
HeartBPM

Group #12
https://github.com/revan/HeartRateAdjuster

Kenny Bambridge, Jonathan Chang, Samani Gikandi,
Tae-Min Kim, Nikhil Shenoy, Revan Sopher

May 12, 2014

Contents

1 Customer Statement of Requirements 8
1.1 Problem . 8

1.1.1 More Specifically . 8
1.1.2 Background . 10
1.1.3 Devices and Specifications . 10

1.2 Solution . 10
1.2.1 Music . 11
1.2.2 Database . 12
1.2.3 System Architecture Diagram . 12
1.2.4 Product Usage . 13
1.2.5 Product Ownership (tentative) . 14

2 Glossary of Terms 16

3 System Requirements 18
3.1 Functional Requirements . 18
3.2 Non-Functional Requirements . 20
3.3 On-Screen Appearance Requirements . 21

4 Functional Requirements Specification 28
4.1 Organization . 28

4.1.1 Stakeholders . 28
4.1.2 Actors and Goals . 29

4.2 Use Cases . 30
4.2.1 Casual Description of Use Cases . 30
4.2.2 Traceability Matrix . 31
4.2.3 Fully-Dressed Description of Use Cases 33
4.2.4 Use Case Diagram . 45
4.2.5 System Sequence Diagrams . 46

5 Effort Estimation 54

6 Domain Analysis 57
6.1 Domain Model . 57

6.1.1 Concept Definitions . 57

2

6.1.2 Association Definitions . 58
6.1.3 Attribute Definitions . 59
6.1.4 Traceability Matrix . 60

6.2 System Operation Contracts . 60
6.3 Mathematical Model . 61

7 Interaction Diagrams 62
7.1 Design Patterns . 68
7.2 Assignment of Responsibilities . 69

8 Class Diagram and Interface Specification 70
8.1 Class Diagram . 71

8.1.1 Class Diagram for Data Management 71
8.2 Data Types and Operation Signatures . 72
8.3 Traceability Matrix . 78
8.4 Design Patterns . 79
8.5 User Interface Specification . 79

8.5.1 Preliminary Design . 79

9 System Architecture and System Design 92
9.1 Architectural Styles . 92
9.2 Identifying Subsystems . 93
9.3 Mapping Subsystems to Hardware . 95
9.4 Persistent Data Storage . 95
9.5 Network Protocol . 95
9.6 Global Control Flow . 96

9.6.1 Execution Orderness . 96
9.6.2 Time Dependency . 96
9.6.3 Concurrency . 96

9.7 Hardware Requirements . 96

10 Algorithms and Data Structures 98
10.1 Algorithms . 98

10.1.1 Pattern Recognition . 98
10.1.2 Danger Detection . 99
10.1.3 Song Selection . 100

10.2 Data Structures . 100

11 User Interface Design and Implementation 102

12 Design of Tests 103

3

13 History of Work, Current Status, and Future Work 112
13.1 History of Work, Current Status, and Future Work 112
13.2 Key Accomplishments . 112
13.3 Possible Future Directions . 113

4

Summary of Changes

Based on the feedback we received from Professor Marsic and the TAs during our previous
demo, we decided that a few changes were in order. As Professor Marsic mentioned, it,
would be helpful to the user if we could suggest a beneficial target heart rate instead of
having them blindly guess and randomly adjust the slider. Also, Professor Marsic pointed
out that there is the potential for the user to overexert himself during a workout. Therefore,
we ended up adding two new features which are also included below in our itemized list
and described with further detail.
Obviously, our first demo was a more "bare-bones" presentation of the features we had

implemented so far. Between the first and second demo, we have worked first and foremost,
on integrating the data subsystem, the UI subsystem, and the chest strap subsystem. Now,
we can directly access the graphs and data from the menu off of the home screen. Also,
the graphs are "prettier," and there are more variations other than heart rate vs. time
that the user can choose from. Suffice it to say, we were able to implement the suggestions
given to us, as well as integrate the pieces that we promised.
To view the exact changes made, feel free to visit our project webpage: https://github.

com/revan/HeartRateAdjuster where each revision is automatically tracked by GitHub.

Itemized List of Changes

Integration of Subsystems The UI can interact with the data subsystem directly, which
is necessary for viewing the graphs of user exercise and song statistics.

Critical Condition Alert If the user’s heart rate falls outside of a "safe" range, the system
alerts the user and initiates an emergency pause. The algorithm used to detect a
critical condition is explained in the algorithms section under "Danger Detection"
and cited in reference 17.

Calculate Recommended Target Heart Rate The user may now request that applica-
tion to recommend a target heart rate for their workout, based on their age and level
of activity ranging between light and intense. The algorithm used in this update
is described in the aglorithms section under "Pattern Recognition" and is cited in
reference 18.

UI Refinements As demonstrated in the second demo, our main screen has had a few
minor changes from the preliminary design section. For example, there additions
such as the use case where a user needs to be alerted about a dangerous heart
condition, or if a user chooses to set or calculate his heart rate.

Integration of Chest Strap During our first demo, we did not have a way to communicate
directly with the chest strap to record heart rates, and used a ChestStrapFake class
to spoof heart rate information using a slider. We have now implemented a class

5

 https://github.com/revan/HeartRateAdjuster
 https://github.com/revan/HeartRateAdjuster

which is able to receive information from the physical chest strap - however, due to a
lack of resources (none of the developers own phones which support Bluetooth Low
Energy) this could not be fully tested.

screenshots of UI and data subsystems A few screenshots of the current UI and data
subsystems have been included to show the changes visually. Sometimes images are
easier to comprehend than words.

Improved database/more, better graphs Originally, our SQLite database was complete
"barebones," and although the normal database functions such as "add record"
worked, it was visually unappealing. Now, instead of having a single line graph,
we have a few other options for users to select such as Genre or Artist. The data
management subsystem now calculates the frequencies of different aspects of the
songs played during the workout, such as genre, song, and artist, and graphs these
frequencies at the end of the workout. The graphs update continuously, and users
can zoom in and out of the graphs and drag them around on the screen.

Design Patterns A section that discusses the major design patterns used in our project
has also been included.

Object Constraint Language A section on OCL has been added which includes the in-
variants, preconditions, and postconditions of all the important classes used in our
code.

System Requirements Two new functional requirements have been implemented - REQ-
17 and REQ-18. On-Screen requirements have been updated to include new graphical
user interface.

Use Cases Three new use cases have been implemented - UC-7, UC-8, UC-9. Both casual
and fully dressed descriptions have been included, as well as an updated traceability
matrix. Relevant System Sequence Diagrams and System Operational Contracts
have been included as well. The Use Case Diagram has been updated to include the
newly implemented use cases as well.

User Interface Specification The images under this section have been renewed to illus-
trate our current graphical user interface. Effort estimation has also been updated
to include the new use cases and weights.

Domain Model New concept definitions, association definitions, and attribute definitions
have been included to reflect the newly implemented use cases. Traceability matrix
has been updated as well.

Interaction Diagrams New interaction diagrams have been included to reflect the newly
implemented use cases.

6

System Architecture/Design Figure 8.1: Subsystems has been updated to include the
newly implemented use cases.

