
Rutgers University
Software Engineering

Health Analytics Engine
Group 5

Rizwan Chowdhury, Nathaniel Arussy, Dang Khoa Dinh, Smeet Kathiria, Eric Rivera, Hersh
Shrivastava, Suva Shahria, Khalid akash

0. Contributions Breakdown 3

1. Customer Statement of Requirement 7

2. Glossary Terms 9

3. System Requirements 11
3.a Enumerated Functional Requirements 11
3.b Enumerated Non-functional Requirements 12
3.c User Interface Requirements 13

4. Functional Requirements Specification 16
4.a Stakeholders 16
4.b Actors and Goals 16
4.c Use Cases 17

i. Casual Description 17
ii. Use Case Diagram 17
iii. Traceability Matrix 19
iv. Fully-Dressed Description 20

4.d System Sequence Diagrams 23

1

5. Effort Estimation using Use Case Points 25

6. Domain Analysis 31
6.a Domain Model 31

i. Concept definitions 32
ii. Association definitions 33
iii. Attribute definitions 35
Iv: Traceability Matrix 36

6.b System Operation Contracts 37
6.c Mathematical Model 38

7. Interaction Diagram 41

8. Class Diagrams and Interface Specification 49
Class diagram 49

9. System Architecture and Design 53
Architectural Styles 53
Subsystem Package Diagram 54
Mapping Subsystems to Hardware 54
Persistent Data Storage 55
Network Protocol 56
Global Control Flow 57
Hardware Requirements 58

10. Algorithms and Data Structures 59
Algorithms 59
Data Structures 60

11. User Interface Design and Implementation 61
11.a Design 61
11.b User Effort Estimation 64
11.c Changes That We Have Made 64
11.d Ease-of-Use Employed 65

12. Design of Tests 66
12.a Test Cases 67
12.b Test Coverage 68
12.c Integration Testing 67
12.d Plans for More Tests 68

13. History of Work, Current Status, and Future Work 69

14. References 74

2

0. Contributions Breakdown

Name Percentage

Nathaniel Arussy 14.29%

Rizwan Chowdhury 14.29%

Dang Khoa Dinh 14.29%

Smeet Kathiria 14.29%

Eric Rivera 14.29%

Suva Shahria 14.29%

Hersh Shrivastava 0%

Khalid Akash 14.29%

3

Summary of changes

With relation to not predicting disease anymore:

1) Adapted and edited language of Customer Problem Statement.
2) Adapted and removed System Requirements relating to this
3) Adapted and removed Use Cases relating to this

With relation to third party access to public data:
2 and 3 are repeated from before

With relation to login procedure changing from email and password to metamask
2 and 3 are repeated from before
4) Incorporated into 11.a and 11.c and 11.d
5) Glossary Terms Updated

Design of tests:
Test case 3 added
Test cases 1 and 2 made to integrate more into third test

Section 4:
Added Use Case 10

Section 11:
Updated UI Designs
Updated Changes we made to disclude user created units, and include Login

4

Discussions and Notes:
This section is not apart of the report 2 standard; rather it is meant to discuss

questions, concerns and provide additional information to the reader about our choices
of the technologies that we use in our project.

Ethereum Costs and Feasibility
The core of our system is using the Ethereum Blockchain to store data.

The primary concern with using this existing blockchain infrastructure is the cost
of using it. To store data into the blockchain and to run functions that require
going through that data require currency called Ether. Ether is valued at $189.20
per Ether. For our system we have to consider the price of Ether and the data we
store as well as whether or not actually using the blockchain for our problem is a
feasible idea.

For our population descriptor service, we will analyze how much data we utilize
and its price in the Ethereum Blockchain. Within the Ethereum blockchain there are
costs to uploading/updating data, they are done through transactions in the blockchain
which. Transactions, since they change the state of the blockchain, require
Ether(money). Reading data from the blockchain is free of charge, unless special
functions are employed. For our system, the main costs (for the blockchain) arise from
uploading/updating user population descriptors. We will have many users who will
regularly update/upload their data. The costs, however, depend on how much ether is
actually charged for data put into the blockchain. The price fluctuates but from our
testing so far we have seen that uploading 1000 samples of data requires around 3
Ether. Which, if we are to have many customers with many updates/uploads, will
become a significant amount of money. Our estimates, with the current price of
Ethereum is that 1 mb of data will take around $600 to store. This is currently a lower
price than that of approximately 1 year ago when Ethereum hit its peak price, making
the price of 1mb upwards of a few thousand dollars.

Ultimately, the price of using the Ethereum blockchain will vary based on how
much data we store within the blockchain. If we store heavy data, magnitudes in
gigabytes or higher, then the costs are far too great. In that case, this particular
blockchain is not feasible for our system and should not be used. If, however, at the end
it ends up the data we store is in the magnitudes of kilo-bytes to megabytes, then costs
can be more manageable for the system.

5

Why use Ethereum Blockchain?
With the concerns about costs and etc., a question that we considered

was why use the Ethereum Blockchain at all. Why not implement our own? We
decided to use Ethereum due to the already existing infrastructure it provides and
the benefits that come from it. Having an already existing infrastructure provides
greater persistence and allows for focus on other features. We will discuss two
particular important reasons for our use of the Ethereum blockchain.

The original blockchain paper for bitcoin invented a novel designed called the
Blockchain that was a way to persist data and keep consistency among all participating
nodes. The specific implementation of this concept was called the Bitcoin which was a
way to transfer digital currencies to participants. However, other blockchain projects
also came up with their own implementation of the blockchain concept, such as Name
coin which persists domain names over the network. Ethereum was novel because it
was able to use the blockchain concept to generalize the specific implementation of the
use of blockchain by allowing users to upload code to customize the behavior of the
blockchain. Concepts like Bitcoin and Name coin can easily be implemented on the
ethereum network without having to start a new blockchain from scratch. This leads to
the next important point.

The integral focus of the block-chain is data persistence and redundancy. For a
blockchain persistence is based on how many nodes exist within the network to hold
data/ledgers. If there are not many nodes (computers connected to the network) then
the there is a greater impact whenever a node stops participating within the network,
valuable redundancy is lost. Furthermore, when there are less nodes there is less
incentive for new nodes to join or old nodes to continue participating in the network.
These events cause the blockchain to lose places to store data/ledgers thus making
data persistence an issue. With Ethereum, we do not have this issue since it is an
established blockchain network, currently the 2nd most popular blockchain
implementation. The Ethereum blockchain network has many nodes which guarantees
data persistence. Working with a blockchain that does not have the participants that
ethereum already has makes it so that participants are less incentivized to pursue in
mining.

Furthermore, since Ethereum is an established network, there exist many tools
and apis that can be used to make our system better. For example, we utilize the web3
library built specifically for the Ethereum blockchain to carry out many functions relating
to Logins and carrying out function on data in the blockchain. Also we are planning on
utilizing a tool called MetaMask to make logging in simpler and more secure for our
users.

Another reason for using the Ethereum blockchain is to save effort on
constructing a new blockchain infrastructure and instead focus on features. We get

6

additional time to work on better graphics and other services that we would not be able
to offer otherwise.

1. Customer Statement of Requirement
World health in perspective: chronic, noncommunicable diseases (NCDs), like

cardiovascular disease or obesity or diabetes, are steadily increasing around the world. There
are 422 million people with diabetes in 2014. This means roughly 1 in every 16 people on the
planet has this disease. The WHO estimates that diabetes was the seventh leading causes of
death in 2016. Diabetes can be treated and its consequences avoided or delayed with diet,
physical activity, and checking blood glucose regularly. The majority of the burden is shouldered
by low, and middle income countries. Population growth and aging are the largest contributors.
In the US, the number of people over 65 is expected to triple in 2030, while there is a shortage
of healthcare professionals. Furthermore, the market for biosensor is expected to surpass 29
billion dollars in 2024. Combating non-communicable disease has been outlined in a number of
reports by the WHO and US government which included reducing deaths from NCDs by 25
percent by 2025.

World Bank study estimates NCDs will cost the global economy about $35 trillion from
2005 to 2030. Data-driven diagnostic and analysis are the way of the future. There are 3
reasons for that: increased older population and rising awareness among people, shifting

7

interest toward home diagnosis, and increased adoption of personalized and technological
products.

Our goal shall be to offer a meaningful service to our clients by helping them anticipate
health problems and enabling the customers to live a healthier life. When medical data of theirs
stands out of the norm too much, we will offer inform the user, and offer some following steps..
Now, users can see their health status on demand. The product will use the large portion of
population data and data visualization to put the information into perspective. The product fits
well with the trend of personalized medicine and early diagnosis. We will design our product
with innovation in mind. So, the system can be adjusted to customer’s preferences, medical
studies, and advances in biosensor.

