://store.arduino.cc/ww/index.php?main_page=
product_info&cPath=11_5&products_id=204.

[5] Arduino uno. URL: http://store.arduino.cc/ww/index.php?main_page=product_
info&cPath=11_12&products_id=195.

[6] Arduino wifi shield. URL: http://store.arduino.cc/ww/index.php?main_page=
product_info&cPath=11_5&products_id=237.

[7] Automatic identification and data capture. URL: http://en.wikipedia.org/wiki/
Automated_identification_and_data_capture.

[8] Automatic storage systems at nitco. URL: http://www.nitco-lift.com/custompage.asp?
pg=automatic_storage_systems.

[9] Code coverage. URL: http://en.wikipedia.org/wiki/Code_coverage.

[10] Fata inc. URL: http://www.fatainc.com/gallery/main.php?g2_itemId=72.

[11] Information security. URL: http://en.wikipedia.org/wiki/Information_security.

[12] Internet of things. URL: http://en.wikipedia.org/wiki/Internet_of_Things.

[13] Junit. URL: http://en.wikipedia.org/wiki/JUnit.

[14] K&n warehousing and shipping. URL: http://www.knfilters.com/Warehousing_and_
Shipping.htm.

[15] Measuring junit code coverage. URL: http://www.cafeaulait.org/slides/albany/
codecoverage/Measuring_JUnit_Code_Coverage.html.

[16] Photointerrupter reflective phototransistor 4-pin tube. URL: http://www.alliedelec.com/
Search/ProductDetail.aspx?SKU=70026408.

[17] Robot learning technology for multi-task service robots. URL: http://www.skilligent.com/
products/documents/docs/Multi-Task-Service-Robots.pdf.

[18] Sainsmart l293d motor drive shield for arduino duemilanove mega uno r3 avr atmel. URL:
http://www.amazon.com/SainSmart-L293D-Shield-Arduino-Duemilanove/dp/
B00813HBBO/ref=pd_bxgy_e_img_y.

[19] Smart robot design. URL: http://wenku.baidu.com/view/30e72b6427d3240c8447ef91.
html.

[20] Switch reed. URL: http://www.alliedelec.com/Search/ProductDetail.aspx?SKU=
70026408.

[21] Usb/ ps2 numeric keypad ps2/usb, htk-100. URL: http://www.amazon.com/
Arduino-MEGA-2560-R3/dp/B006H0DWZW/ref=sr_1_1?s=electronics&ie=UTF8&qid=
1350484606&sr=1-1&keywords=arduino+mega+2560+r3.

[22] Wifi shield for arduino. URL: http://store.arduino.cc/ww/index.php?main_page=
product_info&products_id=237.

