Educational Networking Tool
for College Students

Report #3: SYSTEM SPECIFICATION & DESIGN
ITERATION 2

Software Engineering 332:452
Group 6
Cogan Noll, Kermen Deol,
Prithwiraj Pal, Osiloke Harold Emoekpere,
Ian Michael B. San Diego

Project Blog: www.entfcs.wordpress.com
Project Website: http://entfcs.moreproductive.org

May 2™, 2009

1. Individual Contribution Breakdowns:

All team members contributed equally.

2. Table of Contents

1. Individual Contribution BreakKdOWns:c.coiiiiiiiiiiiiiiiii e 2
2. TabIE Of CONLENLS ...c.veeutiiiieiieieiieetete ettt sttt st b et sttt ettt e sbe et et e sbeeaesanens 3
3. SUMMATY OFf CRANZESveeiiiieeiiie ettt e et e e st e e st e e saaeeessbeeesaeeensseesnseeesnseeas 4
6. Functional Requirements SPecifiCationc.ccoveriierienieeiiierie ettt 4
0. DOMAIN ANALYSIS ...uuiiieiiieeeiiieeiee ettt ettt e e e et e e ste e et eeessaeeesaeessseeeasseeessseeensseeesseesnsseesnseeesnsenn 4
15, HIStOTY OF WOTK ettt ettt ettt ettt e baesnbeenbee e 5
4. Customer Statement Of REqUITEMENTS:ccoiiiiiiiiieeiiieeiee e 6
PrOJECT SUMIMATY ...ttt ettt ettt et e e bt e site et ee s st e enseessteenseesnseenseesnseenseennns 6
REQUITEIMENLSeiiiiieeiiie ettt et e e te e et e e et e e s teeessseeessseeesseeensseeensseesnsneennseens 8

I € 3 (01§ OSSPSR 9
6. Functional Requirements SpecifiCation:ccccoocuiieriiieiiieeiieeecie et 11
AL StAKENOLACTS ..ottt et 11
B, AcCtors and GOALSoouiiiiiiiieieee et 11
G USE CASES .ttt ettt ettt ettt ettt ettt 12

1 & 1. Casual and Fully-Dressed DesCriptions............coccveeervieerieeenieeeieeeiieeeeeeeieee e 12

111, US@ CaS€ DIAGIAIMN.......eiiiiiiiiieiieeiiete ettt ettt e st eeseeeaaeensee e 16

1v. Use Case Tractability MatriXccoveeeiuiieeiiieeiiieeeiie et eereeeeiee e e eaee e eesaeesenaeeenee s 17

D. System Sequence DIagramscccecuieriiiriieiieiiieieeie ettt 18

7. Nonfunctional REQUITEMENLS.........c..eeeruiiiiiiiieiiiieciie ettt eereeeareeennaeeeens 23
8. USE CASE POINLS ...ttt ettt ettt sttt ane b eeesaeen 25
0. DOMAIN ANALYSIS ...uitiiiiiieeiiie ettt ettt ett et e e sttt e ettt e etaeestaeesntaeessseeessseeessaeensseeensseennseeennses 29
A, Domain MOEL.......oouiiiiiiiiiiiiee e 29
B. System Operation CONtIACES........c.ueeivuieeriieeiiieeiieeeiieeereeeireesteeesaeeesereeesareeesreesseeesnnes 31
C. Mathematical MOdElcccooiiiiiiiiiiiiiicee e 33
10. INteraction DIAZIAMS:ccuiieeiiieeiieeeiieeesieeeseeeeete e et e e sbeeeseaeeessbeeeeseeessseeesseeesseesnsneesnseeenns 34
11. Class Diagram and Interface Specificationccceviuieriieriiienieiiieiieeieeee e 52
A&B. Class Diagram, Data Types, and Operation Signaturesccceeevveeerveeerreennneennne 53
ORI B I Tea s W o 1115) 0 0 F OSSO RRP PP 55
D. Object Language Constraint (OCL) CONtracts.........ccceevveeriiieeriieeeniieeerreeenieeeiveesneee e 56
12. System Architecture and SyStem DeSINcccuieiiiiiiiiniiiiiieiieeieee et 63
A, ATChItECTUTAL SEYIES c..evviiiiieeeiieeee et e e e et e e eaaeeenseeeenns 63
B SUDSYSIEIMS ...ttt ettt ettt ettt e b et e et e st e e beesnbeeteenaeeens 63
C. Mapping Subsystems t0 HardWare............coocuieeriiiieniiieiiiecice e 64
D. Persistent Data StOTaZE......c.eeruieiiieiieiiieiieeee ettt ettt ettt ettt s te ettt e st ens 64
E. Network Protocol ..ottt 69
F. Global Control FIOW........cccuiiiiiiiiiiieiit ettt sttt 69
G. Hardware REqUITEMENLSccuuiieiiiieeiieeiiieeciee et eeteeetee et e et e e e e e e aaeeeaeeeseseeesnseeennnes 70
13. Algorithms and Data StrUCTUIEScc.eeruiiiiriiiiiicrice ettt 71
Y N 0o) 0 11 1101 PSSP 71

1. COUTSE ASSOCIATIONS ...eeuvvieeiiieeeiieeeteeeeieeeeteeeeteeeetreeeseseeessseeessseeesseesssseessseessseeessseeesnsees 71

11. Refinement of course assoCiatioNS...........eevuieriieriiiniiiriierie ettt 73

B, DAt STIUCIUIESevivieeeiiiee et eet e ettt e e ettt e e e e bt e e e esaaseeeesassaeeeennsseeeeessaeeeeannsees 74
14. User Interface Design and Implementation.............c.eccvereeeiienieeiiienieeieesie e eiee e esaee e ens 75
15. History of Work & Current Status of Implementation.............cocceeeeveriinennieniencenieneenennns 80
16. Conclusions and Future Work...........cooooiiiiiiiiiiienieeeeeeee e 82
17, RETCIEIICES ..oeuvieeeeiiieeiee ettt ettt e ettt e et e et e e e taeestaeesasaeesssaeesssaeessaeanssaeensseesnsseesnseeennses 84

3. Summary of Changes

4. Customer Statement of Requirements
e Slightly updated project summary and added new diagram

e Completely revised requirements

6. Functional Requirements Specification

e Removed server and advertisers from list of stakeholders

Completely redid Actors and Goals table

Removed all extraneous use-cases.

Improved fully-dressed and casual descriptions for UC-1, UC-2, UC-3, UC-4, and UC-5

Redid Use Case Diagram to reflect other changes

Added Use Case Traceability Matrix

Redid System Sequence Diagrams using proper UML
8. Use Case Points

e Entire section added

9. Domain Analysis
e Redid Domain Model
e Updated Concepts
e Combined Mathematical Model with section 13a, Algorithms and Data Structures
10. Interaction Diagrams
e Updated names of front end diagrams to match renaming of Use Cases
e Updated BackEnd-UpdateNewCourses diagram to match our new association algorithm.
e Updated descriptions of UpdateNewCourses and RemoveUnrelated.
11. Class Diagram and Interface Specification
e Updated Class Diagrams
e Added notes on Design Patterns
e Included OCL contracts
13. Algorithms and Data Structures
e Updated Algorithms to improve Association of Courses
14. User Interface and Design and Implementation
e Entire section added

e Took screenshots of webpage to show how we completed our Use Cases

15. History of Work
e Entire section added

16. Conclusions and Future Work
e Entire section added

17. References

e (Combined references from Report #1 and Report #2

4. Customer Statement of Requirements:

Project Summary
This project aims to create a website that allows university-level students and faculty across the

country to become part of an academic community dedicated to education and learning from

each other. This will be accomplished by creating a website with two distinguishing features:

1. Allow users who are in different colleges, yet taking similar courses, to ask and answer
questions related to the courses they are taking.

2. Allow users to view information about their own college, which includes class locations,
class times, information about professors, book reviews, the ability to chat with

classmates, and much more.

Generally college content management websites are created for each college individually. Even
though courses are often basically the same across colleges, members of one college have no
way of communicating with members of another college, except by using outside websites.
Searching for homework help on the web generally provides answers not related to academia and
generally not related to the methods covered in class. This website will allow college students
(and faculty) to get in contact with users from other colleges, and the topics of conversation will

be relevant to their current classes.

Users who become members of the site will be able to create their own profile, where they share
information about themselves and declare the college they are affiliated with. After they’ve done
this, they can access information about their own college, which will be similar to content
management systems that colleges currently use, such as SaKal, or eCompanion. The
distinguishing feature of the site is the ability to communicate with students in similar classes
across the nation. Users can indicate which classes they are taking by selecting from the course
list that their college uses. The website will then use this information to find questions from
similar courses, as well as direct the user’s questions to those who would most likely be able to
answer it. It does this by keeping track of every course in every school and creating an

association between them.

Elements of Electrlcal] Intro to Geometry

Engineering
(Level 2) (Level 1)
/ o \a‘%\

Principleg 2i Electﬁcal Differential Geometry

Engineering o (Level 3)

(Level 2) S
k.

Differential Calculus Engineering Calculus

(Level 3) (Level 2)

\’\ //

sk Pl
Calculus 5
(Level 4)

Simple Course Association Web

The site will be primarily targeted at students, and will give them the ability to answer each
others questions and learn from each other. However, if faculty would like to upload
information about their course, such as the book they are using and a syllabus, they can do this.

They will also be able to post announcements to course pages.

Requirements
The following requirements detail the major functions that the system must perform.

REQ-1

REQ-2

REQ-3

REQ-4

Any authenticated user will be able to enroll in courses that their school offers.
(The system will determine school affililiation by the registered user’s email
address). They will then be able to ask/answer questions related to the courses
they are enrolled in.

The system should direct questions asked by users to other users who are likely
to know the answer. This includes emailing users in related courses, as well as
displaying questions on user’s browsers when they are viewing a related course

page.

The system will constantly keep track of as well as update/improve course
relationships based on statistics recorded from the site.

While a user types a question the system will be able to compare the search
string to existing questions and prompt the user to look at those.

5. Glossary:

Administrators: Group of people collaborating on this project.

Adbvertisers: Other companies, websites (i.e. Amazon, Half, Dell) who want to advertise
products (textbooks, notebooks, desktops, iClicker) that are relevant to college student

Ajax: An application which allows a webpage to retrieve and refresh content on a webpage
which a user is viewing it without interfering (refreshing) the entire webpage.

AQ: Stands for Authenticated end users Only. These users are allowed to fully utilize all the
functionalities of the website that a non authenticated user can’t enjoy.

Bookmark: A link in every questions thread that can be clicked by the end users (AO) to
subscribe to the thread. The SUD adds the QID to the users’ subscribed thread list to allow the
SUD to send update emails and/or update the bookmarked questions area in the student center
when the corresponding question thread is answered.

Calendar: A calendar where user can enter notes to remind himself/herself of important
assignment deadlines, quizzes, and exams.

Classroom: A page dedicated for a particular course; contains relevant question/answer threads,
recently asked questions, most commonly asked questions; links to college-specific links for
syllabus, books being used, etc.

Cron: Jobs/scripts scheduled by the SUD that run on a timer and are checked after the specified
intervals to be executed by the SUD if conditions are met.

eCompanion: Similar to Sakai, it offers tools to allow a web based supplement for collage
courses.

End Users: Audience of users ranging form students, TAs, professors.

Emailer: The SUD’s email server; sends registration, password renewal, bookmarked thread
updates to the corresponding user.

Facebook: An online social-networking website aimed for college-students that allows users to
communicate with friends and find other users.

Profile Page: A page dedicated for every user with personalized editable content (i.e. picture,
email, interests, hobbies, etc). It will also include name of attending college, list of courses.

QID: Stands for Question ID; automatically created by the SUD for every question created; used
for referencing, bookmarking questions; allows answers to be tagged with corresponding
questions threads.

RateMyProfessor: An online website with a list of collegiate professors rated by students to
allow professors to get feedback and to allow users to decide which professor is right for them.

Rating: Allows end users (OA) to moderate the site by clicking thumbs up or thumbs down
icons for every user, question, and answer. When a certain threshold of negative rating is
reached, the corresponding user, question thread, or answer will be deleted. Users that are
deleted are also permanently blocked to discourage malicious/inappropriate use of the SUD.
Questions and answers with the highest rating are displayed first to allow users to quickly find
relevant posts.

Sakai: An online Courseware Management System website designed to help instructors,
researchers and students communicate and collaborate through a browser.

Student Center: A portal page with links to the most common/important links(profile,
preferences, add/remove courses); boxes with recently asked/answered questions from joined
courses, questions asked by other users from the same courses, recently bookmarked questions;
calendar; etc.

TAs: Teaching Assistants who collaborate with a professor to teach students for a certain course.

Top Students: Users can rate fellow students such that a list of top students from a course can be
viewed.

Whiteboard room: An instance room (public or private) that can be created by users to form
study groups (with multiple users). It has an applet with panel at the top where multiple users can
draw/write notes, equations, and diagrams with their mouse and keyboard. Below, there will be a
chat box for the users in the room to communicate.

Wiki: An area with pages of topics from every course. These pages will include general

information with facts, descriptions, and methods about every topic (example: integration by
parts).

10

6. Functional Requirements Specification:

A. Stakeholders

The system would be used by the following people
e End Users
o Students
o Professors
o Teaching Assistants
e Administrators

B. Actors and Goals

Actor Type Actor’s Goal Use Case Name
End User Initiating Register a new account Register (UC-1)
End User, Initiating Login to the website with a registered | Login (UC-2)
Administrator account
End User Initiating Ask a question related to a course Ask (UC-3)
End User Initiating Post an answer to an existing question | Answer (UC-4)
End User Initiating Manage Courses (add/remove courses, | UserManageCourses
change personal information, etc.) (UC-5)
Administrator | Initiating Manage Users (ban, unban, etc.) AdminManageUsers
(UC-6)
Administrator | Initiating Manage Courses(add new, remove, AdminManageCourses
update) (UcC-7)
Database Participating | Store all permanent data UC-1, UC-2, UC-3,
ucC-4, UC-5, UC-6,
UC-7
A Note about Use Cases

Although the system design revolves around the user and their interaction with the system, the
system’s complexity does stem from this interaction. The complexity of the system comes
mostly from the course associations and other activities that occur in what we have deemed the
system “backend.” This is just a subsystem consisting of cron jobs that schedule different scripts
to run periodically. These scripts manage and collect data important data on the site. The use
cases involve only user interaction, so these scripts are not considered here. The more complex
system backend is visited in detail in the system sequence diagrams and “System Design”
portion of the report.