The users will need to input medical (e.g. weight, heart rate) to our web-based service
and then receive the result. We are working hard to make the service up to date with diverse
features to give an in-depth look into the current state of population health. We plan for the
product to be an evolution, by bringing data analysis to health-conscious users and health
experts alike. Currently, our service focuses on physiological parameter. We will allow the
blockchain to persist all user data and attempt to filter out any malicious requests to alter the
overall descriptors of the population.

The product will strive to effectively communicate the data and analysis to customers
through visual and non-visual means. We will provide visual and non-visual data to help
customers compare their own data to others as well as see the bigger picture. The system will
contain UI to show graphs that map the aggregate data with respect to each health
parameter(or a set of parameters) for groups of people. The graphs will offer to pin-point the
location of the users’ data so that customers can see where they are relative to other users in a
population group. For data that cannot be represented visually there will also be non-visual and
text-based UI to show users their data and analysis of that data.The visual data presentation will
be a key part in this product. Visual aids, like graphs, will bridge the gap between everyday
customers and complex domain technicalities. If the data is mostly numbers then the user may
have problems coming to proper conclusions. It would also make the results boring and stale,
which would cause loss of attention/interest from the customers. Visual graphs can retain
attention and effectively communicate the data and analysis. User will be able to see their place
amongst population groups regarding different parameters or conditions and be able to better
analyze their own circumstances. They will see connections between different health
parameters as well. This would ultimately lead to better decision making on the customer’s end.

Our product uses the cutting edge technology of blockchain. The essence of blockchain
is decentralized. Since, there is no central server to hack into, a number of users with strong
computing power can act as super node to process the data. With a blockchain, anyone with
network access can readily access a growing list of user data persisted permanently as long as
the blockchain network stays up. However, the cost of performing computation and storing data
in any decentralized blockchain comes with its own costs.

8

Blockchain data can be persisted by having participating nodes mining (submitting proof
of work) and offering to perform computations. Replicating all transactions that have been made
and constantly competing with other nodes to submit a block is expensive. Estimates show that
storing 1 gb of data in a decentralized blockchain like Ethereum costs $186,700 while a typical
database costs $00.02 for an equivalent amount. Storage is only part of the costs as the
blockchain we would like to utilize is Ethereum; a blockchain that can also perform arbitrary
computation on nodes which brings additional costs. Along with this, blockchains are not
optimized for mass data retrieval such as other SQL or NoSQL databases.

Ultimately, we don’t believe blockchain to be a one stop solution for all purposes; rather,
it is a powerful, customizable (in the context of Ethereum), reliable and persistent solution for
public data. Using blockchain technology and a group of micro-services (centralized servers and
databases) to augment the blockchain, we would like to create a tool to allow customers to truly
gauge their health in the context of their peer population. We will ensure that public data is
always persisted, not only for our use, but for the use of any other services that would like to
use it.

2. Glossary Terms
Smart Contracts- A smart contract is an immutable computer protocol intended to digitally
facilitate, verify, or enforce the negotiation or performance of a contract. Smart contracts allow
the performance of credible transactions without third parties. Smart contracts can be made by
uploading Ethereum Virtual Machine code to the Blockchain and can be invoked by any outside
party via transactions.

Storage- Place where all the contract state variables reside. Every contract has its own storage
and it is persistent between function calls.

Memory - This is used to hold temporary values. It is erased between (external) function calls.

Ethereum Virtual Machine - The Ethereum Virtual Machine (EVM) is a Turing complete virtual
machine that allows anyone to execute arbitrary EVM Byte Code. Every Ethereum node runs on
the EVM to maintain consensus across the blockchain.

Truffle Framework - Truffle is a development environment, a testing framework and a crypto
asset pipeline in one for development of smart contracts in Solidity programming language.

Gas(Ethereum) is a unit that measures the amount of computational effort that it will take to
execute certain operations.

9

Blockchain - A blockchain is a growing list of records, called blocks, that are linked using
cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and
transaction data.

Block - A block records some or all of the most recent transactions that have not yet entered at
any prior blocks. In other words, it is a group of transaction at a particular time.

Block time- The block time is the time needed to generate the next block in the chain. It is
essentially the time the blockchain miners need to find a solution to the block hash.

Hash - A hash is a function that converts an input of letters and numbers into an encrypted
output of a fixed length.

Keccak256 computes the Ethereum-SHA-3 (Keccak-256) hash of the arguments passed into
the function. This is how String comparison is done in Solidity. Input values are hashed to a
uniform 32 bytes, and the resulting hash code of the strings are compared. It can also be used
for pseudo-random number generation.
Solidity is known as a contract-based, high-level programming language. This platform has
similar syntax to the scripting language of JavaScript. Solidity as a programming language is
made to enhance the Ethereum Virtual Machine. Solidity is statically typed scripting language
which does the process of verifying and enforcing the constraints at compile-time as opposed to
run-time.

Nonce - A nonce is an abbreviation for "number only used once," which is a number added to
an encrypted block in a blockchain that, when rehashed, meets the difficulty level restrictions.
The nonce is the number that blockchain miners are solving for. When the solution is found, the
blockchain miners are offered cryptocurrency in exchange.

Ethereum network- A collection or a group consisting of several different nodes running an
Ethereum client. Otherwise referred to as a super-node.

Node - A node is a participating computing system on a blockchain network. A powerful machine
that is able to run blockchain software. The role of a node is to support the network by
maintaining a copy of a blockchain and, in some cases, to process transactions.

MetaMask- Allows user to run Ethereum in browser without running a full Ethereum node. This
includes a secure identity vault, which offers a user interface to manage identities on different
sites and sign blockchain transactions.

10

3. System Requirements

3.a Enumerated Functional Requirements

Enumeration Priority Description

REQ-1 10 The system shall keep immutable data submitted by
participants in a population and persist it forever.

REQ-2 9 The system shall keep user-data anonymous to anyone
other than the user.

REQ-3 5 The system shall allow the user to use their own data as
payment for descriptors of the entire population in general
for the given data-type.

REQ-4 2 The system shall parse the data time-series data on behalf
of the user and present it.

REQ-5 5 The system shall allow the user to upload user-data from
any device with a web browser available.

REQ-6 2 The system shall allow the user to request for updated data.
The system should periodically update data presented to
the user by-itself without manual intervention.

REQ-7 1 The system shall allow participants to retrieve only their
data via a popular transport format (JPEG).

REQ-8 4 The system shall parse the data and present it in a useful
visual format for the user to see where they stand in the
population and detect trends (different forms of graphs).

REQ-9 8 The system shall provide ways to store identity information
and persist it permanently.

REQ-10 6 The system shall provide ways to authenticate a given user
for its population descriptors.

REQ-11 5 The system shall process the blockchain data and give
useful statistical information to the user in addition to data
visualization.

REQ-12 3 The system should try to rate the user’s standing within the
population positively or negatively and give users web links
to more information on how to improve such factors.

11

3.b Enumerated Non-functional Requirements

Enumeration Priority Description

REQ-13 3 The system will log out users on the web client after
prolonged inactivity

REQ-14 2 The amount of transactions by system required in a certain
period of time (hours)

REQ-15 6 The amount of data the system needs to store must be
malleable. The amount of storage needs to scale with new
users.

REQ-16 7 A user can’t log into another user’s account through
malicious activity.

REQ-17 4 User experience is enhanced by quick response from the
system, gathering and uploading data to the database is
fast, ui runs smoothly.

REQ-18 7 Should have an easy and intuitive UI for existing and new
users.

REQ-19 3 User should be notified of failed login attempts.

REQ-20 5 Users can access the web client through all popular web
browsers on computers and smartphones.

12

3.c User Interface Requirements

UI requirements Priority Description

REQ-21 10 Graphical Visualization of Aggregate
Population Data. Users require the ability to view
their standings within populations. Line graphs, pie
graphs, and maps are a good means by which to
provide that insight. Users will be able to view
graphs of aggregate data, and view their position
within graphs by hovering over graphs and will
have their position highlighted with the information
at that point.
Elements include:

-Line Graphs
-Display Bar: displays values being hovered
over in graph.
-Pie Graphs
-Map: Where some of these results are
coming from

REQ-22 8 Non-graphical data display. Some data or data
summaries, such as means or medians, are better
displayed as text. Users will need ui to view data
they wish to see in an organized manner. Data will
be shown user personal progress, comparisons to
average, and suggestions on how to proceed.

REQ-23 7 The system will contain DATA ENTRY FORMS to
obtain personal population parameters from users.
Will contain various input methods to obtain
required data based on type of question. User’s
weight will require text entry while whether or not a
user has a certain condition will require a
selection.. Input methods include:

-Text Entry Fields(to enter user data like
weight or height)
-Radio Buttons (for single choice question)
-Multi-Select Buttons

13

Figure 2.1 - Data Entry Forms

Figure 2.3 - Visual Data Presentation side by side with non-graphical data

REQ-24 7 User Login Page. Users will require input means
to enter their login information in order to access
services and create an account with the system.
Elements include:

-Sign up button
-Login Button
-Ethereum Account authorization

REQ-25 7 User Log-Out Button
-Showing log-out button on certain screens
once the user is logged into the system.
-On user interaction with logged out button,
system should go back to the login page.