162

http://developer.android.com/guide/topics/ui/index.html
http://developer.android.com/guide/topics/ui/index.html
http://arduino.cc/forum/index.php/topic,6595.0.html
http://www.amazon.com/Arduino-MEGA-2560-R3/dp/B006H0DWZW/ref=sr_1_1?s=electronics&ie=UTF8&qid=1350484606&sr=1-1&keywords=arduino+mega+2560+r3
http://www.amazon.com/Arduino-MEGA-2560-R3/dp/B006H0DWZW/ref=sr_1_1?s=electronics&ie=UTF8&qid=1350484606&sr=1-1&keywords=arduino+mega+2560+r3
http://www.amazon.com/Arduino-MEGA-2560-R3/dp/B006H0DWZW/ref=sr_1_1?s=electronics&ie=UTF8&qid=1350484606&sr=1-1&keywords=arduino+mega+2560+r3
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_5&products_id=204
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_5&products_id=204
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_12&products_id=195
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_12&products_id=195
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_5&products_id=237
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_5&products_id=237
http://en.wikipedia.org/wiki/Automated_identification_and_data_capture
http://en.wikipedia.org/wiki/Automated_identification_and_data_capture
http://www.nitco-lift.com/custompage.asp?pg=automatic_storage_systems
http://www.nitco-lift.com/custompage.asp?pg=automatic_storage_systems
http://en.wikipedia.org/wiki/Code_coverage
http://www.fatainc.com/gallery/main.php?g2_itemId=72
http://en.wikipedia.org/wiki/Information_security
http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/JUnit
http://www.knfilters.com/Warehousing_and_Shipping.htm
http://www.knfilters.com/Warehousing_and_Shipping.htm
http://www.cafeaulait.org/slides/albany/codecoverage/Measuring_JUnit_Code_Coverage.html
http://www.cafeaulait.org/slides/albany/codecoverage/Measuring_JUnit_Code_Coverage.html
http://www.alliedelec.com/Search/ProductDetail.aspx?SKU=70026408
http://www.alliedelec.com/Search/ProductDetail.aspx?SKU=70026408
http://www.skilligent.com/products/documents/docs/Multi-Task-Service-Robots.pdf
http://www.skilligent.com/products/documents/docs/Multi-Task-Service-Robots.pdf
http://www.amazon.com/SainSmart-L293D-Shield-Arduino-Duemilanove/dp/B00813HBBO/ref=pd_bxgy_e_img_y
http://www.amazon.com/SainSmart-L293D-Shield-Arduino-Duemilanove/dp/B00813HBBO/ref=pd_bxgy_e_img_y
http://wenku.baidu.com/view/30e72b6427d3240c8447ef91.html
http://wenku.baidu.com/view/30e72b6427d3240c8447ef91.html
http://www.alliedelec.com/Search/ProductDetail.aspx?SKU=70026408
http://www.alliedelec.com/Search/ProductDetail.aspx?SKU=70026408
http://www.amazon.com/Arduino-MEGA-2560-R3/dp/B006H0DWZW/ref=sr_1_1?s=electronics&ie=UTF8&qid=1350484606&sr=1-1&keywords=arduino+mega+2560+r3
http://www.amazon.com/Arduino-MEGA-2560-R3/dp/B006H0DWZW/ref=sr_1_1?s=electronics&ie=UTF8&qid=1350484606&sr=1-1&keywords=arduino+mega+2560+r3
http://www.amazon.com/Arduino-MEGA-2560-R3/dp/B006H0DWZW/ref=sr_1_1?s=electronics&ie=UTF8&qid=1350484606&sr=1-1&keywords=arduino+mega+2560+r3
http://store.arduino.cc/ww/index.php?main_page=product_info&products_id=237
http://store.arduino.cc/ww/index.php?main_page=product_info&products_id=237

BIBLIOGRAPHY Software Engineering - Project Report 1

[23] An overview of 802.11 wireless network security standards and mechanisms, Octo-
ber 2004. URL: http://www.sans.org/reading_room/whitepapers/wireless/
overview-80211-wireless-network-security-standards-mechanisms_1530.

[24] Barcode, September 2012. URL: http://en.wikipedia.org/wiki/Barcode.

[25] Barcode scanner, September 2012. URL: http://en.wikipedia.org/wiki/Barcode_
scanner.

[26] Database, September 2012. URL: http://searchsqlserver.techtarget.com/
definition/database.

[27] Denial of service attack, October 2012. URL: http://en.wikipedia.org/wiki/
Denial-of-service_attack.

[28] Eclipselink jpa implementation, November 2012. URL: http://www.eclipse.org/
eclipselink/.

[29] Event-driven architecture, December 2012. URL: http://en.wikipedia.org/wiki/
Event-driven_architecture.

[30] Facade pattern, October 2012. URL: http://en.wikipedia.org/wiki/Facade_pattern.

[31] Gps, September 2012. URL: http://en.wikipedia.org/wiki/Global_Positioning_
System.

[32] An internet of airborn things, December 2012. URL: http://www.economist.com/news/
technology-quarterly/21567193-networking-enthusiasts-dream-building-drone-powered-internet-carry-objects.

[33] Introduction to java rmi, October 2012. URL: http://www.javacoffeebreak.com/
articles/javarmi/javarmi.html.

[34] Iuro robot finds its way through cities, with your help, December 2012.
URL: http://spectrum.ieee.org/automaton/robotics/humanoids/
iuro-robot-finds-its-way-through-cities-with-your-help/.

[35] Java annotation, November 2012. URL: http://en.wikipedia.org/wiki/Java_
annotation.

[36] Java ee, November 2012. URL: http://en.wikipedia.org/wiki/Java_Platform,
_Enterprise_Edition.

[37] Java persistence api (jpa), November 2012. URL: http://en.wikipedia.org/wiki/Java_
Persistence_API.

[38] Jpa annotations, November 2012. URL: http://www.oracle.com/technetwork/
middleware/ias/toplink-jpa-annotations-096251.html.

