
Project: "El Farol Bar Problem and the Minority Game"

GROUP #4:

Juan Bazurto

Ehud Cohen

Richard Pellosie

Justin Phalon

Mike Puntolillo

Nicholas Tse

Table of Contents

Individual contributions Breakdown 3

Customer Statement of Requirements 3

Glossary of Terms 6

Functional Requirement Specification 7

Nonfunctional Requirements 23

Domain Analysis 23

User Interface Design 28

Plan of Work 30

References 31

Individual Requirements Breakdown

Juan
Bazurto

Ehud
Cohen

Richard
Pellosie

Justin
Phalon

Mike
Puntolillo

Nicholas
Tse

Project
Management

16.00% 17.00% 16.00% 17.00% 16.00% 18.00%

Section 3 33.30% 50.00% 16.60%

Section 4 25.00% 75.00%

Section 5 10.00% 30.00% 30.00% 30.00%

Section 6 100.00%

Section 7 10.00% 10.00% 10.00% 16.00% 54.00%

Section 8 100.00%

Section 9 100.00%

Section 10 100.00%

Customer Statement of Requirements

The program designed needs to be able to simulate agents deciding whether or not

to go to a venue based on attendance in previous weeks. The user should input a

percentage P. If more than P of the total number of agents attended, then the experience

was not enjoyable due to overcrowding. If less than P attended, then the experience was

enjoyable.

Figure 1

A visualization of the agent’s brain for making decisions based on previous outcomes

The program should allow for the user to set the number of agents in the

simulation. The simulation should be able to run for multiple rounds, the amount of

which is chosen by the user. In addition the user should be able to vary the “memory” of

each agent, how many previous rounds the agents consider when making a decision.

An agent should have multiple strategies when making a decision. Every round

these different strategies should keep a score to monitor their success. At the end of each

round, all strategies which predicted the correct outcome will gain a point. The agent will

use these “scores” to decide which strategy will be used in the next round’s decision. At

the end of the simulation the program should output the strategy with the highest score

and the agent who had the highest success rate with his strategies.

Figure 2

A visualization of a strategy giving a decision based on every case with a memory of 3

The program should allow for agents to “die” or stop participating, simulating

death, losing interest in the venue, or other factors. The rate at which agents die should be

dependent on their age. A table provided by the United States Social Security

Administration gives the probability of dying based on a person’s age. The agents will

keep track of their age and die in a manner statistically consistent with the projections of

the United States Social Security Administration.

The program should allow for a human user to play in lieu of a simulated agent

and decide when to attend or not attend the bar. The program should record the user’s

responses and relate them to the strategies in place. The strategies that match those of the

user would be weighted since they are like real human decisions.

The simulation should also assign more weight to more recent outcomes. This rate

should also be adjustable by the user defaulted to so no weight is assigned.

Figure 3

An example of a weighting outcomes based on how recent they are

The program should be able to plot the data collected. This should include the

success rate of the highest rated strategy over the rounds and the amount of agents

attending per round. 3-D surface plots with two variables (such as the number of rounds

and number of players) may also be plotted at the user’s request.

Figure 4

Example output plot

List of Requirements:

1. Agents deciding whether or not to go to a venue based on previous rounds

2. *Number of agents and rounds adjustable

3. Agents with the minority decision win

4. *Agents have a limited memory of previous rounds

5. *Multiple strategies per agent

6. Strategies keep score to determine most successful

7. *A variable β is used to set the mortality for the agents

8. Human participant resulting in weighted strategies

9. *Weight assigned based on how recent an outcome is

10. Plots success rate vs. rounds and number of agents in attendance vs.

rounds

NOTE: Requirements denoted with * are parameter adjustable by the user

Glossary of Terms

Administrator- The program's main user. One who sets all parameters and interprets

output.

Agent-A simulated player of the minority game.

Loss- An agent loses when it makes the same decision as the majority of the other agents.