14

Figure 2.4 - User-Login Page

15

4. Functional Requirements Specification

4.a Stakeholders
I.Health App User - Has an interest in the system, because the user wants to monitor their
own health status.
II.Blockchain - Is a ledger that records transactions, and, in this project, health data. The
cryptography of the blockchain has to keep this data secure.
III.The medical service provider – Access to mass data analytics on secure data
IV.Health Patients – Benefit from their caretaker giving contextualized diagnoses and
information relative to others

4.b Actors and Goals

Actors Goals

User(Initiating) To be able to access the webpage and be able to login into
the system.

User(Initiating) To be able to access information of their own profile and
health data.

User(Initiating) To be able to see and compare their current health standings
relative to other users on a graph that maps users health

data.

User(Initiating) To be able to input their health information.

Non-User(Initiating) Able to create an account with the system.

Site Administrator(Initiating) Perform administrative work for the website, manage
database,smart contracts,server.

SmartContracts
(Participating)

computes statistics and health data based on user input.

16

4.c Use Cases

i. Casual Description

Use Case Name Description Requirements

UC-1 login The ability for one to
access their account
after authorization.

REQ-24,REQ-16

UC-2 InputData Allows the user to
input their health
related information
into the system

REQ3,
REQ-5,REQ-23,
REQ-9,

UC-3 ReceiveDataForUser The user will be able
to see all their data at
any given time.

REQ6,
REQ7,REQ22,
REQ21

UC-4 CompareData The system will
compare data from
the user to the
population through
various visual means.
E.g. graphs, tables,
etcetera

REQ-22, REQ-21,
REQ-12, REQ-11,
REQ-8, REQ-4

UC-5 DisplayVisualAnalytics The system shall
display all data in a
graphical/visual
format.

REQ4, REQ8,
REQ-22, REQ-21,
REQ-17

UC-6 LogoutUser The system logs out
the user after
prolonged inactivity
or if the user
requests to be
logged off,

REQ25, REQ-13

UC- 7 Register(Account Creation) Allows non-user to
create an account
with the system to
use the services.

REQ-23

17

ii. Use Case Diagram

Figure

UC-8 Data Administration Allows site
administrators to
manage user data
stored on blockchain
like data
request,persisting,out
put and write efficient
smart contracts.

REQ-14,REQ-1
REQ-4

UC-9 User Notification Notifies user on
incorrect data input

REQ-23

UC-10 Resource Suggestion Offer user resources
based on compared
data

REQ-12, REQ-22

18

iii. Traceability Matrix

Reqs PW UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10

REQ1 10 X X

REQ2 9 X

REQ3 5 X

REQ4 2 X X

REQ5 5 X X

REQ6 2 X

REQ7 1 X

REQ8 4 X X

REQ9 8 X X

REQ10 6

REQ11 2 X

REQ12 1 X X

REQ13 7 X

REQ14 5 X

REQ15 3 X

REQ16 3 X

REQ17 2

REQ18 6 X X

REQ19 7 X

REQ20 4 X X X X X X X X X

REQ21 2 X X X X X

REQ22 3 X X

REQ23 5 X

REQ24 10 X X

REQ25 8 X X X

MaxPW 10 4 10 8 10 7 10 4 6 3

TotalPW 48 7 47 17 38 16 28 7 12 4

19

iv. Fully-Dressed Description

Use Case: UC-2 InputData

Requirements REQ3, REQ5,REQ-22, REQ-9,

Initiating Actor: User

Actor’s Goals: To access the system and put in health
information, log in information.

Preconditions: The user has access to the internet to
interact with the system.
The system asks for and has ways to fill out
all the necessary information

Postconditions: The information will be stored in the system
to be used by the blockchain. The user can
view their information.

Flow of Events:
1.<- System asks for identification in the form of a login
2.-> User supplies the right identification information.
3.<- The system prompts for information to be filled out.
4.->User fills in the necessary information they want to fill out.

Extensions
1a User chooses to create an account because they’re a new user.
 -> User click on the create new account button
 <- System takes the user to the page to create new account
1b Login failed
 <- System notifies user of failed attempt
 <- System allows user to try to login again.

Use Case: UC-4 CompareData

Requirements REQ-20, REQ-21, REQ-12, REQ-11,
REQ-8, REQ-4

Initiating Actor: User

Actor’s Goals: To parse through the block chain data and
give back useful information comparing the
user’s data to the population data.

20

Preconditions: The user is logged in to the system.

Postconditions: The system will display the users data vs the
populations data to the user in various visual
medium; only the type

Flow of Events:
1.<- The user asks system to show population data
2.<- The system parses and analyzes the population’s data.
3.<- The system creates useful visual mediums to display
4.<- The system makes comparisons and analyzes the user’s data vs the population’s
data.
5.<-The system display the user’s standing compared to the population
6.<-The system provides web links based off their standings to further improve the user’s
health

Use Case: UC-3 ReceiveDataForUser

Requirements REQ6, REQ7,REQ20, REQ21

Initiating Actor User

Actor’s Goals User will initiate an action to receive his or
her personal data from the blockchain and be
presented with visual analytics of his/her
data.

Preconditions: The user is logged in to the system

Postconditions: The user will receive processed data from the
blockchain and will have graphical
representations of his or her personal data.

Flow of Events:
1.<- The user asks to show user data
2.<- The frontend asks a proxy service to gather data from the blockchain using a user
identifier
3.<- Blockchain smart contract is invoked to retrieve paginated data
4.-> Data is returned to proxy service to process and format for different visualization data
charts.
5.-> Data is returned to the frontend to be presented to the user

21

Use Case: UC-1 Login

Requirements REQ 23, REQ 15

Initiating Actor User

Actor’s Goals User will access his or her account.

Preconditions: The user has been authorized to access the
account entered.

Postconditions: The user will now be able to modify and
view his or her data.

Flow of Events:
1.-> System prompts user for the username and password.
2.<- User enters username and password.
3.-> System looks through database to find the account.
4.-> If account exists, system authorizes the user.

Alternate Flow of Events
1.-> System prompts user for the username and password.
2.<- User enters username and password.
3.-> System looks through database to find the account.
4.-> If account does not exist, system prompts for the correct information.
5.<- User enters information again.

22

4.d System Sequence Diagrams

Figure 3.c.1 UC-2

23

Figure 3.c.2 - UC-5

24

Figure 3.c.3 UC-3

25

Figure 3.c.4 UC-1

5. Effort Estimation using Use Case Points

Actor Classification

Actor Name Description Complexity Weight

User/Frontend(FE) The user is interacting with a
graphical user interface during
account log in, account creation, data
entry, and viewing their results (visual
and text-based)

Hyper-
Complex

4

Blockchain Database system interacting with the
server via smart contracts

Average 2

26

Server Data processing system interacting
with the blockchain via smart
contracts and with the front-end/user
via GraphQL API

Average 2

Smart Contracts A smart contract is an immutable
computer protocol intended to digitally
facilitate, verify, or enforce the
negotiation or performance of a
contract.

Average 2

UAW(Health Engine) = 0x
Simple + 3x Average + 1x
Hyper-Complex = 3x2 + 1x4
= 10

Use Case Classification

User Case Description Category Weight

Login (UC-1) Moderate user interface.
6 steps for success scenario.
4 participating actors (FE, Server,
Smart Contracts, Blockchain)

Average 10

InputData (UC-2) Moderate user interface.
7 steps for success scenario.
4 participating actors (FE, Server,
Smart Contracts, Blockchain)

Complex 15

ReceiveDataForUser(UC-3) Complex user interface.
8 steps for success scenario.
4 participating actors (FE, Server,
Smart Contracts, Blockchain)

Complex 15

CompareData (UC-4) Complex user interface.
13 steps for success scenario.
4 participating actors (FE, Server,
Smart Contracts, Blockchain)

Complex 15

DisplayVisual
Analytics (UC-5)

Complex user interface.
13 steps for success scenario.
4 participating actors (FE, Server,
Smart Contracts, Blockchain)

Complex 15

27

LogoutUser (UC-6) Moderate user interface.
6 steps for success scenario.
4 participating actors (FE, Server,
Smart Contracts, Blockchain)

Average 10

Register (UC- 7) Moderate user interface.
8 steps for success scenario.
4 participating actors (FE, Server,
Smart Contracts, Blockchain)

Complex 15

Data Administration (UC-8) Moderate user interface.
8 steps for success scenario.
3 participating actors (Server, Smart
Contracts, Blockchain)

Complex 15

User Notification (UC-9) Simple user interface.
3 steps for success scenario.
1 participating actor (FE)

Simple 5

Resource Suggestion
(UC-10)

Complex user interface.
13 steps for success scenario.
4 participating actors (FE, Server,
Smart Contracts, Blockchain)

Complex 15

UUCW(Health Engine) = 1x
Simple + 2x Average + 7x
Complex = 1x5 + 2x10 +7x15
= 130

Technical Complexity
Factors

Technical Factor Description Weight Perceived
Complexity

Calculated
Factor

T1 Distributed System:
Distributed web-based system
by blockchain nature

2 3 2x3=6

T2 Response time/performance
objectives: Minimizing latency
for data fetches to the
blockchain is important.

