

RUTGERS UNIVERSITY

SOFTWARE ENGINEERING 1

Project: Blockchain-Based Health Monitoring System

Group 2: Pratik Mistry, Shounak Rangwala, Amod Deo, Pranit Ghag,
Pranav Shivkumar, Swapnil Kamate, Sen Zhang, Vikhyat Dhamija,

Lizhe Wei

3

Table of Contents

SECTION 1 5

1. Interaction Diagram 5

1.1 Sequence Diagram: 5

I. UC-2: New User Registration: 5

II. UC-3: User Data Addition 6

III. UC-6: Comparison of Data Report 7

2. Design Principles: 8

SECTION 2 9

3. Class Diagram and Interface Specification 9

3.1 Class Diagram 9

3.2 Data Types and Operation Signatures 9

I. Display: 9

II. Communicator: 10

III. Database: 11

IV. Blockchain 12

V. Controller 13

3.3. Traceability Matrix: 14

4. System Architecture and System Design 15

4.1. Architectural Style 15

4.2 Identifying Subsystems 16

4.3 Mapping Subsystems to Hardware 16

SECTION 3: 19

5. Design of Tests 19

5.1 Class Tests 19

6. Project Management and Plan of Work 19

6.1 Project Coordination and Progress Report 19

I. UC-1: Logging in 19

II. UC-2: New Registration 19

III. UC-3: User data addition 19

IV. UC-4: Validation of Data 20

V. UC-6: Comparison of data report 20

VI. UC-5: Historical Data Representation 20

VII. UC-7: Health Recommendations 20

4

VIII. UC-8: User communication 21

6.2 Plan of Work 21

6.3 Breakdown of Responsibilities 22

7. References 23

I. Software Engineering I Lecture Slides 23

II. Fitbit Health Monitoring Analytics 23

III. GRASP (General Responsibility Assignment Software Patterns) 23

IV. Cohesion_wikipedia 23

V. Monitoring the health of web page analytics code 23

5

SECTION 1

1. Interaction Diagram

1.1 Sequence Diagram:

I. UC-2: New User Registration:

Description:

The above interaction diagram is for Use Case 2 (New User Registration). The user enters
his credentials into the system, and these are then validated and verified by the Checker.
If the credentials are valid, the data will be stored in the database. However, if the
validation fails, the user will be prompted to enter his credentials again. The user can then
enter his health data into the system, which is then validated by the checker (to check for
any outliers) and is stored in the database. The data from the streaming device is read by
the Controller, which stores this data in the database.

6

II. UC-3: User Data Addition

Description:

The above interaction diagram is for Use Case 3 (User Data Addition). The user enters the
data to the TextReader through the interface. The TextReader send the data to Checker
for validation. The checker validates and updates the status to the interface, which in turn
sends the message to the user. If validation is successful, the checker requests the
controller to forward the block to the other users for verification through the
communicator. After the block is verified by the users, it is added to the database by the
controller. If the block is not verified, then the controller is sent an error message from
the users and it delivers the “failure to add” message to the user through the interface.

7

III. UC-6: Comparison of Data Report

Description:

The above interaction diagram is for Use Case 6 (Comparison of Data Report). The
interface will ask user for consent for sharing personal health data with the system for
comparing data with others. Users will authorize and allow data sharing with the system.
The interface will send the consent information to the controller which will then store the
consent information in the database.

User will select custom health parameters and report type for viewing comparison data
and submit the request to the interface. The interface will request health data from the
controller. The controller will query database for health data based on users’ selected
parameters. The database will send queried result sets to the controller in raw format.
The controller will calculate the comparison data based on raw data and user id which
will later result in calculated comparison data to the interface. The interface will generate
the comparison report in the type of user requested and present it to the user.

8

2. Design Principles:

The design principles we used to assign responsibilities to objects are included in GRASP
(General Responsibility Assignment Software Patterns (or Principles). The controller is
defined as the first object beyond the UI layer that receives and coordinates (“controls”)
a system operation. So the controller module was assigned responsibilities which dealt
with coordination and control processes in the system e.g. Assigning responsibility R22
(Select Recommendation to User) to the controller. Using a different module or
combining more than one module for R22 would have increased the number of steps as
the responsibility based on controller pattern should be included in the controller module
for efficiency.