Class Diagram Graphical User Interface data type and operation signatures updated to
include the newly implemented use cases. Traceability Matrix updated to include
new domain definitions.

User Interface Design and Implementation Updated to include newly implemented UI
Components (set resting, calculate peak, alert user).

Design of Tests Updated to include design of tests for the newly implemented use cases.

Because of the successful integration, and addition of important features, everything works
a lot "cleaner" than compared to the first demo!

7

1 Customer Statement of
Requirements

1.1 Problem

There seems to be a growing concern over the bevy of health-related issues that society
faces: cancer, obesity, heart diseases. This is evidenced by the estimated $25.9 billion
that consumers spent on fitness membership in 2013 or the government’s seemingly carte
blanche spending on "perfecting" the healthcare.gov website. While it is impossible to
completely eliminate health problems, we focus on a small, albeit interesting subset of the
health industry - personal health monitoring. Just like "an apple a day keeps the doctor
away," our project seeks to maintain the personal health of an individual, keeping him in
the best physical shape possible, and reducing the risk of health problems.

1.1.1 More Specifically

Lack of education about proper fitness is a widespread problem. Many people in the
country would like to exercise and stay in shape, but only a small subset of those peo-
ple know how to monitor their health in a way that allows them to stay fit. There are
several methods out there which people can use to get the proper information; tools such
as fitness blogs, the President’s Council on Fitness, Sports, and Nutrition, and the classic
visit to the doctor’s office are all excellent examples. However, many people don’t know
about those methods or choose not to utilize them, and they do their body a disservice
by performing exercises that could be detrimental to their health. The Internet is littered
with articles such as "9 Exercises You’re Doing Wrong" and "The 7 Fitness Myths You
Need to Know". With information like this readily available to exercisers, it can be hard
to find correct information. And even if one does find correct information, he must check
to see if that information applies to a person with his body shape and size. The general
problem of finding correct exercise information is that there is no set standard; there is
no "one size fits all" set of guidelines which one can follow to have an effective workout.
Everybody’s body responds differently to different exercises, so the best that the medical
community can do is to provide a set of recommendations for people of the most average
body type. While this set of recommendations is good in the general, they will never tailor
to the needs of one’s body and workout. Finding the correct exercise information for one’s

8

body type is quite a difficult problem, and it will continue to be a problem until a solution
is provided to track each person’s exercise routine.

Of all the different metrics for measuring the quality of one’s fitness, heart rate is the
most important factor in determining whether a workout was effective. Monitoring one’s
heart rate is useful because it determines whether the exerciser is performing his exercise
safely as well as successfully. Experts recommend that one’s target heart rate during ex-
ercise should be between 60-85% percent of the maximum heart rate, and that anything
higher than 85% increases cardiovascular and orthopedic risk to the exerciser. Naturally,
the target heart rate varies for people of different ages, so one should always take this into
account before starting a fitness regimen. Also, the frequency of exercise before the new
regimen should be considered. If one has not exercised frequently before starting the new
regimen, then he should start exercising at a rate that is towards the lower end of the target
heart rate zone and then gradually increase his activity once his body gets accustomed to
the exercise. Heart rate is a significant, if not the most important, factor in determining
whether a workout was done correctly and effectively, and it must be monitored closely in
order to prevent injury.

Unfortunately, there are people who don’t know how to correctly monitor their heart
rate, and they mistakenly create a certain fitness plan based on wrong information and end
up not optimizing their workout. They go to the gym, run on the treadmill at a light pace,
and consider that enough to maintain their health. They do not check their heart rate and
make sure they are in the safe region of activity. This critical lack of measurement affects
the entire workout. For an exercise to be effective, one must maintain a heart rate that
is within the target range for an extended period of time. If not, the exerciser either puts
himself at risk of injury or completes a workout that does very little to improve his fit-
ness. Some use exhaustion and soreness after a workout as a judge of an effective workout.
Although these methods do give an indication as to how effective the exercise was, they
do not provide an insightful and accurate description of one’s health. As a result, these
people continue bad habits and routines that hinder their progress to stay fit; in fact, they
may not be even making progress.

A solution to the problem of uninformed exercise must have three main components; it
must include all relevant medical data such as heart rate information, create a fitness plan
that fits relatively well to the client’s body, and provide the client with feedback about
the effectiveness of his workout. Once all these components come together, the client will
be able to correctly monitor his health during exercise and get the most out of his workout.

9

1.1.2 Background

A healthy lifestyle depends upon a plethora of factors including environment, nutrition,
socialization, and mental stability. However, we identified physical fitness and sleep as the
two key factors to leading a healthy lifestyle. Their importance cannot be overstated.

Physical fitness or exercise fortifies the body, allowing one to stay in shape, avoid in-
juries, develop confidence, become stronger, and sleep better. Sufficient physical activity
can reduce the risk of such symptoms as stress, depression, diabetes, high blood pressure,
osteoporosis, and obesity.

Meanwhile, sleep is critical to the mind. It refreshes the brain, helps with daily func-
tioning, uplifts one’s mood and emotional well being, increases productivity, and improves
learning and memory. "Good" sleep can lower the probability of contracting the following:
heart disease, kidney disease, high blood pressure, diabetes, and stroke.

1.1.3 Devices and Specifications

Heart Rate monitor:
Uses Bluetooth or ANT+ to connect to smartphone

Smartphone:
Needs to be running Android 4.3+
Needs to have radio supporting Bluetooth 4.0+

1.2 Solution

It has been well documented that exercise and sleep both hold a significant impact on heart
rate[14-15]. However from experience, we believe that the link between exercise and sleep
and heart rate holds true for the converse as well. One of the targets of a good workout is
an increased heart rate. On the other hand, high-quality sleep entails a decreasing heart
rate.

Our proposed solution is designed to affect people’s health by providing limited control
to their heart rates. Our Musical Heart Rate Adjuster is targeted to operate in two areas
where it can be the most effective - workouts and sleep - which in turn offer the aforemen-
tioned health benefits. We do not plan on adjusting heart rate with the intent of skipping
the rigors of exercise or the process of falling asleep; on the contrary, we wish to adjust

10

heart rate to induce better quality workouts and sleep.

Our plan is composed of a few steps. First, we intend to increase the effectiveness of
workouts by matching heart rate to an appropriate selection and tempo of music. This
music can be adjusted accordingly to stimulate heart rates to reach a desired intensity of
exercise. The music, which will be discussed later, performs the task of simulating work-
out difficulty. As an added benefit, studies have shown exercising while listening to music
to provide many benefits, such as increased motivation and endurance, distraction from
otherwise unbearable stress, and increased heart rate, among others.

Then, we seek to improve the quality of sleep by finding soothing music to gradually
slow down a user’s heart rate. In this instance, we use music as an instrument to aid users
in falling asleep more quickly, and hopefully improve the performance of their rest. Lis-
tening to right music can also improve the quality of sleep; for instance, music by classical
composer Mozart has been shown to increase health factors such as relaxation and mental
stimulation.

