
1

Simualtion of Minority Game

Group Members: Zhan Chen johnalwaysyoung@gmail.com

Xiaoheng Liu fsr0023120@gmail.com

Boyu Ni niboyu@live.com

Pengcheng Wan kevinwan1991@hotmail.com

Jinhe Shi jhshi@hotmail.com

Zhengyang Zhong timothy7784@gmail.com

Report 1 2013/10/15

mailto:johnalwaysyoung@gmail.com
mailto:fsr0023120@gmail.com
mailto:niboyu@live.com
mailto:kevinwan1991@hotmail.com
mailto:jhshi@hotmail.com
mailto:timothy7784@gmail.com

2

Breakdown

 point
Team Member Name

Zhan Chen
Xiaoheng

Liu
Boyu Ni

Pengcheng

Wan
Jinhe Shi

Zhengyang

Zhong

Project

management
10 10% 10% 40% 40%

CSR 9 50% 50%

System

Requirements
6 33% 33% 33%

 Functional

Requirements

Specification

30 50% 50%

 User

Interface

Specs

15 100%

Domain

Analysis
25 50% 50%

Plan of Work 5 100%

3

0

5

10

15

20

25

Zhan Chen Xiaoheng Liu Boyu Ni Pengcheng
wan

Jinhe Shi Zhengyang
Zhong

Conribution

Conribution

4

Table of Contents

1. Customer Statement of Requirements ... 5

1.1 Problem Statement .. 5

1.2 Glossary of Terms ... 7

2. System Requirements .. 10

2.1 Enumerated Functional Requirements ... 10

2.2 Enumerated non-functional requirement ... 12

2.3 On-Screen Appearance Requirements .. 13

3. Functional requirements .. 14

3.1Financial professionals and related personnel ... 14

3.2 Actors and goals ... 15

3.3 Use cases .. 15

3.4 System Sequence Diagrams ... 21

4. User Interface Specification ... 23

5. Domain Analysis ... 26

5.1 Domain Model ... 26

5.2 Association definition ... 29

5.2 System Operation Contracts ... 36

6. Plan of Work .. 38

7. Reference ... 40

5

1. Customer Statement of Requirements

1.1 Problem Statement

There has been a time that people are confused about how to make the right decision. Thanks to quick

developing of the technology, now we have computers to help us simulate the situation of real world to solve our

problems. Through simulation, it is not difficult to figure out what decision should be made in certain situations.

In order to make it convenient for us to make decisions in various circumstances, we need software which is

capable of simulating the situations. Thus, we can easily deal with our problems just by adjusting some parameters.

In other words, by clicking the mouse (adjusting the parameters) we can simulate the environment we are involved

in, so we can get the result in advance.

The system should be mainly designed for finance field, but it should be used in other cases as well.

As for the us, by using this software, for example, we are actually shown a film or watching a documentary

film about what’s happening for a simulated market and experience various results that different parameters I

choose bringing about.

In fact, this is a simulated market presented in front of us, and it is us, the customers to decide what the basic

factors in the market are. A certain numbers of agents will come to buy or sell a stock. And the winners will

certainly, be the minority. To simulate the real market, we need to set that the money lost by the majority will be

redistributed to the winners as only the minority parcel social property. So, strategies for choosing to buy or sell at

each time become of great significance, and this is the reason we need this software as well. Since we only see the

choice and result of a single agent, we want someone to make the algorithms and useful methods.

Literally, we want the model to be even more like the real world, we want to see that every choice has its own

impact to the next round. And we want information to be stored in each agent’s memory. On one hand, we give

some equal numbers of money to every agent, and drop the one who lost all his/her money; on the other hand, we

will do some research of the person who gains more money than others.

However, this is not the end, as the situation can be more complex in the real world. We will find out that

agents are divided by their characteristics , so there must be some excellent ones who win frequently, while noise

agents (individuals gaining profit by following the herd) also exist. This will result in more complex situation, to

6

better reflect the real competition, the herding will be a common sense for almost every one, and experts will be

favored for herding.

Since we have a good interest in social relations, we may further see some experts cheating the others so that

they will get the largest share of the benefits. Through running again and again, the final results will be shown for

us to analyze the situation we are involved in and help us get the conclusion.

We hope this software can be applied on market trading, though some details are not exactly as the real

financial market, but it should be a fairly good reference as a matter of fact. In other words, it should show

relatively reasonable strategy for deciding whether to buy or sell.

To better describe our needs, at least 5 main parameters should be involved: short-term memory, long-term

memory, scores of agents, life duration and herding.

We need this software to calculate 2 types of score: Agent score and strategy score. Agent score is used to

estimate the successful rate of each agent. Strategy score is used to estimate the quality of the strategy.