 Another design principle we used for assigning responsibilities is high cohesion. High
cohesion means that the responsibilities of a given element are strongly related and
highly focused. For example while assigning responsibilities to interface module,
responsibilities R1, R2, R3 and R4 are closely related as they deal with the display of
information on the screen. The responsibilities are highly related and therefore assigning
these responsibilities to the interface module is feasible. If closely related responsibilities
are assigned to different modules such as R1(Display data and user information) which is
included in interface module and R2(Display forms for user interaction) then the design
of the system will be flawed as there will be a waste of resources as two different modules
will be called to do similar actions. In addition, UI could also take the responsibilities of
the TextReader and the checker, yet since it has already taken R1, R2,R3 and R4, adding
the reader’s responsibilities would have to lower the cohesion of the UI and that is why
we have set up the checker and TextReader modules.

Regarding that there are so many responsibilities that the controller needs to fulfill, while
there are still more responsibilities we have to reach out. As the communication
responsibilities and data storage responsibilities pop up, we must set the communicator
modules and the DB module.

Responsibilities are assigned to different modules depending on the above two design
principles. Due to this fulfillment of a responsibility often requires information that is
spread across different modules. This implies that there are many “partial experts” who
will collaborate in the task. This is included under Information Expert (Expert) design
principle.

9

SECTION 2

3. Class Diagram and Interface Specification

3.1 Class Diagram

3.2 Data Types and Operation Signatures

I. Display:
The User interface is vital to a software product because it is how the user will

interact with the product and if the UI is immersive and user-friendly the product

becomes an instant success. The various members of our I/O class are listed

below:

1) Attributes:

a) getHealthParameters: This is a JSON object containing key-value

pairs that contain information of parameters such as Blood

Pressure, height, weight, blood sugar, etc.

10

b) getCredentials: This is a JSON object which will have only 2 key-

value pairs, a user ID and a password.

c) getRecommends: This is a JSON object which contains only 1 key-

value pair based on the comparison report the user runs. The value

is stored in the database.

d) getUserInfo: This JSON object will return the complete history of

the user’s inputs to the blockchain. This will be an array of all the

objects that the user has entered before.

2) Functions:

a) showMessage(JSON): String

This function sends a message to be displayed on the screen. It can

be a success or failure message that the block has been validated.

It can also be a string variable that contains a message that the user

can send to another user. It also shows if login is successful or not.

b) showUserInfo(JSON): String

takes getUserInfo object as an argument. Displays this information

on the screen.

c) showComparison(JSON): Graph

Displays the comparison report by taking getHealthPara objects as

arguments.

d) showLoginForm(): String

Displays a form for the user ID and password. Returns the

getUserCred object.

e) showRegForm(): String

 Displays a form for registration of new user

II. Communicator:
The basic idea of the Communicator class is to handle the communication of

information among the various users within the system. The attributes and the

functions to be performed by the communicator class are as below:

1) Attributes:

a. Active_users_info: JSON

This attribute holds the information about the active users in the

system for handling the communication for the peer verification for

the implementation of the blockchain system.

11

b. Status_info: bool

This attribute holds the status information regarding the

verification process.

 2) Functions:

a. userComm(JSON): JSON

This function is to receive requests for the addition of the block into

the blockchain system and then send the status

messages/responses to the user.

b. broadcastBlock(JSON) : bool

This function is to broadcast the block of data for verification to the

various other users.

c. verifBlock(JSON): bool

This function is to receive the verifications and based on that

communicates the status with the Controller whether to add the

block or not and works for providing the status messages

accordingly.

III. Database:
Information which is generated by the user and required by the system needs to

be preserved for further utilization. This database class will store the required data

into the supernode server. The variables and functions utilized by this database

class are:

1) Attributes:

a. HealthData[]:

This array of health data will be used for temporary processing of

the health data variables.

b. UserInfo[]:

The information of the user and their profile will be contained in

this array.

c. LatestHash:

Hash data of the last block in the blockchain will be contained

here.

d. Recommendations []:

This will keep the recommendations for the users as requested

through the controller.

12

 2) Functions:

a. storeHealthData(HealthData[]): void

This function will store the health data of user once it has been

validated and verified.

b. storeUserProfile(UserInfo[]): void

User profile information will be stored through this function.

c. storeHash(String): void

As the latest hash will be required to identify the latest block for

the particular user, it will be stored through this function.

d. DBConnection(): String

This function will return the DB Connection to the requester/web

server

e. getRecommendations(JSON): String

Function returns the recommendations for specific values of health

data to the controller

IV. Blockchain
The Blockchain class temporarily holds the data and manipulates the operation of

storing, adding and retrieving the data from the database. The various functions

performed by the Blockchain class are listed below:

1) Functions:

a. getAllData(): pre-defined JSON format

This function will return a whole set of data retrieved from the database.