[39] Master/slave pattern, October 2012. URL: http://en.wikipedia.org/wiki/Master/
slave_(technology).

[40] Master/slave pattern (2nd reference), October 2012. URL: http://www.ni.com/white-paper/
3022/en.

[41] Master/worker pattern, October 2012. URL: http://wiki.gigaspaces.com/wiki/display/
SBP/Master-Worker+Pattern.

[42] Modular programming, October 2012. URL: http://en.wikipedia.org/wiki/Modular_
programming.

[43] Monolithic system, October 2012. URL: http://en.wikipedia.org/wiki/Monolithic_
system.

[44] Multi threading tutorial, December 2012. URL: http://www.comp.lancs.ac.uk/˜weerasin/
csc253/tutorials/week7.html.

[45] Multitier architecture, October 2012. URL: http://en.wikipedia.org/wiki/Multitier_
architecture.

[46] Non-functional requirements as user stories, September 2012. URL: http://www.
mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories.

163

http://www.sans.org/reading_room/whitepapers/wireless/overview-80211-wireless-network-security-standards-mechanisms_1530
http://www.sans.org/reading_room/whitepapers/wireless/overview-80211-wireless-network-security-standards-mechanisms_1530
http://en.wikipedia.org/wiki/Barcode
http://en.wikipedia.org/wiki/Barcode_scanner
http://en.wikipedia.org/wiki/Barcode_scanner
http://searchsqlserver.techtarget.com/definition/database
http://searchsqlserver.techtarget.com/definition/database
http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/Denial-of-service_attack
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/eclipselink/
http://en.wikipedia.org/wiki/Event-driven_architecture
http://en.wikipedia.org/wiki/Event-driven_architecture
http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System
http://www.economist.com/news/technology-quarterly/21567193-networking-enthusiasts-dream-building-drone-powered-internet-carry-objects
http://www.economist.com/news/technology-quarterly/21567193-networking-enthusiasts-dream-building-drone-powered-internet-carry-objects
http://www.javacoffeebreak.com/articles/javarmi/javarmi.html
http://www.javacoffeebreak.com/articles/javarmi/javarmi.html
http://spectrum.ieee.org/automaton/robotics/humanoids/iuro-robot-finds-its-way-through-cities-with-your-help/
http://spectrum.ieee.org/automaton/robotics/humanoids/iuro-robot-finds-its-way-through-cities-with-your-help/
http://en.wikipedia.org/wiki/Java_annotation
http://en.wikipedia.org/wiki/Java_annotation
http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
http://en.wikipedia.org/wiki/Java_Persistence_API
http://en.wikipedia.org/wiki/Java_Persistence_API
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html
http://en.wikipedia.org/wiki/Master/slave_(technology)
http://en.wikipedia.org/wiki/Master/slave_(technology)
http://www.ni.com/white-paper/3022/en
http://www.ni.com/white-paper/3022/en
http://wiki.gigaspaces.com/wiki/display/SBP/Master-Worker+Pattern
http://wiki.gigaspaces.com/wiki/display/SBP/Master-Worker+Pattern
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Monolithic_system
http://en.wikipedia.org/wiki/Monolithic_system
http://www.comp.lancs.ac.uk/~weerasin/csc253/tutorials/week7.html
http://www.comp.lancs.ac.uk/~weerasin/csc253/tutorials/week7.html
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Multitier_architecture
http://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories
http://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories

BIBLIOGRAPHY Software Engineering - Project Report 1

[47] Pulse width modulation, October 2012. URL: http://en.wikipedia.org/wiki/
Pulse-width_modulation.

[48] Shortest path problem, October 2012. URL: http://en.wikipedia.org/wiki/Shortest_
path_problem.

[49] Software coupling, October 2012. URL: http://en.wikipedia.org/wiki/Coupling_
(computer_programming).

[50] Three tier architecture, October 2012. URL: http://en.wikipedia.org/wiki/Multitier_
architecture#Three-tier_architecture.

[51] User story, September 2012. URL: http://en.wikipedia.org/wiki/User_story.

[52] Web server, September 2012. URL: http://en.wikipedia.org/wiki/Web_server.

[53] Bennett Brumson. New applications for mobile robots, April 2012. URL: http://www.
robotics.org/content-detail.cfm/Industrial-Robotics-Feature-Article/
New-Applications-for-Mobile-Robots/content_id/3362.