1.2.1 Music

We utilize music to affect heart rate in two ways. In addition to identifying and playing
music with speeds in the same vicinity as heartbeat, we also wish to be able to adjust the
tempo of the music. A simple compound microscope has both a coarse adjustment knob
as well as a fine adjustment knob. Our song library will organize songs into different cat-
egories, acting as a coarse adjuster for heart rates. Meanwhile, to add a little fine-tuning
to adjust the heart rates, we will either write or find an existing application for an audio
tempo changer. Given current heart rate, and subsequently, current music tempo, we will
continually adjust the music tempo while measuring for changes in heart rate. This will
occur until we hit the specified target heart rate, give or a take a few BPM. Thus, if there
is no difference in heart rate, either the targeted heart rate has been reached - otherwise,
the music tempo has not been adjusted enough.

We are interested in analyzing the magnitude of the effect of our music application on
heart rate and finding a rough correlation based on the data that the MOTOACTV pro-
vides. All parties should remember, however, that correlation is not causation. While we
take the assumption that the general public will react to music in similar ways (music with
a slower tempo will decrease heart rate while music with a higher tempo will increase heart
rate), it is difficult to know how every individual will react to the same music and can
never be 100 percent accurate.

This will probably take some experimentation with test subjects in several situations
such as rest, running, weight-lifting, and playing basketball. Time-permitting, we will also

11

find the ability of music to slow down heart rate and affect sleep by analyzing sleep monitor
graphs. As a side experiment, we could measure the effect of several well-known classical
songs on sleep quality.

Finally, we will be able to develop an algorithm for ranking the songs that induce the
best performance. Even better, we could potentially toy around with machine learning
to have our algorithm improve after more and more data sets. With the application of
machine learning, each user’s individual MOTOACTV device may correct itself in the case
that a specific user does not follow the general trend as stated previously (a user’s heart
rate might increase from slow music rather than fast music). This way, our MOTOACTV
will be able to increase both exercise and sleep performance through our own custom music
player application, located on and loaded by the device. This application will utilize the
user’s music library stored locally on the device’s memory.

1.2.2 Database

Users will want to monitor their personal health status, so our project will allow the user to
view his workout data directly on his phone. This eliminates the inconvenience of having
the user log in to a personal account on a website to view his data, because everything he
needs will be on the phone itself. All the data collected from the workout will be stored
locally on the phone, and the system will perform the necessary database calls to retrieve
that data. That data will be processed and formatted into different graphs that will display
the correlation between music and heart rate.

1.2.3 System Architecture Diagram

This diagram highlights our system architecture: Our heart rate monitor senses the user’s
BPM and transmits the data to the Android phone via Bluetooth as requested by the app.
The phone then uploads the data to the server and database which processes the data.
The system is then able to select the appropriate songs, and then display suitable graphs
once the workout is completed.

12

Figure 1.1: System design

1.2.4 Product Usage

• The heart rate monitor should only be worn while it is in use - only while the user is
exercising. While it is safe to wear the heart rate monitor during other times, there
will be no benefit unless the application is currently running.

13

• Users may choose to use the Musical Heart Rate Adjuster while not sleeping or
exercising if they wish to adjust their heart rate for alternate reasons (possibly for
playing video games or preparing for an exam).

• The user will run the android application, and then input a target heart rate. The
software will then choose a song based on your current heart rate and begin to either
raise or lower it. Once the target heart rate is obtained within a certain tolerance,
the software will work to maintain this heart rate rather than increasing/decreasing
it.

• Music will be selected from the user’s own personal music library (which should be
stored on the flash memory of the Android device) to either increase or decrease the
user’s heart-rate. Music will be played by our software.

• The software will select and play music according to the user’s current heart rate in
real-time as it receives information from the connected heart rate monitor.

• Music will be delivered through the headphone jack on the Android device or through
any bluetooth device.

• Receive information on the songs that are listened to in relation to their usage of the
Android device. (What songs were listened to, which songs were the most effective
at changing their heart rate, etc.)

1.2.5 Product Ownership (tentative)

Our team will be divided into three smaller sub-teams of two individuals each, the pairings
listed below. Each sub-team will be responsible for music, hardware, or web and provide a
brief description of their work on a shared Google drive folder. They will also include the
necessary UML diagrams and charts. Every week (or bi-week) we will meet together for 1-3
hours during the timeframe determined by When2meet. During the meeting, we will have
a specific agenda that primarily involves the week’s progress and upcoming deliverable.
Our discussion will probably be centered along the following questions: 1) What did you
work on this past week? 2) What do you plan on working on next week? 3) Are there any
changes that need to be made to the project? Every week, a different team member will
take the lead for the next deliverable to ensure that everything is on time.

• Kenny and Samani will develop a system to select or modify a track based on re-
quested BPM.

• Jonathan and Nikhil will work on a database that receives, stores, and processes the
data from the Android device. They will also be responsible for creating the graphs
that measure different metrics of the workout.

14

• Revan and Tae-min will program the Android application and work on interfacing
with the heart rate monitor.

15

2 Glossary of Terms

Electrocardiography (ECG) ECG is an interpretation of the electrical activity of the
heart over a period of time as measured across the thorax or chest. This interpretation
is produced by attaching electrodes to the surface of the skin. This is generally used
to measure the heart’s electrical conduction system by picking up electrical impulses
generated by the polarization and depolarization of cardiac tissue.

Beats per Minute (BPM) BPM is the amount of times that the heart beats given one
minute of time.

Resting Heart Rate The resting heart rate is the heart rate measured while the subject is
both awake and inactive, not having performed physical activity prior. This resting
heart rate, measured in bpm, is the initial value that the user should have before
using our device to raise or lower their heart rate.

Database Databases are a place to store information. In our case, this is where we will
store and process important data received from our health devices, allowing our
system to simply act as a pleasant interface for the user.

Target Heart Rate The target heart rate is the heart rate which the user wishes to
achieve. This will be lower than the recorded resting heart rate if the user is at-
tempting to sleep, and higher than the recorded resting heart rate if the user is
planning to work out. The user’s maximum heart rate is based on how old the user is
(220 minus the user’s age), and the recommended target heart rate while exercising
is between 50 and 85 percent, depending on how active the user normally is. While
sleeping, people’s heart rates generally drop approximately 8 percent from their rest-
ing heart rate, so the user’s target heart rate should be approximately [(heart rate
before sleeping)*0.92]

Smartphone Smartphones are mobile phones which contain features that are more ad-
vanced than basic mobile phones. In our case, any Android device which has the
capability to use Bluetooth will suffice to interact with the sensors which will be put
on the body.

Heart Rate Monitor A device which is able to monitor the user’s heart rate. In our
experiment we will be using a third party heart rate monitor (worn as a chest strap)
which has sensors that are connected to the skin along with the MOTOACTV watch.

16

The chest strap will record the heart rate while the watch will display the user’s
current heart rate in real time.

17

3 System Requirements

Based upon our consumer needs, we derived a list of requirements for our system to pos-
sess. For features that must be implemented by the system, we state that "The user
shall," whereas for features that are preferred, but not "mandatory," we state that "The
user should." For each requirement, we assign an identifier in the form of REQ-x, as well
as a priority weight from 1 to 5. A higher priority weight indicates that the corresponding
requirement is more essential to the success of the project, and more critical to fulfilling
the customer’s needs.