The program should allow us to customize the memory of each member consists of long-term memory and

short-term memory.

Short-term memory: The agents should be able to memorize the game results of previous rounds and make

decision according to these results.

Long-term memory: Each agent should have several strategies and scores them in its long term memory. All

strategies have a initial score and after every round, the strategies’ score should add or subtract according to the

result of the game. Thus, each agent can keep a running tally of each strategy’s score in comparison to other

strategies. The member will make decision depends on these “scores” to choose the strategy. The program should

output the strategy with highest score and the agent who has the highest success rate. After several rounds, the

strategy with bad performance should be excluded by the agent. In order to better simulate the real-world situation,

agents should have different memory abilities.

The program should also include life duration (mortality) in the game, which will make members stop

participating in the game when they die. Every agent will be given an age value randomly. The whole population of

these dead people will be replaced by a whole younger generation. This is consistent with the law of nature and life.

7

Furthermore, when they die, part of their scores, or capital, should be distributed to the entire system, the other will

be inherited by younger generation.

Converging crowd causes group effect. As a consequence, different and complex situations come into being.

Generally, there are two situations: one is that people have their own fixed group and the agents of that group do

not change; the other is that the agents of the group change with time owing to the historical records of others in the

same group: agents with bad performance will be dropped out of the group while the relatively competitive ones

stay, nevertheless, while someone gets out, there should be new group member added, simply make the total

numbers constant.

In the situation that the agents of the group sway, we need a role for agents called advancer, with a definition

of people who win a lot in this sequence of the game. These roles sometimes cheat in their own group so that they

can obtain benefits of their own.

Moreover, we need a role called giant who ranked among the top. This role is endowed two behaviors:

cheating and broadcasting. Besides cheating, giants broadcast to influence other people. All the behaviors above are

purposed for minimizing the income of the rest and gaining the most benefits for themselves (sometimes they may

guide other agents to win the game in order to acquire their trusts, but sometimes they prefer to minimize the

numbers of winners so as to maximize their own benefits). In such situation, agents should be able to keep track of

other agents’ credit. If a certain agent cheats others for many times, its advice will be of less importance in other

agents’ decision making process.

1.2 Glossary of Terms

To better illustrate the contents, we list some important terms and our system graph below:

Scoring rules - It was introduced to help the customers to judge the gain and loss of the agents.

Memory effect - Every agent has its own memory length, like the situation in the real world that different

people have different abilities of memorizing.

Life duration - Because in the real world, people have different life length, we introduce this parameter.

8

Herding effect - It is for simulating more complicated situations which is to simulate the behaviors of people

who make their decision by referring other people’s decision. This kind of behaviors especially exits in financial

market.

Cheating - In order to gain the maximum profits of their own, the role advancer (including someone who

ranks the top in this game) sometimes provide wrong information to their own group.

Broadcasting - The agents ranked among the top in this game are privileged to broadcast their advice to

influence other agents’ decision. This behavior is often related with cheating, since the ultimate goal of the top

agents is to maximize their own benefits.

9

Priority

Short term
memory

(historical
results)

Herding

Long term
memory

(strategies)

Score of
agents

Life duration

Variable
memory length

Invariable
memory length

Fixed herd

Changeable
herd

Consultant’s
credit

1st

2nd

3rd

Randomly
assigned
herd

Actively
look for
high
score
agents

4th

Cheating

Broadcast

Fixed

Random

Capital
redistribute

Fig 1 Flow sheet of parameters and priority

10

2. System Requirements

2.1 Enumerated Functional Requirements

Identifier
Priority

weight(Low1-5High)

Requirement Description

REQ-1 4
Users should be able to choose whether or not to include

mortality in this game

REQ-2 5
Agents with the minority decision win the round. Those

who choose the majority lose that round.

REQ-3 4
Users should be able to choose whether or not to include

memory in the game

REQ-4 3

Agents should have multiply strategies to use when

making decisions each round and they choose each

strategy randomly from strategies space (long-term

memory).

REQ-5 3
High scoring strategies will be reused and low scoring

strategies will be dropped

REQ-6 2

When agents die, their scores will be distributed to the

system and inherited by younger generation(

if mortality option chosen)

REQ-7 5 User should be able to set all initial conditions

REQ-8 3
Strategy should keep score to estimate the quality of

each strategy

REQ-9 3
Agent should keep score to determine the successful rate

of each agent.

REQ-10 3
Agent also should be given a credit score to estimate the

credit degree of each agent

11

REQ-11 2

Agents should be able to retain memory of previous

rounds’ scores and make next decision depend on the

previous scores (short-term memory).

