

RUTGERS UNIVERSITY

SOFTWARE ENGINEERING 1

Project: Blockchain-Based Health Monitoring System

Website: healthcolate.herokuapp.com

Github: https://github.com/PopDescSystm

Group 2: Pratik Mistry, Shounak Rangwala, Amod Deo, Pranit Ghag, Sen Zhang, Pranav

Shivkumar, Swapnil Kamate, Vikhyat Dhamija, Lizhe Wei

http://healthcolate.herokuapp.com/
https://github.com/PopDescSystm

2

Table of Contents
1. Customer Problem Statement ... 4

a. Problem Statement.. 4

b. Glossary of Terms ... 6

2. System of Requirements ... 7

a. Enumerated Functional Requirements .. 7

b. Enumerated Non-Functional Requirements ... 8

c. User Interface Requirements ... 9

3. Functional Requirement Specifications ... 14

a. Actors and Goals ..14

b. Use Cases ...15

i. Casual Description ..15

ii. Use Case Diagram ...16

iii. Traceability Matrix ...17

iv. Fully Dressed Description..18

c. System Sequence Diagrams ..22

4. User Interface Specification ... 29

a. Use Case Effort Estimation ..29

5. Domain Analysis .. 36

a. Domain Model ..36

i. Concept Definitions ...36

ii. Association Definitions ..38

iii. Attribute Definitions ...39

iv. Traceability Matrix ...40

7. Interaction Diagrams ... 41

8. Class Diagram and Interface Specifications .. 47

a. Class Diagram ..47

b. Data Types and Operation Signatures..48

c. Traceability Matrix ..51

9. System Architecture and System Design ... 52

a. Architectural Style ..52

b. Identifying Subsystems ..53

c. Mapping Subsystems to Hardware ...54

3

d. Persistent Data Storage ...54

e. Network Protocol ..55

f. Global Control Flow ..55

g. Hardware Requirements ..55

10. User Interface Specification.. 56

a. Preliminary Design ...56

11. Design of Tests ... 67

a. Class Tests ..67

12. History of Work, Current Status, and Future Work .. 67

13. REFERENCES .. 72

4

1. Customer Problem Statement

a. Problem Statement

The world is beginning to realize the importance of health in a common man’s daily life and

the influence it has on his activities down the line. While work and its related aspects are a

critical part of our lives, health plays an even bigger role than most people imagine. In order

to perform everyday activities efficiently, we need to have a good and healthy body. The

scope of “exercise” is expanding and encroaching into other activities, like dance (zumba,

aerobics and so on). Some kinds of exercise, like jogging, hiking, swimming, trekking and

physical fitness are becoming hugely popular around the globe.

However, expensive health check-ups and inadequate facilities remain an obstacle to most

people who wish to know the condition of their body and the ways to improve on it.The

health condition of a person can be easily obtained by checking the vital signs of him. Crucial

inferences can be drawn by analyzing the blood pressure stats, blood sugar levels, sleeping

patterns and so on. Most people are aware of the consequences but always relied on medical

help, which led them to incur monetary expenses.

We propose a digital ledger of sorts for the various users on the internet. This ledger contains

data entered by the user as well as data streamed from the user’s devices like Apple Watch,

Fitbit etc. This data contains many important metrics such as the following:

● Age

● Location

● Weight, height and BMI (Body Mass Index)

● Blood pressure

● Heart rate

● Sleep patterns

● Cholesterol levels

Our aim is to create a fully operational user-interface that would be friendly to use and understand

and you can enter these details onto the website and the ledger will be directly populated with

these details. You can also give the application permission to access data, like your heart rate, blood

pressure, blood sugar etc. from your Apple Watch, Fitbit etc., which will be collected at regular

intervals from your device and registered into the ledger.

5

One of the critical needs of such an application is that any user should know how healthy or

unhealthy he is as compared to others. He must be able to select different parameters (like sleep

patterns, blood sugar levels, cholesterols etc.) and based on those parameters compare his data to

the average/ general health of the other users. He can also select data for comparison from a

specific location because geographically the health conditions considered normal can vary and also

from a particular window of time, since people’s health can vary in a location from time to time (eg.

before and after the holiday season).

Also this application provides for the user to make his data available to or kept private from other

users when those other users would be performing similar data analysis operations for their own

purposes. However the application should stress on the fact that all users must try to make the data

available to other users because that would be helpful to others in figuring out their health

requirements and that their data would be anonymously shared.

Now, people would be naturally apprehensive to allow their personal details to be shared with this

application, due to the concern of getting hacked. To address this concern, we are using the

Blockchain technology, which provides several advantages over a regular database:

● The data in each block in the blockchain will be encrypted to create its hash which is like the

block’s fingerprint (a unique hash for each block). The data also contains the previous blocks

hash in it, so if any attacker wishes to alter or change any blocks data, then he would have

had to change the hashes of all the blocks following that block.

● Each node (i.e user) will be part of this network and will have an entire copy of the blockchain

with them. Any change in the blockchain will be an addition of a block to the existing to the

blockchain and the hash generated by the new block will be verified by all the nodes in the

network. Only then can the block be added to the blockchain and this increases the security

of the data.

● Since all the nodes have a copy of the entire blockchain we do not have to worry about

maintaining a centralized server (a “honey-pot” if you may) which may be prone to hacking

attacks or maybe at risk of losing all the data if it shuts down or encounters a hardware issue.

Any node can leave the network and on re-entry it can be updated with the latest version of

the blockchain from the other active nodes.

Now, you may be wondering why would I want to go through all this trouble? Well, because we are

implementing a blockchain in this solution, all the personal details of the users on the network are

securely stored in the blockchain. This solution does not have a centralized authority, like a server

or cloud, that stores all the data; the data is shared among the various users in the network and can

be compared among them.

6

Since the blockchain is nearly immutable, the existing blocks cannot be changed. All the information

stored in the system will be the latest and most reliable information, that will be regulated at the

point of entry to the system. It will be like a community helping out its members by sharing their

health parameters. The information will be much more recent and relevant as compared to the

similar data found in government databases.

Also, the government-provided statistics may be incomplete or, at times, outdated. Since the user

manually enters his/her details into the blockchain, with the help of user interface, the data is up to

date.

The interactive application must also provide for the users to communicate with each other using

their usernames through a forum which will be included in the application. The application will also

be able to provide you daily links to health-related, diet-related articles and videos.