11

C. Use Cases

i & ii. Casual and Fully-Dressed Descriptions

Use Case UC-1: Register
End User creates a new account on the website. This will allow them to create a profile, add and
remove their courses, and ask and answer questions.

Use Case UC-1: Register

Related Requirements: REQ-1, REQ-4

Initiating Actor: End User

Actor’s Goal: To create a user account to access the site’s functionalities.
Participating Actors: Database

Preconditions: The user is not yet registered and has a valid college email address.
Postconditions: The user has an account.

Flow of Events for Main Success Scenario:

— 1. End User requests to create an account.

« 2. The System displays the account creation page.

— 3. End User inputs the required user data.

— 4. The System verifies that the information meet basic criteria such as correct amount of characters and
validity of email address.

< 5. The System verifies the user information by checking if the name exists on the Database, and if it

does not stores the user data in the Database, sends the user an account confirmation email, and
displays the “activate account by email” page.

— 6. End User activates the account by clicking on a link embedded in the confirmation email, which
informs the system the account has been confirmed
«< 7. The System activates the account by manipulating a field in the Database and displays the

“registration successful” page to the user.
Flow of Events for Extensions (Alternate Scenarios):

— 3a. End User enters invalid user data.

«< 4a. The System displays an error page corresponding to either an invalid email address or an already
existing account.

12

Use Case UC-2: Login

End User logs into the website. This allows them to access the full features of the website, such
as asking and answering questions, as well as information specific to their account, such as
school affiliation and personal info.

Use Case UC-2: Login

Related Requirements: REQ-1, REQ-4

Initiating Actor: End User, Administrator

Actor’s Goal: To login to the website.

Participating Actors: Database

Preconditions: The user has already created an account.

Postconditions: The user will be logged into the website to use its functionalities.
Flow of Events for Main Success Scenario:

— 1. End User enters the user login and password.

— 2. The System does a basic validation to make sure that the password and username are not empty
strings and don’t contain an illegal number of characters.

« 2. The System verifies the entered data by checking the Database. It then logs the user in and displays

the End User’s “Student Center” page
Flow of Events for Extensions (Alternate Scenarios):

— la. End User enters an invalid username or password.

« 2a. The System shows an error indicating an invalid username or password.

Use Case UC-3: Ask
End User asks a new question related to a course that they have enrolled in.

Use Case UC-3: Ask

Related Requirements: REQ-2, REQ-3, REQ-4

Initiating Actor: End User

Actor’s Goal: To post a question

Participating Actors: Database

Preconditions: User is logged in.

Postconditions: A new question has been added to the system’s database

Flow of Events for Main Success Scenario:

- 1. End User types up a question (this is done from a classroom page, which is where some of the

question’s metadata comes from).

«< 2. The System searches database for similar questions and displays them to the user while they are
typing

— 3. End User submits the question

< 4. The System adds the question to the Database and displays the “classroom” page to the user

< 4. The System emails the question to all users taking relevant coures

13

Use Case UC-4: Answer

End User posts an answer to an existing question. They may have seen this question from their
own classroom page, or various other pages on the site which display question feeds, such as the
main page or the student center page.

Use Case UC-4: Answer

Related Requirements: REQ-2, REQ-3

Initiating Actor: End User

Actor’s Goal: To answer a question

Participating Actors: Database

Preconditions: User is logged in. User is viewing a question
Postconditions: A new answer has been added to the database
Flow of Events for Main Success Scenario:

— 1. End User writes a response to a question and clicks post. (metadata is associated with the question
depending on where the end user is viewing the question from).

« 2. The System stores the answer in the Database and displays the response along with the question to
the End User

«< 3. The System emails appropriate End Users that the question has a received a response.

Use Case UC-5: UserManageCourses
End User manages the courses they are enrolled in. This includes either adding a new course to
their enrollment list or deleting a course they are already enrolled in.

Use Case UC-5: UserManageCourses

Related Requirements: REQ-1

Initiating Actor: End User

Actor’s Goal: To add/remove a course from enrollment list

Participating Actors: Database

Preconditions: The user has logged in. The user is on the add/remove courses page
Postconditions: A course will be add/removed from the user’s enrollment list

Flow of Events for Main Success Scenario:

— 1. End User selects new course(s) to add to or remove from their enrollment list.
«< 2. The System modifies the Database entries related to the user’s enrollment list.

«< 3. The System displays an “add/remove successful” page to the user.

14

Use Case UC-6: AdminManageUsers

The Admininistrator modifies user’s data, such as whether they are banned or not. Although we
would like to eventually create a front end for this, right now the admin would do this by editing
the database directly with phpMyAdmin.

Use Case UC-7: AdminManageCourses

The Admininistrator manages courses, including modifying existing courses, adding new
courses, and removing courses that are no longer offered. Although we would like to eventually
create a front end for this, right now the admin would do this by editing the database directly
with phpMyAdmin.

15

i. Use Case Diagram

End User

Admin

«initiates»

cinitiates»

«Injtiates»

«inkiates»

«ihtiates»

«inKiates»

y UC-1: Register V.

UC-5:
UserManageCourses

>

UC-7:
AdminManageCourses

UC-6:
AdminManageUsers

P

System

ludes»

participates»

«participates»

«participates»

«participates

«participaes$»

«participgtés»

VX

16

Database

iv. Use Case Tractability Matrix

Regs. REQ-1 REQ-2 REQ-3 REQ-4
Use Cases 5 2 2 3
Register UC-1 2 X X
Login UC-2 2 X X
Ask UC-3 3 X X X
Answer UC-4 2 X X

UserManageCourses UC-
5

AdminMangeUsers UC-6

AdminManageCourses
ucC-7

17

D. System Sequence Diagrams

Use Case UC-1: Register

::End User ::Database
<<initiating actor>> . System <<supporting actor>>

|
I
I
} click link('create account')
|
r
|
I

|
|
|
|
l
|
display page('register') / prompt for data }
K mmmmmm e 1 \
! enter desired email / name / password ! !
t 1] I
| | |
1 ‘ 1
} } basic validation }
| |
| | check for uniqueness of email |
| L ;&
! | unique |
: Koo :
| | |
alt | basic validation == true && |
| . | |
! unique == true ! !
| | |
| | |
| |
| D email user |
| |
} display page(‘activate account via email') } }
K o e e 1 I
| click link contained in email | |
i pl |
| | update database |
| L ;&
! | return |
: . recista ‘ Koo :
| display page('registration successful') | |
S
1 1 1
| basic validation == false || |
! unique == false 1
| | |
! display page('register') with error data ! !
K mmm e 1 I

Create a User Account Explanation:

The user account creation is fairly self-explanatory. The user requests to create an account and
then the system prompts the user for information. When the user submits his/her personal
information (name, email, and password), the system checks to make sure it is valid, and if so
sends a confirmation email to the user and displays the confirmation screen. When the user
confirms the email, the account is created.

18

Use Case UC-2: Login

::End User

::Database
<<initiating actor>> : System <<supporting actor>>
; | |
enter login and password	
>	
D basic validation	
: : check if data is valid :	
	o
	valid i
e	
T T T	
! basic validatign == true && !	

alt ! valid == true !
| | |
| |
| i> log user in |
| |
| display page('student center') | |
e ! |
| | |
! basic validatjon == false || !
! unique == false !
: display page('login') with error data : :
| | |
S 1 |

Log into an Account Explanation:

In order to log in the user first requests to log in to the website, and the system displays the log in
screen. In many cases the user will not explicitly click a link to the log-in screen; they will be
redirected here from elsewhere on the site when they try to access certain functionalities while
not logged in. From here the user inputs their email and password into the displayed fields and
clicks log-in. The system checks if the information meets basic criteria and then if the username
and password exist in the database. If so, it stores a session ID and some information in the
database and displays the Student Center page to the user.

19

Use Case UC-3: Ask

::End User

Ask Questions Explanation:

::Database
T T T
| | |
I I I
| | |
| | |
I I I
T T T
Ioop : type question : :
L > |
: : search database for similar questions :
| L N
! ! return results !
|
| . L . % ___________________________ :
| display similar questions | |
|
Ko mmmmm oo |
]]]
| | |
| | |
I I I
| | |
| | |
: submit question : :
I » |
: : add to database :
i | ¢
| | |
| i bt |
| display page('classroom') | |
Ie _________________________________ 1 |
: email users in relevant courses : :	

The user enters the question that they would like to ask, while they are typing, the system
searches for matching questions and displays them dynamically (we have a demo of this). If the
user doesn’t find anything similar, they click to post their question. The system stores the

question in the database. The system displays the question posted to the user who asked the
question, and all other users are able to see the question now as well. A cron job also runs on the
system that checks the database for recently asked questions every 5 minutes. This job emails all
users that have courses related to the question that a new question has been asked.

20

Use Case UC-4: Answer

::End User

::Database
<<initiating actor>> : System <<supporting actor>>

submit response	
=	
: : add to database :	
i i N	
: display page('question’) : :	
K mmmm 1	
: email the user who asked the question : :
Koo ! !

|

|

Answer Questions Explanation:

When the user sees a question they would like to answer, they click on that question to view that
questions page. From here they type in their response and the system stores the answer in the
database. If this is successful, the system emails the asker that there has been a response, and the
system also displays the new question page to the user who asked the question.

21

Use Case UC-5: UserManageCourses

“End User ::Database
<<initiating actor>> . System <<supporting actor>>

| | |

| | |

: select course to add/remove and submit : :

I pl |

| | modify user's database info !

| i g

| | |

| % ___________________________ |

: display page(‘add/remove successful") :
:é_________________________________.'

|

|

|

User Manage Courses:

From the add course menu, the student selects which course they want to add/remove. The
system verifies that the course exists on the database as an extra cautionary measure, and if it
exists the course is added to the users course list on the database. The database confirms that the
course was added and the system displays the course addition confirmation to the user.

22

7. Nonfunctional Requirements

FURPS+

Functionalities:
1. Features:

i. Semantic Searching: The SUD should be able to take in a search query and
return relevant results by treating the phrases in the query as objects and return
results with similar objects in a descending order of match rating.

ii. Data mining: The SUD should be able to use search queries and the most
relevant results (voted by users) as training data to learn which set of phrases
better correspond to a certain result. Doing this will improve the search results
returned by the SUD more search queries and result voting are made over time.
i1i. Whiteboard room: It will be an instance where multiple users should be able
to enter to study as a group. Multiple instances (rooms) should be able to be
created by users to allow multiple public/private study groups. The applet will
have an area where user(s) can use their mice and/or keyboard to draw/write on
an applet. Underneath the whiteboard, there will be a chat box to allow other
users to discuss study material of interest. Both the applet and the chat box should
allow symbolic texts to be entered to allow scientific equations to be displayed
properly.

iv. Wiki: The SUD should be able to automatically recognize certain phrases in
answers and link them to the wiki pages that also exist in the SUD. This will
allow users to reference general and common concepts in their answers. Thus,
every user will not be required to explain every single methodology used to arrive
at a solution.

2. Security: The SUD will rely upon its users to flag malicious users in order to maintain a

Usability:

safe environment for all audiences. Registering for an account will also require
users to enter in a 3-digit number displayed on a randomly generated image to
prevent malicious BOTS from creating unnecessary accounts and hogging up
system resources through multiple connections.

1. Documentation: The SUD will be thoroughly documented such that users can find it
easy to navigate and utilize.

2. Aesthetics: The SUD will have a clean, yet a very stylish, website such that loading
time can be minimized in order to boost browsing speed.

Reliability:

1. Frequency/Severity of failure: The system must be up 365 days a year with 99%
uptime. Downtime will usually be used for server maintenance.

2. Recoverability: The SUD will have a backup hard drive such that failure of the primary
hard drive will not result in loss of data.

3. Predictability: Server maintenance will usually be carried out during hours of minimal
traffic.

23

Performance:

1. Speed: The system must return search results for a search query in less than 10 seconds.

2. Response time: It must have a response time of at least 3 seconds.

3. Efficiency: The SUD will use a searching algorithm that is efficient with a controllable
word-space rating factor, o, to return searches that are relevant. The SUD will also
assign each user a session ID, and cookies so that elements of the website can be
cached in order to prevent the same data to have to be loaded unnecessarily.

4. Resource Consumption: The SUD will require a server with at least 1 GB of physical
space for its database. The server will also be required to have a minimum bandwidth
of 15GB/month.

Supportability:

1. Compatibility: The SUD will be compatible with internet browsers such as Internet
explorer, Mozilla Firefox, Opera. It should be compatible with operating systems
Windows XP and higher. At this point, compatibility of mobile browsers has not been
considered.

2. Maintainability:

1. Posts: The SUD will be maintained by the users themselves. When answers are
posted, the users will be able to rate them by clicking thumbs up or thumbs down.
Bogus posts (posts below a certain threshold) will be deleted automatically by the
SUD.

i1. Database: The administrators will be required to contact collages and
add/update courses, course syllabus for respective collages. Furthermore, the
administrators will be required to decide which courses (from multiple collages)
are similar to each other to be grouped into one course.

24

8. Use Case Points

Unadjusted Actor Weight (UAW)

Actor Description Complexity | Weight
End User End Users interact with the system via a Complex 3
graphical user interface (when accessing the
website)
Administrator | End Users interact with the system via a Complex 3
graphical user interface (when accessing the
website or database managers)
Database Database is a system interacting through a Average 2
protocol
Unadjusted Use Case Weight (UUCW)
Use Case Description Complexity | Weight
Register (UC-1) Complex user interface. 2 participating | Complex 15
actors. 7 steps for main success
scenario.
Login (UC-2) Simple user interface. 2 participating Simple 5
actors. 3 steps for main success
scenario.
Ask (UC-3) Complex user interface. 2 participating | Complex 15
actors. 4 steps for all scenarios.
Answer (UC-4) Complex user interface. 2 participating | Complex 15
actors. 3 steps for all scenarios.
UserManageCourses Complex user interface. 2 participating | Average 10
(UC-3) actors. 3 steps for all scenarios.
AdminManageUsers Moderate user interface. 2 participating | Average 10
(UC-6) actors.
AdminManageCourses | Moderate user interface. 2 participating | Average 10
(Uc-7) actors.