This return value will be in JSON format and given as the background data

for comparison. The function will go through every block and form a result

with the latest data.

b. getDataByUser(JSON): pre-defined JSON format

This function will take a user’s id as an input and return all the data from

blocks that stored on his/her chain. The function will start retrieving the

data from the user’s initial block and record every data when going

through the blockchain.

c. addBlock(JSON): Boolean

This function will take the verification information from the communicator

and do the adding and again verifying the block operation. The function

will return a Boolean result stands whether a new block is added to the

blockchain.

13

V. Controller
The basic idea of the Controller class is to control the flow of information to the

other modules within the system. The various functions performed by the

controller are listed below:

1) Functions:

a. userReg(JSON): bool

This function is used to register a new user into the system. It takes all the

credentials that were given by the user as the input.

b. userAuthenticate(JSON) : bool

This function is used to authenticate the user, which means that the

system checks if the user is present on the system database or not. It

returns a Boolean variable to indicate the status.

c. dataValidate(JSON) : bool

After the user enters his data into the system, this function checks the

validity of the data, which basically checks if the data entered has any

outliers or not. It returns a Boolean variable to indicate the status.

d. sendUserInfotoDB(JSON) : void

Once the user inputs his personal health data into the system, this function

sends the data to the database, where it is safely stored.

e. fetchUserInfo(JSON) : JSON

This function returns the user information when the user requests it from

the system.

f. getHealthRec(JSON) : JSON

This function provides health recommendations to the user on request,

depending on the health conditions of the user. It is then sent to the

display for the user to view it.

14

3.3. Traceability Matrix:

The below table depicts the mapping of the domain concepts with the various

classes listed in the previous section and shows how the domain concepts are used

in each class:

 Classes

Domain Concepts Display Controller Database Communicator Blockchain

TextReader X X

Interface X X

Controller X

Checker X X

Communicator X X

Database X X X

15

4. System Architecture and System Design
4.1. Architectural Style

Our system will not follow the architectural model of common existing blockchain practices. To

be fair, bitcoin-like architecture is kind of silly and has a lot of defects. Ideally, every user will store

the transaction information from all the other users. But terabytes of that information are still

getting larger, it is ridiculous to let each of all the users hold terabytes or even petabytes in the

future just for a paying system. Also, the concept of decentralization is a joke nowadays. Most of

the bitcoin users are using third-party platform to hold their assets. And the news of bitcoin

stealing from the inside of the platforms is not rare.

So we would use a hybrid architectural model of client/server model and a peer to peer model.

On the server-side, it will have all the functions of the controller, communicator, blockchain, and

database class. The server will do the main data storage and manipulation. It will also take all the

requests from all the users and return the value accordingly. The client will send HTTP requests

like GET and POST to the server through a lightweight front-end interface.

As for the peer to peer part, we would have more than the maximum number of online users’

virtual machines identified as super-nodes. All the users and super nodes will communicate

through the communicators in the server to each other and get the verification done. The data

will be backed on super-nodes and all the super-nodes will synchronize the data after each

addition operation.

By this architecture, we would have an easily updated interface for the user. As for the backend

side, we could adopt distribution methodologies to scale up.

16

4.2 Identifying Subsystems

In this system, there are three subsystems. The client-side - the web browser, the server-side,

which holds all the logic and algorithms, and a communicator side, which contains all the users

and super nodes. The client-side means the website framework, and it contains the structure of

the user interface. The user will send HTTP requests to the server, and the server will analyze,

process and response the request back to the user. For the verification part, the user will send a

request and enough information to the server, and the server will broadcast and receive all the

verification information, then do the following operations. When involving data manipulation, the

server will store the data through the blockchain module.

4.3 Mapping Subsystems to Hardware

As we have shown in the diagram above, mapping the subsystems to specific hardware is simple.

The web application will run in the browser of the User’s PC and the data entry, comparison

reports as well as the forums will be running on the interface of this web application. All

interactions for input and display of data is through the PC.

The super nodes are special instances that will not be inputting any additional data from their

side. Their only purpose is to validate the blocks that are being entered by other users and if they

are validated, sending them to the server for further processing. If they are not validated, they

17

will send the failure message through the communicator to the respective user. They will also

store the data as a backup.