Memory-The set of variables in which strategy score, agent score, and a record of wins

and losses is stored.

Mortality-The ability of the system to age agents and simulate their “deaths” and

replacement.

Strategy-A set of decisions that are to be made based on a given win-loss sequence.

Win- An agent wins when it makes the decision that the least number of other agents

made.

Functional Requirements Specification

The target customers are any venues that deal with many patrons and limited

space. The example given of a bar works very well, however many other examples apply.

Gyms with many members and limited machines and weights, amusement parks dealing

with increased ride wait times with more visitors, restaurants where wait times for tables

discourages patrons, and department stores where many visitors results in messier

displays and long checkouts. These are just few of the many examples of potential

customers interested in predicting the attendance of their venues.

The program also could be marketed commercially to let the patrons of these

venues predict when to visit. Obviously when a setting is overcrowded or uncomfortable

the experience is negative. Anyone who has ever been to a bar too crowded to move

around or an amusement park with 2+ hour wait times for rides can attest to this. Whether

used by college students to figure out when a bar would be less crowded, a family with

children trying to find the shortest wait times at a park, or a mother hoping to grocery

shop with well stocked shelves and quick checkouts, the program has a market with the

general public.

Companies that sell products at the venues listed above could be interested in

sponsoring the program. In the case of the bar MillerCoors LLC, which produces Miller

Lite, Coors Light, and several other types of beer, advertise having a good time and being

with friends. A program that would allow predictions of patron behavior would let bars

know when to stock up on product and potentially increase sales.

Actors Actors Goals Use Case Name

Administrator
To choose number of agents

participating in game
NumAgent (UC-1)

Administrator
To choose the number of

rounds the agents will
participate in

NumRound (UC-2)

Administrator
To choose the number of
strategies utilized by each

player
NumStrat (UC-3)

Administrator
To choose the number of
rounds saved to memory

MemSize (UC-4)

Administrator
To toggle mortality into and

out of the game
Mortality (UC-5)

Administrator To start a game in which
the user can play as an

agent

SubAgent (UC-6)

Player To play as an agent SubAgent (UC-6)

Administrator

To choose charts to print out,
which can display results of

all games for successful
strategy, number of people

in bar each round, etc

PrintOut (UC-7)

MATLAB
To print out the chosen

charts
PrintOut(UC-7)

Administrator To Start the game Start(UC-8)

Use Case UC-1: NumAgent

Related
Requirements:

REQ2

Initiating Actor: Administrator

Actor’s Goal: To choose number of agents participating in game

Participating
Actors:

Preconditions: None

Postconditions: Number of participating Agents is set

Flow of Events for Main Success
Scenario:

 1. Administrator (a) selects the menu item “Number of Agents” (b)
types in value

4. System sets number of Agents as per entry

Use Case UC-2: NumRound

Related
Requirements:

REQ2

Initiating Actor: Administrator

Actor’s Goal: To choose the number of rounds the Agents will participate in

Participating
Actors:

Preconditions: None (though best to set amount of agents first)

Postconditions: Number of rounds for Agents to participate in is set

Flow of Events for Main Success
Scenario:

 1. Administrator (a) selects the menu item “Number of Rounds” and
(b) types in value

2. System sets number of Rounds as per entry

Use Case UC-3: NumStrat

Related
Requirements:

REQ5, REQ6

Initiating Actor: Administrator

Actor’s Goal: To choose the number of strategies utilized by each Agent

Participating
Actors:

Preconditions: None (though best to set amount of agents first)

Postconditions: Number of strategies for each Agent to use is set

Flow of Events for Main Success
Scenario:

 1. Administrator (a) selects the menu item “Number of Strategies”
and (b) types in value

2. System sets number of Strategies as per entry

Use Case UC-4: MemSize

Related
Requirements:

REQ4

Initiating Actor: Administrator

Actor’s Goal: To choose the number of Rounds saved to Memory

Participating
Actors:

Preconditions: Need total number of Rounds that will be played

Postconditions: Number of Rounds saved to Memory is set

Flow of Events for Main Success
Scenario:

 2. Administrator (a) selects menu item “Size of Memory” and (b)
types in value

3. System sets number of Rounds saved to Memory as per User
entry

Use Case UC-5: Mortality

Related
Requirements:

REQ7

Initiating Actor: Administrator

Actor’s Goal: To toggle mortality in and out of the game

Participating
Actors:

Preconditions: None

Postconditions: Mortality is set to be included in the game or not

Flow of Events for Main Success
Scenario:

 1. Administrator (a) selects the pushbutton item “Mortality” (a)
selects Yes to turn Mortality on, No to turn Mortality off

2. System records whether or not to include Mortality in the Game

Use Case UC-6: SubAgent

Related
Requirements:

REQ8

Initiating Actor: Administrator

Actor’s Goal: To start a game with the user playing as an agent

Participating
Actors:

Player

Preconditions: None

Postconditions: The User is now actively playing the game

Flow of Events for Main Success
Scenario:

 1. Administrator selects the Pushbutton item “Play as Agent” (a) Yes
to play, (b) No to not play

 2. Administrator selects Pushbutton item “Go” or “Stay” – Whether
his agent will go or stay

 2. System creates an actor “Player” for use by the Administrator in
the game

Use Case UC-7: PrintOut

Related
Requirements:

REQ9, REQ10, REQ8, REQ2, REQ7

Initiating Actor: Administrator

Actor’s Goal: To choose charts to print out, which can display results of all games
for successful strategy, number of people in bar each round, etc

Participating
Actors:

MATLAB

Preconditions: A game has been played

Postconditions: The charts are displayed in MATLAB that contains details about the
game

Flow of Events for Main Success
Scenario:

 1. Administrator selects the items in the Menu “Print Out” which he
wants to have printed

 2. System (a) accesses MATLAB and (b) sends data during Game
Play

 3. MATLAB prints out data after end of Game

Use Case UC-8: Start

Related
Requirements:

ALL

Initiating Actor: Administrator

Actor’s Goal: To start the Game

Participating
Actors:

MATLAB, Player

Preconditions: A game has been played

Postconditions: Game ends, data is collected, The charts chosen are displayed in
MATLAB that contains details about the game

Flow of Events for Main Success
Scenario:

 1. Administrator selects the Menu item “Play”

Include::NumAgent, NumRound, NumStrat, MemSize, Mortality,
SubAgent, PrintOut

 2. System (a) checks all entries in the GUI for errors (b) Then runs
the game

Flow of Events for Alternate Scenarios:

2a. Administrator enters an invalid number in any Menu item (ex.
negative value, Rounds to Memory value higher than total number
of Rounds available as set in UC-2)

1. System (a) detects error, (b) signals to the Actor, (c) re-requests
entry

2. Administrator provides valid entry

Use Case UC-8: Start

Related
Requirements:

ALL

Initiating Actor: Administrator

Actor’s Goal: To start the Game

Participating
Actors:

MATLAB, Player

Context of Use: The game will be played in situations where the user wishes to find
out the possible attendance of consumers at local area bars, stores
or other places. Based of previous attendance data and other
factors, the Game will be able to identifiy at any given time how
many people will decide to go or stay away from a location.

Scope: The system being considered is the strategies users use to
determine staying in or going to a location based on previous
experience

Stakeholders
and Interest:

Gyms, Stores, Bars, Parks and companies that service them, will
have an easier time adjusting their stock depending on the amount
of customers they can expect at any given time

Minimal
Guarantee:

The Game gives a good idea of how consumers might strategize
given certain conditions

Success
Guarantee:

The Game accurately depicts real-life strategies of the average
consumer

Preconditions: A game has been played

Postconditions: Game ends, data is collected, The charts chosen are displayed in
MATLAB that contains details about the game

Flow of Events for Main Success
Scenario:

 1. Administrator selects the Menu item “Play”

Include::NumAgent, NumRound, NumStrat, MemSize, Mortality,
SubAgent, PrintOut

 2. System (a) checks all entries in the GUI for errors (b) Then runs
the game

Flow of Events for Alternate Scenarios:

2a. Administrator enters an invalid number in any Menu item (ex.
negative value, Rounds to Memory value higher than total number
of Rounds available as set in UC-2)

1. System (a) detects error, (b) signals to the Actor, (c) re-requests
entry

2. Administrator provides valid entry

Traceability (vs.
Requirements) UC-1 UC-2 UC-3 UC-4 UC-5 UC-6 UC-7 UC-8

REQ1: Agents deciding
whether or not to go to a
venue based on previous

rounds

 X

REQ2: Number of agents and
rounds adjustable X X X X

REQ3: Agents with the
minority decision win X

REQ4: Agents have a limited
memory of previous rounds X X

REQ5: Multiple strategies per
agent X X

REQ6: Strategies keep score
to determine most successful X X

REQ7: A variable β is used to
set the mortality for the agents X X X

REQ8: Human participant
resulting in weighted

strategies
 X X X

REQ9: Weight assigned based
on how recent an outcome is X X

REQ10: Plots success rate vs.
rounds and number of agents

in attendance vs. rounds
 X X

Use Case 1:

Use Case 3:

Use Case 4:

Use Case 6:

Use Case 8:

Non-functional Requirements

As previously outline in section 3 of this report, the program has several

functional requirements. To recount some: agents deciding to go to a venue or

not, varying number of agents and rounds, multiple strategies to decide, and

limited short term memory. While these requirements define the program’s

functions, there are also non-functional requirements.

The user interface needs to be accessible for the user. All variables and fields of

interest should be displayed clearly so the desired simulation can be run. The

runtime for the most complex situation should still be relatively short. The user

does not want to wait an excessive amount of time for the results. The system

should also be able to handle values not expected, such as a negative number of

agents. In the event of a failure in the simulation, the program should reset and

notify the user of the failure.

An email for support would be useful for users. In the event of an error a report

could be sent leading to fixes. In addition the email could allow for users to

recommend new features. An increase in maintainability directly increases the

appeal for the user.

Domain Analysis

Concepts:
Responsibility Description Type Concept Name
Coordinates actions and data of associated concepts;
essentially the controller of the system. D Main

Container for the game’s settings, including the number of
agents, the number of strategies, agent mortality, etc. K Global

Creates and oversees a set of strategies. D Agent
Container for an agent’s set of strategies; used to determine
attendance at bar. K StrategyList

Analyzes an agent’s current set of strategies in order to
determine the most successful, and reports whether or not an
agent should attend the bar.

D Decider

Updates both an agent’s memory as well as the score of its
strategies based on the previous round’s outcome. D Updater

Provides the user with a straightforward way of initializing
game settings via a GUI. D DataEntry

Provides the user with a clear and concise way of viewing
program feedback via a GUI. D StatusDisplay

Associations:
Concept Pair Association Description Association Name

Main - Global
Main passes data fields originally entered
via DataEntry into Global. forwards

Main - Agent Main calls the Agent class constructor. constructs
Agent -
StrategyList

Agent adopts a set of strategies randomly
out of a pool. constructs

Updater - Agent
Updater adjusts an Agent’s memory
according to the outcome of the previous
round.

updates

Updater -
StrategyList

Updater adjusts a StrategyList’s scores and
strategies according to the outcome of the
previous round.

updates

Decider -
StrategyList

Decider analyzes the available strategies
within StrategyList and determines the
most successful one.

analyzes

Decider - Agent
Decider reports the appropriate course of
action to an Agent. reports

Attributes:
Concept Attributes Attribute Description

Global ALPHA
Plays a role in the memory decay factor of an
agent.

M
Number of past outcomes considered when making
a decision to go to the bar or not.