Unadjusted Actor Weight =7

Unadjusted Use Case Weight = 80

Unadjusted Use Case Points = 87

25

Technical Complexity Factor (TCF)— Nonfunctional Requirements

Technical | Description Weight | Percieved | Calculated

Factor Complexity | Factor

T1 Distributed, Web-based system 2 4 8

T2 User expect good response and 1 4 4
webpage loading times

T3 End-user expects efficiency but 1 3 3
there are no exceptional demands

T4 Moderate to Complex internal 1 4 4
processing.

T5 Reusable deign or code is highly | 1 5 5
desirable

T6 Ease of install only involves 0.5 1 0.5
having a web browser

T7 Ease of use is very important 0.5 5 2.5

T8 No portability concerns beyond 2 2 4
the accessibility through any
computer

T9 Ease of change is necessary for 1 3 3
website maintenances

T10 Concurrent use is a major 1 5 5
necessity

T11 Security is of concern 1 3 3

T12 No direct access for third parties | 1 0 0

T13 No unique training needs 1 0 0

Technical Factor Total: | 42

TCF =0.6 +(0.01 *42) =1.02
Technical Complexity Factor = 1.02

26

Environment Complexity Factor (ECF)

Environmental | Description Weight | Percieved | Calculated

Factor Complexity | Factor

El Beginner familiarity with the | 1.5 1 1.5
UML-based development

E2 Some familiarity with 0.5 2 1
application problem

E3 Knowledgeable with the 1 4 4
object oriented approach

E4 Average lead analyst 0.5 3 1.5

E5 Well motivated 1 3 3

E6 Changes in requirements 2 2 4
expected

E7 No part-time staff will be -1 0 0
involved

E8 Programming language of -1 3 -3
average difficulty will be
used

Environmental Factor Total: | 12

ECF =14+ (-0.03*12) =1.04
Environment Complexity Factor =1.04

Use Case Points (UCP)
Unadjusted Use Case Points = 87
Technical Complexity Factor = 1.02
Environment Complexity Factor = 1.04

ucp

= UUCP x ICF x ECF

=87*1.02*1.04=92.29

Use Case Points =

92.29=92

27

Deriving Project Duration Using UCP
Duration = UCP * PF

Because our team has no previous projects to base the productivity factor on, we will use a value
the given value of 28 hours/UCP.

Total Estimated Project Duration

Duration = 92 * 28 = 2576 man-hours.

For a 5 person team, this is about 515 hours per person. This is a little high, but part of the
reason for this may be due to UC-6 and UC-7. Although we would have ideally liked to
implement an interface for these use cases within our website, we did not do this for the demo.

These use cases are performed through phpMyAdmin, a prebuilt user interface for interacting
with a database.

28

9. Domain Analysis

A.

<V><< entity >>

Domain Model

Database

) I
<< entity >>

Q0 I
<< entity >>

<V> << entity >>

i‘; << entity >>

CourseRetrieval

&

<v> << entity >>

Verifier

Course Manager
Answer Adder -
Question Adder - User Modification
--answerlD
- --userName ~
’ ++addAnswer() __userlD
’ 1 ’ --userCollege
il 1
1 — << entity >> o 1
. Database Connector < @
--SQLstatement $ og
* 1 =] @
o =1
ke (0] o
® (e O
2 2 o]
P [} >
hast * c [0]
S .o =
) n @< control >> * o
newRequestQin Main Controller
* <
0}
* 3.
o E <L
oo 7] =1
=/ <<entity>> _no—, S|
Display Manager Ré
--template 1)
--html_data 4’
++addTemplate()
++renderToText()

User

<< boundary >>
WebPage

2>) << entity >>
Emailer

--recipent
--emailType

"

<< entity >>
QuestionRetriever

-9

retrieveQuestions

|

Figure. Domain Model

29

Other Users

Concept Definitions: Responsibility used to identify the concepts for the domain model. Types “D”

and K” denote doing vs. knowing responsibilities, respectively.

Responsibility Description
Manages modification of user information i.e. username, email, login date etc

' Type Concept Name

User Modification

Manages pulling of courses from the database

Course Retrieval

Manages pulling of questions from the database

Question Retriever

Interfaces with the database to store information for future recollection

Database Connector

Handles actions by all use cases and delegates relevant actions to other concepts

Main Controller

wllvlivlivlivlivlidllv]iv]iv)

Handles verification of data inputted by user i.e. error checking etc Verifier

Handles all emailing required by the controller to users Emailer

Handles adding of new questions Answer Adder
Handles adding and modification of user’s courses Course Manager
Handles display to the user’s screen Display Manager

Association Definitions

Association Description Association Name

Retrieve course(s) information retrieveCourse(s)
Sends email request to EmailReq

Load the required template LoadTemp
Send user information for authentication or registration SendInfo
Request to answer a question newRequestAns
Request to ask a new question newRequestQin
Store or load information to or from database respectively storeLoad
Always sends display information to concept displayMe
Retrieve question(s) information retrieveCourse(s)
Use to verify information sent to it. i.e check if info is acceptable verifylnfo

Attribute Definitions

Attribute Description Attribute Name

User information like, email, name, college UserAttributes
Date and time an event occurred TimeStamp
Name associated with user userName

ID associated with user userID
College associated with user userCollege
Relates to the user that receives the email recipent

The type of email. Used to select what subject and body to use emailType
Identification string of the answer answerld
Template to use template

Html data that is passed to the template html data
Stores SQI statement passed to database SQLStatement

B. System Operation Contracts

Operation: Register(email: string, name: string, password: string)

Cross References: Use Cases: Register

Responsibilities: To create an account for the user after the user has entered a valid university email id,
user’s name, and password.

Exceptions: User without an university email cannot register.

Preconditions:

- The user does not have an account in the database and is in register.php page.
- The user has entered email id, user’s name and password into an html form in register.php.

Postconditions:

- A User instance luser is created. A database instance db is created.
- Anentry is created in the users table in the database and the user’s email, name, and password are
entered into the user email, user name, and user pass respectively.

Operation: Login(email: string, password: string)

Cross References: Use Cases: Login

Responsibilities: To verify the user’s login credentials against the database and start an authenticated
session.

Exceptions: Non-registered users, and registered users with invalid email id and password cannot log in.
Preconditions:

- The user does not have an account in the database. The user is in login.php page.
- The user has entered email id, and password into an html form in login.php page.

Postconditions:

- A User instance luser is created. A database instance db is created.

- luser.doLogin() verifies the entered email and password against the entries in the database’ users
table.

- The luser is authenticated and user id is stored in the session variable.

Operation: Ask(name: string, desc: string, courselD: int)

Cross References: Use Cases: Ask

Responsibilities: To add a question entry to the database after the user enters question title, and question
description into entered into a form and hits Ask button.

Exceptions: None.

Preconditions:

- The user is logged in.

- The user is in the classroom page corresponding to a certain course.

- The user has entered a question title and question description into the form and has clicked Ask.
A variable $name stores the question title, and a variable $desc stores the question description.

Postconditions:

- A Course instance course is created. A Question instance question is created. A database instance
database is created.

- A new entry in the questions table in the database is created with values entered into the
question_id, question_name, question_by, question_text, question_deptid, question_courseid,
question_college, question_active, question_postdate fields.

31

Operation: Answer(answer: string)

Cross References: Use Cases: Answer

Responsibilities: To add an answer entry to the database after the user enters an answer into an html from
Answer.php and hits Answer button.

Exceptions: None.

Preconditions:

- The user is logged in.

- The user is in the Answer.php page corresponding to a certain question.

- The user has entered an answer into the form and has clicked Answer. A variable $answer stores
the answer.

Postconditions:

- A Question instance question is created. A database instance database is created.

- A new entry in the answers table in the database is created with values entered into the answer _id,
answer_questionid, answer_by, answer_text, answer_courseid, answer_deptid, answer_postdate,
answer_rating fields.

Operation: Add Course

Cross References: Use Cases: UserManageCourses

Responsibilities: To add a course to a user’s course list in the database after the user selects a department
and a course from 2 dropdown lists

Exceptions: None.

Preconditions:

- The user is logged in.

- The user is in the addcourse.php page.

- The user has selected a department from a dropdown menu listing all the departments.

- The user has selected a course from a dropdown menu listing all the courses from the department
that was previously chosen by the user

Postconditions:

- A Course instance course is created. A database instance database is created.
- A new entry in the mycourses table in the database is created with values entered into the
mycourses_userid, mycourses courseid fields.

Operation: Remove Course

Cross References: Use Cases: UserManageCourses

Responsibilities: To remove a course from a user’s course list in the database after the user selects a
course from a dropdown list.

Exceptions: None.

Preconditions:

- The user is logged in.

- The user is in the removecourse.php page.

- The user has selected a course from a dropdown menu listing all the courses the user is enrolled
in.

Postconditions:

- A Course instance course is created. A database instance database is created.

- An existing entry, with the values in the mycourses userid, mycourses courseid fields
respectively matching the userID and the course selected by the user, is removed from the
mycourses table in the database.

32

C. Mathematical Model

See section 13a, Algorithms and Data Structures

33

10. Interaction Diagrams:

The following section contains the interaction diagrams for all use cases that will be
implemented in the final demo. The system is split up into two subsystems that both interact
with a central database, yet have no direct interaction with each other. Therefore there are two
sets of diagrams, a set for the “front end”, or the subsystem that consists of user interaction, and
a set for the “backend”. The backend consists of scripts that do complex data processing to
improve course associations on the website as well as email users. These scripts execute on a
timed schedule.

Front End Back End

user
database

None of the backend operations are considered use cases, because they technically don’t involve
an external actor, they are just scripts executed on a timer. However, they are very important to
the system and therefore their interaction diagrams are included in this section.

Note on Design Patterns:

We found it difficult to apply any of the design patterns discussed in class to our website, so
instead we concentrated on improving our algorithms in a different way, most notably in the
UpdateNewCourses function. This is the function that initially creates associates between
courses when they are first added to the database. We have now implemented a new class to
execute data mining and create tags for courses to create associations. The courses are then
matched based on their tags, as well as level as before. Implementation of this is shown and
discussed in the section below entitled UpdateNewCourses. The algorithms are discussed in
further detail in section 13a, Algorithms and Data Structures.

34

Front End — UC-1 Register

oW <558P>

TSBQEIED <S5E[0>

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Iy
TNLH
()oye|dwa | Jopual
4 []
()s1x349sn‘193siBal)a)e|dwa) Aedsiq
b S S S S S S S ST oS S Y
IsIx3dasn
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ $
7 (pl1asn ‘Jasnmau)|iews (yere|dwa [Japuai TWLH
[~ |
<< 9Jeald > (selqeuea ‘Ioisifal)ere|dwa | Keidsig
e = i
anJj aute syndul yjog INyL == sseoongppe <. (ssadangppe)sajqelieAp|ing=sa|qeliea T
uaym A|Uo anij suinjay Ry R,
'sindu) omy s)
uo uonesedosiolgNy L. | [TTTTT T T T T T ——
,A ue swuopad (sjcog@yoays | T — o - M $5920NSppe
(ssadangibs “jossed)sjoogydaya=ssaangppe
R S SR S S LSS $ \\\\\\\\\\\\\\\\\
ssa20nglbs $52320ngjbs
“
11eD TOS AN (ssed ‘eweu ‘|lews slosn ojul yesul)bs=ssaoang|bs *J011 ppe UE AB|dSIP PUB WLOY Y] PIING PINOA I BS|B)} SBM JI 1|
s . WP Uy
(ssed'aureu __mEmrmeUU.m.W $5200Ns uoisanb ppe, 2yl @yeW pINoM)l INY L Sem SS220NSPPe J|
Nossed R $S200NSPRE. JO 2N|eA 2y} U0 paseq 3)e|dwa) e spling uolauny siy L
Toee (ss320nSppPE)2(GRIEAPING
()oayossed A 1
~~ _ [0==3upoQ]
“““““““““ =S
junoo &
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ $
i lenba a.e palajua plomssed
< ! WILUoS pue plommsed ay)
I8 TOSAIN [(IEWS = [[BWSIaSh 815U S1asN W) JUNOS }93]8s)|bS=)uncd 41 235 0} s30aY2 yoRyOssed
e
W << 2)Jeald >>
|
W (rewg)lesnieb
| I
W " << 8)eald >> (ssedo ‘'ssed ‘aweu ‘|lewa)islsiayop
| I
| ! << apnpul >>
| 1 ca
! 1
| ! [l
| i << 8}B8ID >>
|] &
I
” “ [sseqo ‘ssed ‘aweu ‘|lewajisod
| | .
! 1
! 1
! 1
| I
! 1
| I
! 1
| I
! 1

js0
=

1

1

1

1

1

1

1

1

TR0 <dAd>

TRIbay <ug>

35

Register Description

The registration use case begins at the Registration Page from within the user’s web browser.
The information entered by the user is then posted to an instance of the PHP object, register,
which then creates a DisplayManager object. The register script also creates an instance of
verifyReglnfo and calls the function doRegister(). This function is passed the information the
user entered as its arguments from the register object. An instance of the class user is then
created and the getUser function is called with the email that was entered. The user class then
makes a database call and counts how many other entries use the email address that was passed.
This count is stored in a count variable. If it is equal to 0 then no other users exist with this email
and it is valid. In this case the other parameters the user entered are checked with the
passCheck() function in the verifyRegInfo object. If everything is validated, the addUser()
function is then called in the user class with the email, name, and password. If successfully
entered to the database, an addSuccess variable is returned to verifyRegInfo. An instance of the
emailer class is then made and the email() function sends out a new user email. addSuccess is
then also returned to the register object which calls the DisplayManager who then returns the
rendered template to the Register html page for the user’s browser to display. If the email the
user entered is already an entry in the database (count==1), userExist is passed to the register
object which then references the DisplayManger object who returns the correct template for the
browser to display.