1 3 1x3=1

T3 End-user efficiency: User
expects good performance.

1 3 1x3=1

28

T4 Internal processing complexity:
Complex processing through
smart contracts and GraphQL
API

1 5 1x5=5

T5 Code reusability: Necessary for
GraphQL calls that feed data
visualisations and other user
data interactions

1 3 1x3=3

T6 Easy to install: Web based
system. Installation not
applicable.

0.5 0 0

T7 Easy to use: User ease of use
is very important. Minimal
learning curve for system.

0.5 3 0.5x3=1.5

T8 Portability to other platforms:
Portable across many modern
browsers.

2 3 2x3=6

T9 System maintenance:
Compartmentalized system
design is crucial to feature
addition/enhancements/
modifications. Moderate effort
for change required.

1 2 1x2=2

T10 Concurrent/parallel processing:
Multiple users access and use
the service at any given time.
This is a requirement.

1 4 1x4=4

T11 Security features: Blockchain
technology is very important to
protect sensitive health data.

1 5 1x5=5

T12 Access for third parties: Not
applicable.

1 0 0

T13 End user training: No training
required.

1 0 0

Technical Factor Total: 34.5

TCF(Health Engine) =
Constant-1 +
Constant-2 x Technical
Factor Total
 =
0.6 + (0.01 x 34.5) =
0.945

29

Environmental Complexity
Factors

Environmental Factor Description Weight Perceived
Impact

Calculate
d Factor

E1 Familiarity with
development
process: UML-based
approach

1.5 3 1.5x3=4.5

E2 Application problem
experience: some
experience with
application problem

0.5 2 0.5x2=1

E3 Experience of team:
Distributed experience
among the team

1 3 1x3=3

E4 Lead analyst
capability: Team leader
has good capability

0.5 4 0.5x4=2

E5 Motivation: Motivation
distributed among the
team

1 3 1x3=3

E6 Stability of
requirements:
moderately stable
requirements expected

2 4 2x4=8

E7 Part-time staff: All
team members are
part-time members of
the course/project
development

-1 5 -1x5=-5

E8 Difficult programming
language:
Programming
language of average
difficulty
(Javascript,Typescript)

-1 3 -1x3=-3

Environmental Factor Total: 13.5

30

6. Domain Analysis

6.a Domain Model

Domain Model Diagram

ECF(Health Engine) = Constant-1
+ Constant-2 x Environmental
Factor Total
 = 1.4 +
(-0.03 x 13.5) = 0.995

Use Case Points and Project Duration

Use Case Points Calculation:
UCP = UUCP x TCF x ECF
 = (10 + 130) x (0.945) x (0.995) = 131 Use Case Points

Project Duration:
Using a productivity factor of 28 hours per use case point,
Duration = 28 * 131 = 3668

31

i. Concept definitions

Responsibility Description Type Concept Name

Website with React pages for account log in, account
creation, and viewing outcomes and results in UI made
from Scalable vector graphics.

K User Interface
(GUI)

Form specifying the parameters for data retrieval from the
blockchain, as well as parameters for desired data
analysis.

K Data Request

Data input form where the user enters their health
information

K User Data

Render non-graphical data and summaries in an
organized way for user-requested data

D Text Data Display

Create data visualizations for the user-requested data D Data Visualizer

Establishes a connection to the Ethereum Blockchain.
Accepts data requests and user data, and returns the raw
data

D Smart Contract

Analyses the raw data for the requested measurements D Data Analyzer

Container for user’s authentication data (individual and
third-party users)

K Key

Verifies that a user with appropriate credentials exists. If
not, inform the user and proceeds accordingly. Obtain
permission for third-party login.

D User Authenticator

Coordinate actions of system concepts and user requests.
Responsible for data retrieval and transfer to concepts.
Refresh data periodically and log out users after
prolonged time.

D Controller

Holds account information of a specific user and provides
complete flexibility in managing users own data.

K Account

Stores account data, user data and collaborates in all
activities related to data visualization, administration and
storage.

K,D Database

32

ii. Association definitions

Concept Pair Association Description Association Name

User-Interface (UI) <-> Key User enters their login information
or new user information on the UI

User Credentials

Key <-> Authenticator The authenticator takes the user’s
information and prepares
verification request, which is sent to
the controller.

Prepares Request

Authenticator <-> Controller (1) Controller receives verification
requests, used to invoke the
appropriate smart contract.

(2) Controller informs authenticator
of successful login

(1) Conveys Request

(2) Conveys result

Controller <-> Data Request Controller receives a request for
data. It prepares a formal data
request

Prepares Request

Controller <-> User Data Controller receives user data. It
prepares a formal data upload
request

Prepares Request

Controller <-> Smart
Contracts

(1) Controller generates a request
to invoke the appropriate smart
contract for data retrieval

(2) Controller receives raw data
from the blockchain

(1) Generates Request

(2) Receive Data

Controller <-> Data Analyzer Controller passes raw data to the
data analyzer

Conveys Data

Analyzer <-> Data Visualizer Analyzer passed processed data to
be visualized

Conveys Data

33

Authenticator <-> User-
Interface

(1) Authenticator requests
permission for third party log in

(2) Authenticator requests valid
user credentials

(1) Request Permission

(2) Request Credentials

Analyzer <-> Text Data
Display

Analyzer passed processed text
data to be displayed

Conveys Data

Data Request <-> User-
Interface

User enters parameters for data
request, which is then contained in
a form

Receive Parameters

User Data <-> User-
Interface

User enters request for personal
data, given the parameters (e.g.
user id)

Receive Parameters

Text Data Display <-> User-
Interface

Display the non-graphical data in
an organized way

Display Data

Data Visualizer <-> User-
Interface

Display graphical data Display Data

Controller <-> Database (1) Controller generates a data
retrieval/upload request

(2) Controller receives data from
the database

(1) Request Data

(2) Receive Data

Authenticator <-> Account Once authenticated, user account
data is stored in Account concept
(from database)

Send Account Info

Account <-> Data Request Data request receives account
information to be passed along with
the request

Receive Account Info

Account <-> User Data User Data form receives account
information to be passed along with
the user data

Receive Account Info

34

iii. Attribute definitions

Concept Attributes Attribute Description

Data Visualizer Set data This is setter for the system where the data
is converted into visual form to fetch to GUI

Set user’s preference This allows the data visualizer to be
customized to each user’s taste

Smart Contracts
(Ethereum network)

Invoke a transaction The server will the blockchain to add a new
node in the common chain which typical
occur when there is a new user or old user
update their data

Add parameters This adds flexibility to the system as the
administrator adjust the system based on the
user’s preference

Get Data An entry or interface between the server and
the blockchain to extract the data for the user

Authenticators Get key This is for the getter and setter for the front
and back to authenticate and distinguish
between the user and third partySet key

Controller (server) Create new account This shall allow the new users to register to
the service

Log out timer Used to trigger automatic logout after idle
time

Get key Together with the Authenticator forms the
login mechanism

GUI (or web page) Post This is the primary way that the front
interacts with the server and the Ethereum
networkGet

Key Credentials User’s identification information, such as
user ID and password

User Data User Identity User’s identification information

User Information User’s health information to be uploaded

35

Iv: Traceability Matrix

Data Request User Identity User’s identification information

Search Parameters Parameters indicate the wanted data/
measurements

Text Data Display User Preferences Customization parameters for results

Set Data This is setter for the system where the data
is converted into organized text form to fetch
to GUI

Data Analyzer Parameters Parameters indicate the wanted data/
measurements

Database Accounts Record of existing accounts

Account User Identity User’s identification information

User Information User’s health information

36

6.b System Operation Contracts

Name: Login

Responsibilities: To have the user access his or her account.

Use Case: 1

Exception: Password is wrong, or user does not have an
account.

Precondition: User has an account. System prompts user
for both username and password.

Postcondition: User is now logged in and able to use and
modify the account.

Name: InputData

Responsibilities: To have the user put in health information.

Use Case: UC-3

Exception: User does not have an account. User does
not put in their correct information.

Precondition: The user has access to the internet to
interact with the system.
The system asks for and has ways to fill out
all the necessary information

Postcondition: The information will be stored in the system
to be used by the blockchain. The user can
view their information.

Name: ReceiveDataForUser

Responsibilities: System will visually display to the user his or
her data, when the user prompts the system
for data.