[54] Prof. Ezhan Karasan. Computer networking course cs421, lecture slides 4, October 2012. URL:
http://cs.bilkent.edu.tr/˜terzi/cs421/.

[55] Smart Robot. The sr4 office robot, September 2012. URL: http://www.smartrobots.com/
office_robot.php.

[56] Aaron Saenz. Willow garage lets you control your robot from a web
browser, April 2010. URL: http://singularityhub.com/2010/04/12/
willow-garage-lets-you-control-your-robot-from-a-web-browser-video/.

[57] Christina Hernandez Sherwood. Hospital tech: robots in the pharmacy and barcodes on
the patients, December 2010. URL: http://www.smartplanet.com/blog/pure-genius/
hospital-tech-robots-in-the-pharmacy-and-barcodes-on-the-patients/5072.

[58] Freight transport. Put that in your pipe and poke it, January 2011. URL: http://www.
economist.com/node/17848523.

[59] Gali Weinreb. Israel invests 11m dollars in nano drug delivery robot, July 2012. URL: http:
//nocamels.com/2012/07/israel-invests-11m-in-nano-drug-delivery-robot/.

[60] Wikipedia. Inductive charging. URL: http://en.wikipedia.org/wiki/Inductive_
charging.

164

http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Coupling_(computer_programming)
http://en.wikipedia.org/wiki/Coupling_(computer_programming)
http://en.wikipedia.org/wiki/Multitier_architecture#Three-tier_architecture
http://en.wikipedia.org/wiki/Multitier_architecture#Three-tier_architecture
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Web_server
http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Feature-Article/New-Applications-for-Mobile-Robots/content_id/3362
http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Feature-Article/New-Applications-for-Mobile-Robots/content_id/3362
http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Feature-Article/New-Applications-for-Mobile-Robots/content_id/3362
http://cs.bilkent.edu.tr/~terzi/cs421/
http://www.smartrobots.com/office_robot.php
http://www.smartrobots.com/office_robot.php
http://singularityhub.com/2010/04/12/willow-garage-lets-you-control-your-robot-from-a-web-browser-video/
http://singularityhub.com/2010/04/12/willow-garage-lets-you-control-your-robot-from-a-web-browser-video/
http://www.smartplanet.com/blog/pure-genius/hospital-tech-robots-in-the-pharmacy-and-barcodes-on-the-patients/5072
http://www.smartplanet.com/blog/pure-genius/hospital-tech-robots-in-the-pharmacy-and-barcodes-on-the-patients/5072
http://www.economist.com/node/17848523
http://www.economist.com/node/17848523
http://nocamels.com/2012/07/israel-invests-11m-in-nano-drug-delivery-robot/
http://nocamels.com/2012/07/israel-invests-11m-in-nano-drug-delivery-robot/
http://en.wikipedia.org/wiki/Inductive_charging
http://en.wikipedia.org/wiki/Inductive_charging

Software Engineering - Project Report 1

A. EXISTING COMMERCIAL SOLUTIONS

A.1. Traditional system

Traditionally, as stated in the problem description, deliveries have been done in a non-automated manner:
sometimes there is a person in charge of this problem and sometimes the sender is just simply forced to
go and deliver the document to the recipient. Of course, this method is not scalable and can become very
inefficient.

A.2. Integrated delivery system using pipes

Accordingly, several approaches have been made to solve this inefficiency. One of this approaches is to
integrate the delivery system in the building using, for example, wide pipes [58]. Some examples of this
can be seen in a great variety of places (such as hospitals, city councils or police buildings). This system,
of course, have several limitations. On the one hand, it needs to be designed along with the building,
which is not cheap nor convenient, because many departments may need to deploy the automation in an
already existing building. On the other hand, this kind of delivey service does not allow packages nor
inter-building communication. Finally, the user interface in these systems is a box in each room with a
certain amount of buttons.
Our project overwhelm this costs and, even more, will allow the costumer to scale the solution to several
buildings (this feature will be done in a future deployment of the project). Our project will provide
simpler and friendly user interfaces than annoying boxes in every room, because today all the rooms have
computers, and therefore they can be used as an existing way of dealing with the system. On the other
hand, our user interface will be more interactive than the existing one, because the user will be able to
ask for feedback about how the delivery is going on.

