
1	

	

14:332:452: Software Engineering

Group #4

El Farol Bar Problem and the Minority Game

http://stickytack.com/efb/

Juan Bazurto

Ehud Cohen

Richard Pellosie

Justin Phalon

Mike Puntolillo

Nicholas Tse

2	

	

Breakdown

 Points Juan
Bazurto

Ehud
Cohen

Richard
Pellosie

Justin
Phalon

Michael
Puntolillo

Nicholas
Tse

Project
Management

10 10% 20% 70%

Section 3 35 20% 50% 30%
Section 4 13 100%
Section 5 17 10% 20% 70%
Section 6 4 100%
Section 7 10 80% 20%
Section 8 4 75% 25%
Section 9 2 100%

Responsibility Allocation

0	

5	

10	

15	

20	

25	

Juan	
 Ehud	
 Richard	
 Jus2n	
 Michael	
 Nicholas	

3	

	

2. Table of Contents

Interaction Diagrams 4

Class Diagram and Interface Specification 9

System Architecture and System Design 9

Algorithms and Data Structures 12

User Interface Design and Implementation 16

Progress Report and Plan of Work 18

References 21

4	

	

3. Interaction Diagram

UC-1: ConfigureGame	

Responsibilities associated:

1) Controller Coordinates actions and data of associated concepts (i.e. sets up values

for game, gets values for error checking and retrieval of data, etc.)

2) Error Check makes sure all values inputted by user are valid

Descriptions of Design Principles:

 The set of responsibilities we assigned to Controller abides by High Cohesion Principle

since it does not handle much computation, but rather a simple check if the user selected a

value on or off. The Controller is responsible for communication between the Administrator and

5	

	

the System, and as such it does not follow Low Coupling Principle. Since the Controller handles

all requests between the user and the System it rather abides by the Expert Doer Principle.

UC-2: PlayAlong

Responsibilities associated:

1) Controller Coordinates actions and data of associated concepts (i.e. sets up values

for game, gets values for error checking and retrieval of data, etc.)

2) Error Check makes sure all values inputted by user are valid

6	

	

Descriptions of Design Principles:

 The set of responsibilities we assigned to Controller abides by High Cohesion Principle

since it does not handle much computation, rather it sends the computation responsibility to

Error Check.

Error Check does not abide by High Cohesion as it handles the computation to check for invalid

entries by the User. The Controller is responsible for communication between the Administrator

and the System, and as such it does not follow Low Coupling Principle but rather is does follow

Expert Doer Principle.

Error Check also abides by Expert Doer as it is the first one to find out if the Game should be

run by the System, and the first to notify the User of any errors.

UC-3: PrintStatistics

7	

	

Responsibilities associated:

1) Statistics keeps track of all Game data for use by MATLAB

Descriptions of Design Principles:

 The set of responsibilities we assigned to Statistics abides by High Cohesion Principle

since it does not handle any computation, rather it sends data to an external Actor to handle the

values.

Statistics does not abide by Low Coupling as it is the sole communicator between the System

and MATLAB – it tells MATLAB what data the System is requesting to be printed out. We can

also say it abides by Expert Doer as it knows who should handle the task requested by the

System.

UC-4: RunGame

8	

	

Responsibilities associated:

1) Controller Coordinates actions and data of associated concepts (i.e. sets up values

for game, gets values for error checking and retrieval of data, etc.)

2) Error Check makes sure all values inputted by user are valid

Descriptions of Design Principles:

 The set of responsibilities we assigned to Controller abides by High Cohesion Principle

since it does not handle any computation, it only acts to send the message to the Error Check.

The Error Check in turn messages the System and the Administrator (thus, since Error Check is

the one that gets the information necessary to run the Game, only it abides by Expert Doer).

Error Check does not abide by High Cohesion as it handles the computation to check for invalid

entries by the User.

Since both the Controller and the Error Check handle forms of communication with Actors, they

do not follow Low Coupling.

9	

	

4. Class Diagram, Data Types and Operation Signatures

5. System Architecture and System Design

Architectural Styles

 The architecture of this program proves to be almost purely event-driven. In an event-

driven architecture, there exist any number of event states, event emitters or agents that read

and make decisions (in our case, whether or not to go to the bar) based on these states, as well

as event consumers or sinks that apply a reaction when an event is presented.

10	

	

This accurately describes what is essentially occurring within the system of the El Farol

Bar Game, which simulates the decisions of agents based on the state of the memory that is

currently available to them. Initially each agent is given a random stack of strategies that appear

equally appealing. After each successive round or event, however, the states of these strategies

are altered by the outcome of said event, and the most successful strategy is ultimately chosen

by an agent to direct their decision in the next round. The scores of an agent’s strategies,

therefore, can be considered the event states of the architecture, while the outcome of each

particular round acts as the event sink. The event agents in this case would simply be the

agents participating in the minority game.

This program could conceivably be a database-centric architectural style as well. In this

case, a database of all agents, their strategies, and their past successes and failures would be

set in place. This database would be what the entire system depends on for functionality. In

such an architecture, it is imperative that the database be functional at all requested times.