So, with all these facts and details, we can say with some aplomb that our proposed approach is

highly innovative.

b. Glossary of Terms

1. BMI (Body Mass Index) : BMI of a person is the weight of the person (in kgs.) divided by the person’s

height squared (in meters)

2. Sleep Patterns : Classifying people in different categories (like Healthy larks, sleep savvy seniors etc.)

based on the average hours of sleep at night.

3. Cholesterol level : Record Low density lipoprotein (LDL) cholesterol along with the total cholesterol

level so that they can control their dietary habits.

4. Blood Sugar : Compare the blood sugar of a person with the blood sugar chart so that they can self

manage any diseases like diabetes. Can intake values both fasting and 1-2 hours after eating.

5. Blood Pressure : Compare the blood pressure input from the user and compare with the normal

upper and lower bounds to judge whether it is normal or not

6. Ledger : A book or collection for recording the personal details of the users on the network.

7. Blockchain : A collection of blocks interconnected with each other; each block contains the details

that are given by each user of the network.

8. Hash : Also called as the hashtag function, this is a function that is used to encrypt the blocks so that

attackers cannot access the information in the blocks.

9. Node : Each user on the network is referred to as a node.

7

2. System of Requirements

a. Enumerated Functional Requirements

Identifier Priority

Weight

Requirements

REQ -1 10 System should have secure login

REQ -2 8 System should allow to update the parameters

REQ -3 7 System should integrate with health device

REQ -4 10 System should store data in secured manner

REQ -5 9 System should compare data with authentic data

REQ -6 7 System should restrict outlier data

REQ -7 5 System should notify the user if a new parameter is introduced

REQ -8 6 System should recommend health measures analyzing my data

REQ -9 4 System should allow users to give feedback and provide support as

well

REQ -10 6 System should generate historical report for users to view/access

REQ -11 10 System should allow user to unregister and delete data upon

unregistering

REQ -12 9 System should ask the user for consent to share data for statistical

comparison

8

REQ -13 10 System should allow user to view/compare average statistical data of

other users

REQ-14 3 System should allow user to communicate with other users in the

system

b. Enumerated Non-Functional Requirements

Identifier Priority

Weight

Requirements

REQ -15 8 As a system, size and generality of the data must be defined

REQ -16 10 As a system, all the user data must be encrypted

REQ -17 7 As a system, communication between system actors must be secured

REQ -18 5 As a system, application/portal must be supported in different browsers of

both web and mobile platforms

REQ -19 2 System should be scalable and load balanced

REQ -20 4 As a system, data of the entire system must be archived periodically

REQ -21 6 As a system, backups of the data must be taken periodically

REQ -22 7 As a system, appropriate business continuity policies and disaster recovery

strategy must be implemented

REQ -23 3 As a system, system maintenance should be done regularly in order to keep

systems up to date

9

REQ -24 8 As a system, user requests/issues should be supported and addressed

REQ -25 8 As a system, deployment strategy should be implemented along with roll

back strategy in case of deployment failure

REQ-26 10 As a system, data across all the nodes in the system must be synchronized

REQ-27 4 As a system, logging and monitoring of the system and application must be

in place

REQ-28 9 User manual and Architecture Diagram along with proper Documentation

of the system must be provided

c. User Interface Requirements

Identifier Priority
Weight

Requirements

REQ-29 10 GUI must have a landing page(register and log in).

REQ-30a,b 10 GUI must have a main page of users’ personal information.

GUI must have a page for user to view his historical data.

10

REQ-31 10 GUI must have a page to enter users’ health data.

REQ-32 10 GUI must have consent option for sharing data for comparison.

11

REQ-33 8 GUI must have a page for statistical data for comparison.

12

REQ-34 4 GUI must have recommendation page on users’ health data.

13

REQ-35 4 GUI must have a page to notify users the new update.

REQ-36a
b,c

2 GUI must have a forum page for users’ communication.

GUI must have support page for any issues.

GUI must have a page about us for our progress on development.

14

3. Functional Requirement Specifications

a. Actors and Goals

Actor Actor’s Goal Use Case Name

Visitor/User To login to the web portal/application to enter health data,
view statistics, get health recommendations, view comparison
reports, etc.

Login (UC-1)

Visitor/User To register in the system/application via web portal Register (UC-2)

Visitor/User To add data in the system/application via web portal Add Data (UC-3)

Visitor/User To view the historical health data for analysis Historical Data
Presentation (UC-5)

Visitor/User To compare health data with other registered and active users Comparison Data
Presentation (UC-6)

Visitor/User To get health recommendations based on the data entered in
the system

Health
Recommendations
(UC-7)

Visitor/User To communicate with other registered and active users and
also with system administrator/support team

Communication (UC-8)

Visitor/User To have its data validated before adding data in the system Data Validation (UC-4)

System
Admin

To resolve issues that users might face while user performs any
operations or has any other issues

Communication (UC-8)

Database/Re
pository

To store the user information, login details, data,
recommendations, historical and comparison data

UC1, UC2, UC3, UC4,
UC5, UC6, UC7, UC8

15

b. Use Cases

i. Casual Description

UC#1 Logging In

The user can enter the portal/application by entering his credentials used for registration.

He can then perform various operations, like entering his data into the application, viewing

the statistics, getting health recommendations, viewing the comparison reports and so on.

UC#2 New Registration

The user can register into the blockchain-based network to be a part of the community. Then

he or she can start with the service provided by us and all the other users. After the user

finished registration, he or she can log in to the whole system and do all the operations listed

in UC#1. Also, he can unregister from our system, and his data will be cleared from the

blockchain-based network.

UC#3 User Data Addition

The user, once registered into the system, will be able to integrate his or her health device

with the system and securely store the health data without manual intervention. If needed

the user can also manually update the parameters of their health data

UC#4 Validation of Data

The data validator will check if the data added by the user into the web portal/application is

within the appropriate range. It will allow the user to proceed with adding or updating his

data if it is valid; if any outliers exist in the data entered, an error message will pop up

prompting the user to re-enter his valid data.

UC#5 Historical Data Representation

Users can request our system to generate a historical data representation of their health

information. The graphical view of their cumulative health data will allow users to better

perceive the changes in their health parameters. Users can monitor and take preventive

measures with this information.