A.3. Drug delivery using robots

As we previously state, our working problem applies specially on the hospital environment.
Autonomous mobile robots (AMR) can play a role in assisting doctors in medical procedures, such as drug
delivery, or the development of mobile treatment systems for specialized equipment. However, the cost
of an AMR is huge and the moving algorithm inside the robot is very complicated. A nanometer-sized
drug delivery systems cost more than $11 million [59]. Compared with AMR, our automatic delivery car
cost much less, uses simpler algorithm, and has a feature of easily been integrated.

As the system is a one-way delivery (from the nurse’s station to ward, since the patients will do not
order drug delivery to others) and each ward is a stop, the user interface is nothing else but two big
buttons on top of the robot. After the nurse put drugs in robot, he or she presses the green ‘Go’ button,
and it proceeds on its route. If the nurse needs more time, he or she can press the red ‘Stop’ button.
Each ward acts as a stop, and the robot starts from the nurse’s station and stop at each ward. Therefore,
the delivery is not done in the front of each pacient room

From the interface point-of-view, our system have two clear advantages in comparison to the drug
delivery existing system:

• Our system can deal with the delivery request among the employees

• The UI can be more vivid, such as a website or an Android App. This allows powerful tools to
select usual/favorite destinations and this helps improving the ease-of-use of the application.

165

A.4. AUTOMATED WAREHOUSES Software Engineering - Project Report 1

A.4. Automated warehouses

Althought our working problem might seem similar to automated warehouses. The solutions applied
there (we can see manufacturers in [8] or [10] and an implementation on [14]), however, are not well
sized for small packages, and in case it were, automatic warehouses uses complex translation mechanisms
to accelerate delivery, which is not needed in our case. Thus, the customer will see that the existing
solutions and techniques for warehouses can’t be applied to our problem.

166

Software Engineering - Project Report 1

B. INTERACTION DIAGRAM FOR UC-8
DELIVERY

To begin with, we are using three-tier client-server software architecture model to logically separate the
presentation, application processing and data management (reference [45]). The signs of this design choice
can be seen in every interaction diagram of the use cases given in the followings. Additionally, another
design choice that we made is to separate the overall system into two stacks; server and robot.

The related objects used in use case Delivery can be found in (table B.1). As can be seen there is not
any objects related with presentation tier for this specific use case. All necessary action will be done for
this use case by the objects in server and data layers.

This use case is the black box containing the most important functionality of the system so we gave
a lot of care and attention while designing. First thing we considered, our design should allow the least
number of interactions because the optimization of the number of interactions for this use case is crucial
in the sense that it can provide a clear and more scalable implementation. Secondly, we tried to make
it to answer the needs of our application. To explain more, as we specified in the requirements part
(Section 2.2) booking a delivery should be done in a seamless and robust manner. Therefore, we tried
to make possible failure cases anticipated by the system. Also, the work sharing between the objects is
carefully one but of course as the case for all design problems some important parts become responsible
for more work. Since the logic itself and logical interactions between the objects included in this use
case are complex, we tried to specify one ”facade” (reference [30]) assigned for the objects of logic tier
in two parts. As can be understood from its name one of them is ServerCommunicator and the other is
RobotCommunicator which manage the communication between logic objects and data objects in their
respective stacks and also they are responsible for the interaction between the two stacks.

BookDelivery Interaction General Diagram The interaction diagram for this use case includes 2 main
tasks which are as follows; 1. Get the most prior pending delivery 2. Schedule the robot action for this
most prior pending delivery. This action includes notifying the receiver about the delivery and moving
the robot its next destination. Also, once the robot reaches the next destination and if this is the target
address of the delivery, take care of delivering the correct packets to the receiver in the case of delivery
type is ’hand in’ or picking up the packets from the correct receiver in the case of the delivery type is
’pick up’.

Note: We separated the delivery into two types; one is ’hand in’ and the other is ’pick up’. We used
the delivery as the encapsulating phrase for both types because it sounds the most logical choice for our
project design. In that sense, delivery is describing the task of both picking up the packages from the
sender and handing in the packages to the receiver.

As one can see from the interaction diagram of this part (figure B.1), there are some function calls
between the objects which are like dark black boxes. These functions (can be seen in the interaction
diagram encircled by blue rectangles) are shown without the inner workings in this figure to keep things
less complicated and more readable. In the following parts the inner workings design of them will be
revealed.