3.1 Functional Requirements

Identifier Priority Description

REQ-1 5
The system shall log user BPM data using

the Heart Rate Monitor sensor during
active periods.

REQ-2 4
The system shall allow user to select a

target heart rate on the Android
application.

REQ-3 3

The system shall determine a song to play
based on whether the target heart rate is
greater than or less than the resting heart

rate.

REQ-4 5
The system shall play the designated song
through either headphones or Bluetooth

speakers to adjust user heart rate.

REQ-5 3 The system shall store the BPM data of
each song in the database.

REQ-6 2 The system shall at the very least, output
graphs relating BPM versus song speed.

18

REQ-7 1
The system should adjust the tempo of the
song to attempt to match the user’s BPM
and stop when within a defined range.

REQ-8 1

The system should allow the user some
control when they use the "Display

Statistics" feature. That is, they should be
able to customize the details of how the

data is displayed (type of graph or specific
categories of data).

REQ-9 1

The system should rank the songs that
induce the best performance and use
machine learning to improve the song

selection algorithm.

REQ-10 1 The user should be able to change the
current song if he is unsatisfied with it.

REQ-11 1
The user should be able to view his current

heart rate as long as the chest strap is
recording that information.

REQ-12 1
The user should be able to pause the

current track if he needs to interrupt his
activity for some reason

REQ-17 1
The system should accept input from the
user and calculate a recommended peak

heart rate

REQ-18 1 The system should be able to set an
appropriate resting heart rate

Our functional requirements spell out the behavior of our system and reaction to user
input. Our system is composed of several aspects such as the heart rate monitor, android
device, server and database. These requirements describe some of the interactions between
these components and the effects that the system as a whole produces. The images in the
appearance requirements section later on provide more insight on the requirements and
functionality of our system.

For our system to be able to accomplish any of its goals, it must first be able to record
the relevant BPM data. Therefore, our REQ-1 is of utmost important. There is, however,
an important scenario we must consider. If the heart rate sensor is removed (accidentally
or intentionally) while the user is active, any later data collected and song played may be
skewed. Thus, the time in between active periods is irrelevant and will have no effect on
the software.

19

In regards to music playback, it is desirable for our system to do the data processing
and song section, to reduce the burden on the user. Again, after collecting the BPM data
and storing it in our database, our system will use a pre-determined algorithm to analyze
song tempo and bpm correlation to determine song selection (REQ-3 & REQ-5). As for
physical playback, the choice of whether to use headphones or speakers will not have any
effect on the performance of the system. The choice is simply the user’s preference (REQ-4).

To safeguard against mistakes, and prevent negative side-effects, if the system makes an
incorrect decision, there will be no negative consequences on the user’s health. It should be
able to re-adjust once it realizes that the song’s tempo does not match the user’s current
and target heart rates (REQ-7). For REQ-9, this ranking system will be completely local
and only relevant to the user of the system. This is just an optional improvement to our
system to enhance the user’s experience.

In order for an uninformed user to safely select a target heart rate, the system should
have a mechanism to calculate a recommended target heart rate based on the user’s age and
level of activity (REQ-17), maximizing the safety of the system. Along with recommending
a target heart rate, the system will be able to set the user’s resting heart rate based on
their current heart rate at the beginning of the workout (REQ-18), also contributing to
the safety of the system.

3.2 Non-Functional Requirements

Require-
ment

Priority
Weight Description

REQ-13 5

The Android interface shall have a minimal
number of navigation menus; the user

should not need more than three taps to
find the information he needs

REQ-14 5
The user shall not be able to directly modify
any data in the database. All data must be
programmatically gathered and processed

REQ-15 3

The user should wear the device only when
the user wishes to alter their heart-rate; the
device will not provide useful information if
it is worn when the user does not plan to

increase or decrease their heart-rate.

REQ-16 3 The Android application should be intuitive
and simple to use.

20

Meanwhile, our non-functional requirements are more descriptive than practical, listing
the qualities of our system. These requirements are based on the term FURPS+, which
includes functionality, usability, reliability, and performance.

3.3 On-Screen Appearance Requirements

This section contains mock-ups of the Android application’s user interface. Although the
arrangement and display is subject to change, these images contain all the essential infor-
mation that needs to be conveyed to the user, as well as all the necessary inputs.
The inputs used while exercising, such as the BPM sliders and the music controls, take up
a large amount of screen space to facilitate active use. Information display, such as the
current track and BPM, is placed unobtrusively around the input methods. The configu-
ration settings are hidden in a drop-down menu, as per the Android design standard.

21

Figure 3.1: The main screen of the app provides a menu button, selectors for Target Peak
and Resting BPM, a display of the current track, a display of the current BPM,
and the option to Play/Pause and Skip the current track.

22

Figure 3.2: Pressing the “Raise/Lower” button toggles between attempting to raise or lower
the BPM.

23

Figure 3.3: Pressing button on the top-right corner of the screen toggles between the statis-
tics menu and main menu

24

Figure 3.4: Pressing the "Graph" button will lead to a screen showing a graph of the user’s
heart rate over time

25

Figure 3.5: Pressing the buttons "Artist", "Songs", or "Genre" will produce a pie-chart
like this one.

26

Figure 3.6: Pressing the "Calculate" Button will allow a user to input his age and level of
activity for the program to recommend a target heart rate

27

4 Functional Requirements
Specification

4.1 Organization

4.1.1 Stakeholders

Stakeholders include individuals and organizations which are interested in the completion
and use of a given product. The amount of stakeholders and different types of stakeholders
relies on the versatility and ease-of-use of the product in question. Due to this software’s
very simple interface and design, stakeholders may include users of all ages and multiple
types of organizations who are interested in obtaining easier sleep or a more energetic
workout. Examples of potential stakeholders include:

1. Individuals who are interested in maintaining their health personally without out-
side help. With the many functions of the application, users have the capability of
maintaining their health without the need to consult other people. People who are
introverts or do not have easy access to another person who is able to easily analyze
the individual’s personal health would be very interested in this application. After
running this application through their workout or sleep, users can easily consult the
graphs which are produced rather than consulting a personal trainer or doctor about
their health.

2. Organizations that specialize in helping people fall asleep. Rather than having to
prescribe pills to every customer who has trouble sleeping, they will have the option
to suggest this product to the customer for minor cases. While prescribing pills may
tend to have slightly more dangerous side-effects, our product does not introduce any
chemicals to the body which may potentially cause harm to the consumer. Organi-
zations who are interested in a cleaner alternative to help people with their sleeping
problems would be stakeholders for this product.

3. Organizations that specialize in promoting exercise and personal health. Not only
does this product help those who are trying to sleep, but also those who wish to be
more fit. While personal trainers may know how to help the customers and be great
motivators, organizations may be interested in helping a larger pool of customers
without having to increase the amount of hands that they have working. With
this product organizations may grant customers the option of being self-sufficient,

28

helping to increase self-esteem, as well as a great motivator as the application works
to increase the user’s heart rate allowing them to push onward and burn calories
easily.