REQ-12 4
User can select whether or not to include herding in the

game

REQ-13 3

Agents should be able to choose to join a group to

discuss and make decisions together(if herding option

chosen)

REQ-14 3
Low score agents will be dropped out of the group, and

new agents will be added. (if herding option chosen)

REQ-15 2

Agent who wins the most will be the advancer in the

group and may cheat in their own group to obtain

benefit (credit score).

REQ-16 1
Users must be able to change speed while simulation is

running.

REQ-17 2
The program can be used in various circumstances

(trading market)

REQ-18 5
Each agent will be given equal number of scores in the

game.

REQ-19 1
User must have access to data collected in the form of

graphs.

REQ-20 3
The length of short-term memory can be variable

depend on different people.

REQ-21 5 User can decide the numbers of agents and rounds.

REQ-22 3
The user can decide life length of the agents(random or

fixed)

REQ-23 3
Agents whose scores are less than m will be dropped out

of the game and new people will be added.

REQ-24 3
User can choose whether the herding is fixed or

changeable.

12

REQ-25 3
Agents will look for those who have high scores to be a

group.

REQ-26 1
The program should keep running until the user feel

they have enough data.

REQ-27 5 The totally number of agents in the game is constant.

REQ-28 2 The giants’ strategy will broadcast to influence others

2.2 Enumerated non-functional requirement

A model called FURPS+ will be used here to qualify software attributes, which stand for functionality, usability,

reliability, performance, supportability, and the + stands for other possible attributes needed. We will be focusing on

the non-functional requirements which cover FURPS+.

Functionality: The functionality of our project if one of the most essential aspect. And our software will contain

numerous functions and parameters which would help to solve problems in different situation. The logic level of

the whole system, however, will be two as maximum. So the system will be characterized by multi-functionality

and usability.

Usability: The logic layers of the system will be no more than two. Customers only need to select situation and add

parameters to the simulation. We will do our best to minimize the mouse pointing time and maximize the function

intuitionism.

Reliability: Frequency of failure should be very low. Customers only need to restart the software to recover and are

able to choose whether to recover the last step they did. And software will be updated every month if not never.

Performance: The whole system also has high performance. Customers would wait no more than 5 minutes during

the whole simulation procedures. And the running time, which depends on the parameters that chose by customers,

will be few seconds as minimum and no more than 1 minute as maximum.

Supportability: The system is easy to understand by every user and programmer. There will be a user document to

13

introduce how to use the program and an introduction demo will also be contained to the software. A technique

support via E-mail will also be available and primarily to deal with the bug and imperfect part.

2.3 On-Screen Appearance Requirements

Identifier
Priority

weight(Low1-5High)

Requirement Description

REQ-29 2

Help-button：A “help” button should on the top right corner next

to the “close” button. A help document will appear after

touching, every detail like the glossary, graphs and button use

will be explained.

REQ-30 5

Error checking：The user interface has error checking function

for all inputs. It will indicate what the error is to customers and

how to revise it.

REQ-31 3

Range checking：not like error checking, a large range can still

be operated, but will spend a lot of time sometimes even lead to

computer crash. So we should warn the customer when the

range is too big.

REQ-32 3

User-friendly：The operation of the user interface should be as

easy to operate, no specialized training is need for new

customers.

REQ-33 1

Aesthetic value：Nowadays, we live in the Market-Economy

situation, a great application should not only pay attention to the

function, but also to the aesthetic value. Thus our user may

spend more time on the app.

REQ-34 1
Flexible：the user interface should be convenient for customers

so it should be removable and can be amplified and lessened.

14

3. Functional requirements

3.1Financial professionals and related personnel

This software is mainly designed for people participating in financial market. It can also be used for other

purpose, considering we provide many parameters into the software.

In the financial market, people make decision according to previous data, so we made this character the basis

of the software. Briefly, in this software, all agents make decision according to the past results of others and

themselves. We introduce the concept “short-term memory” and “long-term memory”. Short-term memory refers to

the memory of historical results. In this game, users can choose let the agents have variable or invariable short-term

memory. Long-term memory relates to strategies memory. With long-term memory, agents make decisions

according to the success rate of their past strategies.

In order to make this software more similar to real world situation, we introduce some other parameters. In the

real world, people have life duration, so we introduce “mortality” in this software. Considering the variation of

people’s life duration, we add this choice in this software. User can chose whether life duration varies among

agents. What’s more, in the financial market, agents tend to communicate and exchange information before making

decision. So we add the choice “herding”. User can select this item to simulate the situation in the market that some

people in this market take others’ advices to make their own decisions.

Besides financial market, this software can be used in many other cases. In situations concerned with people

and decision, this software is a useful way to help simulate the situation and analyze the decision accordingly.