Use Case: 4

Exception: None

37

6.c Mathematical Model
A large amount of population data will be collected on our blockchain of public data. Our job will
be to present this data to the user via basic statistical methods.
For example, we will present different variables of data over a period of time via line graphs and
show changes in slope over periods of time. For personal data, we can show change of physical
characteristics over a period of time. The following graphs are samples given by the open
source Apache ECharts library.

Figure 5.c.1

Precondition: User has logged in/been authorized.

Postcondition: User’s health data will be displayed graphical
representations.

Name: CompareData

Responsibilities: System will retrieve health data from the
blockchain and compare this to that of the
user.

Use Case: 5

Exception: None

Precondition: User has logged in.

Postcondition: The app/system will display the user’s health
data compared to the overall population’s
health data.

38

We can also present bar graphs whilst displaying standard deviations, averages, modes, and
medians on those graphs.

Figure 5.c.2
We may also choose to record the location of the user to show frequency of a certain
characteristic in a geographic location.

Figure 5.c.3

39

To support user data privacy, we will implement a cryptographic encryption algorithm to all data.
For now, we are planning on using the asymmetric algorithm, RSA, to secure user data. As a
private key, we can use the same private key that is used for access to the Blockchain. Thus
only users that inputted the data can read from that data. For global data that is visible to all
users, we will store it in plain text in the blockchain.

The server and blockchain interaction is dependent on the implementation of Ethereum network
which is defined in the Ethereum yellow paper. Ethereum is a project which attempts to build the
generalized technology; technology on which all transaction-based state machine concepts may
be built. The execution model is specified through a formal model of a virtual state machine,
known as Ethereum Virtual Machine. The machine has a simple stack-based architecture. The
word size of the system is 256-bit.
Furthermore, Ethereum implementation relies on Merker trees . Although it is definitely
theoretically possible to make a blockchain without Merkle trees, simply by creating giant block
headers that directly contain every transaction, doing so poses large scalability challenges that
arguably puts the ability to trustlessly use blockchains out of the reach of all but the most
powerful computers in the long term. Thanks to Merkle trees, it is possible to build Ethereum
nodes that run on all computers and laptops large and small, smart phones, and even internet of
things.
The data structure and implementation of ethereum

40

Merkel tree in Ethereum

41

7. Interaction Diagram
The following are system sequence diagrams for our most important use cases.

Figure 3.c.1.1 UC-2

42

Figure 3.c.1.2 UC-2

This first use case shows the sequence of the insertValue use case where users will
need to insert some sort of value to the blockchain network for personal and global use.
The three participating systems are the Frontend Client (GUI), the centralized backend
server (Data Processor Service), and the Blockchain (Blockchain Service). First the
user (Actor) interacts with the Frontend Client to insert some value via a form. A loading
indicator is optionally shown depending on implementation. The client sends a request
to the backend service which validates/filters any requests that are out of the norm
(outliers in the data). Then, if data insertion in the blockchain is successful, the chain will
bubble back to the actor, alternatively failure will flow back to the user as well. In terms
of design principles, we tried to make the most of the system as stateless as possible;
only keeping state in the blockchain. In addition to this, we used a three tiered
architecture pattern to separate the concerns of the frontend, the processor, and the
storage.

43

Figure 3.c.2.1 - UC-4

44

Figure 3.c.2.2 - UC-4

This use case shows how data of population descriptors are retrieved from the
blockchain. The three participating systems are the Frontend Client (GUI), the
centralized backend server (Data Processor Service), and the Blockchain (Blockchain
Service). The user (Actor) first asks what units of descriptors are available to the client,
which traverses through the centralized backend, to the blockchain. This returns all
available units which the user chooses from. Then the user asks the user to gather data
for a specific unit and this traverses through to the blockchain into a paginated data
request. Depending on the graph that the page wants to render, different pagination
counts may be chosen. Then the backend formats the data in a format that the frontend
wants to consume, at which point the data traverses back to the frontend client to
render to the user. For brevity, UC-4 also has a very similar sequence but only involves
user specific data (in which case a user context will be passed to retrieve the data).

45

Figure 3.c.4.2 UC-1

46

Figure 3.c.4.2 UC-1

This use case pertains to logging into the system and identifying the user for
Authentication/Authorization. This is an estimated sequence as the full implementation
of the authentication must be actively researched. However, the only place we expect
things to change is in the CheckAccountExists method in DataProcessorService and
BlockchainService. Failure and success produces sequences that bubbles up to the
user.

47

Model View Controller

This design pattern is popular in UI because it decouples responsibilities between the
business logic(model), the UI(view), and the user interaction(controller). The React
frontend is no exception. Thus, the design frontend is centered around this design
pattern.

48

8. Class Diagrams and Interface Specification

Class diagram

Compare to the domain analysis in report 1. We have rearranged the class into 4
stages: frontend, transport layer (graphql), the backend, Ethereum network. Most of the
concepts remain the same as in report 1. After an iteration, we decided to add in some
data objects to represent the transport layer in practice. After report 2, we implement
more feature leading to more changes in the class diagram

Class Operation and
Attribute

Description to in the class diagram

Text Data Display Set user preference Customize text display to the users’
preference then send it to the controller

Set Data The server will pass the data into the
method

Visual Data Display Set user preference Customize the visual display to the
users’ preference then send it to the
controller

Set Data The server will pass the data into the
method

49

Interactive page Get The primary getter and setter for the
front end to connect to the backend

Post

Visual Components Push Notify the controller to change page

Render Render each independence page

User Authenticator Compare pass Comparing the password to verify the
user’s id for the controller

Set key Receiving the user credential from the
key

Get key Get the hashed key to compare with
the password

Data
Analyzer(Data
processor)

Parameters Analyze the data to determine the
mode, median or other important
indicators and sending it back to the
server

Data Return/
Mutation/ Return

ID The user’s id

Parameters The request and return data

Smart Contracts Invoke transaction A transaction usually occurs when a
new user signup or the old user update
their data

Add parameters Add flexibility to the system as the
administration can add new parameters

Get Data The interface for the blockchain to
connect to the blockchain

Key User Credential User’s identification information, such
as user ID and password and passing
to the controller

Account ID The user’s id

Parameters The user’s health information

Controller Logout timer After a certain amount of time, the
system will log the user out.

50

Design patterns

Model View Controller speed up the development process by providing tested, proven
development paradigms. This allows our team to focus on other features and reduce
communication overhead instead of reinventing the wheels. Freshly written code can
often hide subtle issues and require communication overhead. Reusing design patterns
helps to prevent such subtle issues, and it also improves code readability for coders and
architects who are familiar with the patterns.

Object Constraint Language(OCL) Contracts

Create new account Set up the new account when request
on coming in for the page and invoke a
transaction

Listen Receive request and send the data
from the interactive page via the
transport layerSet data

Display

Invariant Login credentials and data input that the user inserted.

Pre-Condition If the valid credentials are inserted request is made to
the blockchain service and data is retrieved.

Post-Condition The user will receive processed data from the
blockchain and will have graphical representations of
his or her personal data

51

Registration

Invariant User must be an unregistered user with the system.

Pre-Condition All the mandatory personal details asked should be
entered by the user.

Post-Condition User gets registered with the system and is ready to
proceed with his/her health monitoring.

Data Processor

Invariant Analyze the data to determine the mode,
median or other important indicators and
sending it back to the server

Pre-Condition Data retrieved from user input.

Post-Condition Heart rate averages and weight ranges of the
population is determined.

Session Controller

Invariant Should receive a request for logoff, must track
the time user is logged into the system and
request for log- off generated after specified
period of inactivity.

Pre-Condition User is logged into the system.

Post-Condition User Session should be logged out after
inactivity for a considerate amount of time and
maintained otherwise until requested log-off

52

9. System Architecture and Design

9.a Architectural Styles

Our system employs different types of architectural styles across different scope. From
the scope of the entire system a Three-Tiered architecture is implemented. The client-
side user interface acts as the presentation layer where a user can make requests and
view the results. User requests are handled by the application layer, a Node JS Express
server. The model in this architecture is composed of the various files and functionalities
of the GraphQL api as well as the Smart-Contracts for the Ethereum Blockchain. The
GraphQL api interacts with the database (the blockchain in our case) and handles all
queries. Furthermore, GraphQL provides the capacity to apply business logic to the data
from the database through resolvers. Resolvers are functions that can either simply
retrieve data from storage or retrieve data and manipulate them as appropriate. The
Smart-Contracts are called through the resolvers in order to obtain the data from the
blockchain, they are a tool necessary specifically for the blockchain. Through the user-
interface, Express server, and GraphQL api a MVC architecture is obtained.