4. Organizations interested in monitoring and researching people’s health. While there
are many users who are able to use the product’s graphs and understand how their
health and workout are, there are many users who still prefer the assistance of outside
sources. This product may also be used by these outside sources to help them collect
extra data on an individual’s health. Rather than having the customer come to their
location and run a couple tests in a single day, the organization will have the ability
to provide this product to the customer and collect more regular data to understand
the customer’s day-to-day life rather than a couple of tests run at their office.

More specifically, this product may see stakeholders in:

• Personal Trainers

• Athletes

• Coaches

• Doctors

• Researchers

• Pharmacies

• Therapists

• General population

4.1.2 Actors and Goals

Actors can be defined as are people or devices that will directly interact with the product,
and can also be loosely labeled as either "initiators" or "participators". These actors will
have a specific goal with the given product, which is what the actors are attempting to
achieve by interacting with the system. Actors and their respective goals are:

Actor Actor’s Goal
User(initiator) To increase heart rate for exercising
User(initiator) To decrease heart rate for sleeping
User(initiator) To analyze health information from given graphs
Chest Strap (initiator) To alert the user of an abnormal heart rate
Chest strap (participator) To monitor the user’s heart rate

29

This product is one which only requires the interaction of one human actor, the user of
the product. While there is the potential for other humans to interact with the user’s
health information which is produced, only the user himself is considered an actor. The
headband and chest strap are participating actors that are worn by the user to monitor
information and relay the information via Bluetooth back to the smartphone which is
running the application. The one exception is that our chest strap (used interchangeably
with heart-rate sensor) may be an initiating actor and notify the user if his/her heart rate
is abnormally high or low. In this case, the user would be the participating actor.

4.2 Use Cases

Use Cases are specific tasks that are created together by the designer and the client to
simulate what the client wants out of his software solution. They are meant to describe
the main features of the project such that the designer can easily address the needs of the
client and create a product around those needs. Below is a casual description of the use
cases for the reader to get a general idea of how the software should be used. Later, fully
described use cases are shown for additional insight into the different cases.

4.2.1 Casual Description of Use Cases
Use Case Action Description
UC-1 logData The system will log heart rate and music metadata.

UC-2 setTarget-
HeartRate

The user can change the heart rate that the system is
targeting.

UC-3 skipTrack The user can elect to skip the current song. The
system will begin playing a different song.

UC-4 toggle-
Playback

The user can toggle the system between playing and
not playing music.

UC-5
dis-

playStatis-
tics

The user can request the statistics about the current
workout. This can be performed while the workout is
in progress or after the workout has been completed.

UC-6 getH-
eartRate

The user can view his current heart rate. This can be
used when the user does not want to see all of the
statistics from the workout and just wants his heart

rate.

UC-7 alertUser The heart-rate sensor detects an abnormally high or
low heart rate and notifies the user at once.

UC-8 setResting The user can set their resting heart rate to be their
current heart rate

UC-9 calculate-
Peak

The user can have the system calculate a recommended
target heart rate

30

4.2.2 Traceability Matrix

The Traceability Matrix allows the reader to cross the functional and non-functional re-
quirements described earlier with the use cases. This demonstrates which use cases fulfill
each requirement, and the total priority weight of each use case will determine which cases
are the most important. If an X is present at any point in the column for a Use Case, then
the corresponding requirement’s priority weight must be added to the sum. The remaining
Xs in the column are similarly considered, and the total priority weight for the Use Case
is listed at the bottom of the column.

31

Pri-
ority
Weight

UC-1 UC-2 UC-3 UC-4 UC-5 UC-6 UC-7 UC-8 UC-9

REQ-
1

5 X X X X X X

REQ-
2

4 X X X

REQ-
3

3 X X X

REQ-
4

5 X X

REQ-
5

3 X X X

REQ-
6

2 X

REQ-
7

1 X X X

REQ-
8

1 X

REQ-
9

1 X

REQ-
10

1 X

REQ-
11

1 X X

REQ-
12

1 X X

REQ-
13

5 X X X X X X X

REQ-
14

5 X X X

REQ-
15

3 X X X X X X X X X

REQ-
16

3 X X X X X X X X X

REQ-
17

1 X

REQ-
18

1 X

Total
Weight 37 37 21 17 25 19 21 11 12

32

4.2.3 Fully-Dressed Description of Use Cases

Use Case UC-1: logData

Related Requirements: REQ-1, REQ-2, REQ-3, REQ-4, REQ-5, REQ-7,
REQ-13, REQ-14, REQ-15, REQ-16

Initiating Actor: User Interface

Participating Actor: Data Manager

Actor’s Goal: Begin logging data about the user’s heart rate and about the
song currently being played.

Preconditions:

• The user has not begun his workout

• The user is wearing the device correctly; the chest strap is securely fastened to
the user’s chest near the solar plexus, and the musical heart rate application
is open to the main screen on the Android device.

Postconditions:

• The system starts recording the initial heart rate, initial time stamp, and
music data from the workout, if not already recording.

• The data is stored internally on the Android device in an SQLite database.

Flow of Events for Main Success Scenario:

• → User Interface calls the store() function in the Data Manager to record the
initial heart rate and time stamp of the user.

• The Data Manager calls the getTimeStamp() while there is no stop signal from
the User Interface. This retrieves the current heart rate from the chest strap,
combines it with the time stamp, and stores it in the database.

• → UI sends the stop signal, and the Data Manager stops recording data in
the database.

• ← Data Manager sends signal back to the User Interface to indicate that the
recording has stopped successfully.

33

Flow of Events for Alternate Success Scenario (Start Error):

• → User Interface calls the store() function in the Data Manager to record the
initial heart rate and time stamp of the user

• Chest strap reports an error in measurement. Sends signal to Data Manager
about invalid data.

• ← Data Manager returns signal to the User Interface that the data was unable
to be retrieved and that the data logging has not begun.

Flow of Events for Alternate Success Scenario (Error During Data
Logging):

• → User Interface calls the store() function in the Data Manager to record the
initial heart rate and time stamp of the user.

• → Data Manager starts recording data in the database.

• ← Chest strap reports at least 10 successive errors in measurement. Sends
signal to Data Manager about invalid data.

• ← Data Manager stops recording data. Sends signal that invalid data was
received from the chest strap, but some data was recorded.

This use case describes how the system will begin storing data. The User Interface, via the
commands entered by the user, will initiate the data storage by calling the store() function
in the Data Manager. The Data Manager will then retrieve the initial state of the system
and current time stamp of the system and then store it in the database. Then the Data
Manager will loop into the store() call until it receives a stop signal from the User Interface.
Once this signal is received, the Data Manager will stop the loop and send a signal back
saying that the data logging has stopped successfully. Two error scenarios could occur
during this use case; the initial retrieval of the user’s state could be unsuccessful, or a
particular retrieval during the data logging could be invalid. To address the first case, the
Data Manager will check for a signal from the chest strap to make sure that it is ready
to transmit data and that the reading the strap picks up is correct. If the Data Manager
receives a low signal, then it will send a signal to the User Interface that the storage of the
initial state did not succeed. If the chest strap records some invalid data during the data
storage, then it will send a signal to the Data Manager that an invalid value was recorded.
The Data Manager will keep a counter of how many successive invalid entries were received.
If the number of consecutive invalid entries crosses 10, then the Data Manager will send a
signal to the User Interface that the chest strap is recording invalid values. Thus, this use

34

case accounts for the success of the main scenario and reactions to the two error scenarios.