Create Account Design Principles

In assigning responsibilities to objects for this task, we applied the “expert doer” principle. All of
the objects send messages directly to the other objects and there is no element that receives the
message first and then forwards it to another object. The “high cohesion” principle is also
followed because the objects do not perform too many tasks and the computation is split up
between the classes. However, this somewhat violates the “low coupling” principle as there is
more classes to interact with each other and there will be more messages being communicated.
“Low coupling” was used where possible but we found that the “high cohesion” principle took
precedence as it made the system more modular.

Create Account Alternate Design Considerations

For this use case we considered making the register object verify all of the user’s info itself
instead of referencing another object which we called verifyRegInfo. However, this violates the
“high cohesion” principle because then the register object is performing many more operations.
Also, the user class could have made the mySQL calls itself instead of creating a database object.
This also violates the “high cohesion” principle so we decided to separate these into multiple
objects.

36

Front End — UC-2 Login

ANLH
“J0lIa ppe ue Ae|dsip pue WLo a4} pling pInom)| 85(8) sem }l §| (o1ejdwa [1opual A
",8poa Juiy ,
$5999NS UON}SaND ppE, 2Y) a3 EW PINOM jl INYL SBM SSOINSPPE §| (JouguiBolJaisiBas)areidwa) Keidsi
S5290NSPPE JO aNjeA ay) Uo pased aje|dwsa) e sp|ing uolouny siyL -
((SS229n3ppPE)2IgeLIBARIING ()Jougajelausbi=ioiguibo|
55320n560| [
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ¢
TNLH
()ae|dwa] Japual
(s3|qeleA ‘ulbo|)ajedwa] Aejdsiq
-
(ss200ngBio))a|geBAPING=Sa|geleA ./\;
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ N
55320n560|
r m \\\\\] ‘Ul paBBo| aq 0} Jash ay) salinbai jey) sabed Ul pasnal
o) §€90ang00| 30 UED)| 05 S8|gEBLEBA UCISSSS Ul ‘Pl pUE [lBWw
ss220ng|bs (Juoissaglasnalols m ‘UOIJBLLIOJUI 1SN BY) S2.10)S ()UOISSBSIaSN 210}
eD 1OS AN (s135h ojul pluoissas ‘dweisawl) Jasu))bs=5582ang|bs
SSB|d Jasn
(ssed‘|rewsa)lasnbon] ay) Aq paubisse S| pue palinddo JuaAs UlEpad
P B o1y Je awi} Jofpue ajep ayj Bujjousp
youlol T ‘5191081 JO 80USNbas E $I dwejsaw v
& 7 123ndWod S3UBI[S BY) WO}
(oauguibol paule)go 3|geLeA E S| pJUoISSaS 1Y
L] [==]3unoc)]
\\\\\\\\\\\\\\\\\ -y jn]
junoo << 2]8aJ3 >>
\\ Y
Junod
«—
118D TOS AW (ssed = ssed " Jasn |lBW?2 = |lBWAI1asSN 2U2YMm SIasN J03]as)|bs=junoa
|
" << 9]ald >
|
" (ssed‘|lews)lasnieb
! 1
! ! << 9JBALD >>
! 1
! ! (ssed‘ewsa)uifioop
| 1 T
" ! 1 << 8pNpPU| >>
| “ |
| : | |
! I 1 |
| H 1 |
| 1 “ W T
|
| ! ! ! ! [ssed'|jewa]jsod
1 |
| H 1 |
! ! ! " | | payolD Hur
|)
W : “ | | _
: _ ! , ! _
3SEEIED | FES I UBol <dHd> ubo <[>

37

Login Description

This is simply the process of a user becoming authenticated on the website. Once they are
authenticated the user can access content tailored specifically to them, which is saved on the
database. To login the user enters their email and password on the main page, and clicks login.
This information is posted to a php page called login. This page runs some php scripts, and then
ultimately html is displayed to the user. The login page creates an instance of the display
manager class and an instance of the verifyLoglInfo class. When the verifyLogInfo object is
created it also creates an instance of the user class, which in turn creates an instance of a
database class. Login then calls verifyLogInfo.doLogin() with the email and password as
arguments. The doLogin() function calls upon the user object to get info from the database, and
the user object does this by calling the database object. The database object counts how many
users there are in the database (this will either be 1 or 0 users), and whether or not the entered
password is correct. This number of users is then returned in a variable, count, to the user class
and then to the verifyLoglInfo object. If there is one, the verifyLoglInfo then verifies that the login
completed with the loginCheck() function. The LogUser() function is then called in the user class
who then calls the database object to insert a sessionid for this user into the database. This id will
be used in other functions on the site. If successful, a logSuccess variable is returned and when it
gets back to the login object, the login object messages DisplayManager to prepare the template.
The template is then rendered and returned to the HTML object to be displayed. If there is no
user with the provided username or the password is incorrect, count will be set to 0 and returned.
In this case, a logUnsuccesful variable will be returned to the login object who will then ask
DisplayManager to prepare the correct template which will be returned for the user to see.

Login Design Principles

The design principle that was followed most closely in this design was the Expert Doer
Principle. Each task has its own object assigned to it. For example, the user class contains all
functions relevant to users, and when it needs to access the database it doesn’t do so directly, it
does so through another object, the database. This object is designed specifically for making
database calls. The High Cohesion Principle is also applied, because the functions are split
among classes. In this section there aren’t any particularly computationally intensive functions,
but functions like database calls aren’t done by the same classes that run verifications. The Low
Coupling Principle is applied the least out of the three principles. By creating a more modular
design, longer communication chains become necessary. However the chains are kept reasonably
short, as no object has to call more than two other objects to achieve its purpose.

Login Alternate Design Considerations

When designing the login process, we first considered a less modular design. Instead of having
the user class call a database class to make accesses; it was going to call the database correctly.
This would follow the Low Coupling Principle, but go against the Expert Doer Principle. By
making a separate database class, we were able to create one class that could directly access the
database, and have any class that needed to make a database access use this. We decided this we
be a more secure option and also be better for optimal modular design.

38

Front End — UC-3 Ask

'10118 ppe Ue AB[dSIP pUB WO} Ay PlINg PINOM }I 3S[8) SBM Jl }|
W8PO0 Uy

$S900NS UOKSAND PP., BY) AYBW PINOM)l N1 SBM SS800NGPPE J| F — — — —

SS920NSPPE JO 2N[BA 2y} UO paseq 2je(dwa) B SP|INg Uoijoun) siyl
1(ss290NSPPE)LIGEHUBAPIING

()eye|dwa] Japual

ss220nSppe

[T
(Qlesinoa ‘asap ‘sWeu)uonseNDMaU
L

S SIS =
ssaoangpRe
wwwwwwwwwwwwwwwwwwwww -
5$5920n5|bs
+ “
11BD TOS AWIHRSN Q]95N00 059 SWEY JaMS Ue OJul HasunIbs
—e
<< 9JBAla >
(Qlesn‘Q|asinod ‘asap ‘alWel)Iuchsanoppe
<< 2J8a10 >>
s =
apesn
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -
qlsesn
= _ _
I1ED TOS AI([[Irews ™ uoissas]§ = |lewa™Jasn 21y S1asN Wouj QII3sN Joojes)ibs=qlesn
RN
” \ << 9)BRJ0 >
\

I
" ¥ ; ([Irewa™uo|ssasig)pliasnieb
I I
" : << 2JBAID B>
I \ I
| N 1
1 \ 1
: \ |

‘ul paBiBoj Jasn uaym s3|geLIBA UOISSaS Ul
paIojs SBA UIIYM |IBLIS SIaSN 2Uj S| [|IBwa” uoissas]g

ISeqeep |

1
<< 3pNAUl >>
L

<< 2Jeald >>

|
[alesinoa “asep ‘eweulisod
; i

WY <dHd> | | YV

39

Ask Description

When the user wants to ask a question, they will click on a link on their classroom page. This
will transfer the user to the Ask question page, where they can type in the name of the question,
and the question itself. The diagram starts from this point, after the user has clicked submit on
the ask question page. It is important to note that the course is derived from the classroom page
where the user came from. The user will only be able to click the answer link from a classroom
page, and they will only be able to view the classroom page of a course they are signed up for (at
least for now).

After the user types their question, gives it a name, and hits submit the information is posted to
the PHP page ask. This page creates an instance of the DisplayManager class and then calls the
AskQuestionScript. This script creates an instance of class User and calls the function
getUserID. It passes the email stored in the global session variable, and then the User object calls
the database to determine the UserID. AskQuestionScript then creates an instance of class
Course and calls the addQuestion function. Course adds the question to the appropriate location
in the database and returns. Finally AskQuestionScript calls the display manager to display
HTML back to the user.

Ask Design Principles:

The design principles most followed are the Expert Doer Principle and High Cohesion Principle.
The Ask page, which contains php script as well as html code, transfers the specific job of asking
the question to an AskQuestionScript that has this as it’s single purpose. This script calls on user
and course classes to get relevant info and access the database, and they access the database
through a class specifically designed for doing so, the database class. This clearly applies both
principles by calling on the object who is best suited to do the task, and also dividing the tasks up
so that no one object is overloaded. Low Coupling Principle is employed less, as communication
chains are fairly long. However, this is necessary to achieve a good modular design, because
messages must travel from the user to the database, and without breaking it up into classes it
would be chaotic.

Ask Alternate Design Considerations:

We were first considering combining the Ask and AskQuestionScript modules, but decided
against it. The AskQuestionScript isn’t insanely computationally intensive, but it does require the
creation of 3 classses and database calls, and breaking it up agrees with the High Cohesion
Principle. Also, if we want to add more functionality to the Ask Page, we can simply have it call
a separate script. By making each function a separate script, we can have a better modular
program, and only create the classes that we need.

We were also considering having the User and Course objects access the database directly, but as

we discussed in previous sections, this was ultimately decided against as it would violate the
Expert Doer Principle and overall make the program more convoluted.

40

Front End — UC-4 Answer

"JoLI3 ppe Ue Ae(ds|p pue wio) 2Y) pling PINOAM }I 3S[E} SEM J J| ()eyeiduwa Jepual

PPO3 JUiy .

$5820NS UONSANb Ppe., SU) aYeW PINOM)l SNy SEM SS8INGPPE || F — — — — — — — — — — — — (so|gelEeA Jamsuy)ale/dwa] Aeldsid
$5820NSPPE [0 3N[eA ay) Uo paseq a)edws) & sping uonouny siyL (ESa5a RETE)S BB BTG 7=

((55800ngppe)3|gelIeAp|INg . ’ e T

ss200ngppe
o = |
ssa09ngppe
IIIIIIIIIIIIIIIIIIIII ¢
ss220nglbs
1
1eD TosAW |(dl4asn ‘gluonsanb ‘Jamsue ojul JJasul)bs
<< 3]Bald >>
(gi=sn ‘gluonsanb ‘Jamsue)lamsuyppe
<< 2Jeald >
e 29

aresn

alesn

41

180 TOsAw BLUR™ UOISSSS]$ = [IeWa™ Jasn aJaym SJasn Woll [Jasn joeas)|bs
|
” \ << BJEAID >>
\
|
W // i ([rewa™ uoissaslg)p|iosnieb
| \ |
i \ | << 8jeslo >>
I \ | T
i b | (QIuonsanb ‘IaMSUE)IaMSUYMAU
| // !] ﬁ ﬁ
: ! | << QJBAID >>
| |
‘Ul pafifio] Jasn uaym Sa|gelBA LOISSas Ul " I << 5]8210 5>
paIols SBA Y21y [IBUIR S1asn ay) S| [|lewa” uoissas]g | "
| | 1
T W | (@luonsanb ‘JaMmsUE)IaMSUYMBU
| | | '
| | | | 1 e
| | | | 1 !
| I | | 1 !
| | | | 1 !
| | | | 1 !
| I | | 1 !
| | | | “ W
| |
" I | " 1 !
SSEqelep . uonsanp : BEL UO[I58 NDIBMSUY<dHd> TODEUBFABICSIT <dud> TBMSUY <dHd> TaRMSUZ<[WIY>

Answer Description

This use case begins from the user’s browser and the user is submitting an answer to a question.
The information the user entered is passed to the Answer script. This then creates instances of
the DisplayManager and AnswerQuestion PHP objects. The newAnswer() function is called in
the AnswerQuestion object and takes the questioned and the body of text the user entered and its
parameters. From this object, a user object is created and that calls the databse object to retrieve
the userID using the session_email with which the user is logged in. It then returns this userID to
the AnswerQuestion object. A Question object is then created and the addAnswer() function is
invoked. The Question object then calls the databse object to insert the answer into the database.
An addSuccess variable is then returned to the AnswerQuestion object and then to the Answer
object. If this variable is TRUE, then the question page is displayed for the question that the
answer belongs to. Otherwise, the answer form is rebuilt and error message displayed.

Answer Design Principles:

The “expert doer” principle was one of the design principles considered when assigning
responsibilities to the object involved in this task. The objects directly message other objects that
they depend on. “High cohesion” is another principle we implemented for this task. Each item
does not perform large amounts of calculations and instead calls other objects to perform the
calculations. Naturally, this creates more objects communicating with each other and somewhat
violates the “low cohesion” principle.

Answer Alternate Design Considerations:

Alternatively, we could have had the Answer object directly referenced the user and Question
objects instead of creating an AnswerQuestionScript object. Similarly, the user and Question
objects could have directly made mySQL calls instead of creating a database object to make the
mySQL calls. This creates more computation for the objects though and does not obey the “high
cohesion” design principle.

42

[3g1v4==snbiun]

()ayeidwsa] Japusl

(anbiun ‘19381621)2181dWR] AB|dSIq

4« |

sseoang|bs

1183 TOSAW (Op1951Nod ‘plUasH ‘$351N0DAW O3U] Jasu|)bs

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ¢

()eyerdwsa] Japual

(anbiun ‘Js)si6a1)ajejdwa] Ae(dsiq

winjed

(plesinog)asinonppe

[3ny.L==enbiun]

ne

Front End — UC-5 UserManageCourses

-« |

[ldeesInog Ul SI pIesinod Jl yaayo o} doo m

180 JosAw

()sasinopA3eb = [JLeasinocd

uinjal = anbun

(p195.1n02)3}98yDHa5IN0I

([pI uoissas]g)p|iasnias = pliasn

FSBABIED.