UC#6 Comparison of Data Report

Users can request our system to generate the histograms, pie charts and scatter plots to

show his position in the whole population depends on his or her requested parameter. For

example, the user could see how the other users are distributed on age in a pie chart, or

where is his or her position to the whole users in a histogram. The UI would also allow the

16

user to customize multiple parameters in the comparison. Last but not least, before a user

joining the pool of user comparison, he or she must agree to share his or her data to the

whole network as a base of comparison. The user can choose to exit the pool with his data

removed from the cloud whenever he or she wants.

UC#7 Health Recommendation

Our system can analyze the user’s health data and suggesting certain health

recommendations to appropriate users. These are general health recommendations which

will include exercises, YouTube video recommendations etcetera to give users a chance to

normalize their health parameters.

UC#8 User Communication

Our system can provide a forum to let users communicate with each other and give us, the

development team, feedback and report bugs.

ii. Use Case Diagram

17

iii. Traceability Matrix

The below table depicts the mapping of the various requirements of our system with the use cases

defined previously. The requirements are given based on a scale from 1 to 10, 1 being the lowest

priority and 10 being the highest priority.

REQ’T PW UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

REQ1 10 X X

REQ2 8 X

REQ3 7 X

REQ4 10 X

REQ5 9 X

REQ6 7 X

REQ7 5 X

REQ8 6 X

REQ9 4 X

REQ10 6 X

REQ11 10 X

REQ12 9 X

REQ13 10 X

REQ14 3 X

Maximum Weight 10 10 10 9 6 10 6 4

Total Weights 10 20 37 9 6 19 6 7

18

iv. Fully Dressed Description

Use Case UC#2: New Registration

Related Requirements: REQ-1,REQ-11
Initiating Actor: Users
Actor’s Goal: To allow user to have secure login.
 To allow user to unregister and delete the data.

Participating Actors: Active users,System Admin,System

Precondition: System should be active and running.
 User should have established connection with the system.
 User should meet the requirement for registering.

Postcondition: User can enter his data in the system.
 User can update or delete his data as per his requirement.
 User will have option to share/hide his data from other users.

Failed end condition: User entering wrong credentials, re-enter valid credentials
 Unable to correct to system,check system status

Flow of events for success scenario:
1. → User enters his credentials into the portal
2. .← The credentials are verified by the system.
3. .→ The user is allowed to access the portal.

Flow of events for extensions:
User enters invalid/out-of-bounds data.

1. ← System detects the error and sends an error message to the user prompting to enter the data
again.

User enters a weak password while registering.
1. ← System should suggest a strong password to the user in order to keep the data more secure.

19

Use Case UC#3: User Data Addition
Related Requirements: REQ-2, REQ-3, REQ-4, REQ-6, REQ-7
Initiating Actor: Users
Actor’s Goal: To add and update data which is within appropriate range.
 To append encrypted data into the blockchain with
 Verification from all users.
 To inform the user if any new parameter is available in the
 System for monitoring.
Participating Actors: User fitness device
 System, other Active Users, System admin

Precondition: User should be active on the system
 User’s communication link with the system should be online
 The blockchain must be initialised and active.

Postcondition: New encrypted data blocks should be appended to the
 blockchain and updated across all the users present in the
 network.

Failed end condition: Data input unsuccessful, check data range
 Unable to connect with system, check connection

Flow of events for success scenario:
1. → User enters the web application and chooses option to input data.
2. → User gives permission to the system to access the fitness device.
3. → User inputs data.
4. System uses the data input by the user to make a new block
5. include:: ValidationOfData (UC-4)
6. ← System adds the new validated block to the blockchain and gives user success message

Flow of events for extensions:
3a. User inputs invalid/out-of-bounds data

1. ← System detects error and sends an error message to the user asking to re-input the data.
2. → User inputs correct data

5a. Failure to validate new block from more than 50% active Users.
1. ← System a) detects error, b) marks failed attempt, c) signals to System Admin
2. ← System Admin will try to detect issue (maybe problem with hashing function)
3. → User data gets validated.

20

Use Case UC#6: Comparison of Data Report

Related Requirements: REQ-12, REQ-13

Initiating Actor: Users

Actor’s Goal: To provide users the option to choose to share their data for
 statistical comparison.
 To generate the relevant histograms, pie charts, scatter
 plots so that the user can compare his data with other users

Participating Actors: Active users, Other Users, System

Precondition: User should be active on the system.

User must have the links available for selecting or deselecting the
information sharing option and to view their comparison report.

System must have the active users who have selected the option of sharing

their data for comparisons.

User must have actively participated in the block chain system based on

which the user must have maintained the statistical data block chains for

other users.

Postcondition: User must be able to be or not be a part of the
comparison subsystem of our system and can accordingly view the
comparison report while having the comparison of its own data with the
statistical information maintained based on other users’ data.

Failed end condition: Not able to view the comparison data properly
(maybe only his own data without any comparison or with partial
comparison) ,User unable to connect to comparison page (Error message
page displayed)

Flow of events for success scenario:

1. → User can select/deselect the option of being part of the comparison

sub system.

2. ← System can provide the user with the services accordingly.

21

3. → User click the link for accessing the comparison report page.

4. ← System provides the user with the comparison report.

5. → User can view the comparison report comparing his/her data with the statistical information

derived out of other users’ data.

Flow of events for extensions:

I. When users select the option for doing some necessary selection to be the part of comparison of

subsystem and some abnormality happens.

1. User can then raise the issue with the system administrator.

II. User click the link and error message is displayed or improper comparison report is visible.

1. User can raise the issue with the system administrator. The user can check its connection and

troubleshoot system from its end.

22

c. System Sequence Diagrams

i. Use Case - 2

Fig 1: The above figure depicts the sequence diagram for Use Case 2, which is “New Registration”. The user

will enter his credentials into the web portal which will be verified by the system. Once the credentials are

verified, the user has to enter a unique username and password, which will serve as his login. The system

should suggest a strong password to the user to keep the user’s data secure. Once he successfully enters

this, he will be allowed access into the system, where he can view his data, get health recommendations,

view comparison reports, among other operations.

23

ii. Use Case - 3

Fig 2-a shows the sequence diagram of Use Case 3 which is “User Data Addition”. The user will select the

option to enter the data to the blockchain. The System then prompts the User to input the data and give

permission to access data from the fitness device. The user then grants the system access to the fitness

device and also manually inputs the data into the system. The System verifies if none of the data is an

outlier. It then creates a block that will be added to the blockchain. The block is then sent to be verified by

all the other users in the network and if it is verified by more than 50% of the users, it is added to the

blockchain and a success message is then sent to the user.