Airport, super mall and even the policy makings can use this software to simulate. Manufacturers can make

decisions with this software to better participate in the market. Policy makers use this software to analyze whether

the legislation can be passed. In fact, since there are so many parameters in this software, users can easily simulate

many kinds of situations they need.

15

3.2 Actors and goals

Actor Actor goals Use case name

User Set initial condition for the simulation SetInitialConditions (UC-1)

User Run simulation RunSimulation (UC-2)

User Change graphs ChangeGranph(UC-3)

User Change speed ChangeSpeed(UC-4)

User Stop simulation StopSimulation(UC-5)

User Show graph using data log of past simulation ShowPastData(UC-6)

3.3 Use cases

UC-1 SetInitialConditions

Related requirements Req-1,Req-2,Req-7,req-8,req-11,req-12,req-16,req-1

7,req-18,req-19,

Initiating actor User

Actor’s goal To set initial conditions for the simulation

Participating actors System, User

Preconditions Initial screen is showing

Post conditions Initial conditions are set and Simulation is ready to

start

Flow of events for main success scenario

→ User (a) selects the menu item “long memory” (b)

types in value

→ User (a) selects the menu item “short memory” (b)

types in value

→ User (a) selects the menu item “score of agents” (b)

types in value

→ User (a) chooses to include or not include “life

duration”

→ User (a) chooses to include or not include “herding”

16

→ User chooses name of output file

← System verifies all values sets them in the

Simulation

Flow of Events for Alternate Scenarios:

→ 5.a.User chooses to include “mortality”

→ User (a) selects the menu item “life duration” (b)

types in value

→ 6a. User chooses to include “herding”

→ User (a) selects the menu item “herding” (b) types in

value

UC-2 RunSimulation

Related requirements Req-1,Req-2,req-6,Req-7,req-8,req-11,req-16,req-19

,req-24,req-25

Initiating actor User

Actor’s goal To run a Simulation

Participating actors System

Preconditions Initial conditions have been set

Post conditions User believes that they have gathered enough data

 Extends :: SetInitialConditions Includes :: SetSpeed,

ChangeGraphs

Flow of Events for Main Success Scenario:

→ 1.User chooses the button “Start Simulation”

→ 2.User chooses the initial graphs to be shown

← 3.System generates the specified data and shows user

selected Graphs

→

4.Graphs and speed may change based on user

preference

→ 5.User hits the “Stop Simulation” button

17

UC-3 ChangingGraphs

Related requirements REQ-3 REQ-9, REQ-17, REQ-24,

Initiating actor User

Actor’s goal Change the graph form while simulation is on.

Participating actors System

Preconditions
1.Simulation is on

2.User wants to change graphs on the screen.

Post conditions
1.Show new graphs.

2.The simulation is still on.

Flow of events

→ User chooses a new graph.

→ User chooses how many post rounds they want to show in the new

graphs.

←

System changes the current graphs into the chosen one.

UC-4 SetSpeed

Related requirements REQ-15

Initiating actor User

Actor’s goal Change the speed of the system.

Participating actors System

Preconditions
1.Simulation is on.

2.User wants to change the speed of the system.

Post conditions
1. Speed is changed

2. The simulation is still on.

Flow of events

→ 1. User chooses a new operating speed.

← 2. System changes the currently speed into the chosen one.

18

UC-5 StopSimulation

Related requirements REQ-24

Initiating actor User

Actor’s goal To stop the simulation and generate output file

Participating actors System

Preconditions Simulation is running and User wants to stop it

Post conditions Simulation has been stopped, log file has been

output and Simulation is ready to run again.

Extends :: RunSimulation

Flow of Events for Main Success Scenario:

→ 1. User presses button “Stop Simulation”

← 2. System finishes updating data to log file

← 4. System returns to Initial Screen for another run

UC-6 ShowPastSimulation

Related requirements REQ-17, REQ-27

Initiating actor User

Actor’s goal To see graphs from past Simulation

Participating actors System

Preconditions A past Simulation has finished and User wishes to

review it

Post conditions User has reviewed past Simulation

Flow of Events for Main Success Scenario:

→ 1. User presses “read file” button

→ 2. User selects a log file

← 3. System retrieves data from the file

→ 4. User chooses graphs and number of turns that

they care about

← 5. System Shows the requested graphs

19

Use Case Diagram

Fig 2 Use Case Diagram

20

Traceable Matrix

Traceability

 VS

Requirement

UC-1 UC-2 UC-3 UC-4 UC-5 UC-6

REQ-1 × ×

REQ-2 × ×

REQ-3 ×

REQ-4

REQ-5

REQ-6 ×

REQ-7 × ×

REQ-8 × ×

REQ-9 ×

REQ-10

REQ-11 × ×

REQ-12 ×

REQ-13

REQ-14

REQ-15 ×

REQ-16 × ×

REQ-17 × × ×

REQ-18 ×

REQ-19 × ×

REQ-20

REQ-21

REQ-22

REQ-23

REQ-24 × × ×

REQ-25 ×

REQ-26

REQ-27 ×

21

3.4 System Sequence Diagrams

Uc-1:SetInitialConditions

User System

press the "life duration" button

return function(SetLifeDuration_parameter:int)

press the "herding" button

return function(SetHerding_parameter:int)

alt

alt

alt

return function (OutputFile; int)

press the "output" button

Fig3 SetInitialConditions

22

UC-2: RunSimulation

Start Simulation

User

Choose initial graph to be shown

Show graph

Can change graphs and speed

System

Generate data

Stop Simulation

Fig 4 RunSimulation

23

4. User Interface Specification

Effort Estimation Using Use Case Points

Standard Equations:

Duration=UCP+PF

UCP= UUCP*TCF*ECF

UUCP=UAW+UUCW

Definition

Duration: the whole hours we need for a project

UCP: Use Case Point

PF: Productivity Factor

UUCP:Unadjusted UCP

TCF:Technical Complexity Factor

ECF: Environmental Complexity Factor

UAW:Unadjusted Actor Weight

UUCW: Unadjusted Use Case Weight

1. UAW:

Simply 1

Average 2

Complex 3

User actor 3

System 3

So our UAW = 6

2. UUCW

Simple 5

Average 10

Complex 15

UC-1: Set Initial Condition 5

UC-2: Run Simulation 15

24

UC-3: Change Graphs 15

UC-4: Change Speed 10

UC-5: Stop Simulation 5

UC-6: Show past Simulation 15

So our UUCW = 65

3. TCF

TCF = constant1 + constant2*calculated factor

Constant1 = 0.6 (according to the textbook)

Constant2 = 0.01 (according to the text book)

Technical

Factor

Description Weight Perceived

complexity

Calculated

Factor

T1 Distributed system 2 0 0

T2 Performance objective 2 5 10

T3 End user efficiency 1 4 4

T4 Complex internal processing 1 5 5

T5 Reusable design or code 1 2 2

T6 Easy to install 0.5 1 0.5

T7 Easy to use 0.5 4 2

T8 Portable 2 0 0

T9 Easy to change 1 3 3

T10 Concurrent use 1 0 0

T11 Special Security Feature 1 0 0

T12 Provide direct access to 3
rd

 party 1 0 0

T13 Special User Training 1 0 0

So the calculated factor = 10+4+5+3+3+2+0.5 = 26.5

Then the TCF = 0.6 + 0.01 * 26.5 = 0.865

4.ECF

ECF = Constant1 + (-constant2)*Calculated Factor standard equation

Constant1 = 1.4 (according to the text book)

Constant2= -0.03 (according to the text book)

The explanation of the impact:

0: no impact

1: strong negative impact

25

3: average impact

5: strong positive impact

Environmental

Factor

Description Weight Perceived

impact

Calculated

factor

E1 Familiar with the development process 1.5 1 1.5

E2 Application problem experience 0.5 1 0.5

E3 Paradigm Experience 1 5 5

E4 Lead analyst capability 0.5 3 1.5

E5 Motivation 1 3 3

E6 Stable Requirement 2 2 4

E7 Part-time staff -1 5 -5

E8 Difficult programming language -1 3 -3

So the calculated factor = 1.5+0.5+5+1.5+3+4-5-3=7.5

Then the ECF = 1.4 - 7.5*0.03 = 1.175

5.PF

 Although the best solution for estimating the Productivity Factor is to calculate our organization’s own historical

average from past project, our team is the first time to cooperate and the ability of team members are different.

Considering that all of our team members have little experience of software design, we define the PF of us a much

higher number : 29

6. Duration

UUCP = UAW + UUCW = 6 +65 = 71

UCP = UUCP * TCF * ECF = 71 * 0.865 * 1.175 = 72.163 approximately 72 use case point

Duration = UCP * PF = 72 * 29 = 2088hours

26

5. Domain Analysis

5.1 Domain Model

To build a wholly detailed domain model we need to fully review all the use cases and requirement to find out

the inner relations between different use cases and the responsibility holders to realize each use cases, that is, the so

called concepts. And then we can get the corresponding attributes and associations later.

5.1.1 Concept definition:

Personally, we view the responsibility doer as a concept, that is, a section in program to realize a function that

can, eventually, work coordinately to complete the whole use cases. Thus, a draft of how-to-work graph is made

and then name the concepts one by one.