The web server will be handling the input of the validated data into the blockchain. Every time

the user needs the data from the database to generate the comparison report, the logic for such

a comparison will be done in the server itself. The server will maintain the blockchain and the

database which will be populated based on the blockchain entries.

Lastly, the communicator will be responsible for maintaining all channels for broadcasting

messages from the server to all the users as well as communicating amongst users.

4.4 Persistent Data Storage

A database is needed to store the blockchain, information regarding the users which include user

login information and the statistical data of the population. MongoDB provides us with a database

that stores data in key-value pair format. The wide variety of fully developed features allows us

to focus more on the actual organization and management of the data in relation to other

modules. All that is needed is a simple call to the database to retrieve the raw data and the

custom-designed objects shown in the Class Diagram then do their own processing of the data.

The key is required to acquire data in this application which makes using this database simple.

MongoDB helps us store data in the cloud which is important for us to host a website accessible

to everyone. The goal is for the user to record his/her health parameters to compare with

population descriptors. Other objects illustrated in the Class Diagram do not have direct access to

the database. The database will be only accessible to the controller as shown in the class diagram.

The controller will interact with the database and issue requests for various types of data that are

stored in the database that the user interface would display or graph on the screen and data that

the controller would compare. Thus, the Controller is the only object that has direct access to the

database.

4.5 Network Protocol

In our system, all the communications will be encrypted by SSH and HTTPS. For the verification

part, which involves most of the online users communicate, we will adopt the Socket.io protocol.

18

4.6 Global Control Flow

Our system’s actions are based on the events generated through the User Interface thus making

it an “event-driven” system that depends on the user interaction. The user can choose to

enter/modify health information or view their health analysis information in an order which they

prefer.

Also, our system does not incorporate any hard timeouts which the user needs to adhere to. Once

the user is on our system’s webpage, they have the freedom to explore its functionality as and

when they want. Being an “event-response” system there are no hard deadlines for our system

as compared to the real-time systems.

4.7 Hardware Requirements

The hardware that we will be utilizing for the project are listed below:

1. A screen displays.

2. Storage space for the local blockchain.

3. Network communication with the main server (database).

4. A mobile device that could access the system website.

Note that all the requirements could be fulfilled by a personal laptop.

19

SECTION 3:

5. Design of Tests

5.1 Class Tests

Goal: To test the functions of the application, we plan to test the following:

a. Basic view of the web page.
b. Entering the user credentials and displaying the same on the screen.
c. Store the user data on a database.
d. Display the history and present conditions of the user on the screen.
e. Display the graphical representation of the health conditions of the user.
f. Display recommendations based on the current health of the user.

Results: The results for the above listed goals are as follows:

a. The web page was successfully displayed.
b. The user credentials entered by the user were successfully displayed.
c. The data entered by the user was stored on the database.
d. The past health conditions of the user were successfully displayed.
e. The health data of the user was displayed as graphs.
f. Health recommendations were displayed based on the user’s health

6. Project Management and Plan of Work

6.1 Project Coordination and Progress Report

Use cases that are completed so far are:

I. UC-1: Logging in

II. UC-2: New Registration
● The login and registration system work for new and existing users

respectively.
● The user ID and password are stored in a MongoDB database.
● If the user enters wrong credentials three times in a row, then the system

locks him out completely and informs the system admin about possible
brute force attack.

III. UC-3: User data addition
● User data is added to the database as JSON objects.
● Previous hashes and current hashes are being calculated and appended to

the JSON object.
● However, these objects can be modified in the database by the system

admin and the immutable feature of the blockchain has still to be added.

20

● The user can update his parameters but then that will be inserted in the
main database as any other data entry and will be counted as a second
entry instead of an update in the user’s information.

IV. UC-4: Validation of Data
● The JSON object is sent by socet.io to other users of the network for

validation
● The user will calculate the hash independently and send a success or a

failure message to the system admin
● If more than 50% of the users give a success message, the block is added

to the database. The blockchain infrastructure is currently in development.

Use cases being currently developed are:

V. UC-6: Comparison of data report
● The data can be displayed on the webpage as histograms, bar graphs and pie

charts using plotly.js and a MySQL database
● The data query is generated manually and hardcoded in the PHP file. We are

currently working on integrating a button to select the different parameters to
be selected whose data will be used to make a graph.

● The UI of the comparison report was made independently of the main data
addition and login module and the integration of the same is underway.

VI. UC-5: Historical Data Representation
● The user should be able to see his history of updates and now we are not

able to group the updates together and present it to him like we
envisioned it to do.