24

Fig 2-b shows the error scenario when the user entered data fails validation checks performed by the

system. Out of range data or outlier data entry could be the root cause of this issue. In this scenario the

system shows an error message to the user and requests the user to re-enter appropriate information. Also,

the system admin is notified of this situation such that it can monitor the further transactions of the user

with the system.

25

Fig 2-c shows the error scenario when the block created by the system is not validated by more than 50%

of the users of the blockchain. This is a major issue which may be because of a problem in the hashing

function. The system notifies the system admin who will inspect why the error occurred and then will tell

the user what steps have to be taken next (maybe reenter the data etc.)

26

27

Fig 2-d shows structure of our Block-chain based storage. We store users’ data both locally and remotely.

On users’ local app, we store and generate data blocks; on the system consist of super nodes and other

users, they store the whole data blocks and verify newly adding blocks. If we have a total of m users, each

user have n data blocks on average, we can reduce the complexity from m multiply n to m plus n. Also, we

can process multiple users’ verification without conflict.

iii. Use Case - 6

Fig. 3-a depicts Use Case (UC) 6, where the user has the option to be a part of the comparison subsystem.

In case some issue occurs, or the confirmation of selection is not shown to the user, he/she can raise the

issue with the system administrator and after resolving the issue the system administrator will revert to the

user.

28

Fig. 3-b Here, the user tries to access the comparison report and in case any issue/abnormality crops up,

he/she can raise the issue with the System administrator who can try to troubleshoot the system from its

end. After resolution of the issue, the system administrator will revert to the user with the appropriate

status message.

29

4. User Interface Specification

a. Use Case Effort Estimation

i. Registration:

Navigation: total 2 mouse clicks, as follows

a. Click “SIGN UP” button

b. Finish data entry in the new page

c. Click “OK” to finish registration

Data Entry: total 3 keystrokes, as follows

30

a. Press keys to input username

b. Press keys to input password

c. Press keys to input password again

ii. Log In:

Navigation: total 1 mouse clicks, as follows

a. Finish data entry in the new page

b. Click “OK” to finish registration

Data Entry: total 2 keystrokes, as follows

a. Press keys to input username

b. Press keys to input password

31

iii. Personal Information

Navigation: total 2 mouse clicks, as follows

a. Click “Information” page

c. Click on whatever parameter that the user wants to see

d. The static parameter will always be showed on the left

iv. Data Import

32

Navigation: total 2 mouse clicks, as follows

a. Click ”IMPORT DATA” button

b. Finish data entry in the new page

c. If the user has a health device, then select the right device to go further

d. Click “Add” to finish data input

Data Entry: total 2 keystrokes and 1 mouse click, as follows

a. Press the keys to input the parameter name

b. Press the value of that parameter

c. Click the continuous feature box if the parameter has continuous value

v. Statistics

33

Navigation: total 3 mouse clicks, as follows

a. Click ”Statistic” page

b. Finish agreement in the new page

c. Click on the parameters that the user wants

34

vi. Recommendation

Navigation: total 1 mouse clicks, as follows

a. Click “Recommend” page

b. The recommendations will show on this page

35

vii. New Update

Navigation: total 1 mouse clicks, as follows

a. The new parameter update page will pop up after the user logged in

b. Click “Dismiss” or “Let me see!” to move further

viii. Forum

Navigation: total 1 mouse clicks, as follows

4. Click “Forum” page

5. The forum will show on this page.

36

5. Domain Analysis

a. Domain Model

i. Concept Definitions

37

Responsibility Type Concept

R1: Display data and user information D Interface

R2: Display forms for user interaction D Interface

R3: Validation of input data before submission of web forms D Interface

R4: Display statistical and comparison report and recommendations D Interface

R5: Validate user entered user id and password D Checker

R6: Validate data entered by user (validate outliers) D Checker

R7: Validate new block from all the users D Checker

R8: Read health data, credentials and personal information of the user D TextReader

R9: Read messages sent by user to support team/other users D TextReader

R10: Read streaming data from the device (E.g. Apple Watch) D TextReader

R11: Read customized parameters for report generation D TextReader

R12: Broadcast hashed block and new parameter to all users C Communicator

R13: Send messages, recommendations, personal information, historical
and comparison data to users

C Communicator

R14: Send messages to system for block validations and feedback/requests C Communicator

R15: Send messages to other users D Communicator

R16: Add block to the database D Controller

R17: Get block from the database D Controller

R18: Add user information or get user information D Controller

R19: Get user information D Controller

R20: Add block to local blockchain D Controller

R21: Update latest hash in blockchain D Controller

R22: Select recommendation to user user D Controller

R23: Generate comparison report or historical report D Controller

38

R24: Store user credentials K Database

R25: Store blockchain data K Database

R26: Store latest hash for each user K Database

R27: Store health recommendations K Database

R28: Store existing parameters K Database

ii. Association Definitions

Concept Pair Association Description Association Name

Controller → Interface Controller gets request from the
interface and sends the result
for display

Send result

Interface → Controller Reads user and device data
input and messages

Read Input

Interface → Checker Sends data to checker for
verification (userID, data)

Check Info

Checker <-> Controller Checker sends validation result
to controller

Validation message

Communicator <-> Interface Send and receive messages
between users and system

Get message
Send message

Controller <-> Communicator Controller responds to requests
from communicator

Get request
Send response

Controller → BlockChain DB Controller send appropriate
data to DB. Controller acquires
data from DB.

Generate requests
Append data

39

iii. Attribute Definitions

Responsibility Attribute Concept

R1: Display data , user information dispUserInfo Interface

R2: Display forms for user interaction dispForms Interface

R3: Validation of input data before submission of web
forms

uiDataValidator Interface

R4: Display statistical and comparison report and
recommendations

dispReports Interface

R5: Validate user entered user id and password valUserInfo Checker

R6: Validate data entered by user (validate outliers) valUserData Checker

R7: Validate new block from all the users valUserBlock Checker

R8: Read health data, credentials and personal
information of the user

readDataInterface Text Reader

R9: Read messages sent by user to support team/other
users

readMessage Text Reader

R10: Read streaming data from the device (E.g. Apple
Watch)

readDataDevice Text Reader

R11: Read control parameters for report generation readControlData Text Reader

R12: Broadcast hashed block and new parameter to all
users

broadcastBlock Communicat
or

R13: Send messages, recommendations, personal
information, historical and comparison data to users

systemToUserComm Communicat
or

R14: Send messages to system for block validations and
feedback/requests

userToSystemComm Communicat
or

R15: Send messages to other users userToUserComm Communicat
or

R16: Add block to the database addBlock Controller

R17: Get block from the database getBlock Controller

40

R18: Add user information addUserInfo Controller

R19: Get user information

getUserInfo Controller

R20: Add block to local blockchain addToLocal Controller

R21: Update latest hash in blockchain updateLatestHash Controller

R22: Select recommendation to user user selectRecom Controller

R23: Generate comparison report or historical report generateReport Controller

R24: Store user credentials strUserCred Database

R25: Store blockchain data strBlock Database

R26: Store latest hash for each user strLatestHash Database

R27: Store health recommendations strHealthRecom Database

R28: Store existing parameters strParameters Database

iv. Traceability Matrix

The below table depicts the mapping of the various classes to the use cases that we defined earlier.

 UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

TextReader x x x x

Interface x x x x x x x x

Controller x x x x x x x x

Checker x x x

Communicator x x x x x x x

Database x x x x x x

41

7. Interaction Diagrams

i. UC-2: New User Registration:

Description:

The above interaction diagram is for Use Case 2 (New User Registration). The user enters his credentials

into the system, and these are then validated and verified by the Checker. If the credentials are valid, the

data will be stored in the database. However, if the validation fails, the user will be prompted to enter his

credentials again. The user can then enter his health data into the system, which is then validated by the

checker (to check for any outliers) and is stored in the database. The data from the streaming device is read

by the Controller, which stores this data in the database.

Design Pattern Used: Publisher-Subscriber Design Pattern

Reason of choosing this Design Pattern: Our application, specifically this use case, is event driven, which

means that various events are generated and based on these, some actions are performed. As a result, the

publisher-subscriber design pattern was found suitable for designing this use case as it separates the

publisher and subscriber (the detector and generator respectively) of the event (publisher) and the

subscriber (the action doer based on the event or the one who subscribes to the events).This leads to

42

obvious benefits as the publisher has to generate the events and subscriber has to do with the actions

based on the events. So the doer actions are clearly separated from the event generator. (Loose Coupling)

Various events-based Subscriber- Publisher pattern used are mentioned below:

Events Publisher Subscriber

validateUserInfo(as shown in
the diagram above to check
whether the user is already
existing in the system , password
is matching or not)

UserInterface Checker

validateUserData(as shown and
also mentioned in the
explanation, this event is to
check whether there are any
outliers in the data or not)

UserInterface Checker

isUserValid(as shown in the
diagram above to check whether
the user is already existing in the
system , password is matching or
not)

Checker UserInterface

isDataValid(as shown and also
mentioned in the explanation,
this event is to check whether
there are any outliers in the data
or not)

Checker UserInterface

43

ii. UC-3: User Data Addition

Description:

The above interaction diagram is for Use Case 3 (User Data Addition). The user enters the data to the

TextReader through the interface. The TextReader send the data to Checker for validation. The checker

validates and updates the status to the interface, which in turn sends the message to the user. If validation

44

is successful, the checker requests the controller to forward the block to the other users for verification

through the communicator. After the block is verified by the users, it is added to the database by the

controller. If the block is not verified, then the controller is sent an error message from the users and it

delivers the “failure to add” message to the user through the interface.

Design Pattern Used: Publisher-Subscriber Design Pattern

Reason of choosing this Design Pattern: As mentioned previously, our application and specifically this use

case is event driven. So for designing this use case , publisher-subscriber design pattern was suitable since

it separates the publisher and subscriber i.e. the detector and generator of the event (publisher) and the

subscriber (the action doer based on the event i.e. the one who subscribes to the events).This leads to

obvious benefits as the publisher has to generate the events and subscriber has to do with the actions

based on the events. So the doer actions are clearly separated from the event generator. (Loose Coupling)

Some of the events-based Subscriber- Publisher pattern used in this use case are mentioned below:

Events Publisher Subscriber

isDataValid Checker Controller

isDataValid Checker User

isBlockVerified All Users Communicator

blockVerifyResult Communicator Controller followed by Interface

45

iii. UC-6: Comparison of Data Report

Description:

The above interaction diagram is for Use Case 6 (Comparison of Data Report). The interface will ask user

for consent for sharing personal health data with the system for comparing data with others. Users will

authorize and allow data sharing with the system. The interface will send the consent information to the

controller which will then store the consent information in the database.

User will select custom health parameters and report type for viewing comparison data and submit the

request to the interface. The interface will request health data from the controller. The controller will query

46

database for health data based on users’ selected parameters. The database will send queried result sets

to the controller in raw format. The controller will calculate the comparison data based on raw data and

user id which will later result in calculated comparison data to the interface. The interface will generate the

comparison report in the type of user requested and present it to the user.

Design Pattern Used: Command based Pattern

Reason of choosing this Design Pattern: In this use case , as the commands are flowing from one class to

another , so in order to take the benefits of the command design pattern i.e. of uniform signature /interface

based pattern where the various commands are being provided by the server/doer and its implementation

is decoupled from the perspective of the client and various different implementation of the doers and the

servers have to change the implementation of these commands only.

Controller provided commands in the use case :

SendConsent,HealthDataRequest and the Interface generates commands :

1. Command (SendConsent) then Command.execute()

2. Command (HealthDataRequest) then Command.execute()

In this manner , with the motivation and goal of producing less coupled design , the command design

pattern was used in this use case.

47

8. Class Diagram and Interface Specifications

a. Class Diagram

48

b. Data Types and Operation Signatures

i. Display:

The User interface is vital to a software product because it is how the user will interact with the product and

if the UI is immersive and user-friendly the product becomes an instant success. The various members of our

I/O class are listed below:

1) Attributes:

a) getHealthParameters: This is a JSON object containing key-value pairs that contain

information of parameters such as Blood Pressure, height, weight, blood sugar, etc.

b) getCredentials: This is a JSON object which will have only 2 key-value pairs, a user ID and

a password.

c) getRecommends: This is a JSON object which contains only 1 key-value pair based on the

comparison report the user runs. The value is stored in the database.

d) getUserInfo: This JSON object will return the complete history of the user’s inputs to the

blockchain. This will be an array of all the objects that the user has entered before.