During making the graph, we firstly divide the actors into non-human and human actors and then according to

what they act to draft the boundary concepts. As in this case, the only actor is the user, and he or she, just sets the

initial parameters and let the software to simulate the model. For the initial parameters needed to set, we look

through the use case and compose scenario, agent_num, round, herding_num, lifeopt……

1. Boundary concepts

Responsibility Description Type Concept Name

Background or situation choice for users if he or she does

not like to set the parameters or certain models user would

like to see.

K Scenario

Container for user’s choice of numbers of agents

participating in the game

K Agent_num

Verify whether the user type in valid numbers of agents

number within certain limits

D Agent_num_checker

Container for user’s choice of how many rounds it would

simulate

K Round

Verify whether the user type in valid numbers of round

times within certain limits

D Round-checker

Container for how many groups the herding effect would

cause if the user choose the option “herding”

K Herding_num

Verify whether the user type in valid numbers of herding D Herding_num_checker

27

number within certain limits

Container for how many agents a group would include if the

user choose the option “herding”

K Herding_scale

Verify whether the user type in valid numbers of herding

scale within certain limits

D Herding_scale_checker

Container for whether the user choose the option “Life

duration”

K Life_opt

Container for the initial score of every agent at the very

beginning of the game

K Score_init

Verify whether agents_num is equal or bigger than

herding_scale*herding_num

D Parameter_checker

Stop the simulation immediately D Sim_stopper

Switch to the past simulation graph D Past_sim_viewer

The property of these concepts includes the types, namely, the K type or the D type as shown on the domain

model graph later, the “smile” or the “document”symbol tagged on each concept. From the definition on the

textbook, Professor Marsic compares K and D to things and workers: Workers get assigned mainly doing

responsibilities, while things get assigned mainly knowing responsibilities. The following are the concept diagram

divided by K or D while K symbolized by document and D symbolized by smile.

《entity》

Agent

Choice

Life

Herd_DNA

StrategcyC

《entity》

Data_center

Score_strateg

y
Score_agent

《entity》

Fortune

《entity》

Round

《entity》

Strategy_li

b

《boundary》

Herding_num

《entity》

Fortune

《boundary》

Score_ini

《boundary》

Herding_scal

e

28

Fig 5 concept diagram

2. Internal concepts

As a matter of fact, the core part of our software mainly lies in our internal concepts; the boundary concepts,

mostly take the responsibility of accepting initial parameters and setting scenarios.

At meantime, the types of concepts are mainly D type as inside the software concepts need to communicate

and coordinate with other concepts to fulfill the overall use cases eventually.

Responsibility Description Type Concept Name

Container for total score of every single agent K Fortune

Verify whether the score of any agent be equal to 0 after

each simulation

D Bankrupt_checker

Container for the score of each strategy and each agent K Data_center

Update the score of each agent and strategy after every

round of simulation

D Data_updater

Reset the score and strategy of certain agents if they are

checked bankrupted or checked death

D Life_maker

Container for all strategies each agent may equip with for

making decisions

K Strategy_lib

Container for all the statistics of each agent, including

choice,life_duration,strategy,herd_DNA

K Agent

Making the choice of each agent and feed the choice back to

Agent

D Choice_maker

Form the groups of agents willing to herd D Herding

Make a uniform choice of a herd D Herd_choicemaker

Check if round number has met life_duration of each agent D Death_checker

《entity》

Pressconference

《entity》

Bankrupt_che

cker

《entity》

Herding

《entity》

Herding_choicem

aker

《entity》

Death_checke

r

《controlle

r》

Choicema

ker

《control》

Controller

《entity》

Psychology_read

er

29

Find out the top 3 agents ranking in score and broadcast

their strategy at that round

D Pressconference

Figure out the probability of each strategy an agent would

like to choose the next round

D Psycology_reader

There is one thing we need to notify that the concept “Agent”associates with some sub-concepts as life, choice,

strategy and herd_DNA as mentioned in the attributes.

5.2 Association definition

Associations with different concepts are mentioned below. These arrows indicate the relationship between

each concept and mainly for conveying information and saving related information. As this software has a very

obvious boundary for system and user, we mainly focus on how it operates in the inner side. And one thing is of

great significance that there is strictly defined sequence of doing association especially for lots of associations on

one concept. Let’s take the example of concept Agents: firstly, after each round, Agent will acquire the updated

information from Data_center and get the scores of strategies an agent owns. Then, for non_herding agents, they

will draw the conclusion by the scores of strategies with the help of psychology_reader, so that’s the association

between psycology_reader. And for those have DNA of herding, they would first get the strategy by the advancer of

the herding and the broadcasting of the top3 giants, so that’s the association with herd_choicemaker and

conference.