● The latest user data will be used for the comparison report generation and
now, all the commits made by the user are used for the data analysis

Use cases to be attempted are:

VII. UC-7: Health Recommendations
● The health recommendations ideally should be generated by ML

algorithms that will generate them based on the comparison report
output. We however will try to implement a basic version wherein the
health recommendations will be stored in a database.

● The health recommendation will be displayed irrespective of the user
needing them and which health recommendation is to be shown will be
decided only by the parameters that we will use to generate the
comparison report.

21

VIII. UC-8: User communication
● The users should be able to communicate with the system admin and the

other users regarding any issue they have with the system or just in
general.

● We can send messages over socet.io but we still must figure out how to
maintain a record of the messages.

6.2 Plan of Work
In the first phase of our project, we are going to implement the basic blockchain-based
health system. This phase is meant to form the most basic and essential functions of our
system: adding data block to the main and local block-chains, communicating with the
database and simple user interface. We will add three sample users to the network. One
of the three users can add their data to the blockchain, and others can verify this data. If
any outliers exist in the data entered by the user, the user will not be allowed access to
the system. The data validator of the system will check if any data entered by the user is
invalid and if so, an error message pops up prompting the user to re-enter his data. We
are using the JavaScript and MongoDB, for the creation of the blockchain and backend
part, where we can save the user’s data and share it among other users. We will be
finishing this phase by October 29th, 2019.

A super node is made available within this network, which is used to store the blockchain
data of all the users and serves as the database for the users. This will be a relational
database using SQL.

In the second phase of the project, we are going to finish the user interface to facilitate
users to register and login to our system. While registering with the system, the user is
given an option to share his personal data with other users and only if he consents, the
data is broadcast to the other users who can compare the data to verify it. Once the user
logs into the system, his credentials are saved onto the system and he can update his
health data. If the user adds new data, all the other users on the network will be notified.
Users can also generate historical reports, which gives details of his past health data and
they can also compare their data with the data of the other users. The second phase will
include provisions for the data analysis that will be done on the data stored in the
blockchain. Necessary upgrades will be made to the user interface. We will be using open-
source library like Electron to create this sort of desktop application.

This phase will be completed by November 20th, 2019. By this time we will have the
application that will be able to perform most main functionalities that are desired from
the application.

In the third phase, we will be addressing the scalability issues related to the network we
have created. In other words, we will build the system to accommodate many users on
the network. We will also provide recommendations to users based on their present
health conditions. Each metric will have its own priority depending upon the seriousness

22

of the health conditions. For example: heart rate and blood pressure will have importance
compared to sleep patterns. A forum for the users to communicate with other users will
also be created during this stage.

If the user is facing any problems with logging into the system, a support system will be
used to address the issues. A support system also addresses issues related to login, data
updating, health parameter comparison etc.

6.3 Breakdown of Responsibilities
Depending on the strengths of our project members, we have split the work in the
following way:

● Pranit Ghag: MongoDB database configuration and user interface
● Vikhyat Dhamija: Socket.io and user interface
● Sen Zhang: Socket.io for blockchain verification communication and

blockchain infra.
● Shounak Rangwala: Front end data visualization, project management
● Pratik Mistry: Cloud database management, Front end data visualization
● Pranav Shivkumar: Basic web page design, documentation
● Amod Deo: Documentation, User interface
● Swapnil Kamate: User interface, documentation
● Justin Wei: Documentation, blockchain infrastructure.

The integration will be coordinated by Sen Zhang, Vikhyat Dhamija, Pratik Mistry, Pranit
Ghag and Shounak Rangwala.

The testing will be coordinated by Swapnil Kamate, Pranit Ghag and Amod Deo.

23

7. References
I. Software Engineering I Lecture Slides

II. Fitbit Health Monitoring Analytics
https://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2014-g5-
report3.pdf

III. GRASP (General Responsibility Assignment Software Patterns)
https://whatis.techtarget.com/definition/GRASP-General-Responsibility-Assignment-
Software-Patterns

IV. Cohesion_wikipedia
https://en.wikipedia.org/wiki/Cohesion_(computer_science)

V. Monitoring the health of web page analytics code
https://patents.google.com/patent/US20110035486

https://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2014-g5-report3.pdf
https://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2014-g5-report3.pdf
https://whatis.techtarget.com/definition/GRASP-General-Responsibility-Assignment-Software-Patterns
https://whatis.techtarget.com/definition/GRASP-General-Responsibility-Assignment-Software-Patterns
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://patents.google.com/patent/US20110035486