2) Functions:

a) showMessage(JSON): String

This function sends a message to be displayed on the screen. It can be a success or failure

message that the block has been validated. It can also be a string variable that contains a

message that the user can send to another user. It also shows if login is successful or not.

b) showUserInfo(JSON): String

takes getUserInfo object as an argument. Displays this information on the screen.

c) showComparison(JSON): Graph

Displays the comparison report by taking getHealthPara objects as arguments.

d) showLoginForm(): String

Displays a form for the user ID and password. Returns the getUserCred object.

e) showRegForm(): String

 Displays a form for registration of new user

ii. Communicator:

The basic idea of the Communicator class is to handle the communication of information among the various

users within the system. The attributes and the functions to be performed by the communicator class are as

below:

1) Attributes:

a. Active_users_info: JSON

This attribute holds the information about the active users in the system for handling the

communication for the peer verification for the implementation of the blockchain system.

b. Status_info: bool

This attribute holds the status information regarding the verification process.

49

 2) Functions:

a. userComm(JSON): JSON

This function is to receive requests for the addition of the block into the blockchain system

and then send the status messages/responses to the user.

b. broadcastBlock(JSON) : bool

This function is to broadcast the block of data for verification to the various other users.

c. verifBlock(JSON): bool

This function is to receive the verifications and based on that communicates the status with

the Controller whether to add the block or not and works for providing the status messages

accordingly.

iii. Database:

Information which is generated by the user and required by the system needs to be preserved for further

utilization. This database class will store the required data into the supernode server. The variables and

functions utilized by this database class are:

1) Attributes:

a. HealthData[]:

This array of health data will be used for temporary processing of the health data variables.

b. UserInfo[]:

The information of the user and their profile will be contained in this array.

c. LatestHash:

Hash data of the last block in the blockchain will be contained here.

d. Recommendations []:

This will keep the recommendations for the users as requested through the controller.

 2) Functions:

a. storeHealthData(HealthData[]): void

This function will store the health data of user once it has been validated and verified.

b. storeUserProfile(UserInfo[]): void

User profile information will be stored through this function.

c. storeHash(String): void

As the latest hash will be required to identify the latest block for the particular user, it will

be stored through this function.

d. DBConnection(): String

This function will return the DB Connection to the requester/web server

e. getRecommendations(JSON): String

Function returns the recommendations for specific values of health data to the controller

50

iv. Blockchain

The Blockchain class temporarily holds the data and manipulates the operation of storing, adding and

retrieving the data from the database. The various functions performed by the Blockchain class are listed

below:

1) Functions:

a. getAllData(): pre-defined JSON format

This function will return a whole set of data retrieved from the database. This return value

will be in JSON format and given as the background data for comparison. The function will go through

every block and form a result with the latest data.

b. getDataByUser(JSON): pre-defined JSON format

This function will take a user’s id as an input and return all the data from blocks that stored on his/her

chain. The function will start retrieving the data from the user’s initial block and record every data

when going through the blockchain.

c. addBlock(JSON): Boolean

This function will take the verification information from the communicator and do the adding and

again verifying the block operation. The function will return a Boolean result stands whether a new

block is added to the blockchain.

v. Controller

The basic idea of the Controller class is to control the flow of information to the other modules within the

system. The various functions performed by the controller are listed below:

1) Functions:

a. userReg(JSON): bool

This function is used to register a new user into the system. It takes all the credentials that were

given by the user as the input.

b. userAuthenticate(JSON) : bool

This function is used to authenticate the user, which means that the system checks if the user is

present on the system database or not. It returns a Boolean variable to indicate the status.

c. dataValidate(JSON) : bool

After the user enters his data into the system, this function checks the validity of the data, which

basically checks if the data entered has any outliers or not. It returns a Boolean variable to indicate

the status.

d. sendUserInfotoDB(JSON) : void

Once the user inputs his personal health data into the system, this function sends the data to the

database, where it is safely stored.

e. fetchUserInfo(JSON) : JSON

This function returns the user information when the user requests it from the system.

51

f. getHealthRec(JSON) : JSON

This function provides health recommendations to the user on request, depending on the health

conditions of the user. It is then sent to the display for the user to view it.

c. Traceability Matrix

The below table depicts the mapping of the domain concepts with the various classes listed in the previous

section and shows how the domain concepts are used in each class:

 Classes

Domain
Concepts

Display Controller Database Communicator Blockchain

TextReader X X

Interface X X

Controller X

Checker X X

Communicator X X

Database X X X

52

9. System Architecture and System Design

a. Architectural Style

Our system will not follow the architectural model of common existing blockchain practices. To be

fair, bitcoin-like architecture is kind of silly and has a lot of defects. Ideally, every user will store the

transaction information from all the other users. But terabytes of that information are still getting

larger, it is ridiculous to let each of all the users hold terabytes or even petabytes in the future just

for a paying system. Also, the concept of decentralization is a joke nowadays. Most of the bitcoin

users are using third-party platform to hold their assets. And the news of bitcoin stealing from the

inside of the platforms is not rare.

So we would use a hybrid architectural model of client/server model and a peer to peer model. On

the server-side, it will have all the functions of the controller, communicator, blockchain, and

database class. The server will do the main data storage and manipulation. It will also take all the

requests from all the users and return the value accordingly. The client will send HTTP requests like

GET and POST to the server through a lightweight front-end interface.

As for the peer to peer part, we would have more than the maximum number of online users’ virtual

machines identified as super-nodes. All the users and super nodes will communicate through the

communicators in the server to each other and get the verification done. The data will be backed

on super-nodes and all the super-nodes will synchronize the data after each addition operation.

By this architecture, we would have an easily updated interface for the user. As for the backend

side, we could adopt distribution methodologies to scale up.

53

b. Identifying Subsystems

In this system, there are three subsystems. The client-side - the web browser, the server-side, which

holds all the logic and algorithms, and a communicator side, which contains all the users and super

nodes. The client-side means the website framework, and it contains the structure of the user

interface. The user will send HTTP requests to the server, and the server will analyze, process and

response the request back to the user. For the verification part, the user will send a request and

enough information to the server, and the server will broadcast and receive all the verification

information, then do the following operations. When involving data manipulation, the server will

store the data through the blockchain module.

54

c. Mapping Subsystems to Hardware

As we have shown in the diagram above, mapping the subsystems to specific hardware is simple.

The web application will run in the browser of the User’s PC and the data entry, comparison reports

as well as the forums will be running on the interface of this web application. All interactions for

input and display of data is through the PC.

The super nodes are special instances that will not be inputting any additional data from their side.