<< 2)eald >

<< 9)ERId >>

[L

<< 8]B31d >>

[p1esinoa]isod

PELINN eheueARdsIg <dyd>

FEIMOIPRY <dHd>

ISIOTPPV<IUT>

43

UserManageCourses Description

When a user wishes to add a course their browser will submit the request which will be posted to
the AddCourse object. This object will create an instance of the user class which will determine
the userid from the session_id. It will then invoke the courseCheck() function which will check
to see if the user’s profile already contains this course. By calling the database object, the user
class will receive an array of courses which will be compared with the ID of the course the user
wishes to add. A variable named unique will be then returned to the AddCourse object. This
variables object will be determined by whether or not the course already exists for that user. If it
is indeed a unique course, the addCourse() function will be called in the user class. The user
class will then make a database call to insert the course into the user’s entry and if that is
successful, it will display the user’s courses page. If the course is not unique (unique==FALSE),
then an error message will be displayed.

UserManageCourses Design Principles

For the Add Course use case, we implemented the “expert doer” principle. The objects know
when they are needed and are called directly. Also, the “low coupling” principle was used here
as well as the “high cohesion” principle. Only the necessary classes are used for this use case
resulting in fewer classes. We were still able to use “high cohesion” because this use case
requires little computation from the objects.

UserManageCourses Design Considerations

We had also considered making the AddCourse object into two objects when designing this use
case. It was deemed unnecessary however because this case requires less computation than the
other ones, so splitting it up would be a poor use of the “low coupling” principle. With this
implementation, both “low coupling” and “high cohesion” were maintained.

44

Back End — UpdateNewCourses

| r
|
|
1l wImay
== ===
" Pl “ Lnyas | _
1 D — I
" Pl ! IIED TOSAN (wasupbs {puedde, ‘mos"ueds ‘Mol ' pAeldsigles I _
i e 1 [e — anjea wImal ay uo Gupusdep yiog || |
| 1 I uanyad 10 ABRESIp HSE Ja)S Y esinos || |
Pl ! — B1f) SJEDOSSE |[IM UoNoUN) uess ey (| I
pil “ D TOSAN (uasubs {,puedde, ‘WmouUBDS ‘MU Pl IYSYIeS _ _
[1 1 |
N S | S Jo_lomwsed | Wo | |
|
|l
e = |
p1l UJMAl = YNSa WHiog, 1o Aeydsip, ' yse, L0, _
pil t ‘B UIME 10} S8n|ea I
1 1 {|and JEDIS ‘BLIBU UEDS ‘[@AS| ‘SLUEL)aEtLI0D _
[! |
|l
i ‘ - . _
1l JIED TOSAN | (e ees)bs Mo ueas)Ene sl = [Ene UeDs, _
Il * — —
" 1 IED TOSAW | (sweu paps)ibs ol uessiewenisl = sweu ueas azIs a1qE) > _
(I P Y S o] | moI"ue3s ol 6001
I -+
1 N — .
| B0 TOSAN | lsweu peps)bs (Jezigeqe 166 = 8215 B|qel (jans) ‘sueuueds
O et o N e B
" | sl
|
" | . (osep ‘suweu)be
1 N .
1 _IIED TOSAN {|anay pejas) bs (ma *pujpraial = pra)
| -
" | ..__mn. TosAWN [aweu peges)bs [moy ' Jewepel = sueu
11 - .
il 118D TOSA [asep paps)bs [ou, ' plosaqieb = asep
11 [eruy == maui]
— e e e e e = == = = = = - — = - e e = e e e = = = = = = S S——— I-l IIIIIIIIIIIIIIIIIIIIIIIIIIIII
I N .
| 11ED TOSAW (s 0|85 bs (o " primesnsl = mou
I
L R —_— e — e ————— — - —_—— e e e e e —_——_ . T—— I-.- IIIIIIIIIIIIIIIII Ir IIIIIIIIIIIIII
1ED WSAN {unoa pajesibs (JszisaqeLsb = 8215 s|gm
T
] n.nm.__ma._uu.w
I [T T
1 | <<HERID S 1 < <BERD S 1 <<H| BRI R
I I 1 | T al
1 | |] | cod|Baldss | cod]Ha s s
| | 1 I | |
| | 1 I | |
I | 1 I | |
I | | I | |
E1En N ET EEEERE SEIMTy | [Ie7=] EEER S BEINGS

oz|5 9Iqe) >

mou a|ym dooy

d

45

UpdateNewCourses Description

When a site administrator adds new courses to the database, they won’t be associated with any
other courses. In order to associate them a cron job will run on the server every so often
(probably around every day), check for new courses, and give them initial associations. The cron
job will just be executing a php script, so after a large update the admin could also run the script
manually if they chose to do so. When the Update New Courses script executes it creates 2
objects, a course object and a scan object. The scan object creates a CourseCompare object as
well as its own course object, and all the course objects create a database object. Once the
objects have been created, the script calls course.getTableSize(), which calls the database and
returns the number of rows in the course table. The script then loops over every row in the
course table, checking if each course has value ‘true’ in its ‘new’ field. If it does, it needs to
have tags generated and then check every other course’s tags to see if it is a match. It retrieves
the name, description, and level of the course and calls Scan.generate tags() and then
Scan.scan_all(name, level). Scan uses its own course object to get the size of the course table
again, and loops over table size. For each course in the table, it gets the name and level, and
then calls CourseCompare.compare() with the name and level of the original course, and the
name and level of the course it’s being compared to. The compare() function determines
whether each course should be on the others ask list, the display list, or both, based on criteria
described in the mathematical model. If a course is added to one courses display, it must be
added to the others ask, and vice versa. The scan function calls course.setEmail() and/or
course.setDisplay() based on the returned information, and then the loop continues. Once every
course’s new field has been checked and all associations have been made, the script exits.

UpdateNewCourses Design Principles

The Expert Doer Principle is followed very carefully in this design. A separate object is created
for course operations, scanning, and comparing course properties. These are all the essential
tasks, and they all have their own objects. High Cohesion Principle is followed closely as well.
The one particularly computational task, comparing course similarities, is given to its own
object. Low Coupling Principle is not followed as closely, but it is not ignored. There is no
control in the diagram, so the only way to lower communication would be to merge objects
together, which would violate the both other principles, as well as the core concepts of modular
design.

UpdateNewCourses Alternate Design Considerations

From the diagram it is apparent that there are two database objects and two course objects, and it
was considered to have them as one. If the Scan object was passed information about the Course
and Database objects when it was constructed, it could simply use these objects to access the
functions, instead of having its own copies. We decided against this because it would make the
objects set in stone and less reusable. If for some reason we wanted to use the Scan object in
another context, the object creating it would always have to create a course and database object
and then pass it to the Scan object. Having the Scan object create its own Course and Database
objects make it’s less dependent on the rest of the code. It also follows the Expert Doer
Principle, because objects are only created by the classes that need them. The scan function also
re-retrieves table when it is called. The amount of overhead required to make this call is very
low compared to all the looping, and it makes the scan function more intuitive, as it only needs to
be passed a name and level, which are the criteria it is using to compare. Also if for some reason
a new course was added while the Update New Courses script was in the middle of executing,
that new course would be checked for comparison, at least by the scan function.

46

47

|
|
|
I ! _
[Lo«
I _ 182 TosAw (anows1)|bs
| <
! _ I1rea JosAw (anowan)bs (2noway, ‘[o]lil ‘p1esinod ‘pi)syies
|
| |
| | [es[eq == Uinjai]
| e et S
e T T N
_ uinjal
_ (az1s} ‘suonsanbieioy [[I)pajeoossyagpInoysya=yd
! “ <<2]Bald>>
_ ! [BpoLL [BAIIE WALl - -
_ “ 8L Ul PaQLOS P BINULO) ([Ily)suonsanplejo 1o = suopsanb™ejo} \/\J
! aL 01 Bulp1000E parollal T
| “ 80 pINoYs UOIJBII0SSE 85IN00 B
! ! A JOLIOUM SHOSLR UOOUN SIUL 98IN09 Y283 UISIasn Ag palsmsue e
_ “ suoljsend Jo JegLunu U SE ||ai SE (ba)azigRellyab=az|s) \H\
| SUONEBIO0SSE 85IN00L0 51| B ~——
| I sUIEjLID 8|qe] Aousnbal syl
| 1
T N
! i [l Ibsy
| 1 P
| “ ([a1asinoa][i]suolsanb= |25In0d alaym Asuanbaly woyy ja3|as)|bs (p1asinoo)s|geAouanbalg)eb _
ez|s e |qE) >
! i
e e e e A
1 +—— <
1 -
1 Ile2 10sfw (yunoca Jogles)bs ()ozig2Iqel 126 = 22157 9|q)
1 P
| T T
! | <<B)BBI0>> ' << BJBRID >
| | 1 T
“ | “ oumguon
" " ! "
| | 1 |
! | i |
1
TBYIaUDUCTE0055Y BSEAEIEQ 535100 |

Back End — RemoveUnrelated

RemoveUnrelated Description

The purpose of this activity is to scan courses and see if any of the associations initially made are
no longer valid. This process will be set of by a cron job once a week. When the Cron triggers
the RemoveUnrelated script, it first creates a Course object, which in turn creates a Database
object. RemoveUnrelated retrieves the size of the course table, and then loops over the size of
this table. For each course, it retrieves its frequency table (The frequency table holds data about
how courses are related. For example, for all questions asked related to Calcll (Rutgers), it will
log where the answers came from, such as Calc I (MIT), Discrete Math (Leheigh), etc, and how
many times users from this course posted an answer. For Calcll, the courses that make up its
frequency table will be those on it’s ‘ask list’). RemoveUnrelated calls getArraySize() to
determine how many rows the array contains, and then getTotalQuestions() to determine how
many total questions have been answered related to the course. It next creates an object of type
AssociationChecker, and calls the function checkShouldBeAssociated(). This function takes the
total questions answered by a course, the total number of questions answered by all courses (in
this frequency table), and the number of courses in the frequency table. It uses the formula
described in the mathematical model to determine if the association should be changed. If the
checkShouldBeAssociated() returns -1, meaning they should not be associated, the association
level is reduced by one point (see section 13a for a more in-depth description). If
checkShouldBeAssociated() returns 0 nothing is done. If checkShouldBeAssociated() returns a 1
then the association level is increased by 1 point.

Once associations have been checked for all courses RemoveUnrelated exits.

RemoveUnrelated Design Principles

Expert Doer Principle was applied in creating the AssociationChecker class to perform the
function described in the mathematical model. This also utilized High Cohesion Principle by
giving that computationally intensive task to it’s own object. The Course and Database objects
had already been determined in previous areas of design, but they satisfy these two design
principles as well. Low Coupling was followed as well as possible, as the maximum chain length
in this task is 2.

RemoveUnrelated Alternate Design Considerations

The only alternate consideration was to make checkShouldBeAssociated a function of
RemoveUnrelated, instead of a function of its own class. This would follow Low Coupling, but
the design would still have communication chains of length 2. Giving it its own class followed
both Expert Doer and High Cohesion, so we decided on that.

48

49

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ N
ANLH
o
()=1e|dwa J 1apuas w//
1
(IsI¥xJuesniaisibal)aye|dwa Ae|dsiq
JsiIxglasn
- OO’ e e)
o >
7 ﬁ (pl4asn ‘1asnmau)|iew (yare|dwa J 1apuas F// TALH
T = 1
! P ESS ¢
“ < DJRBID >> s Am,u___um__m> ‘_U«m_wu‘_vu«m_nc;\u.w@aw_n_
! 2n1) 218 sjndul yoq 3NYL == sseoongpps (ssaoongppe)sa|geneAp|ing=sajqeiien <
1 uaym AJUo anJj suinjay o=
“ ‘sjndul o] sy N
H uo uopeledoolBOlANY | | [TTTT T T T T T T T T T T T T T T T T =
1 ue swuopad ()sjocog3)oayd T~ . ss200Ngpp8
! ~ | "
I (ss20ang|bs “yOssed)s|oogyoaya=ss20ongppe A/
“ e ¢ \\\\\\\\\\\\\\\\ VW
“ ssaoong|bs ssaoong|bs
'
“ nes TS AW (ssed '‘auweu ‘llews? s1ash olul Hasul)lbs=ss200ng|bs ‘10110 ppe ue Ke|dsip pue WOy 3Y) PlING PINOAM JI 9S[el Sem)1 J|
H . . "W2PO0 WY
| (ssed'aweu __m:._wv_wwjnnm\ $5200NS UOKS2Nb ppB, 24} 28w pInom Jl Nl S8M SS200NSPPE J|
H sossed =7 SS200NSPPB JO 2NJBA 2U) UC PRsBQ 218|dWS] B SPIING UoloUNy SIYL
“ T — 9 :(ss2oongppe)2igeleAping
=
H (Oyosypssed A// 17V
! - 0 ==[3unool
172} + =
= e it B e e S~
(=] | junoa -
o 1 —=
e “ unoo |enb2 aue paisjua plomssed
7] 1 - L wuuod pue piommsed 21}
1
5] ! 11BD TOS AW (IlBwW2 = IeW27I2SN 2JoUM SI2SN WO JUNOD 102198)bs=1unod 3 @98 0} syoaYy0 Hoeyossed
1 I -
u H ! << 2}22UD >>
A Y 1 |
p— i | (rewa)iasn3alb
o 1 | T
! ! ! << 2)Jeald x> (ssedo ‘ssed ‘aweld ‘|lewe)i)sibayop
! | '
! 1
m ' ! ' << apnpoul >>
1 | ! L,
1 i H 1
= “ | “ m [
| i | H ' | << 8]BRU0 >
1 I 1 ! I
d | | \ i 1 [ssedo ‘ssed ‘awsu ‘|lewsaljsod
“ ! ! “ | ﬁ o
= 1 i H | ! i 1
1 | | 1 | ! !
E 1 | H 1 | i !
1 I 1 ! I 1 1
1 I 1 ! I ! 1
k 1 I | ! | ! I
1 I 1 ! I !
[>) ! | ! I ! !
[} TBEWT <558P> SSEqEIEp <SSERS H SIUBs gAIIeA<dHd> TBBEUeNAEOSIT * 7 BIEBaT <dAd> BB <[Wu>

EmailQuestions Description

This is a backend script which is executed by CRON, a UNIX program which executes
commands or scripts (groups of commands) automatically at a specified time/date. The CRON
program executes this script every five seconds. The script then scans the database for questions
which have the sendEmail field, questions that need to be emailed to users, as pending. The
script does this by first instantiating an object of the questions class then calls the question class
user function, getNewQuestion. This function creates the adequate SQL statement to pull the
pending question from the database. The question class then instantiates the database class then
calls the SQL function which executes the SQL statement created by the questions class. The
database returns a multidimensional array which contains all the pending questions in the form of
the questioned, courselD etc. The questions class passes this array back to the EmailQuestions
script. In order to parse the questions a loop has to be run.