While from a larger scope, our application is Three-Tiered, inside each of the tiers
(particularly the client and server), we employ a Model-View-Controller architecture. The
Express server file resides within the same package as GraphQL schemas and
functions. This may be viewed as the controller and model being one large backend
server. Since the controller and model share a package they can be treated as a single
entity in which case this becomes a client-server architecture. However, the controller
and model functionalities are kept separate and one does not depend on the other for
functionality.

The model as a collection of several modules and files itself has a layered architecture.
The model is composed of several functions and schemas relating to the GraphQL api
and Smart-Contracts for the blockchain. The highest layer is comprised of the
“serveGraphQLRequest” contained within the graphql index file. This function receives
the query request and then passes it onto the different resolvers. The GraphQL
resolvers are a layer below and they process the query to determine which data is
requested. The resolvers then call on the Smart-Contracts through the services layer.
The services layer receives function calls from the resolvers then sends back results,
sometimes by calling on Smart-Contracts. The Smart-Contracts interact directly with the
blockchain and obtain the information requested by the resolver and returns. The
resolver can then carry out logic with the data and then pass it back to

53

“serveGraphQLRequest” which will send the results to the controller to be displayed.
Each of these layers interact only with the adjacent layer, the Smart-Contracts can only
be accessed through the services layer which is accessed only through the resolvers
and so on. There is a clear hierarchy which establishes a layered architecture.

9.b Subsystem Package Diagram

9.c Mapping Subsystems to Hardware

Our system breaks down to three subsystems that will run in three different sets of
hardware. The client side front end, the web server where the controller and several
services for the database reside, and finally the blockchain.

Client-Side Frontend: This is a collection of webpages and user-interfaces that the
user will interact with. This subsystem will reside in the user’s device through a web
browser, and will use whichever device the user is accessing the website with.

Web-Server: The web-server will contain the Express Server and some other services
that will be used to process the data. The webserver will also act as an intermediate

54

between user interface and the data in the blockchain. This will have to be hosted on
servers specifically for web-servers. We do not yet have anything specific in our plans
but services such as Amazon Web Services or Github can provide the necessary
hardware and services to host the web-server.

Blockchain: Essentially the database of the system, will house the data collected from
users. Blockchain is a decentralized peer-to-peer system that exists with many devices.
Each device in a node contains data. Since blockchain as a concept requires many
devices it cannot be mapped to a single piece of hardware, rather the requirement for a
blockchain network would be as many computers as possible. More computers mean
more devices to store data and more security. Blockchain does not require any special
hardware, regular computers are adequate, the requirement is to have several to many
devices. For an Ethereum blockchain specifically, devices that are already part of the
Ethereum Blockchain network will be necessary.

9.d Persistent Data Storage

Users in our system will be interacting with the ethereum blockchain to manage their
data. Ethereum uses a tree data structure as illustrated in the figure below.

55

Underlying the structure:

State trie
There is only one state trie. The state trie contains a key and value pair for every
account that exists on the Ethereum network. It constantly gets updated.

Storage trie 
Each Ethereum account has a storage trie. All the contract data lives here.

Transaction trie 
Each block in the ethereum network has its own Transaction trie  . Transaction
data is stored here.

Merkle Tree:
Ethereum stores two types of data permanent data and ephemeral(temporary)
data. Transactions are considered permanent data and stored in the transaction
trie and is never altered. Ethereum account address is considered temporary
data and is stored state trie.

Blocks are stored on a multi-level data structure. The hashed address of a block
points only to the block header which contain the timestamps, previous block
hash, and the root hash of the merkle tree data structure that has all the
transactions in the block. Each node of the tree is the hash of its children. A “full
node” following the merkle tree protocol takes up about 15+ GB of disk space.

Ethereum also supports a protocol called "simplified payment verification" (SPV).
This allows “light nodes to exist” which download the block headers and only
download the branches with transactions that are relevant to them. Proof of work
is verified on the block headers.

9.e Network Protocol
We will be using a backend proxy server that retrieves data from the blockchain.
Reading and processing data from the blockchain is expensive, and results in high
latency, as a result we will use the proxy server for caching and processing. The server
will make JSON-RPC (Remote Procedure Calls) to communicate with the blockchain.
The frontend will use the query language Graphql to query from the backend proxy
server.

JSON-RPC is a stateless, light-weight remote procedure call (RPC) protocol

56

To talk to an ethereum node from inside a JavaScript application use the web3.js library
JSON can represent four primitive types (Strings, Numbers, Booleans, and Null) and
two structured types (Objects and Arrays).

Ethereum runs on a decentralized network. There is no central server. It's a peer-to-
peer system. Each node can read and send data to other node.
All nodes can request from another node information about Ethereum’s current state
such as smart contract, account balance. To facilitate this form of communication,
Ethereum uses a Kademlia-like protocol for node discovery. Each node has an id which
is hashed. Each node stores a table of known nodes. To look for a node
the node can asks other known nodes to look for a node.

The Design Philosophy behind Ethereum.

Simplicity: The ethereum protocol is designed to be as simple as possible at the cost of
time efficiency and storage so that anyone can implement their own blockchain.

Modularity: Ethereum is designed to be modular and as separate as possible. If you
made a small protocol modification in one location, the application stack will continue to
run.

Non-discrimination and non-censorship:The protocol will not restrict or prevent specific
use cases. Ex. You can run an infinite loop on the blockchain as long as you are willing
to pay the per-computational-step transaction fee.

9.f Global Control Flow
The system is event driven. The user interacts with the system by first registering his
username and password. The user login and the next step is the user input the
necessary data to the system and has access to view their data and standing compared
to public data which is obtained using blockchain service and is presented in form of bar
charts and line graphs. The system does not log anyone in until the initial event is driven
by an external request. For time dependency, the backend of the system periodically
processes pending data.

To tackle the issue of concurrency in our application. Considering the use of blockchain,
having many threads accessing the same memory(multithreading) can produce race
conditions that are very hard to reproduce and fix.

57

For a better solution than a multithreaded approach, our code runs things in parallel,
which refrains us from creating new threads and allowing the need to sync them. The
virtual machine and the operating system run the I/O in parallel and for sending data
back to the Javascript, the JavaScript part is the one that runs in a single thread.

Our code consists of small portions of synchronous blocks that run fast and pass data
back end and front-end processing functions. This process is faster since it doesn’t
block the execution of other pieces of JavaScript. Our application just invokes the
function and does not block the execution of other pieces of code. It will get notified
through the callback when the query is done, and we will receive the required user
health data.

To decrypt the values of the JavaScript query that returns a few thousand results of
different user’s health data. Task at the back end is performed in such a way that it will
split into smaller synchronous code blocks that will notify Node.js to split the task into
smaller chunks using callback functions and so it can continue executing pending things
that are in the queue after receiving callback.

We are using asynchronous I/O approach. The code consists of small portions of
synchronous blocks that run fast and pass data to different places where needed. This
approach doesn’t block the execution of other pieces of JavaScript.

There are no timers in the system with no time constraints, since the system runs on
blockchain data. Any user who is familiar or new to the system can input their data by
logging in and compare it with the public.

9.g Hardware Requirements

●Processor (CPU) with 2 gigahertz (GHz) frequency or above.
●A minimum of 2 GB of RAM.
●Monitor Resolution 1024 X 768 or higher.
●A minimum of 20 GB of available space on the hard disk (for blockchain nodes).
●Keyboard and Mouse or compatible pointing device.
●Network card should be enabled and installed to access internet.
●A bandwidth that can successfully load a modern Javascript application. Since
there is no time sensitivity, a recommended 1 mbps should be more than enough.

58

10. Algorithms and Data Structures

10.a Algorithms

RSA (Rivest–Shamir–Adleman)
We will be using RSA to encrypt the user’s data. Rsa is an asymmetric cryptographic
algorithm, meaning that it uses a public and private key system. The public key can be
shown to everyone, but the messages encrypted by the public key can only be
decrypted by the private key. Here is a breakdown of how RSA encrypts data.

We will also be doing computations on user data. We will be finding the average and
standard deviation of the data.
Average is the sum of values divided by the number of values.

Standard Deviation

The standard Deviation measures how spread out the numbers are in a set of data.

59

10.b Data Structures
Data structures that have relevance to the blockchain itself should be referenced in the
Ethereum Yellow Paper. We will not discuss the use of Merkel Trees or Hashes that
references previous structures as it is not directly related to our work. Rather, we can
talk about the structures we use in our Smart Contracts (Ethereum code running on the
EVM) to store data about users.

Before we jump into specifics, it's important to understand how Hash Tables work,
particularly in the Ethereum blockchain. It is a structure that offers fast access to a
particular key and maps to a particular value. The structure does this by quickly hashing
the key and looking at the key up on an indexable array. In ethereum, hash tables are
virtually initialized such that every possible key exists and is mapped to a value whose
byte-representation is all zeros: a type’s default value. The similarity ends here, though:
The key data is not actually stored in a mapping, only its keccak256 hash used to look
up the value. Because of this, mappings do not have a length or a concept of a key or
value being “set”. Mappings are only allowed for state variables (or as storage reference
types in internal functions).