Get the most prior pending delivery: This part is crucial for the success of the following operations.
The inner workings can be explained as follows (figure B.2); Once the automatic delivery system is started
ServerController will automatically create the DeliveryController which is responsible for checking the
pending delivery list, getting the most prior delivery. Checking delivery list is done by simply listening
the size of the pending delivery list. Once the size of the delivery list is not ’0’, DeliveryController fetches
the pending delivery list and initiates the getMostPriorDel() function which basically runs an algorithm
to get the most prior delivery to be taken care of (Main interaction diagram). This most prior delivery
decision is done according to the delivery urgency status entered by the sender and the location of the

167

B. INTERACTION DIAGRAM FOR UC-8 DELIVERY Software Engineering - Project Report 1

delivery ’pick up’ and ’hand in’ address locations. For each delivery in the delivery list, distance of the
delivery target address from the current position of the robot is received from FloorMap and then by
simply choosing two weighting variables for the distance and urgency of the delivery (’a’ and ’b’ in the
interaction diagram) a constant for each delivery is calculated by ¡constant= distance*a+urgency*b¿
(MostPriorDel interaction diagram). These variables can be chosen to make urgency or distance as the
significant factor while deciding the most prior delivery. This type of approach allows the system to
modify this decision process easily. Then by choosing the delivery corresponding to the least constant,
the system gets the most prior delivery in the list.

Schedule robot action according to the pending task:

After the most prior pending delivery is got then the ServerController needs to schedule the necessary
robot action. This part of the interaction diagram is complicated and large, to make it visible we tried
to separate this part into two and connect these two parts by a blue line (figure ??). This part includes
the followings; (1, 2 and 3 can be found in (figure B.1) and the rest in (figure B.3))

1. If the delivery type is ’hand in’, then ServerController will notify the receiver of the delivery. This
notification will include the sender’s information and also the estimated arrival time of the robot
to the receiver’s office. (The calculation of the estimated arrival time will be done by using simply
the distance between the current robot position and receiver’s position.)

2. No matter which type of delivery is fetched as the most prior delivery, the robot will be moved to
the next position (position refers to ’node’ which are simply the magnets deployed on the floor).
The determination of the next position will be done by ServerController by using FloorMap. We
left this part as a black box right now. Once we move to the implementation of the robot stack, we
will come back to this.

3. Once the robot moves to the next position, the algorithm to find the most prior delivery will be run
to see whether there is a related pick up or hand in associated as the target address to this position.
This is done by first finding again the most prior delivery in the pending delivery list (same procedure
with the previously explained one). Then if the current position of the robot and the target address
of the most prior delivery are same, corresponding action (handlePriorDelivery(pendingDelivery)
(figure B.1) is handled by the ServerController.

4. The following actions will be taken to accomplish ’handlePriorDelivery(pendingDelivery)’

a) The robot’s buzzer is ringed until the user makes an interaction with the robot. If the specified
timeout is reached while the robot is waiting for the user, a notification will be sent to the
ServerController and the operation will be terminated. In that case, system will begin opera-
tion from the top of the interaction diagram. (see loop encapsulating all interactions (figure
B.1))

b) The other case is that user enters his/her password before timeout occurs. This entered
password is then sent to the ServerController for checking. Password checking is actually
done by PasswordChecker which is called by the ServerController. And again by the same
communication line, the user is informed about the result of the password check (for clarity
and simplicity, we omitted the unsuccessful password entry attempts and password reentry
mechanism for this report. We tried to add the important interactions of the important
functionalities).

c) Once the password is confirmed,

• If the delivery type is ’hand in’, the related tray will be opened by the robot.

• Else if the delivery type is ’pick up’, a free tray will be opened by the robot.

For both of the cases above, ServerController will check the SecureBoxContents to open the
related tray and wants the SecureBoxContents object to update itself according to the tray
opening action. Once the correct tray is opened, robot waits for the user to finish its package
submission or package retrieval. After that the robot sent a ’Delivery is successfully completed’
notification to the ServerController. Then ServerController asks the PendingDeliveries to
remove the completed delivery from its list and system goes back to top of the interaction
diagram.

168

B. INTERACTION DIAGRAM FOR UC-8 DELIVERY Software Engineering - Project Report 1

Figure B.1.: General View of the Delivery Use Case Interaction Diagram.