Concept pair Association description Association name

Fortune↔Death_ch

ecker

Death_checker passes requests to Fortune and

receives back each agent’s total score

Conveys requests

Fortune↔Data_cent

er

Fortune passes requests to Data_center and receives

back and save scores of each agent after a round is

done

Requests save

Conferencepress↔

Data_center

Conferencepress passes requests to Data_center and

receives back overall scores of each strategy after

each round

Conveys requests

Agent↔Data_cente

r

Agent passes requests to Data_center and receives

back and save scores of strategy each agent owns

Requests save

Herd_choicemaker

↔ Data_center

Herd_choicemaker passes requests to Data_center

and receives back the strategy with highest score in

the very herding

Convey requests

Strategy_lib↔Agen Agent passes requests to strategy_lib at first round Requests save

30

t and receives back N random strategies for every

agent.

Simulator↔Agent Simulator passed requests to Agent and receives

back choice and strategy at the beginning of every

round

Convey requests

Data_center↔Simul

ator

Data_center passes requests to Simulator and

receives and save scores of that round of each agent

and the strategy used by that agent

Requests save

Death_checker↔Ag

ent

Death_checker passes request to Agent and receives

back and save lifeduration of each agent

Requests save

Death_checker↔Ro

und

Death_checker passes request to Agent and receives

back how many rounds has processed

Convey request

Herding↔Agent Herding passes request to Agent and receives back

how many agents have DNA to herd

Convey requests

Data_center↔Agen

t

Agent passes request to Data_center and receives

back and save each score of strategy he or she owns

Requests save

Herd_choicemaker

↔Agent

Herd_choicemaker passes request to Agent and

receives back the sterategy of that agent at the next

coming round

Convey requests

Herd_choicemaker

↔

Psycology_reader

Herd_choicemaker passes information to

Phycology_reader of each agent in that herd the

strategy of the advancer

Requests save

Psycology_reader

↔Agent

Phycology_reader passes request to each agent and

receives back strategies and its scores of that agent

Convey requests

Choice_maker↔Ag

ent

Choice_maker passes final choice to each agent let it

save

Requests save

Conferencepress↔

Psycology_reader

Conferencepress passes strategies of top3 agents to

each Phycology_reader

Requests save

Herding↔Herdign_

choicemaker

Herding_choicemaker passes request to Herding and

receives back herding information and save it

Request save

The following diagram is the domain model diagram:

31

《entity》

Death_check

er

《entity》

Round

《entity》

Herding_choicem

aker

《entity》

Herding

《entity》

Psychology_read

er

《controll

er》

Choicema

ker

《entity》

Pressconference

《entity》

Strategy_li

b

《entity》

Agent

 Choice

Life

Herd_DNA

StrategyC

《entity》

Bankrupt_che

cker

《entity》

Data_center

Score_strategy

Score_agent

《entity》

Fortune

《boundary》

Agent_num

《boundary》

Score_ini

《boundary》

Herding_scal

e

《boundary》

Herding_num

《control》

Controller

32

Fig 6 domain model diagram

《entity》

Pressconference

《entity》

Bankrupt_checker

《entity》

Herding

《entity》

Herding_choicemaker

《entity》

Death_checker

《controller》

Choicemaker

《control》

Controller

《entity》

Psychology_reader

《entity》

Agent

 Choice

Life

Herd_DNA

StrategyC

《entity》

Data_center

Score_strategy

Score_agent

《entity》

Fortune

《entity》

Round

《entity》

Strategy_lib

《boundary》

Herding_num

《entity》

Fortune

《boundary》

Score_ini

《boundary》

Herding_scale

33

5.1.3 Attribute definitions

The Minority Game has 7 concept attributs: Agent, poorcheck, container, herdconstitution, herdchoice,

database and input variables

Each agent will choose their own strategy depend on their memory or the group advancer’s suggestion.

Furthermore, agents who have Herd DNA will set up groups and share the strategies. However, they are also

constrained by life duration, which means how long they can exist in this game system. Thus, the concept of Agent

has attributes of Choice, Life Duration, Herd DNA and Strategy_C.

After several rounds, agents whose scores are less than 0, they will excluded the system. So, Death_checker

has attribute of Exclude

System needs a container to record and contain the scores of each strategy and agent. Poorcheck and

herdchoice will call this data. So NumS_a and NumS_s are attributes for Container.

When we select herding button, we need to determine the number of groups and group scale. Furthermore, we

also need to determine which strategy each group will choose. In this case, Herding will have attributes of

Herding_scale , Herding_num, and Advcancer.

The system also needs a database to store some initial data, such as strategies, life model and herding model.

User should input initial information such as numbers of agents and rounds. So Database and InputVariables also

have some attributes.