Their only purpose is to validate the blocks that are being entered by other users and if they are

validated, sending them to the server for further processing. If they are not validated, they will send

the failure message through the communicator to the respective user. They will also store the data

as a backup.

The web server will be handling the input of the validated data into the blockchain. Every time the

user needs the data from the database to generate the comparison report, the logic for such a

comparison will be done in the server itself. The server will maintain the blockchain and the

database which will be populated based on the blockchain entries.

Lastly, the communicator will be responsible for maintaining all channels for broadcasting messages

from the server to all the users as well as communicating amongst users.

d. Persistent Data Storage

A database is needed to store the blockchain, information regarding the users which include user

login information and the statistical data of the population. MongoDB provides us with a database

that stores data in key-value pair format. The wide variety of fully developed features allows us to

focus more on the actual organization and management of the data in relation to other modules.

All that is needed is a simple call to the database to retrieve the raw data and the custom-

designed objects shown in the Class Diagram then do their own processing of the data. The key is

required to acquire data in this application which makes using this database simple. MongoDB

helps us store data in the cloud which is important for us to host a website accessible to everyone.

The goal is for the user to record his/her health parameters to compare with population

descriptors. Other objects illustrated in the Class Diagram do not have direct access to the

database. The database will be only accessible to the controller as shown in the class diagram. The

55

controller will interact with the database and issue requests for various types of data that are

stored in the database that the user interface would display or graph on the screen and data that

the controller would compare. Thus, the Controller is the only object that has direct access to the

database.

e. Network Protocol

In our system, all the communications will be encrypted by SSH and HTTPS. For the verification

part, which involves most of the online users communicate, we will adopt the Socket.io protocol.

f. Global Control Flow

Our system’s actions are based on the events generated through the User Interface thus making it

an “event-driven” system that depends on the user interaction. The user can choose to

enter/modify health information or view their health analysis information in an order which they

prefer.

Also, our system does not incorporate any hard timeouts which the user needs to adhere to. Once

the user is on our system’s webpage, they have the freedom to explore its functionality as and when

they want. Being an “event-response” system there are no hard deadlines for our system as

compared to the real-time systems.

g. Hardware Requirements

The hardware that we will be utilizing for the project are listed below:

1. A screen displays.

2. Storage space for the local blockchain.

3. Network communication with the main server (database).

4. A mobile device that could access the system website.

Note that all the requirements could be fulfilled by a personal laptop.

56

10. User Interface Specification

a. Preliminary Design

i. Registration

Once a valid input (user ID and Password) is submitted, a “registration succeed” message should be

shown via the UI.

57

ii. Log in

If a registered ID and correct password are submitted, a “login succeeded” message should be shown.

If a registered ID and wrong password are submitted, a “incorrect password” message will be shown.

If an unregistered ID is submitted, no matter what the password is, it will give an “ID no found” message.

58

iii. Personal Information

Once a user successfully logged in, the personal information should be shown directly, along with the

historical diagram.

iv. Data Import

Once the personal information page is displayed, users could click on the “import data” button, and a data

input page would be shown where users could import data freely.

59

v. Statistics

Users could click on the statistic page to view the comparison, but a consent page that inquire users if they

are willing to share their personal data for the statistics would pop up.

60

After that the statistic page would be shown

61

vi. Recommendation

The user could click in the recommendation and the UI would provide the health recommendation for the

him or her based on his or her health data.

vii. New Update

If a new parameter is updated, the UI would notify the user with a notification page.

62

viii. Forum

A forum page would be popped once a user clicks on the forum button, the support, communication and

system announcements are all there.

63

ix. Further Developments

In the next stage of developing our application, we improvised on the User Interface that we had

designed in the first stage. First, we renovated the display of the home page for our website, which is

shown below:

We also improved the login page, where users could log into the application:

64

Once the user logs into the website, he is taken to the landing page, which basically displays his data that

he had entered. The landing page is shown below:

If the he/she is a first-time user, the landing page would display as shown above, but with no data, since it

hasn’t been entered yet. Once the user has entered his data into the website and submit it, it gets stored

in the database and can be displayed appropriately.

The webpage also has options for entering data, viewing the comparisons with other users and statistical

analysis of the user’s health.

The page for entering data is shown below:

65

When the user opts to view the comparison tab, what his position is among the various users on the

network, he is compared against the average value of all the parameters, and depending on this

interpretation, health recommendations are provided. This page is shown below:

Finally, when the user goes to the Statistics tab, he can view the charts of his various health parameters.

A sample graph is shown below:

66

67

11. Design of Tests

a. Class Tests

Goal: To test the functions of the application, we plan to test the following:

a. Basic view of the web page.

b. Entering the user credentials and displaying the same on the screen.

c. Store the user data on a database.

d. Display the history and present conditions of the user on the screen.

e. Display the graphical representation of the health conditions of the user.

f. Display recommendations based on the current health of the user.

Results: The results for the above listed goals are as follows:

a. The web page was successfully displayed.

b. The user credentials entered by the user were successfully displayed.

c. The data entered by the user was stored on the database.

d. The past health conditions of the user were successfully displayed.

e. The health data of the user was displayed as graphs.

f. Health recommendations were displayed based on the user’s health

12. History of Work, Current Status, and Future Work

Use Cases Completed

 I. UC-1: Logging in

 II. UC-2: New Registration

● The login and registration system work for new and existing users respectively.

● The user ID and password are stored in a MongoDB database.

● If the user enters wrong credentials three times in a row, then the system locks

him out completely and informs the system admin about possible brute force attack.

68

 III. UC-3: User data addition

● User data is added to the database as JSON objects.

● Previous hashes and current hashes are being calculated and appended to the

JSON object.

● However, these objects can be modified in the database by the system admin and

the immutable feature of the blockchain has still to be added.

● The user can update his parameters but then that will be inserted in the main

database as any other data entry and will be counted as a second entry instead of an

update in the user’s information.

 IV. UC-4: Validation of Data

● The JSON object is sent by socet.io to other users of the network for validation

● The user will calculate the hash independently and send a success or a failure

message to the system admin

● If more than 50% of the users give a success message, the block is added to the

database. The blockchain infrastructure is currently in development.

 V. UC-6: Comparison of data report

● The data can be displayed on the webpage as histograms, bar graphs and pie charts using

plotly.js and a MySQL database

● The data query is generated manually and hardcoded in the PHP file. We are currently working

on integrating a button to select the different parameters to be selected whose data will be used to

make a graph.

● The UI of the comparison report was made independently of the main data addition and login

module and the integration of the same is underway.