In this loop, the current question’s courselD is used to get the frequency list, which contains the
courses related to the course with courselD. The script does this by instantiating an object of the
courses class then calls the member function, getFrequencyList. The course class then creates the
necessary SQL statement to be passed to the database and gets the frequency list in the form of a
multidimensional array.

The course class then passes this array back to the EmailQuestions script. The script then loops
through the frequency list related to the current courselD and gets the emails of users who have
the current frequency items courselD as one of their courses (For now these are the only users
who will get email notifications of new questions). It does this by instantiating an object of the
user class and calling the member function, getUserEmailbyCourse. This function generates the
required SQL statement to select the user emails. An array of emails is returned and this is
passed to the EmailQuestions script through the user class. The script then loops through the
emails and sends the current question’s details to the user associated with the email. The user
gets a concise version of the question in his email in the form of a notification.

EmailQuestions Design Principles

In this design the EmailQuestion scripts acts as a controller delegating work through the system.
As a result it does not execute a large amount of computational work. The classes instantiated
don’t interlace in the sense that they do not specialize in the same fields of work. For instance,
when the EmailQuestion scripts needs to obtain all questions it has to go through the question
class. The question class specializes in question related calls and cannot access the database
directly. It does this through the database class which specializes in only database related calls.
The database class does not return directly to the email question script. It goes back through the
path it came from. Therefore this design exhibits attributes related to the High Cohesion
Principle and Expert Doer Principle. Low Coupling Principle is employed less, as
communication chains are fairly long. However, this is necessary to achieve a good modular
design, because messages must travel from the EmailQuestion script to the database, and without
breaking it up into classes it would be chaotic.

EmailQuestions Alternate Design Considerations

The design could have been achieved by making each class access the database directly but this
would increase the workload on each class and in the long run it would be hectic to manage. It
would violate the Expert Doer Principle and overall make the program more convoluted.
Another way would have been to make the script access the database directly but that in turn
increases the workload of the script. The current design assigns little work to the EmailQuestion

50

script. It does not utilize a large amount of computational jobs, but it does require the creation of
five classes and database calls. Breaking up these jobs agrees with the High Cohesion Principle.
Also, if we want to add more functionality to the EmailQuestion script, we can simply have it
call a separate script. By making each function a separate script, we can have a better modular
program, and only create the classes that we need.

51

11. Class Diagram and Interface Specification

Our class diagrams are divided up into two sections, the class diagram for the front end and the
backend. Even though many of the classes are similar between them, they may not be exactly
the same. For example, we may use the same database class for both the frontend and backend
subsystems, but we are not bound to do this. We have implemented them separately so that two
teams can break up and each work on their own system and not have to wait on each other at all.

Also, all the operation signatures and data types are included right on the class diagram, so we do
not include a separate section for listing these.

52

A&B. Class Diagram, Data Types, and Operation Signatures

Front End Class Diagram

DisplayManager

Htemplate
-hitmi_data
Freplacements[®]
Hoops[']
Lreplacementloops[*]
-path

+addTemplate()
+setBreadCrumby{)
HesatDiv()
+setPath()
+setlink()
+setloop()
Hrander|)
HrenderToTesxt()
HolearTemplated)

Answer

title
lFeourselD
|-description
lFanswerlD
-deptlD

+Answear)
HaatAnsweardD()
+getAnswerlD{)
+eetCoursel D)
+oetCourselD()
+sethamel)
+getName(}
+zetDescl)
‘+aetDesc()
+setDeptiD])
+getDeptiDf)

AV

Course

Loourse_id

rrattachiD{)}
+geiTableSizel)
]

+getAllMatching()
HoourseExistl)
+add ToMyCourse()
+gethame)
+getlevel()
+getDeptD)
+getDaptName(}
HgetCollegelD{)
+getCourseCode()
+gelCollegeMame()
HsatMew |
+getNew)
+getFrequencyTable()
+setAsk()
+aetDisplay()

v | 7

User

lFuserlD ; string
Femail : string
l-pass : string
l-name : int
-password

HgetCourselnfol)

+Lisar()
+setUserl D)
+getllserMame()
+getllser()

+geti D)
+getUserD()
+getCollegelD()
+addUser(}
+dologin{)
+Haglser)
+checkUserLogged()

53

Question College
Hitle: -college._jd
lFcourselD Feollege url
|-description Feollage_rame
l-questionl D lecllege city
_deptiD U college_state
+Ouestlan() -college_emaikext
+asatCuestionlDi) +Colleged)
+getCuestion D) +setlDi)
+setCoursel D) +getiD()
+gelCourse|Di) _[>+se1URL[;|
+seihlamar) +ojatLIRLY)
e tgEtMName() +eatiamel)
+zetDescl) +gathame)
+aetDesc() +setCity()
+setDeptiD() +getCity()
+getDeptlD{) _+se'l§1a1.ef::;
+gatStatel
+aatEmailExt{)
+getEmailExt)
+getAll()
+aataliMatehing()
+getallDepts()
AVAAV,
Database
l-eqlSuccess : bool
I‘l>-r::c:un'c it Emailer
lFuser_email ; string
l-name - string
D-pasg * string & il +sendEmall])
luserD @ int
-desc ; string <]—
FeourselD - int
-Priority TSMTP_PORT
FCharSet CRLE
AVAV -ContentType -stmp_conn
Department -From hela_rply
Cdept_id -Fromhame +Connect()
_dept_name -Sender +StartTLS()
L dept_desc :E::‘Ejfdn;r +Authanticatel)
+Department() | Mailar :glannscted(]
+setlDi) | Sendmail asel)
tgetiD() _Hostname
*SB‘::EII‘HE(} MessagelD
HgetMNamel)
+setDescl) :::gm_lﬁi;
tgeiDesch shail()
+Send()

Back End Class Diagram

AssociationChecker

HeheckShouldBeAssociated|)

v

CourseCompare Scan
Hscan_all()
Hoompare() generate. tags()

]

Answer

-title
leourse|D
|-description
lF-answerlD
-deptiD

+Answer)
+zatAnswerlD()
+gatAnswerlD{)
+aetCoursel D)
+oatCourse|D()
+setMameal)
+oetName()
+zetDesc()
+getDesc{)
+setDeptiD()
+gatDepti D)

7 V4

Course

Feourse_id

+attach|D{)
+getTableSize()
+getAll()
HgetAliMatchingl)
HcourseExist])
HaddToMyCourse()
+oethlame()
+getLavel(]
oetDeptl D)
+getDeptName()
HoetCollegelD()
+oetCourseCode()
+getCollegeMamal()
H-sathew)
+gethew)
+getFrequencyTable()
HrsetAskl)
+setDisplay()
HgetCourselnfol)

AV

o

User

FuserD
Fermall :

l-pass | string

[Fnamea -

-password

: string
slring

int

+Ligar()

+setllserl DY)
+getllserName()
+getlsen()

+geti D)
+getlserD()
+aetCaolleqelD))
+addlser()

+dolog

+HagUsar()

+chacklser_ogged()

in)

54

Question College
-title: -college_id
l-eourse| D lFoollege_url
Hescription loollege_name
l-questionl O locllege_city
-deptiD U college_state
+Question() -college_emailext
+zatQuestionlD() +Caollege()
+getCuestionl DY) +aatiD)
setCourselD() +getiD()
+oetCourse|D() +satlURL()
+setMame() '|>'+gatURL{}
—frgetMamel) +satMame)
+zetDesc() +getMame()
+getDesc{) +setCity()
+setDeptiD() +oetCity()
+getDeptl D} _+se1.§1ale4,;:;
+getState
[+setEmailExt(}
+getEmail Exti)
+oetAll)
+oetAliMatching ()
+oetaliDepts])
AVAV,
Database
leqlSuccess @ bool
-count « int Emailer
Fuser_email : string
[-name - siring
D-pass . sting o P sendEmall{}
luserdD @ int
-desc | string <]—
FoourselD : int
[r=qii) PHPmailer SMTP
-Pricrity FSMTF_PORT
-CharSet +CRLF
VAV FContentType Lstmp_conn
Department -From Uhela_rphy
Cdept_id ';?r:gsfme +Connect])
Ld i +StartTL
-dZﬁ:gzg“: :f::g:dn; +Au1l'19ntigte[]
+Department() Mailer :glﬂnnﬂﬁ-@dﬂ
setiDi) e endmail osef)
FgetiDi) -Hostname
*semarne(} MessagelD
+gatiame()
Ty | [
[*gstDescl) +IsMail()
L+ Send()

C. Design Patterns

Because none of the design patterns discussed in class were applicable to our project, instead of
focusing on using design patterns, we focused on improving our algorithms. This applies to the
creation of associations between courses, and also how associations are modified as time goes
on. This is discussed in detail in section 13a, algorithms and data structures.

55

D. Object Language Constraint (OCL) Contracts

context DisplayManager::addTemplate (template)
pre: exists (template)
post: self.template += template

context DisplayManager: :setBreadCrumb ()
pre: self.exists(array)
post: self.crumb = array|[‘name’]

context DisplayManager::setDiv (div)
pre: exists (div)
post: self.div = div

context DisplayManager::setPath (path)
pre: exists (path)
post: self.path = path

context DisplayManager::setLink ()
pre: n/a
post: n/a

context DisplayManager::setLoop ()
pre: self.exists (loops)
post: self.replacementLoops = self.replacements

context DisplayManager::render ()
pre: n/a
post: n/a

context DisplayManager::renderToText ()
pre: n/a
post: n/a

context DisplayManager::clearTemplate ()
pre: n/a
post: self.html data = ‘'’

context Course::attachID(courselD)
pre: exists (courselD)
post: self.course id = courselD

context Course::getTableSize ()
pre: self.exists (course id)
post: n/a

context Course::getAll ()
pre: n/a
post: n/a

context Course::getAllMatching()
pre: n/a
post: n/a

context Course::courseExist ()
pre: self.exists (course id)
post: n/a

context Course::
pre: self.
post: n/a

context Course::
pre: self.
post: n/a

context Course::
pre: self.
post: n/a

context Course:
pre: self.
post: n/a

context Course:
pre: self.
post: n/a

context Course:
pre: self.
post: n/a

context Course:
pre: self.
post: n/a

context Course:
pre: self.
post: n/a

context Course:
pre: self.
post: n/a

context Course:
pre: self.
post: n/a

context Course:
pre: self.
post: n/a

context Course::

addToMyCourses ()
exists (course id)

getName ()
exists (course id)

getLevel ()
exists (course id)

:getDeptID()

exists (course id)

:getDeptName ()

exists (course id)

:getCollegelID ()

exists (course id)

:getCourseCode ()

exists (course id)

:getCollegeName ()

exists (course id)

:setNew (val)

exists (course id)

:getNew ()

exists (course id)

:getFrequencyTable ()

exists (course id)

setAsk (courseid)

pre: exists(courseid)

post: n/a

context Course::

setDisplay (courseid)

pre: exists(courseid)

post: n/a

context Course::
pre: self.
post: n/a

getCourseInfo ()
exists (course id)

57

context Answer::Answer ()
pre: n/a
post: n/a

context Answer::setAnswerID (answerlD)
pre: exists (answerlID)
post: self.answerID = answerID

context Answer::getAnswerID ()
pre: self.exists (answerID)
post: n/a

context Answer::setCourselD (courselD)
pre: exists(courselD)
post: self.courselID = courselD

context Answer::getCourselD ()
pre: self.exists (answerlD)
post: n/a

context Answer::setName (name)
pre: exists (name)
post: self.title = name

context Answer::getName ()
pre: self.exists (answerID)
post: n/a

context Answer::setDesc (desc)
pre: exists (desc)
post: self.description = desc

context Answer::getDesc()
pre: exists (answerlID)
post: n/a

context Answer::setDeptID (deptid)
pre: exists (deptid)
post: self.deptID = deptid

context Answer::getDeptID ()
pre: exists(courselD)
post: n/a

context User::User ()
pre: n/a
post: self.email = NULL
self.pass = NULL
self.name NULL
self.userID = NULL
self.password = NULL

context User::setUserID(userID)
pre: exists (userID)
post: self.userID = userlID

58

context User::getUserName ()
pre: self.exists (userID)
post: n/a

context User::getUser ()
pre: self.exists(email)
post: n/a

context User::getID()
pre: self.exists (userID)
post: n/a

context User::getUserID()
pre: self.exists(email)
post: n/a

context User::getCollegelD()
pre: self.exists (userID)

post: n/a

context User::addUser ()

pre: !self.exists(email)
!self.exists (name)
post: n/a

context User::doLogin ()
pre: n/a
post: n/a

context User::logUser ()
pre: self.exists(email)
self.exists (pass)
post: n/a

context User::checkUserLogged()
pre: self. SESSION['logged'];
post: self.loggedIn = true;

context AssociationChecker::checkShouldBeAssociated (X, T, A)
pre: exists (X)
exists(T)
exists (A)
post: n/a

context CourseCompare::compare (namel, levell, name2, level?2)
pre: exists(namel)
exists (levell)
exists (name?2)
exists (level?2)
post: if self.ask test & self.display test = true
result = both
else
result = 0
endif

context Scan::scan_all(id, name, level)
pre: exists(id)
exists (name)
exists (level)
post:self.new course.course new=0

context Database::sqgl ()
pre: n/a
post: n/a

context Question::Question()
pre: n/a
post: n/a

context Question::setQuestionID(questionID)
pre: exists(questionID)
post: self.questionID = questionID

context Question::getQuestionID()
pre: self.exists(questionID)
post: n/a

context Question::setCourselD (courselD)
pre: exists(courselD)
post: self.courselID = courselD

context Question::getCourselID()
pre: self.exists(gquestionID)
post: n/a

context Question::setName (name)
pre: exists (name)
post: self.title = name

context Question::getName ()
pre: self.exists(questionID)
post: n/a

context Question::setDesc (desc)
pre: exists (desc)
post: self.description = desc

context Question::getDesc ()
pre: self.exists(questionID)
post: n/a

context Question::setDeptID (deptid)
pre: exists(deptid)
post: self.deptID = deptid

context Question::getDeptID()
pre: self.exists (courselD)
post: n/a

context Department: :Department ()
pre: self.dept id = NULL
post: self.setID(dept id)

context Department::setID (dept id)
pre: exists(dept id)
post: self.dept name = dept name
self.dept desc dept desc

context Department::getID()
pre: self.exists (dept id)
post: n/a

context Department::setName (name)
pre: exists (name)
post: self.dept name = name

context Department::getName ()
pre: self.exists (dept id)
self.exists (dept name)
post: n/a

context Department::setDesc (desc)
pre: self.exists (dept id)
post: self.dept desc = desc

context Department::getDesc ()
pre: exists(dept id)
post: n/a

context College::College ()
pre: self.college id = NULL
post: self.setID(college id)

context College::setID(college id)

pre: exists(college id)

post: self.college id = college id
self.college url = college url
self.college name = college name
self.college city = college city
self.college state = college state
self.college emailext = college emailext

context College:

pre: self
post: n/a

context College
pre: self

:getID()
.exists(college id)