Figure B.2.: Expanded view of the upper part of the main interaction diagram for Delivery use case which shows
getting the most pending delivery by the server controller.

169

B. INTERACTION DIAGRAM FOR UC-8 DELIVERY Software Engineering - Project Report 1

Figure B.3.: Expanded view of the down part of the main interaction diagram for Deliver use case which shows the
inner workings and interactions after the ServerController gets the most prior pending delivery. It is mainly
stating the inner workings of the black box handlePriorDelivery(pendingDelivery) in (figure B.1)

170

B. INTERACTION DIAGRAM FOR UC-8 DELIVERY Software Engineering - Project Report 1

Design Layer Server Part Objects Robot Part Objects

Presentation Tier - -
Server Controller RobotController
DeliveryCoordinator RobotCommunicator
ServerCommunicator
PasswordChecker

Logic Tier

EmailNotificator
FloorMap RobotPosition
SecureBoxContentsData Tier
PendingTask

Table B.1.: Showing the objects created for the Delivery use case and their associated architecture tiers.

171

	Contribution breakdown
	Summary of Changes
	Customer Statement of Requirements
	Problem
	Automatic delivery system
	Simplified system-user interaction
	Web and mobile interface
	Multiple Delivery
	Database of addresses and passwords
	Barcode scanner

	Automatic battery charging
	Location Capability
	Security concerns
	Delivery Confirmation
	Automatic failure detection - Maintenance

	Scalability of our solution
	Delivery delay
	Mutiple-floor deliveries
	Multiple-building deliveries

	Glossary of Terms
	System Requirements
	Enumerated functional user stories
	Enumerated non-functional user stories
	Acceptance tests for user stories
	On-screen Appearance Requirements

	Functional requirements specification
	Architectural style
	Stakeholders
	Actors and goals
	Use case diagram
	Use cases casual description
	Traceability matrix
	Use cases fully-dressed description
	BookDelivery
	MoveRobotToPoint
	PositionInspection
	SetMotorSpeedL/SetMotorSpeedR
	ChargeBattery
	Login
	Access Delivery Record
	Notify Error
	Track Delivery Status
	Authentication to Robot
	Notify Receiver
	Obtain Help
	Pickup Package
	Delivery
	ManageUser
	EditUserInformation

	Acceptance tests for Use Cases
	System sequence diagrams
	Risk management

	Effort Estimation Using Use Case Points
	Domain Analysis
	Domain Model
	Concept definitions
	Boundary concepts
	Internal concepts
	Summary of concepts

	Attribute definitions
	Association definitions
	Traceability matrix

	System Operation Contracts
	Mathematical Model
	Track detection
	Path resolution

	Interaction Diagrams
	Login and BookDelivery
	PickUpPackage and Delivery

	Class Diagram and Interface Specification
	Class Diagram
	Data Types and Operation Signatures
	Traceability matrix
	Design Patterns
	Singleton Pattern
	State Pattern

	Object Constraint Language (OCL)

	System Architecture and System Design
	Architectural Styles and Subsystems
	Client/Server and Master/Slave Architectures
	Three-tier architecture
	Facade Pattern
	Event-driven Architecture
	Summary

	Subsystems
	Mapping subsystems to hardware
	Persistent Data Storage
	Network Protocol
	Network between Server and Clients
	Network between Server and Robot

	Global Control Flow
	Execution Orderness
	Time Dependency
	Concurrency

	Hardware and Software Requirements

	Algorithms and Data structures
	Algorithms
	Data structures

	User Interface Design & Implementation
	User Interface Design & Effort Estimation
	Interaction of User Interfaces
	Detailed User Interface Implementation
	Register and Edit information
	Book Delivery
	Track Deliveries Status

	Improvement in UI Implementation Compared with UI Design

	Design of Tests
	Test cases in Unit Testing
	Strategy to Do Unit Testing
	Test Cases in Unit Test

	Test Coverage
	 Integration Test strategies

	History of Work, Current Status, and Future Work
	History of Work
	Current Status
	Communication Mechanism among software components
	Features in Auto Delivery System
	Non-Software Problems and Solutions

	Future Work

	Bibliography
	Existing commercial solutions
	Traditional system
	Integrated delivery system using pipes
	Drug delivery using robots
	Automated warehouses

	Interaction Diagram for UC-8 Delivery