 VI. UC-5: Historical Data Representation

● The user should be able to see his history of updates and now we are not able to

group the updates together and present it to him like we envisioned it to do.

● The latest user data will be used for the comparison report generation and now,

all the commits made by the user are used for the data analysis

69

 VII. UC-7: Health Recommendations

● The health recommendations ideally should be generated by ML algorithms that

will generate them based on the comparison report output. We however will try to

implement a basic version wherein the health recommendations will be stored in a

database.

● The health recommendation will be displayed irrespective of the user needing

them and which health recommendation is to be shown will be decided only by the

parameters that we will use to generate the comparison report.

 VIII. UC-8: User communication

● The users should be able to communicate with the system admin and the other

users regarding any issue they have with the system or just in general.

● We can send messages over socet.io but we still must figure out how to maintain

a record of the messages.

Current Status:

In the first phase of our project, we implemented a primitive version of the basic blockchain-

based health system. This phase was meant to form the most basic and essential functions

of our system: adding data blocks to the main and local block-chains, communicating with

the database and simple user interface. We added three sample users to the network. One

of the three users could add their data to the blockchain, which could be verified by the

other users. If any outliers exist in the data entered by the user, the user would get an error

message displaying the reason. The data validator of the system would check if any data

entered by the user is invalid and if so, an error message pops up prompting the user to re-

enter his data. We used JavaScript and MongoDB, for the creation of the blockchain and

backend part, where we saved the user’s data and shared it among other users. We

completed this phase by October 29th, 2019.

Further, a super node was made available within the network, which was used to store the

blockchain data of all the users and essentially served as the database for the users. This was

basically a relational database, which was designed using SQL.

70

In the second phase of the project, we designed the user interface with basic functionalities,

like allowing the users to register and login to our system. While registering with the system,

the user was given an option to share his personal data with other users and only if he

consented, the data was broadcast to the other users who could compare the data and verify

its authenticity. Once the user logged into the system, his credentials were saved onto the

system and he could view his current health data, while also updating it. If the user added

new data, all the other users on the network would be notified. Users could also generate

historical reports, which provided details of his previous health data and could also compare

their data with the data of the other users. The second phase included provisions for data

analysis that was done using the data stored in the blockchain. Necessary upgrades were

made to the user interface. We used the open-source library like Electron to create this sort

of desktop application.

This phase was completed by November 20th, 2019. By this time we had the application

which was able to perform most of the main functionalities that are necessary for the

application.

In the third phase, we addressed the scalability issues related to the network that we

created. In other words, we modified the system to accommodate multiple users on the

network. We also provided recommendations to users based on their present health

conditions, with each metric having its own priority depending on the seriousness of the

health conditions. For example: heart rate and blood pressure had a higher priority

compared to sleep patterns. A forum for the users to communicate with other users was

created during this stage.

If the user faced any problems with logging into the system, a support system was used to

address the issues, which also addressed issues related to login, data updating, health

parameter comparison etc.

71

 Breakdown of Responsibilities:

Depending on the strengths of our project members, we have split the work in the following

way:

● Pranit Ghag: MongoDB database configuration, cloud database management

and user interface

● Vikhyat Dhamija: Socket.io and user interface

● Sen Zhang: Socket.io for blockchain verification communication and blockchain

infra.

● Shounak Rangwala: Front end data visualization, project management

● Pratik Mistry: Cloud database management, Front end data visualization

● Pranav Shivkumar: Basic web page design, documentation

● Amod Deo: Documentation, User interface, Web page design, e-archive

● Swapnil Kamate: User interface, documentation, project management

● Lizhe Wei: Documentation, blockchain infrastructure.

The integration is coordinated by Sen Zhang, Vikhyat Dhamija, Pratik Mistry, Pranit Ghag and

Shounak Rangwala.

The testing is coordinated by Swapnil Kamate, Pranit Ghag and Amod Deo.

72

13. REFERENCES

[1] Marsic, Ivan. "Software Engineering book"
<http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf>

[2] Marsic, Ivan. “Safe Sharing of Population Descriptors”

<https://content.sakai.rutgers.edu/access/content/group/fbfe7282-89ce-4a4d-a619-943dee8
95665/Programming%20Project/Programming%20Project_%20Safe%20Sharing%20of%
20Population%20Descriptors.pdf>

[3] Marsic, Ivan. “Report #1 - User Effort Estimation”

<https://www.ece.rutgers.edu/~marsic/Teaching/SE1/report1-appA.html>

[4] Rosic, Ameer. “What Is Blockchain Technology? A Step-by-step Guide For Beginners”

<https://blockgeeks.com/guides/what-is-blockchain-technology/>

[5] Rouse, Margaret. “What Is Encryption? - Definition from Whatis.com”

<https://searchsecurity.techtarget.com/definition/encryption>

[6] “Global Glossary Of Blockchain Terms 2.0 in 5 Languages”

<https://blockchaintrainingalliance.com/pages/glossary-of-blockchain-terms>

[7] Software Engineering I Lecture Slides

[8] “Fitbit Health Monitoring Analytics”

https://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2014-g5-report3.pdf

[9] “GRASP (General Responsibility Assignment Software Patterns)”

https://whatis.techtarget.com/definition/GRASP-General-Responsibility-Assignment-Software-
Patterns

[10] “Cohesion_wikipedia”
https://en.wikipedia.org/wiki/Cohesion_(computer_science)

[11] “Monitoring the health of web page analytics code”

https://patents.google.com/patent/US20110035486

http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
https://content.sakai.rutgers.edu/access/content/group/fbfe7282-89ce-4a4d-a619-943dee8
https://content.sakai.rutgers.edu/access/content/group/fbfe7282-89ce-4a4d-a619-943dee8
https://content.sakai.rutgers.edu/access/content/group/fbfe7282-89ce-4a4d-a619-943dee8
https://www.ece.rutgers.edu/~marsic/Teaching/SE1/report1-appA.html
https://blockgeeks.com/guides/what-is-blockchain-technology/
https://searchsecurity.techtarget.com/definition/encryption
https://blockchaintrainingalliance.com/pages/glossary-of-blockchain-terms
https://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2014-g5-report3.pdf
https://whatis.techtarget.com/definition/GRASP-General-Responsibility-Assignment-Software-Patterns
https://whatis.techtarget.com/definition/GRASP-General-Responsibility-Assignment-Software-Patterns
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://patents.google.com/patent/US20110035486