::setURL (url)
.exists(college id)

exists (url)
post: self.college url = url

context College
pre: self

self

post: n/a

context College
pre: self

::getURL ()
.exists(college id)
.exists(college url)

: :setName (name)
.exists(college id)

exists (name)
post: self.college name = name

61

context College::getName ()
pre: self.exists(college id)
self.exists(college name)
post: n/a

context College::setCity(city)
pre: self.exists(college id)
exists (city)
post: self.college city = city

context College::getCity()
pre: self.exists(college id)
self.exists(college city)
post: n/a

context College::setState(state)
pre: self.exists(college id)
exists(state)
post: self.college state = state

context College::getState()
pre: self.exists(college id)
self.exists(college state)
post: n/a

context College::setEmailExt (ext)
pre: self.exists(college id)
exists (ext)
post: self.college emailext = ext

context College::getEmailExt ()
pre: self.exists(college id)
self.exists(college emailext)
post: n/a

context College::getAll ()
pre: n/a
post: n/a

context College::getAllMatching(field, operator, wval)
pre: exists(field)
post: result = self.data

context College::getAllDepts()
pre: exists(college id)
post: n/a

context Emailer::sendEmail (recipient, sub, sender, body)
pre: n/a
post: self.mail.send() = true

12. System Architecture and System Design
A. Architectural Styles

The SuD will have a Client-Server architectural style since this is the most fitting for our case.
This is because the SuD is a server(the website) which will be accessed by a user through a
client(web browser). The client can send a request to the website(server). This request could be
made for achieving goals such as browsing the website,adding/removing courses, viewing/asking
questions, replying to a questions thread, etc. The server will receive this request and would go
through the database accordingly to retrieve the corresponding data that is required to
accomplish a certain task. Once the data is retrieved, the server serves it back to the client(web
browser). This allows multiple users to access the website and the server will consider each
client instances to serve accordingly to requests made by users.

B. Subsystems

The SuD requires four subsystems in order to achieve the discussed architectural style above.

1. Front-End processes: This consists of the client and the application layer of the SuD. This
creates a connection with the client and the database. For example, when a web browser is used
to access and send requests to the website, the subsystem will receive this request and send a
query to the database. The subsystem will then receive the query results from the database,
process the query results returned from the database and relay it back accordingly to the user.

2. Back-end processes: The system will also be responsible several back-end processes. For
example, it will go through the database and manage the Ask and Display list(for course
associations; discussed later in Algorithms) for each courses every day. It will also have running
Cron jobs that will be used to send alerts to users when other users replies to a certain question
thread that users are subscribed to.

3. Database: The database will contain tables with course lists, user accounts, questions and
answers. Both the front-end and back-end processes will access the database in order to process
requests and run Cron jobs for managing the database.

63

Front-End Database Back-End
Ask answers UpdateNewCourses
AskQuestionsScript college Course
Questions course Database
DisplayAnswers department Emailer
Answers frequency Scan
Classroom questions CourseCompare
ViewCourse users SortCourses
CourseLoader College
Courses EmailQuestions
Login (Question
VerifyLoglnfo Answer
User User
Database Removelnrelated
Emailer AssociationChecker
Register
VerifyReglnfo
DisplayManager

UML Package Diagram:

C. Mapping Subsystems to Hardware

The front-end subsystem will consist of the client(web browser). The clients will run on
computers used by the user. The server will run the apache server which will have access to the
database.

The back-end subsystem will be the apache server running the Cron jobs and managing the Ask
and Display lists for each course in the database.

The SQL database will be saved on hard-drives. These will also be located in the server
computer.

D. Persistent Data Storage

The SuD will require data to outlive requests and sessions. Therefore, the SuD will be required to
store data in order to work as intended. Data will be stored in a SQL database. Because there is
potential for the database to grow very quickly over time, it will be saved on hard drives.

The SQL database will consist of multiple tables. There will be a course table, user table,
questions table, answers table, college table, department table, and frequency table.

64

Tables_in__edata |

answers |
college |
course |
department |
frequency |
questions |

users

figure: list of tables in DB

1. Course Table: This table will contain all the courses from every single school. It will have the

following fields: school name, school id, department name, department id, course id, course

name, number of questions asked related to the course.

Field

| Type | Null | Key | Default

Extra

course_id
course_collegeid
course_code
course_title
course_modified
course_questioncount

course_deptid

int(11) unsigned

| int(11) unsigned

tinytext |

varchar (255) |
| timestamp |

| bigint(20) |

int(11) unsigned

NO
NO
YES
NO
NO
NO
NO

PRI | NULL
MUL | ©
| NULL

|
| CURRENT_TIMESTAMP
| 0

MUL | O

auto_increment

65

i1. User Table: This table will contain everything about a single user. It will have the following
fields: user id, name, password, email, school id,enrolled courses' ids, subscribed questions' ids.

The cron jobs will look at the subscribed questions' ids and notify the user by email whenever
that question has been answered.

| Field | Type | Null | Key | Default | Extra

user_id	bigint(10) unsigned	NO	PRI	NULL	auto_increment
user_name	varchar (255)	NO			
user_pass	varchar (255)	NO	MUL		
user_courselDs	blob	YES		NULL	
user_deptid	int(11) unsigned	NO		0	
user_image	varchar (255)	NO			
user_cookies	bigint(10)	NO		0	
user_lastsid	mediumtext	NO		NULL	
user_login	tinyint (1)	NO		0	
user_lastlogin	datetime	NO		0000-00-00 00:00:00	
user_regsid	mediumtext	NO		NULL	
user_email	mediumtext	NO		NULL	
user_regdate	datetime	NO		0000-00-00 00:00:00	
user_lastactivity	mediumtext	NO		NULL	
user_online	tinyint (1)	NO		0	
user_collegeid	int(11) unsigned	NO		0	
user_quote	longtext	NO		NULL	
user_active	tinyint (2)	NO		0	
user_banned	int(11) unsigned	NO		0	
user_notify	tinyint (4)	N0		0	
user_asked	int(1l) unsigned	NO		NULL	
user_answered	int(11) unsigned	NO		NULL	
user_rating	int(1l) unsigned	NO		NULL	
user_activatecode	varchar (255)	NO		NULL	

66

i11. Questions Table: This table will contain the posts that are questions. It will contain the

following fields: question id, question/thread title, the question, related courses' ids, category id,
time,replies, and views.
The time will be used for arranging the threads in descending order by default. If the user wishes
to see the threads with O replies, he can click the reply link and it will first arrange the questions

in an ascending order of replies to see which questions haven't been answered. Clicking replies
again will show questions in a descending order of replies. Clicking the views link will also
arrange the questions first by descending and then by ascending order of views.

| Field Type | Null | Key | Default | Extra
| question_id bigint (10) | NO PRI | NULL | auto_increment
| question_name mediumtext | NO | NULL |

| question_by int (11) unsigned | NO | 0 |

| question_text longtext | NO | NULL |

| question_deptid int(11) unsigned | YES | MUL | O |

| question_courseid | int(ll) unsigned | NO | 0 |

| question_college int (11) unsigned | NO | 0 |

| question_active tinyint (1) | NO | 0 |

| question_settings | bigint (40) | NO | 0 |

| question_closed tinyint (1) | NO | 0 |

| question_postdate | datetime | NO | 0000-00-00 00:00:00 |

| question_views int (11) unsigned | NO | 0 |

67

iv. Answers Table: This table will contain the posts that are replies to a question thread. It will
contain the following fields: answer id, the answer, user id, question id, and time.

The time will be used to arrange the answers in ascending order of posting time. The question id
will be used to link each answer to a question and the user id will be used to allow the back-end
processes to manage course associations.

Field	Type	Null	Key	Default	Extra
answer_id	bigint(20) unsigned	NO	PRI	NULL	auto_increment
answer_questionid	bigint(20) unsigned	NO	MUL	0	
answer_by	mediumtext	NO		NULL	
answer_text	longtext	NO		NULL	
answer_courseid	int(10) unsigned	NO		0	
answer_deptid	int(10) unsigned	NO		0	
answer_postdate	datetime	Noo		0000-00-00 00:00:00	
answer_rating	int(4)	NO		NULL	

v. College Table: This table contains the information about each college.

| Field | Type | Null | Key | Default | Extra

college_id	int(11)	No	PRI	NULL	auto_increment
college_url	varchar(255)	NO			
college_name	varchar(255)	NO			
college_city	varchar(255)	NO			
college_state	varchar(255)	NO			
college_emailext	varchar(255)	NO		NULL	

vi. Department Table: This contains the information about each department in the colleges.

68

| Field | Type | Null | Key | Default | Extra

dept_id	int(11l) unsigned	NO	PRI	NULL	auto_increment
dept_name	varchar (255)	NO			
dept_desc	varchar (255)	NO			

dept_collegeid | int(11) unsigned | NO | MUL | NULL | |

vii. Frequency Table: This table records the statistics of how many answers are related to each
course and the course of the question they came from.

Field	Type	Null	Key	Default	Extra
courseidl	int(11)	NO		NULL	
courseid2	int(11)	NO		NULL	
frequency	int(11)	NO		NULL	

E. Network Protocol

Since the only form of communication between the server and the client is the website,
the system will simply use HTTP as its main communication protocol. HTTP was chosen
because it is the most general form of communication through the internet.

F. Global Control Flow

Execution order

The system will have both linear and event-driven aspects depending on which subsystem
is under consideration. The back-end of the system will act linearly. It will simply schedule Cron
jobs that do the same actions every time database reorganization is due. The user’s execution
however is pretty much event based. The server will always be waiting for user input and all the
users can perform actions in any order they prefer as long as they have already logged into the
website.

Time dependency

As mentioned before, the Cron jobs will perform actions based on timers. It has no real-
time functions that interact with the user but it will be constantly performing database
maintenance every time the timer expires.

69

The front-end (web browser, apache server) will act in real-time as it is constantly
waiting for user input and replying to them.

G. Hardware Requirements

The user-side of the system will not have a lot of hardware requirements. They will
simply need an internet connection and an up-to-date web browser. Since all the information is
stored on the database, the users will only need a minimal amount of temporary disk storage.

The back-end system will require a server with enough hard drive space for all the user
data, course data, questions and answers. The server will be handling a lot of user interaction so
it will require a high bandwidth network connection.

70

13. Algorithms and Data Structures
A. Algorithms

This section covers the unique algorithms that have been developed specifically for this project.

i. Course Associations

The main draw of our site is the ability to link users together in similar courses, and thus it is
important that we do this effectively. Our model for associating courses is described below, but
first some background is provided about what courses look like in the database.

Adding a new course to the database

Every course is uploaded into the database in a course table. Each course has 10 attributes
associated with it, course ID, course department ID, course college ID, course code, course title,
course level (1, 2, 3, or 4 corresponding to 100, 200, 300, 400), course description, course tags,
add date, course new, and question count.

When a new course is added to the database the following information is uploaded:

Course ID

Course Department ID

Course College ID

Course Code

Course Title

Course Level

Course Description

Course New (1)

Add Data (automatically generated)
Question Count (0)

Association of Courses

There is a script on our database called AddNewCourses that runs on a timed interval, and is
scheduled by CRON. This script checks for all courses that have the course new field as true (1)
and creates associations for them. In our newest version of this script, courses are associated
based on their tags. The script contains two main algorithms, one to create tags for each course,
and another to create the associations.

Create Tags

Tags are created for courses using a method called “data mining.” When courses are uploaded,
as was stated earlier, they contain a description. This description is found on the college’s
website where the course catalog was obtained from. From this description data mining is used
to find key terms that are relevant and can be used for matching. Data mining occurs as follows:

71

1) First the description is obtained from the database broken down into single word strings. This
way each word can be analyzed individually. If there is no description available on the database
the course name is used instead.

2) Each word is compared to a list of common words, and if it matches, it is thrown out. Some
of the words included on the list are ‘a’, ‘an’, ‘the’, and ‘introduction.’

3) Once all relevant words have been determined they are compressed into a single string,
delimited by commas, and stored on the database in the course tag field.

Create Associations

Once tags are created for a course it is ready to be associated. One by one, the new course’s tags
are compared to every other non-new course on the database. There are different levels of
course associations, association levels (AL), based on how many tags are found to match. Right
now we are using a rating system rating from 0-5. 0 would be no tags matching; no association,
and 5 is 5+ tags matching; a very strong association.

Finally once the strength of the association has been determined the “direction” of association
must be determined. This applies to a method we developed for organizing course associations
into two categories, ask and display. If course A has an ask association with course B, when a
user posts a question from course A, users in course B will be emailed the question. If course A
has a display association with course B when a user in course B posts a question it will be
displayed on course A’s classroom page. Also, courses can have both associations.