Use Case UC-2: setTargetHeartRate

Related Requirements: REQ-2, REQ-3, REQ-7, REQ-13, REQ-14, REQ-15,
REQ-16

Initiating Actor: User

Actor’s Goal: To change the heart rate that the system is targeting

Preconditions:

• The system displays the selection menu for heart rate

Postconditions:

• The system updates the target heart rate used for music selection

Flow of Events for Main Success Scenario:

→ User selects “Raise” option on main UI

→ System sets current value of “Raise” selector as current target

OR

→ User selects “Lower” option on main UI

→ System sets current value of “Lower” selector as current target

OR

→ User modifies current selector value on main UI

→ System sets new value of selector as current target

In this use case, the user can modify the heart rate targeted by the music selection al-
gorithm. This can be achieved by modifying one of the UI selectors, or by toggling the
direction (raise or lower). For this reason, this could be split into several use cases, but
since the functionality is the same we consolidate into one.

35

Use Case UC-3: skipTrack

Related Requirements: REQ-3, REQ-4, REQ-7, REQ-10, REQ-13, REQ-16

Initiating Actor: User

Actor’s Goal: To play a different song.

Preconditions:

• The system is currently playing music.

Postconditions:

• A different song is being played at the same rate at which the previous song
was playing

Flow of Events for Main Success Scenario:

• → User selects the "Skip Track" button.

• → Mobile interface requests a new song from the Music Selector

• Music Selector retrieves new track from file system while maintaining the cur-
rent rate of workout.

• → Music Selector passes the new song to the Music Player

• ← Music Player begins playing the new track

The skipTrack case is one of the conveniences for the user. If the user does not like the
song he is currently listening to, he can select a button on the Android device to advance
to a new song. The Mobile Interface will request a different song from the Music Selector.
The Music Selector will choose a song that will be adjusted to match the path that the
algorithm has set out to reach the target heart rate. The songs will be selected from the
user’s music library which has already been loaded onto the device. In the case that the
device does not contain another song which matches the current song’s bpm/tempo to
switch to, the device will select a song from the next highest/lowest level to reach the
target heart rate (a faster song if heart rate is to be increased, a slower song if heart rate
is to be decreased). Although the song may be out of range for the user’s current heart
rate, there will be no negative effects of using a song which is only slightly lower or slightly
higher. The device will not choose a song that is very far out of the current range.

36

Use Case UC-4: togglePlayback

Related Requirements: REQ-1, REQ-12, REQ-13, REQ-16

Initiating Actor: User

Actor’s Goal: Toggle the playback of music (pause or play).

Preconditions:

• The system is currently working.

Postconditions:

• If the system was already playing a track, the track will stop. If the system
was not already playing a track, it will play the current one.

Flow of Events for Main Success Scenario:

• → User selects "Pause" option on mobile interface.

• → Mobile interface tells the Music Selector to hold its current state and the
Music Player to stop playing music.

• ← Mobile interface displays a play button so that the user can resume the
workout.

OR

• → User selects "Play" option on mobile interface.

• → Mobile interface tells the Music Selector to continue its paused state and
the Music Player to continue playing music.

• ← Mobile interface displays a pause button so that the user can pause the
workout.

The togglePlayback case is another straightforward, convenience-based use case. If the
user needs to interrupt the workout for some reason and needs to stop the music, then all
the user has to do is press the pause button on the device. To resume the music, he must
press the button again, which will now be a play button. The system will make sure that
this function is working properly. If no music is currently being played, it is considered to
be paused and may be resumed. If music is being played, it is considered to be resumed
and may be paused. The system will know whether music is playing or not. The heart

37

rate monitor shall also be paused/resumed as the music is. If it is not already recording,
and should be, it will start recording (refer to postconditions for UC1, UC2).

38

Use Case UC-5: displayStatistics

Related Requirements: REQ-1, REQ-5, REQ-6, REQ-8, REQ-9, REQ-13,
REQ-14, REQ-16

Initiating Actor: User Interface

Participating Actors: Data Manager, Data Assembler

Actor’s Goal: Return graphs about the user’s workout.

Preconditions:

• The system is no longer playing music.

• The system is no longer loggin data.

• The user is no longer working out.

• The User Interface has completed error checking on the user’s request for
graphs.

Postconditions:

• The User Interface will receive graphs of workout data that it requested
through the Data Manager

Flow of Events for Main Success Scenario:

• → User Interface makes call(s) to any or all of the following functions: graph-
Data(), graphArtist(), graphGenre(), and graphSong()

• → The Data Manager will then make calls to the appropriate âĂĲgraphâĂİ
function.

• The graph function will retrieve the data from the database, package it as
either an ordered pair of doubles or an ordered pair of a string and a double
(for the music sections).

• → The Data Assembler will then return Record objects, from which the Data
Manager can extract data and create graphs.

39

Use Case UC-6: getHeartRate

Related Requirements: REQ-1, REQ-11, REQ-13, REQ-15, REQ-16

Initiating Actor: User

Actor’s Goal: View the current heart rate.

Preconditions:

• The device should already be monitoring the user’s heart rate.

Postconditions:

• The current heart rate is displayed on the screen of the Android application.

Flow of Events for Main Success Scenario:

→ Mobile Interface requests current heart rate from chest strap.

← Chest Strap returns the current value of the heart rate.

← Mobile Interface displays the heart rate to the user.

The getHeartRate case is similar to the displayStatistics case, but it allows the user to
see only his current heart rate. The full analysis provided by getStatistics may not be
necessary at times, and this case allows the user to easily see his heart rate during the
exercise. Once a second, the system requests the current heart rate from the chest strap.
The chest strap then returns the heart rate, and the User Interface displays to the screen.
For this function to work, the chest strap must be strapped firmly to the chest in the
region of the heart. If not, the Chest Strap will be unable to record the current heart rate
correctly. Also, the chest strap should not be moved or tampered with in any way while
the device is recording the current heart rate. If no data is received from the chest strap,
the system will present the user with a message saying that the chest strap is not properly
fastened.

40

Use Case UC-7: alertUser

Related Requirements: REQ-1, REQ-5, REQ-11, REQ-12, REQ-13, REQ-15,
REQ-16

Initiating Actor: Chest Strap

Participating Actors: Human User, Data Manager

Actor’s Goal: Alert the user when an abnormal heart rate is detected.

Preconditions:

• The user is currently in the midst of a workout session.

• The user is wearing the device correctly; the chest strap is securely fastened to
the user’s chest near the solar plexus, and the musical heart rate application
is open to the main screen on the Android device.

• The system is functioning properly.

Postconditions:

• The User Interface displays a warning notification to the user.

• The User has the option of stopping the workout session or ignoring the noti-
fication completely.

41

Flow of Events for Main Success Scenario:

• → The Chest Strap continually gathers heart rate data and sends it to the
Data Manager as long as there is no stop signal given.

• For every piece of data received, the Data Manager checks the heart rate
using an algorithm described later on in the report to determine if it is in the
appropriate range.