User Descriptor Smart Contract
Our smart contract that keeps data relevant to a particular user keeps user data on a
few important data structures. The most important data structure used is the concept of
a Hash Table (Hash-map or Dictionaries in many languages). For a user’s data to be
secure, we created a Mapping of all user’s private addresses to their data. This is
known to us as the User Descriptor table. When invoking to contracts to retrieve data for
a particular user, only the user’s ID is used to access this table. As smart contracts are
read only, as long as the methods defined use the current user’s address to access the
data, user’s data are opaque to other users.

Our user’s are expected to store data for an infinite number of units; so what we have
decided to do is create a second Hash Table that is used as the value of the User
Descriptor table. This second Hash Table, known as the Unit table, is a key of units (‘lb’,
‘inches’, etc) to a value that is a growable vector of unit values. The unit values
furthermore is a structure that stores a unit value, the timestamp of the submission of
that value, and the latitude and longitude (if entered) for that particular submission.

One problem we had with this data architecture was that Hash Tables were not iterable.
What this meant was that we could not easily iterate on the Unit table to retrieve the key
units for the user. We had to supplement this Hash Table with a growable vector of units
that we could present to the user before we accessed the Hash Table with the key unit.

60

We use the growable vector of unit values to easily index the end of the array and
paginate responses to them. Since arrays are contiguous and indexable, pagination is
as quick as possible.

As we traverse and transform data structures from the backend to the frontend,
pagination data largely become growable Javascript arrays that the charting libraries
can easily consume.

11. User Interface Design and Implementation

11.a Design
UC-1 Login:

61

UC-3: User Data Input:

62

UC-4 - ReceiveDataForUser

63

11.b User Effort Estimation
UC-1 Login

1.Navigation
A: Click Sign in at top.
B: Click Sign on MetaMask window to right.

Create an Account.

1.Navigation
A: Click Sign up to create an account.
B: Click Sign up.

1.Data Entry
A: Enter Ethereum private key

UC-4 ReceiveDataForUser
1.Click on Personal Data tab on left side
2.Click on available units (Everything else will autofill)

11.c Changes That We Have Made

Area of Change What changed Why we changed it

Graphical Visualization of
Aggregate Population Data
and Non-Graphical Data
Display

Rather than offering a way
to search for the graph the
user wants, we offer all the
graphs and non-graphical
data on a single page.

This offers the user access
to graphs and data that
they might not have known
about. Additionally, they
can consider more
information in relation to
each other (i.e. consider
weight, age, and sex
simultaneously).

64

11.d Ease-of-Use Employed
A large portion of our process was making the User Interface as simple as

possible. Certain ways we do so are by providing singular button press input, graphical
and non-graphical data in a combined page, the option to scroll over the graphs for
more precise numbers, and offering the user the option to save the graphs in a .JPEG
format.

Login being condensed to a singular login button, followed by authorization of
account use allows for user to have a more effective and efficient login experience.
Rather than having users memorize passwords and enter emails, we offer a singular
button press to connect to a preexisting Ethereum account.

Graphical and non-graphical data being all presented together offers a singular
page to look through, rather than having to navigate through a search bar and find the
exact one they need.

Offering the user to scroll over their graphs to see more precise numbers allows
the user to understand precise values when wanted, without having to scroll through a
table of data or having to approximate based on the graph and its axes.

Offering the user the option to directly save their graphs allows for an easier way
of saving graphs that a user might want to share with their friends, family, doctors,
etcetera. If not offered, the user would have to screenshot and crop out their preferred
parts of the graph, whereas here we offer the user to circumvent that effort by giving
them the option to simply save their information directly.

Signup and login entries System adjusted to function
with MetaMask instead of
usernames and passwords.
For Login only a button is
required that accesses
MetaMask, and for Signup
user pastes in Private Key

Secures user login better
by not allowing for
vulnerable email address
to be used in the login
process, and rather for the
secured blockchain to
control account creation
and control instead.

65

12. Design of Tests

12.a Test Cases

1.

1.

Test Case Description: Test for user descriptors. This
test will be used to check the user’s inputs for sex,
weight and weight units, and height and height units.
Related Use Cases: UC-3, UC-4, UC-5
Criteria for Passing: The units of weight must be pounds
or kilograms; gender is male, female, other; and height
is meters/centimeters or feet/inches.

Fail Procedure: Pass Procedure:

First try to input the wrong information, such as typing
the incorrect type of units or invalid text, or not writing
male, female, or other in gender.

The user, after inputting the wrong information will be
alerted with an error and will be prompted to change the
input to the given valid inputs.

Input the correct
information for weight,
height, gender.

The user’s correct
information will be recorded
by the system in order to
create the user’s health
stats. The user will be able
to proceed to use the app,
and see the information
having been correctly
processed in the received
data page.

Test Case Description: Integration test for GraphQL api.
The test determines if the GraphQL endpoint gives an
OK response
Related Use Cases:
Criteria for Passing: Test finds the status code of
GraphQL, which is 200

Fail Procedure: Pass Procedure:

66

1.

12.b Test Coverage

We are using unit testing and integration testing in this project. This means we are able
to account for most errors that may occur, because unit testing may check a component
(unit) of the code but integration testing will check for errors that may occur combining
these components. We will continue to make more unit and integration tests before the
second demonstration to make sure there are no errors. Otherwise we have covered
most of the major errors that the application could possibly have.

12.c Integration Testing

GraphQL endpoint does not have a status code of 200.

The endpoint does not work and the test fails.

GraphQL endpoint does
exist. The test looks for the
200 status code by
requesting server to expect
this code.

The server finds the status
code, so GraphQL endpoint
works. The test passes.

Test Case Description: Test for correct global
descriptors. Test determines that correct information is
being presented
Related Use Cases: UC-4, UC-5
Criteria for Passing: Test finds that all numbers are
accurate

Fail Procedure: Pass Procedure:

Graphs and public’s data does not accurately represent
limited, isolated inputs used for test. Given a set
number of predetermined inputs, the received data is
not the appropriate presentation.

Graphs and public data
accurately represent
limited, isolated inputs
used for test. Given a set
number of predetermined
inputs, data portrayed
presents it appropriately.

67

Our integration testing has a top-down approach. We will test the big concepts and
modules of our code before moving on to the smaller modules. These big concepts,
which are the GraphQL API, global descriptors, and user descriptors, take priority for
our group.

12.d Plans for More Tests

We plan on testing more requirements or use cases such as user authentication, public
access of health data, and data administration

13. History of Work, Current Status, and Future Work

Report 2 Plan of Work:

68

13.a History of work

We decided to include our commit history for both of our two repositories that shown
concretely our sequence of work and timelines. While perhaps come of these commits seem
incoherent, they do paint a good picture of the things that we were working on. We usually
stayed on track, specifically completing the authentication, the form fill out page, and significant
work on the backend.

For this iteration, we were able to add the global descriptor service which added data
from the frontend, through the backend, to finally the blockchain. In addition to this, we added a
write through cache that helps us return values quickly to have a responsive UI, especially for
global descriptors.

We added integration with metamask to augment our authentication flow in parallel
which took two members of the group to complete and approximately the time since the first
demo to this one.

For the UI we added the data entry form, and one new chart that compares BPM
measurements. The majority of our time was spent connecting the dashboard via graphql. We
assumed this would take the least amount of time, but the complexity of our UI and
understanding the concepts of GraphQL took our members the longest to implement.

Here is the complete history of commits of our group:

author time commits

Eric Rivera Sun Dec 8 Suggestions API and Weight Suggestions Card (#47)
* Added webpage suggestions * Added Weight
Suggestions Card

Khalid Akash Sun Dec 8 Data entry (#48) * Implemented form, need to add
subscription * Setup subscription client * Completed
data entry form implementation * Fixed linting errors

Smeet97Kathiria Fri Dec 6 Line Graph Update (#44) * Visual LG Changes
* Add graphql to Linegraph * lg changes *
Minor changes to LG * minor fix

Eric Rivera Fri Dec 6 Added BPM Pie chart (#45) * Added BPM Pie
chart * Changed aesthetics to be a bit more flat

Eric Rivera Thu Dec 5 Merge pull request #43 from AkashWorld/eric-QLconnect
QL Reconnect & update error handling

Khalid Akash Tue Dec 3 Actions test (#36) Create new actions script

69

SuvaShahria Sat Nov 2 GlobalDescriptors to Mock Resolvers (#33) Adds
a few of the global queries in the backend to the mock
resolvers so we can test easily.