Attribute Definition shows below.

Concept Attribute Attribute Description

Agent

Choice(memory) The strategy a agent will choose each round

Life Duration How long they can exist in this game

Herd DNA Agents who will hold together with others

Strategy_C The number of Strategies contained in agent’s memory

34

Death_checker Exclude Agents whose scores are less than 0

DataCenter

NumS_a Record and contain the score of each agent

NumS_s Record and contain the score of each strategy

Herding

Herding_scale The total number of groups

Herding_num The number of agents each group have

Advancer Agents who have the highest score in a group

Database

Strategies The initial strategies storage

MortalityType

contains enumerated type of mortality model being using

Inputs Variables

Num_a The number of agents participating in the game.

Num_r The number of rounds played before the end of the game.

35

5.1.4Traceability matrix

The traceability matrix for is shown in Figure-7. It shows how the system use cases map to the domain concepts

UC

PW

(1-5) S
ce

n
a
ri

o

A
g
en

t_
n

u
m

A
g
en

t_
n

u
m

_
ch

ec
k

e

r R
o
u

n
d

R
o
u

n
d

-c
h

ec
k

er

H
er

d
in

g
_
n

u
m

P
a
st

_
si

m
_
v
ie

w
e
r

H
er

d
in

g
_
sc

a
le

S
im

_
st

o
p

p
er

L
if

e_
o
p

t

S
co

re
_
in

it

F
o
rt

u
n

e

D
a
ta

_
ce

n
te

r

L
if

e_
m

a
k

er

S
tr

a
te

g
y
_
li

b

A
g
en

t

C
h

o
ic

e_
m

a
k

er

H
er

d
in

g

H
er

d
_
ch

o
ic

em
a
k

er

D
ea

th
_
ch

ec
k

e
r

P
re

ss
co

n
fe

re
n

ce

P
h

y
co

lo
g
y
_
re

a
d

er

UC1 5 X X X X X X X X X

UC2 5 X X X X X X X X X X X

UC3 4 X

UC4 3 X X X X X X X

UC5 1 X

UC6 2 X

Fig 7 Traceability matrix

36

5.2 System Operation Contracts

1, What are the Sections of a Contract

Operation: Name of operation and parameter

Cross reference Use cases this operation can occur within

Preconditions Note worthy assumptions about the state of the

system or objects in the Domain Model before

execution of the operation. These are

non-trivial assumptions the reader should be

told.

Postconditions This is the most important section. The state of

objects in the Domain Model after completion

of the operation.

2, Our System Operation Contracts

Operation: Agent_num_checker

Cross reference UC-1

Preconditions User inputs the number of agents

Postconditions Data valid, system runs

Operation: Bankrupt_checker

Cross reference UC-2

Preconditions 1,Data-center contain each agent’s score

successfully

2,Succeed in receiving data from Data-center

Postconditions 1, Agents exclude from system

2, New agents being added in

Operation: Herd_choicemaker

37

Cross reference UC-2

Preconditions 1, Agents hold together with others

2, Data-center contain valid data

Postconditions A strategy is chosen for the whole group

Operation: Past_sim_viewer

Cross reference UC-6

Preconditions 1, System runs successfully

2, All data is true

Postconditions Analysis graph and data

Operation: Sim_stopper

Cross reference UC-5

Preconditions system is running

Postconditions The game is finished

Operation: Agent_maker

Cross reference UC-3

Preconditions All data valid

Change initial conditions, such as Agent_Num,

Life_duration

Postconditions System runs with another speed

38

6. Plan of Work

There will be two demos of this project. The first one will be presented in

November which will show the basic function of the system. The second one will be

presented in December which will add vivid elements to the system, like situation

option, herding effect of agents, broadcast，etc. And there will be two reports in the

future. The first one will describe the design of our system and the second one will be

the final report. The plan diagram will sow below.

39

Fig 8 plan diagram

40

7. Reference

1. Software Engineering by Ivan Marsic

2. El Farol Bar Problem - http://en.wikipedia.org/wiki/El_Farol_Bar_problem

3. El Farol Bar Problem and the Minority game Project Description

-http://www.ece.rutgers.edu/~marsic/books/SE/projects/MinorityGame/

4. Project #3, group #4, Spring 2011 -

http://www.ece.rutgers.edu/~marsic/books/SE/projects/MinorityGame/2011-g4-report3.pdf

5. Project #3, group #7, spring 2012 -

http://www.ece.rutgers.edu/~marsic/books/SE/projects/MinorityGame/2012-g7-report3.pdf

6. Project #3, group #10, spring 2012 -

http://www.ece.rutgers.edu/~marsic/books/SE/projects/MinorityGame/2011-g4-report3.pdf