NUMAGENTS The number of agents participating in the game.

NUMSTRAT
The number of strategies available to an agent at
any given time.

ROUNDS The number of rounds played before the end of the

game.
MORTALITY Whether agent mortality is enabled or not.

Agent score
Overall success of an agent participating in the
game.

strategyList List of strategies available to a given agent.
memory Simulated memory of an agent.
curStrategy The current strategy being used by an agent.
age The virtual age of an agent.
barVisits The number of times an agent has visited the bar.

StrategyList score The score of a particular strategy within the list.

System Operation Contracts

The operation contracts for the few elaborated use cases are summarized below:

Operation UC-1: NumAgent – set number of agents participating in the
game

Preconditions - NumAgent field must be a numerical value
- number of agents specified > 0

Postconditions - the NumAgent field is set in game settings

Operation UC-2: NumRound – set number of rounds in the game

Preconditions
- NumRound field must be a numerical value
- number of rounds specified > 0

Postconditions - the NumRound field is set in game settings

Operation UC-3: NumStrat – set number of strategies available to each agent

Preconditions
- NumStrat field must be a numerical value
- number of strategies specified > 0

Postconditions - the NumStrat field is set in game settings

Operation
UC-4: MemSize – set number of rounds stored in an agent’s
memory

Preconditions
- the total number of rounds in the game must be specified
- MemSize field must be a numerical value
- 0 < memory size specified ≤ NumRound

Postconditions - the MemSize field is set in game settings

Operation UC-5: Mortality – toggle agent mortality in the game
Preconditions - Mortality field must be boolean in nature (true/false)
Postconditions - the Mortality field is set in game settings

Operation UC-6: SubAgent – toggle program user participation in game
Preconditions - SubAgent field must be boolean in nature (true/false)
Postconditions - the user can play as an agent in the game

Operation UC-7: PrintOut – print the results of a completed game

Preconditions
- a game has already come to completion and its data resides in
memory

Postconditions
- data relating to the completed game is displayed onscreen for the
user

Operation UC-8: Start – finalize game settings and being new game
Preconditions - valid selections reside in all GUI fields
Postconditions - a new game begins with specified settings

Mathematical Models

Basic Models:

The El Farol Bar problem and similar minority games are heavily dependent on

mathematical and logic computation. Agents participating in the game are completely

reliant on probability derived and calculated from previous rounds when making the

decision whether to attend the bar. The model for such a game is outlined below. It is

important to note that the agent with the highest score at the end of the last round is the

winner, while the score of each individual strategy in used during each round in

determining an agent’s next move. In this first case, it is assumed that agents do not yet

experience memory decay.

- The headcount at the bar can be modeled via the following equation, where A(t) can

never be zero in the case of an odd number of agents:

A(t) = j=1Naj(t)

If A(t) < 0, the majority of the agents stayed home and the bar at round t was enjoyable.

If A(t) > 0, the majority of the agents went to the bar and the bar at round t was crowded.

-Payoffs to those agents who made appropriate decisions can be modeled by:

gi(t) = -ai(t) * A(t)

If gi(t) > 0, agent i won round t.

If gi(t) < 0, agent i lost round t.

Agents winning a round have their individual scores incremented one point appropriately.

-Payoffs to those strategies that ultimately produced a winning outcome can be modeled

by:

σij(t) = σijt-1, if aij*&At<0σijt-1+1, if (aij*At)>0

The score of strategy j of agent i is incremented one point only if it yielded a

correct prediction. Otherwise, the score remains the same as in the previous round

t-1.

Extensions:

One extension to be implemented in this minority game is memory decay for all agents.

Under this model, a memory decay factor α is introduced into the scoring of strategies for

each agent. The ultimate affect is that more recently won rounds have a greater impact on

which strategy an agent will choose for their next move.

-Payoffs to those strategies that ultimately produced a winning outcome can be modeled

by:

σij(t) = α*σijt-1, if aij*&At<0α*σijt-1+1, if (aij*At)>0

Where 0 < α ≤ 1, and a smaller value of α correspond to a faster decay in memory.