Khalid Akash Fri Nov 1 Added BMI, Weight change, Insertion Subscription to
mock server (#28)

Khalid Akash Wed Nov 6 GraphQL Mock server (#27)

Khalid Akash Tue Oct 2 Changed router to hash router, deploy script

Eric Rivera Tue Oct 2 Added save button to charts, in english (#26)

Smeet97Kathiria Tue Oct 2 Visual LG Changes (#25) Add range indicator for line
graph

Eric Rivera Mon Oct 2 Add Weight Area Chart (#19) * Add Weight Area
Chart * Changed width of area line graph

Khalid Akash Mon Oct 2 Line graph (#17) Added line graph to user-analytics
page.

Khalid Akash Mon Oct 2 Added three new cards, changed color scheme to yellow-
pink

Eric Rivera Sun Oct 2 Added Weight Bar Chart (#14) * Added Weight Bar
Chart

Netanel Arussy Thu Oct 2 Create data-entry.jsx (#12) * Create data-entry.jsx
* Removed comments, added page to router *
Adjusted setState to include previous state + new state
change

Khalid Akash Thu Oct 2 Akash/map demo (#13) * Map working, working on
background * Fixed page orientation * Finished
map graph, touched up card component and initiated user
descriptor page

Khalid Akash Tue Oct 2 Eslint adjust (#10) Updated eslint to be more strict.

Khalid Akash Thu Oct 1 Card implemented (#6)

Khalid Akash Fri Oct 1 Added router (#4)

Khalid Akash Sun Oct 6 Merge pull request #2 from AkashWorld/project-setup
Project setup

Eric Rivera Fri Oct 4 Merge pull request #1 from AkashWorld/create-react-
branch Create react branch

70

Eric Fri Oct 4 Merge branch 'master' of https://github.com/thisisericc/
Health-blocks

root Thu Dec 5 Merge branch 'LoginAdjusted' of https://github.com/
AkashWorld/blockchain-frontend into LoginAdjusted

Khalid Akash Tue Dec 3 Formatted, changed link to direct client (will need to
change back to link later)

root Mon Nov 1 Commit has some of the login mechanisims; there things
that still need to be worked out though

Khalid Akash Tue Dec 3 Merge branch 'master' of https://github.com/AkashWorld/
blockchain-frontend

Khalid Akash Mon Nov 1 Added getBalance query

Netanel Arussy Wed Dec 4 Delete data-entry.jsx I want to just upload an
entirely new one. When it tried to merge earlier it failed.

Netanel Arussy Wed Dec 4 Ok I figured it out

Khalid Akash Sun Dec 8 Fixed linting errors

Khalid Akash Sun Dec 8 Completed data entry form implementation

Khalid Akash Sat Dec 7 Setup subscription client

Khalid Akash Sat Dec 7 Implemented form, need to add subscription

John Doe Tue Nov 1 Connect Weight Range to GraphQL

hs697 Sat Oct 1 Add files via upload HTML and JS. Draft.

hs697 Mon Oct 2 Add files via upload Progress so far. I still need to import
the 'create new account' and 'login' parts into App.js file.
Also, I need to add handling errors/exceptions

John Doe Sat Dec 7 Added Weight Suggestions Card

Khalid Akash Fri Dec 6 Added webpage suggestions

Khalid Akash Fri Dec 6 Cleaned out unnecessary files (#34)

Khalid Akash Fri Dec 6 Adjusted unixTimestamp to float, should change to
specific scalar (#32)

Khalid Akash Thu Dec 5 Trend (#31) * Finished cached implementation of
average calculation * Updated type chain command to
include double quotes

71

https://github.com/thisisericc/Health-blocks
https://github.com/AkashWorld/blockchain-frontend

Khalid Akash Thu Dec 5 Fixed dependency cycle in script (#29)

Khalid Akash Thu Dec 5 Implemented web crawler search for GraphQL (#28)

SuvaShahria Wed Nov 2 Graphql2 (#26) * test * update *
pushing so i can pull when everything breaks *
insertValueGlobal not recognized * bugfix *
working * query's done * insertValue now
adds to global * some fixes * update
* update * insertvalue * Removed
unnecessary subscription

RizThe1andOnly Wed Nov 2 Login (#27) Adds authentication flow to backend via
metamask.

Khalid Akash Fri Nov 1 Changed insert Values return a transactionHash, and
implemented a subscription to check transaction results
(#25)

Khalid Akash Wed Nov 1 Added weight and bmi trend query (#24)

SuvaShahria Tue Nov 1 Global descriptor (#23) Added global descriptors
smart contract.

Khalid Akash Tue Nov 5 Added support for GraphQL subscriptions - server side
(#22)

Khalid Akash Sun Oct 2 Format fix (#16) Added formatter pre-commit. Strong
linting against vars.

Khalid Akash Tue Oct 2 Migrations update (#15)

Khalid Akash Wed Oct 1 [Initial] Implementation of GraphQL to User Descriptor
Smart Contract (#14)

Khalid Akash Mon Oct 1 GraphQL API (#13) * Implemented GraphQL server
https://www.youtube.com/watch?
v=HCv8z7X7Q9s&feature=youtu.be

Khalid Akash Wed Oct 9 Merge pull request #11 from AkashWorld/
RizExpressSetupBranch Riz express setup branch

Rizwan
Chowdhury

Wed Oct 9 Merge branch 'RizExpressSetupBranch' of https://
github.com/AkashWorld/Smart-Contract-Service into
RizExpressSetupBranch

72

Khalid Akash Tue Oct 8 Added @types/express to fix type error, changed the
name of server initialization file to server.ts from index.ts,
changed main.ts to index.ts, fixed Router compilation
issue by calling the Router() constructor

Khalid Akash Fri Oct 4 Merge pull request #10 from AkashWorld/akash/testing-
infra Added unit, integration, and coverage tests, git
hook.

Khalid Akash Wed Oct 2 Added unit, integration, and coverage tests. Added a git
hook so that when committing, all tests and syntax errors
are caught first. Added github actions so we can
continually test when pushing a branch to github

Khalid Akash Wed Sep 2 Merge pull request #3 from AkashWorld/akash/fix-build
Fixed build process by rearranging the order of type
generation

Khalid Akash Wed Sep 2 Merge pull request #2 from AkashWorld/docs Added
docs and updated readme

Khalid Akash Tue Sep 2 Merge pull request #1 from AkashWorld/akash/
contributions Updated contributions README

root Fri Dec 6 Merge branch 'login-iter-2' of https://github.com/
AkashWorld/smart-contract-backend into login-iter-2

root Thu Dec 5 Merge branch 'loginadjustments' of https://github.com/
AkashWorld/smart-contract-backend into loginadjustments

root Thu Dec 5 Merge branch 'master' of https://github.com/AkashWorld/
smart-contract-backend into loginadjustments

root Sat Nov 2 Merge branch 'master' of https://github.com/AkashWorld/
smart-contract-backend into Login

root Sat Nov 2 Merge branch 'Login' of https://github.com/AkashWorld/
smart-contract-backend into Login

root Tue Oct 2 helloMerge branch 'master' of https://github.com/
AkashWorld/Smart-Contract-Service into Login

Rizwan
Chowdhury

Sun Oct 2 Merge branch 'Login' of https://github.com/AkashWorld/
Smart-Contract-Service into Login

Rizwan
Chowdhury

Sun Oct 2 Merge branch 'master' of https://github.com/AkashWorld/
Smart-Contract-Service

73

13.b Future Works

Future works for this project would be really understanding the limitations of using
blockchain for a performance application. This means proliferating the write-through
cache throughout the backend. Along with storing data in the blockchain, we can store
data into a relational/NO-SQL database that are less sensitive.

14. References
Ethereum. “Ethereum/Wiki.” GitHub, github.com/ethereum/wiki/wiki/White-Paper.

Truffle Suite. “Truffle: Overview: Documentation.” Truffle Suite, www.trufflesuite.com/docs/
truffle/overview.

“web3.Js - Ethereum JavaScript API.” web3.Js - Ethereum JavaScript API - web3.Js 1.0.0
Documentation, web3js.readthedocs.io/en/v1.2.0/.

“The U.S. Government and Global Non-Communicable Disease Efforts”, www.kff.org/
global-health-policy/fact-sheet/the-u-s-government-and-global-non-communicable-
diseases/.

WHO“Global report on diabetes”, www.who.int/diabetes/global-report.

“UML Reference”: https://www.uml-diagrams.org/class-reference.html

“RSA Encrpytion”: http://mathworld.wolfram.com/RSAEncryption.html

“The Node.js Event Loop, Timers, and process.nextTick()”: https://nodejs.org/de/docs/
guides/event-loop-timers-and-nexttick/

“JSON-RPC 2.0 Specification“: https://www.jsonrpc.org/specification

“An overview of HTTP”: https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

74

http://www.who.int/diabetes/global-report
https://www.uml-diagrams.org/class-reference.html
http://mathworld.wolfram.com/RSAEncryption.html
https://nodejs.org/de/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/de/docs/guides/event-loop-timers-and-nexttick/
https://www.jsonrpc.org/specification
https://developer.mozilla