• → If the Data Manager detects that a heart rate is outside of a safe range
(above the normal maximum or below the normal minimum), the Data Man-
ager communicates sendAlert() to the UI.

• → The UI displays a warning notification to the user and advises the user to
end his workout session.

• ← The user responds by stopping the workout session on the UI. (The UI
sends a stop signal to the Data Manager which then discontinues logging data
from the Chest Strap.)

Flow of Events for Alternate Success Scenario (Ignore Warning):

• → The UI displays the warning notification to the user, advising him to end
his workout session.

• ←The user chooses to ignore the notification and continues his workout

• The Data Manager continues to log data from the Chest Strap.

• → If after 15 data points, the user’s heart rate has not fallen into the acceptable
range, the system automatically pauses.

• → The UI informs the user that the system has been paused because it is not
safe to use, and advises the user to consult a physician.

This use case describes the unfortunate scenario where, during the course of a user’s
workout, his heart rate has become dangerously high or dangerously low. The system
therefore needs to notify the user of his condition. The Data Manager, which records the
information from the chest strap makes the detection, and communicates to the UI to
display a warning message. Normally, a user would take the advice of the notification and
stop his workout. However, the user may choose to ignore the message, and if after 15
seconds, his heart rate has not dropped into the normal range, the system automatically
pauses. A second message is sent informing the user of the pause, and the user is advised

42

to see a health care provider. Our device is geared primarily towards the casual workout
enthusiast, so prime athletes who can stand extreme heart conditions would not likely
use this device. Meanwhile, if the user has a pre-existing heart condition where he might
receive this warning, it would be best for him not to use our device. In any case, it is
better to be safe and pause the system.

Use Case UC-8: setResting

Related Requirements: REQ-14, REQ-16, REQ-18

Initiating Actor: User Interface

Participating Actors: Human User

Actor’s Goal: Set the resting heart rate of the current user

Preconditions:

• The user has not begun his workout

• The user is wearing the device correctly; the chest strap is securely fastened to
the userâĂŹs chest near the solar plexus, and the musical heart rate application
is open to the main screen on the Android device.

• The heart rate monitor is currently recording data

• The resting heart rate has not yet been set

Postconditions:

• The resting heart rate of the user will be set to the user’s current heart rate

• The UI will show the user’s current heart rate as the user’s resting heart rate

Flow of Events for Main Success Scenario:

• → User Interface makes call(s) to any or all of the following functions: getCur-
rentHeartRate(), setRestingHeartRate()

• → The System records the user’s current heart rate

• → The System sets the user’s resting heart rate as the user’s current heart
rate.

43

This use case describes the scenario where the user is initiating his Heart Rate Adjuster
to begin his workout. The user must press the "Set Resting" button on the application so
that the Heart Rate Adjuster will be able to accurately determine the user’s resting heart
rate. Assuming that the user has not yet begun his workout, the user’s current heart rate
and resting heart rate will be the same. Due to this fact, we may set the resting heart rate
in the system to the current recorded heart rate of the user.

Use Case UC-9: calculatePeak

Related Requirements: REQ-14, REQ-16, REQ-17

Initiating Actor: User Interface

Participating Actors: Human User

Actor’s Goal: Recommend a target heart rate for the user

Preconditions:

• The user does not know what their target heart rate should be.

• The user knows their age and approximate level of activity ranging from light
to intense.

Postconditions:

• The system will calculate and recommend a target heart rate for the user’s
workout

Flow of Events for Main Success Scenario:

• → The user presses the "Calculate" button on the main screen

• → The user enters his age and approximate level of activity

• → The system accepts the user’s input and calculates a recommended target
heart rate

• → The system will show the user what his recommended target heart rate is.

This use case is very useful for maintaining the user’s safety. Since there will be many
users who are unaware of what target heart rate they should enter for the system, this
use case allows them to input minimal personal information and be given a recommended

44

target heart rate. By implementing this use case, the amount of people who enter dangerous
target heart rates will be minimized. The system simply requires the target’s age and level
of activity and is able to determine a safe target heart rate for the user.

4.2.4 Use Case Diagram

Figure 4.1: Arrows imply participation unless specified

45

4.2.5 System Sequence Diagrams

46

47

48

49

50

51

52

53

5 Effort Estimation

First we need to calculate the Use Case Points (UCP).

UCP = UUCP ∗ TCF ∗ ECF (5.1)

Where Unadjusted Use Case Points (UUCPs) are computed as a sum of these two com-
ponents:

1. The Unadjusted Actor Weight (UAW), based on the combined complexity of all the
actors in all the use cases.

2. The Unadjusted use Case Weight (UUCW), based on the total number of activities
(or steps) contained in all the use case scenarios.

Unadjusted Actor Weight (UAW) and Unadjusted Use Case Weight (UUCW)

Actor Complexity Weight
Users Complex 3

Mobile App Average 2

UAW = 3 + 2 = 5 (5.2)

Now we reference the Use Case table from 2.5.1 to calculate the UUCW.

UUCW = 37 + 37 + 21 + 17 + 25 + 19 + 21 + 11 + 12 = 200 (5.3)

There the UUCP is:

UUCP = 5 + 200 = 205 (5.4)

Technical Complexity Factor (TCF)-Nonfunctional Requirements

Below is a table of Technical complexity factors and their weights.

54

Technical
Factor Description Weight

Perceived
Complex-

ity

Calculated
Factor

T1 Friendly interface that the
user understands 2 1 2

T2

Internal processing of heart
beat data to music and
adjusting BPM shouldn’t

be too complex

2 3 6

T3 Good Performance 1 2 2
T4 Security is a minor concern 1 2 2
T5 No direct access to third

parties 2 3 6

T6 Ease of use is very
important 3 3 9

Technical Factor Total
(TFT) 27

And TCF = C1 + C2× TFT , and C1 = 0.6, C2 = 0.01, so

TCF = 0.6 + 0.01 ∗ 27 = 0.87 (5.5)

Environment Complexity Factor (ECF)

The environmental factors measure the experience level of the people on the project and
the stability of the project.

Environmental
Factor Description Weight Perceived

Impact
Calculated
Factor

E1 Mostly beginners at UML
based development 1.5 1 1.5

E2 Decent familiarity with
application problem 0.5 3 1.5

E3
Quite knowledgable about

the Object-Oriented
approach

1.5 3 4.5

E4 Somewhat motivated about
the problem 1 2 2

E5 Progamming language
proficiency 2 3 6

Environmental Factor
Total (EFT) 15.5

Here is the formula to calculate ECF

ECF = C1 + C2 ∗ EFT (5.6)

55

Where C1 = 1.4, C2 = 0.03. Therefore we calculate the ECF.

ECF = 1.4 + (−0.03 ∗ 15) = 0.965 (5.7)

So we calculate the final UCP:

UCP = 205 ∗ 0.87 ∗ 0.965 = 172.11 (5.8)

If we assume that productivity factor is 28 hours per user case point. The effort estima-
tion would be 4,189.