The previous score for the strategy j of agent i is first adjusted via α before it is

incremented one point if it yielded a correct prediction. Otherwise, the score

remains the same as in the previous round t-1 adjusted by the factor α.

 User Interface Design

a) Preliminary Design

Figure 8.1: Screen Mock-up of User Interface

Users will have to enter the number of agents, strategies for each agent, the size of the
agent’s memory, how many rounds, whether they have mortality, whether they wish to
play as an agent, and the outputs they wish to display, examples of some shown in figure
8.2. If the user chooses to play, each time they will choose whether to stay or go and
press enter. The game will run and display the round and score.

Figure 8.2: Examples of Possible Outputs As Seen in Project Description

b) User Effort Estimation

Run the Minority Game with Computer Agents Example
1. Navigation: total 1 Click, as follows

○ Click “Play” to run the game.

2. Data Entry: total 6 clicks and 8 keystrokes, as follows
a.Click on the “Number of Agents:” text box
b.Press the key “5”
c.Press the “Tab” key to move to the next text field (“Strategies per
Agent:”)
d.Press the key “2”
e.Press the “Tab” key to move to the next text field (“Size of Memory
for Each Agent:”)
f.Press the key “3”
g.Press the “Tab” key to move to the next text field (“Number of
Rounds:”)
h.Press the key “1” and “0”
i.Click the “No” option for the “Mortality:” field
j.Click the boxes for the “Choice 1”, “Choice 3”, and “Choice 5” for
the “Print Out:” field
k.Click the “No” option for the “Play as Agent:” field

Run the Minority Game while Playing as an Agent Example
1. Navigation: total 10 clicks, as follows

a. Click “Go” option for the “Play as an Agent:” field
b. Click “Play”.
c. Click “Stay” option for the “Play as an Agent:” field
d. Click “Play”.
e. Click “Stay” option for the “Play as an Agent:” field

f. Click “Play”.
g. Click “Go” option for the “Play as an Agent:” field
h. Click “Play”.
i. Click “Go” option for the “Play as an Agent:” field
j. Click “Play” for the final round.

2. Data Entry: total 6 clicks and 7 keystrokes, as follows
a.Click on the “Number of Agents:” text box
b.Press the key “5”
c.Press the “Tab” key to move to the next text field (“Strategies per
Agent:”)
d.Press the key “2”
e.Press the “Tab” key to move to the next text field (“Size of Memory
for Each Agent:”)
f.Press the key “3”
g.Press the “Tab” key to move to the next text field (“Number of
Rounds:”)
h.Press the key “5”
i.Click the “Yes” option for the “Mortality:” field
j.Click the boxes for the “Choice 2”, “Choice 4”, and “Choice 6” for
the “Print Out:” field
k.Click the “Yes” option for the “Play as Agent:” field

Plan of Work

After the submission of report #1, the group plans to further develop the software
as well as begin work on report 2. A basic demo should be ready 1 week in advance of the
demo date. After demo 1, the group will add a number of extensions to the project and
begin work on the Electronic Project Archive.

Dates:

Feb 19: Begin work on Second Report / Develop Software
March 10: Finish Second Report
March 22: Finish Demo 1
March 29: Give Demo
April 1: Begin addition of extensions
April 15: Begin Electronic Project Archive
May 1: Finish all software Development
May 2: Give Second Demo
May 4: Finish Electronic Project Archive

References:

Software Engineering by Ivan Marsic

http://www.ssa.gov/oact/STATS/table4c6.html

http://www.blog.joelx.com/odds-chances-of-dying/877/

http://dying.about.com/od/causes/tp/leastdying.htm

http://www.ssa.gov/oact/STATS/table4c6.html
http://www.blog.joelx.com/odds-chances-of-dying/877/
http://dying.about.com/od/causes/tp/leastdying.htm