The reasoning for this is as follows. Anyone who is in a course level higher than you can
probably help you with an easier course, for example a calc IV student could help a calc I
student, so the calc I student wants his questions to be visible to the calc IV student. In the same
sense, a calc I student would probably not be able to help a calc IV student, so the calc I student
will not be emailed.

How it is used

In regards to the ask list, when a user asks a question in a course, only users in courses with
association level greater than 2 will be emailed

In regards to the display list, which questions show up on a course’s classroom page will be
determined by association level. It is intuitive that a question asked in a course with association
5 should show up higher on the classroom page then a question asked in a course with
association of only 2. However, the time the question is asked should also factor into the
determination of which courses are displayed. It is important that questions from all courses
have at least some chance to get display (except for those with course association 0). When a
classroom page is loaded questions are ordered based on their question rating (QR), which is
calculated by the following formula

QR = (AL * 100) / (seconds passed since question was asked)

This equation balances displaying recent questions with those of high association level.

72

ii. Refinement of course associations

Although association by tags is a vast improvement over our previous method, it is still possible
that courses will get associated with each other that shouldn’t be. The solution to this problem is
to keep stats on which questions are being answered, and by whom. Cron jobs will run in the
background of the website every day or so, and keep stats on how many questions have been
answered, and by users in what courses (this will be determined by where they answered the
question from, a classroom or a search filtering down to a specific course. Also students who
have been asked questions by email will follow a link to answer that question, which indicates
which association referred the question). If not enough users are answering questions related to
course A from the classroom of course B, course B's Association Level with course A will be
lowered.

For example, differential geometry and differential calculus may become linked together. They
are both math courses and there is a possibility that they have several tags in common, even
though they are fairly different. If no or very few users in differential calculus classrooms
answer differential geometry questions, for a period of time, the association level between
differential calculus and differential geometry will be lowered. This means that differential
calculus will have a lower priority for displaying questions from differential geometry, and that
differential calculus students will not be emailed differential geometry questions.

It is important to note that this is not a two way relationship. If many differential geometry
students happen be answering differential calculus questions the association level between
differential geometry and differential calculus can still be high.

The following formula is used to determine whether a course association level should be dropped
or increased by 1 point (level cannot decrease below 0)

If in one week: X<0.05*T/4 and T>100

Where X = Total questions answered by users in course X, where X is a course on Y's ask list
T = Total questions answered related to course Y

A = Number of courses on the ask list of course Y

Then course Y’s association with course X will be lowered by one point

If in one week: X>0.20*T/A and T>100

Then course Y’s association with course X will be raised by one point (maximum 5)

Otherwise the association level will remain the same.

73

B. Data Structures

The SuD will store data primarily in a SQL database. It will contain a user table, course table,
questions table, answers table. A database was selected over other methods of data storage
because a database provides a very flexible method of storing data since a table in a database can
keep growing over time without causing problems. It also offers high performance when
performing search queries (searching was not addressed in this report but will be implemented in
the future).

74

14. User Interface Design and Implementation

Use Case UC-1: Register

If the user does not have an account, a link “Register Now!” is provided in UC-1 Login. This
link takes the user to the register page. This register page allows new users to create their own

account.
Logged in as; {username }
EN Click here to Logout
S aducational networking tool for collage studants]
Redister
ENTFCS helps you connect and share ;
information with students who take the Fill In The Info Below
Same COUrses as you Full Hame :
Password:
E-mail:

*zchool ermail

Submit Cancel

'mage

Home - Account - Advertising - Contact - Help |

Figure 1. Interaction diagram for Use Case UC-1: Register, with input fields full name, password

and email.

Use Case UC-2: Login

This webpage allows a user to log in by entering in their email and password in the “Email” and
“Password” field respectively, and clicking the “Login” button.

EN'IFCS ecucational natworking ool for collage Students

Welcome to ENTFCS User Login

Hello and welcome to the educational networking tool for college students, also known as "ENTFCE". Here Email

at the ENTFCS you can communicate with fellowy students all around the country . |{emai|} |
Passward

|

|| Login |

Register kol

Forgat your password?

Home - Account - Advertising - Contact - Help

Figure 2. Interaction diagram for Use Case UC-2 Login, with input fields email and password.

75

Use Case UC-3: Ask

The Classroom page allows a user to enter in a question title and a question description and then
click Ask. This question is then displayed in the classroom page in a list of questions.

Classroom Info
Department: Electrical 2
Computer Engineering

Course: Programming
Methodology 11

Ask a Question
This gquestion will be asked for the
clagsroom you are currently in.

Guestion title:

Guestion description:

Ask || Clear |

Go to Another Class
Select a different course:

EN TS e e

Rutgers University -= StudentCenter -= Classroom

Questions

Recursion by Prith Pal
Mouser | Yhat iz & recursive function?
image
available

47 minutes ago - Programming Methodology 1| &t Rutgers - Mew Brunsswick

Logged in as: Prith Pal
Click here to Logout

This space iz reserved for
Advertising.

Figure ?: . Interaction diagram for Use Case UC-3: Ask, with input fields question title and

question description.

76

Use Case UC-4: Answer
This question page displays the question and the existing answers to the question. It also allows
the user to reply with his/her own answer by entering it in the form and clicking “Answer”.

Logged in a=: Prith Pal
EN Click here to Logout
educational networking tool for college Students|

Rutgers University -= StudentCenter - = Classroom - = Guestion

Thiz space is reserved for current rhoguh resistor Thiz space is reserved for
Acdvertising. Howy do i find the current through a resistor? Achvertising.

Mo user

image
available
lan San Diego
Posted on: 2009-03-27
av:0510

Mo user | UEe the equation ¥ = RI

image
available

1 morth ago by Prith Pal

Answer it

Answer
Clear

Figure 4. Interaction diagram for Use Case UC-4: Answer, with input field Answer.

77

Use Case UC-5: UserManageCourses

This use case allows a user to add and remove courses from his/her list of subscribed courses.

The add course webpage allows a user to first select a department and then select a course from

that department using two dropdown menus.

Add a course from your school

Choose the department

‘Select a department iv

oelect & department
Electrical & Computer Engineering

Figure 5 a. Interaction diagram for adding a course in Use Case UC-5: UserManageCourses,
showing the input dropdown menu of a departments list.

78

Add a course from your school

Choose the department

Electrical & Cormputer Engineeringﬂ
iCapstone Design-Electronic Circuits E]

COptoelectronic Devices i
Concepts in Microelectronic Processing

Capstone Design-Microelectronic Processing

Concepts in Robatics and Computer Wision

Capstone Design-Robotics and Computer Yision
Introduction to Computer Graphics

Yirtual Reality

Yirtual Reality Laboratory

Concepts in WLSI Design

Capstone Design-YLS|

Electramagnetic YWaves

Deep Submicron %LSI Design for ECE

Special Problems: Independent Study

Topics in Electrical and Computer Engineering

Co-op Internship in Electrical and Computer Engineering
undefined v

Figure 5 b. Interaction diagram for adding a course in Use Case UC-5: UserManageCourses,

with a dropdown menu of a departments list already selected and a corresponding dropdown
menu for its course list.

79

15. History of Work & Current Status of Implementation

History of Work

The creation of our Educational Network Tool for college students (ENTFCS) website
was a tedious project at the early stages of its development. This was because very few of the
team members had done any object oriented or web programming projects. Our very first agenda
was to get every team member up to speed with the various technologies required for the project.
This was necessary because we had wanted to start development of the project as soon as
possible. Every team member not familiar with the relevant technologies required to conduct
independent studies on them. This spanned through several weeks. During this time period, the
first report, which was due by the 20" of February 2009, was worked on. The first report
included interaction diagrams, domain analysis etc. These were use to describe the project in a
basic way. The project was broken into parts so as to create a distributive system where each
team member worked on a certain part of the project.

The actual planning and compiling of the first report stirred up interest in how the various
parts that make up the project were going to work. It led to minor individual research in areas
such as social networking, forums etc. The report was completed in due time but errors emanated
due to the rush to complete it. These errors were pointed to us by the professor and we began
working on correcting them. The development cycle carried on with main focus on planning. We
had to prepare a second report this report was a more descriptive version of our first report and
was completed by the due date, March 13 2009. We had to outline what the project will do and
how it was going to be actualized. A working demo was also required and was added to our work
load. The demo showed the basic implementation of our project putting focus on materials from
the second report as well as the algorithm used to pair courses with their respective related
courses. The demo was completed by March 27 2009.

The development of the project continued and a third and final report as well as a final
demo was required by the professor. This final report included new techniques and concepts
including Object constraint Language OCL. Every function in the program was implemented in
OCL; this was done to further describe the program in a more general language so that it would
be comprehensible by the lame man. This report was completed by the due date, May 1 2009.
The demo which was due by May 5™ 2009 included changes to the first demo. We made

80

modifications to the pairing algorithm used to match each course to their respective related

courses and also made modifications to the user interface.

Key Accomplishments of the Project
The following list contains our key accomplishments attained while working on the project;
e Understanding and mastering PHP
e Learning to work in sync with a development team
e Understanding MYSQL databases and how to manage data
e Understanding and implementing software engineering principles

e Using OCL to further explain how code would run

81

16. Conclusions and Future Work

Technical Challenges

When designing and building our website, we ran into two main technical challenges. The first
was simply building and designing a website. Out of the 5 group members, only 2 had any
previous experience with web development, PHP and MySQL. We had to set up our own server
and install Apache, MySQL, PHP, and phpMyAdmin, which none of us had ever done before.
Once we had our development environment set up we had to start the actual creation of the

webpage. This is where our second technical challenge came in.

Although we have all programmed using OOP languages, none of us was accustomed to creating
a truly modular design as was described in the examples in the lecture notes. We had to rethink
how design our system to incorporate more classes and break our design down into smaller

modules than we were used to.

How Software Engineering Techniques Helped Address Challenges

Although Software Engineering techniques couldn’t help us set up our web server, it certainly
was a huge help in developing a good modular design. By determining requirements and use
cases before starting programming we were able to see more clearly what our system would have
to be capable of. The sequence diagrams for the use cases helped us get an idea of the
communication that would be necessary, and the domain model gave us a good idea of the
concepts we would need to employ. We then created the more in-depth Class and Interaction

Diagrams determine exactly how our system would be created.

When creating the interaction diagrams and class diagrams we used the principles discussed in
class to create a good modular design. We tried to balance the Expert Doer, High Cohesion, and
Low Coupling principles as best as we could while creating the different classes and determining
their communication. We also tried to use the examples discussed in class as a guide to what a
good design would look like. Keeping these ideas in mind while designing helped keep us

focuses on creating a good design.

82

By the time we actually started programming most of the work was already done. We simply
had to read the classes and methods of diagrams we had already created. The only thing that we

had to do was translate the concepts to code.

Other Knowledge that may have Helped

Although UML is a very powerful language for describing a system and its requirements
sometimes the sheer volume of different ways to describe a problem can be overwhelming. The
truth is, not every project is the same, and designing computer software is very different than

designing a web-page.

Sometimes we felt unsure exactly how to apply UML to our web application. The UML
examples are all very general; they don’t ever really explain how to do something for a specific
language. I think if we had a guide to using UML to describe a webpage using html and PHP

specifically we would have had a much easier time creating all of our documentation.

Possible Directions for Future Work

When we came up with this project, we felt we had come up with a very solid idea for a webpage
that could be used in the real world. We still feel this way, and we think that the ultimate
direction for this project would be to release the webpage for commercial use. This would
require us to clean up the page, add more features, and add in support for advertisers and
sponsors. However, if we are dedicated enough we feel that it is a very reasonable goal. Look

out for this website on the World Wide Web in a few years.

83

17. References

Rate my Professor:
http://www.ratemyprofessors.com/About.jsp

Sakai:
http://sakaiproject.org/portal/site/sakai-home/page/41344e39-8915-40cd-al153-2370382419d9

eCompanion:
http://www.emich.edu/cfid/PDFs/What-is-eCompanion.pdf

Wikipedia:
http://www.wikipedia.org

Software Architecture:
http://en.wikipedia.org/wiki/Software_architecture#Examples_of Architectural Styles .2F Patt
erns

Client-server:
http://en.wikipedia.org/wiki/Software_architecture#Examples_of Architectural Styles .2F Patt
erns

84

http://www.ratemyprofessors.com/About.jsp
http://sakaiproject.org/portal/site/sakai-home/page/41344e39-89f5-40cd-a153-2370382419d9
http://www.emich.edu/cfid/PDFs/What-is-eCompanion.pdf
http://www.wikipedia.org/
http://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
http://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
http://en.wikipedia.org/wiki/Software_architecture%23Examples_of_Architectural_Styles_.2F_Patterns
http://en.wikipedia.org/wiki/Software_architecture%23Examples_of_Architectural_Styles_.2F_Patterns

	1. Individual Contribution Breakdowns:
	2. Table of Contents
	3. Summary of Changes
	6. Functional Requirements Specification
	9. Domain Analysis
	15. History of Work
	4. Customer Statement of Requirements:
	Project Summary
	Requirements

	5. Glossary:
	6. Functional Requirements Specification:
	A.	Stakeholders
	B.	Actors and Goals
	C.	Use Cases
	i & ii. Casual and Fully-Dressed Descriptions
	iii. Use Case Diagram
	iv. Use Case Tractability Matrix

	D.	System Sequence Diagrams

	7. Nonfunctional Requirements
	8. Use Case Points
	9. Domain Analysis
	A.	Domain Model
	B.	System Operation Contracts
	C.	Mathematical Model

	10. Interaction Diagrams:
	11. Class Diagram and Interface Specification
	A&B.	Class Diagram, Data Types, and Operation Signatures
	C.	Design Patterns
	A.	Architectural Styles
	B.	Subsystems
	C.	Mapping Subsystems to Hardware
	D.	Persistent Data Storage
	E.	Network Protocol
	F.	Global Control Flow
	G.	Hardware Requirements

	13. Algorithms and Data Structures
	A.	Algorithms
	i. Course Associations
	ii. Refinement of course associations

	B.	Data Structures

	14. User Interface Design and Implementation
	15. History of Work & Current Status of Implementation
	16. Conclusions and Future Work
	17. References