Identifying Subsystems

11	

	

 The figure above illustrates the subsystems within the program. The Parameters

subsystem which is composed of the administator defined values for components (such as short

term memory length, number of agents, etc.) is used in every other subsystem. Dependent on

Parameters is Run which is the subsystem of running the game. Contained within Run is Agent

which the subsystem of the agents of varying ages maintaining their total scores and bar visits.

The Strategies subsystem is contained within Agents. This subsystem defines the actual

strategies each agent uses along with their individual scores. Also dependent on Parameters is

Human Player which is a subsystem composed of the scores the human user accumulates.

Global Flow Control

 Execution Orderness

 The system set in place for the El Farol Bar Game is procedure-driven in a sense

 that once the desired game settings are set in place and the program is run, all rounds

 experience the same linear procedure iteratively until the max round is reached. At the

 end of this final round, game data will be available for User review. The only exception to

 consider is if the User chooses to participate as an agent in a particular game, in which

 case the program’s iterative procedure will pause each round to accept the User’s

 choice whether to attend the bar. The User has virtually no choices to make once the

 program begins aside from this exception.

 Time Dependency

 This system is of event-response type in that it has no concern for real time or

 time scale. Because each round of a game can be considered an instantaneous event, it

 is not necessary to keep track of any quantity of time. What is of primary importance is

 the outcome of each of these instantaneous events, how these events affected agent

 behavior, and the ultimate result of the concluded game.

12	

	

 This is not to say that the run time of this particular system is not of importance,

 and the efficiency of the system is still under consideration.

 Concurrency

 The use of multiple threads in this system was not necessary.

Hardware Requirements

 Display Resolution 640x800

CPU 2.0 GHz

Size on Disk 256 MB

RAM 1 GB

MATLAB

JAVA

Installed prior to running

Current version running

6. Algorithms and Data Structures

Algorithms

1) Strategy Assignment

 File: Agent.java:

 Function: public Agent()

 Within our class agent, we have a function which creates the strategies for each

 individual agent. We have two main things to consider when building strategies for each

 agent: The number of strategies we are giving to each agent, and the uniqueness of

 strategies within one agent. Thus, we set the loop to go from the 0th element to one

13	

	

 less than the number of strategies. As we are looping, we generate a random number (

 a strategy) and verify that this agent does not already contain this strategy using a while

 loop. If we do have duplicates, we will generate another random number.

2) Padding for Binary Representations

 File: Strategy.java

 Function: public Strategy(int num)

 Within our function Strategy, we loop through our list of strategies built for our agents,

 and verify that they all have the proper amount of bits to keep consistent binary formats.

 Basically, if we encounter a number that has fewer bits than our global variable which

 tells us how many it should have, then we keep appending 0’s to the front until it has that

 many bits.

3) Mortality for Agents

 File: Main.java

 Function: Main

 Lines: 52-69

 For this function we collected an array of probabilities (located in global), each

 representing the chance that any given person dies at a specific age. We have a range

 of 0-119 years old. Each Agent has an associated age which is incremented at the end

 of each round. First grab an Agent and the associated probability to the Agent’s age.

 Then, compare the probability to a randomly generated number(fraction < 1). If the

 random number is less than or equal to the probability, they die. Otherwise they live. If

 they live past 119 years of age, we just use the probability given for the age 119.

14	

	

 Additionally, we consider an adjustment variable based on the “health” of the agent. We

 create small fractions based on how many times the agent actually goes to the bar and

 “drinks his health away” and then add this adjustment to the probability that they’ll die.

4) Strategy Switch Outs

 File: not yet completed

 Function:

 We are going to create a function which keeps track of each agent’s strategy

 performances and discards bad strategies to be replaced with better ones. For the total

 points won by that agent, we see how many each strategy contributed. After enough

 rounds pass, and we have sufficient data to determine performances, we can create

 fractions comparing the number of points the strategy has won, to the total number of

 times it has been used. If it falls below a certain ratio, we decide it is not a good strategy

 and we discard it. We then will choose another strategy and assign it an initial score

 equal to the average score amongst the strategies remaining for that agent. This will

 ensure that we do not discard it too soon.

Note: There aren’t many complex algorithms going on within this game yet. We may add

additional algorithms later to improve the quality of the results, but so far this has been sufficient

for the initial testing.

Data Structures

1) ArrayList

 ArrayList is a built in class of java which has many methods that are useful for

 the implementation of this game. Among these methods are functions for adding

15	

	

 elements, replacing elements, getting elements, removing elements, as well as iterators

 to return the elements in the list, and search functions to get information about elements

 in an array. Since we will be keeping multiple ArrayLists linking our data, the most

 useful methods to us are the searching methods such as contains() and indexOf() which

 allows us to easily determine if multiple lists contain the same element (thus linking it to

 the others) , and to grab the index of the said element in either list.

 Example: if we were to have an ArrayList of strategies for one agent, and we

 have and ArrayList of all strategies with their associated scores, we could use the two

 searching methods to verify that this specific Agent’s strategies already exist in the full

 list. If it does not, we can add it easily using the add() method. If a strategy is already in

 existence, we can grab the index where it’s located in the full list, and jump to that

 element to modify the score.

 An ArrayList was chosen in place of an array for two reasons:

 1) ArrayLists have variable length which provide flexibility

 2) The java class ArrayList has a function called contains() which makes

 checking for uniqueness simpler and more efficient in terms of coding.

2) Array

 As mentioned above it is a similar structure to ArrayList, but it does not have the nifty

 built in functions and flexibility. Although not as frequently, we do use this data structure.

16	

	

7. User Interface Design and Implementation

The original GUI mockup, Figure 7.1, was made using Microsoft Paint.

Figure 7.1 Original GUI

There have been a few modifications made to lower user effort and include new extensions.

The new GUI was made using Microsoft Paint as well and is shown below in two different

modes, default and Mortality and Human Player enabled.

Figure 7.2 Default Main Menu

17	

	

Figure 7.3 Menu with Mortality and Human Player Enabled

There are several differences in the design of the user interface. One small difference is

that the Play push button is now the Simulate Game push button. Another difference is that a

text box was added where the user chooses Beta, which is the probability an Agent will die each

round. This will increase the user effort, however, due to another click and more keystrokes.

Also, the Human Player is now enabled through a check box instead of a radio button.

Likewise, the Go and Stay are changed from radio buttons to push buttons, however, this

means that there will be one less click each time the player participates in a round because that

Go and Stay buttons have the same function as Simulate Game buttons when enabled, which

decreases the user effort. Changing Go and Stay to be push buttons can be a significant

decrease in user effort depending on the number of rounds chosen to play. In order to make

the GUI ease-of-use good, the GUI has been changed so that it is more compact and follows a

top-to-bottom and left-to-right format so that the game will be able to be simulated at the bottom

right section.

18	

	

The way in which the interface operates has also been changed. Now, when the Human

Player check box is not enabled, the Go and Stay push buttons, as well as the Round and

Score static text boxes, are not enabled, as seen above in Figure 7.2. Conversely, when the

Human Player check box is enabled the Go and Stay push buttons and the Round and Score

static text boxes are also enabled, but the Simulate Game push button is disabled. Also, when

the user enables the Mortality, the Beta text box will be enabled. The GUI with Mortality and

Human Player enabled is shown above in Figure 7.3. Finally, an error notification GUI has been

added to appear when an error is detected in the user input, as shown in Figure 7.4 below.

Figure 7.4 Error Notification

8. Progress Report and Plan of Work

Progress Report

 Though initially encountering some issues in defining our use cases and domain model,

the El Farol Bar Team is confident on meeting all current goals and deadlines in a timely matter.

19	

	

At the moment our team has yet to implement any use cases. However, we have gone as far as

to create a working program that has the capabilities to run a simulation with a variable number

of players and rounds, and that can display the winner(s) at program conclusion. Additional

features that have been recently added include simulating the death of players during the game,

and the depreciation of strategy scores over time.

 Hurdles that we have recently completed include a vigorous refinement of our initial use

cases as well as a detailed restructuring of our original domain model. We feel that these

changes better reflect the models discussed in lecture as well as the requirements on the

course website. It is also worth noting that these changes have also caused some adaptations

to our initial code. We expect final refinements to our models to be completed within the next

few weeks.

Plan of Work

 The following are tentative dates that the El Farol Bar Team has decided upon. A more

in depth schedule of deadlines will be given in the future:

Approx. 1 week from 3/10/11

 - Completed refinement of domain model and concepts within domain model.

 - Implement ability for agents to replace poorly performing strategies.

Approx. 2 weeks from 3/10/11

 - Implement basic user interface by which users can modify parameters, run a

simulation, and be provided with basic output.

March 28, 2011: Full test of current program functionality before first demo.

April 4, 2011: Implementation for User to play as an agent.

20	

	

April 11, 2011: Working implementation of A.I. Agent.

April 25, 2011: Full test of current program functionality before second demo.

May 1, 2011: Ability to compile an electronic project archive.

Breakdown of Responsibilities

 The following describes the modules currently under development, and the member

primarily responsible for the development of said module.

 GUI - Juan

 Agent - Mike

 Strategy - Rich

 User Player - Justin

 Specialty Agents (A.I.) - Nick

 Currently, El Farol Bar Team member Mike is responsible for coordinating the integration

of the above modules upon their completion. A joint effort between members Nick and Ehud will

complete the testing of the integrated system.

21	

	

9. References

Software Engineering by Ivan Marsic http://www.ssa.gov/oact/STATS/table4c6.html 	

	

http://www.blog.joelx.com/odds-chances-of-dying/877/ 	

	

http://dying.about.com/od/causes/tp/leastdying.htm	

	

http://java.sun.com/products/jlf/ed2/book/	

	

http://atlas.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/interaction.htm	

	

http://www.jot.fm/issues/issue_2005_11/article5/