56

6 Domain Analysis

6.1 Domain Model

6.1.1 Concept Definitions

Responsibility Type Concept

Pairing/communicating with HRM D HRM manager

Retrieve logged data D log retriever

Musical Playback D music playerbacker

Logging tracks as they are played D track logger

Queue Next Track(s) D track queuer

Listen for user input D general UI

Recommend target heart rate D peak calculator

Set the user’s resting heart rate D rest setter

Alert the user in case of danger D user alerter

Graphically displaying music information D playback view

Graphically displaying heart rate info D heart beat view

Graphically displaying current workout data D workout view

Graphically displaying previous workout data D history view

Data store for workout data K workout store

Data store for music metadata K metadata store

Data store for music files K music store

57

6.1.2 Association Definitions

Concept Pair Association Description Association Name

music playerbacker ↔
metadata store

music playerbacker retrieves infor-
mation about the current track from
metadata store

data retrieval

history view ↔ work-
out store

history view retrieves data about
previous workouts from the workout
store

data retrieval

track logger ↔ music
playerbacker

tracks played by music playerbacker
are logged by track logger

data logging

music playerbacker ↔
track queuer

music playerbacker retrieves the
next track from the track queuer

data retrieval

music playerbacker ↔
playback view

playback view displays information
based on the data in music player-
backer

human data interface

rest setter ↔ HRM
manager

HRM manager retrieves user’s cur-
rent heart rate to set as resting

human data interface

user alerter ↔ HRM
manager

HRM manager retrieves user’s cur-
rent heart rate and activates user
alerter if in dangerous levels

human data interface

hrm manager ↔ gen-
eral UI

general UI pairs and reports hrm
status based on hrm manager

human data interface

heart beat view ↔
hrm manager

retrieves and displays heart rate
data from the hrm manager

human data interface

log retriever ↔ work-
out store

log retriever fetches logs from the
workout store and barks at the mail-
man

data logging

music playerbacker ↔
music store

music playerbacker plays songs from
the music store

data retrieval

58

6.1.3 Attribute Definitions

Concept Attribute Attribute Definition

HRM manager

data logging
Data logging has to with the
storage or retrieval of logged data
or the logging of data.

log retriever

track logger

music playerbacker

human data interface

Human data interfaces deal with
the interaction between the user
and the data.

track queuer

rest setter

peak calculator

general UI

user alerter

playback view

heart beat view

workout view

history view

workout store

data storage Data storage deals with the storage
of the data.metadata store

music store

59

6.1.4 Traceability Matrix

H
R
M

m
an

ag
er

lo
g
re
tr
ie
ve
r

tr
ac
k
lo
gg

er

m
us
ic

pl
ay
er
ba

ck
er

tr
ac
k
qu

eu
er

ge
ne
ra
lU

I

pl
ay

ba
ck

vi
ew

he
ar
t
be

at
vi
ew

w
or
ko
ut

vi
ew

hi
st
or
y
vi
ew

w
or
ko

ut
st
or
e

m
et
ad

at
a
st
or
e

m
us
ic

st
or
e

re
st

se
tt
er

pe
ak

ca
lc
ul
at
or

us
er

al
er
te
r

UC-1 X X X X X X X

UC-2 X X X X X X X

UC-3 X X X X X X X

UC-4 X X X X X X X

UC-5 X X X X

UC-6 X X X X X

UC-7 X X X

UC-8 X X

UC-9 X X X

6.2 System Operation Contracts

OC-1: Enter Target Heart-rate

• Precondition: The application is open to the main screen and prompts the user
for input.

• Postcondition: The system saves the input heart rate and will use it in selecting
a song.

OC-2: Select Function("Skip Song")

• Precondition: The device is playing a song which needs to be changed.

• Postcondition: A different song is being played at the same rate at which the
previous song was playing.

OC-3: Select Function("Toggle Playback")

• Precondition: The system is currently in a workout

60

• Postcondition: If the system was playing a song, it stops playing the song and
recording the data from the workout. If the system is paused, toggling the playback
will cause the system to start playing a song and recording data from the workout.

OC-4: Select Function("Display Statistics")

• Precondition: The user has either finished his workout or is in the middle of his
workout and would like to see his statistics.

• Postcondition: The device retrieves the data from the databases, organizes it,
and presents it to the user in the form of charts and tables.

OC-5: Select Function("Display Heart Rate")

• Precondition: The device should already be monitoring the user’s heart rate.

• Postcondition: The current heart rate is displayed on the screen of the Android
application.

OC-6: Select Function("Set Resting Heart Rate")

• Precondition: The user has not yet begin his workout.

• Postcondition: The user’s resting heart rate is set equal to the user’s current heart
rate

OC-7: Select Function("Calculate Target Heart Rate")

• Precondition:

– The user has pressed the "Calculate" button on the main screen.

– The user has entered his age and level of activity

• Postcondition: The system displays a recommended safe target heart rate

6.3 Mathematical Model

The selection of which track to play requires a mathematical model. At its simplest, this
consists of selecting the track with the closest BPM, that is to say minimizing the difference
in BPM:

min(| targetBPM − trackBPM |) (6.1)

If time permits, this simple model can be replaced with a more complex model incorporating
Machine Learning to learn which tracks are more effective than others at changing pulse.

61

7 Interaction Diagrams

Figure 7.1: Interaction diagram for the logData() use case.

For our first use case, we wish to record information about the user’s heart rate as well as
some additional information. This includes a time stamp of when the heart rate data was
recorded, and could also include some of the song metadata such as artist, album, or genre.
For our main success scenario, the user interacts with the UI which communicates with the
Database Manager. As long as user does not tell the UI to stop recording, the Database
Manager will continually ask the Chest Strap for BPM Data and a time stamp for every
piece of data received. When the user tells the UI to stop, we break out of our loop, and

62

the Database Manager returns to the UI and displays updated information. Alternate
scenarios could occur when the Chest Strap is not functioning correctly and reports an
error in measurement, and when this occurs up to 10 times, the Database Manager stops
recording. Another alternate scenario would be if the system detects an abnormal heart
rate in the user, and alerts the user to stop his workout. This process is described more
thoroughly in the Algorithms section.

Figure 7.2: Interaction diagram for getNextSong()

For our second use case, the user’s goal is to listen to another song. Similar to the “skip”
button on most standard music players, we included a double fast-forward arrow for users’
convenience. When pressed, the controller immediately contacts the database manager.
The database manager selects another track based on its song-selection algorithm for the
music player to play. (If the user is currently trying to change his/her heart rate, the
database manager will take that into count and select a song of a similar speed.) It also
returns the cover art and new song title for the mobile interface to display.
Again, the Publisher-Subscriber model was implemented in this use case, with the User

Interface as a Publisher and the Music Selector as the Subscriber. The User Interface
just requests that the Music Selector give it a song, so the User Interface sends the Music
Selector a message through the requestNext() function call. The User Interface then directs

63

its attention back to the user. The Music Selector performs the selection algorithm on its
own, and then returns the value to the User Interface once it is done.

Figure 7.3: Interaction diagram for togglePlayback()

Our togglePlayback sequence is fairly simple. The user initiates the request by tapping
the play/pause button. Then the controller informs the database manager to store the
current state settings for future use, and the database manager proceeds to stop recording
data and allows the music player to stop the song. The mobile display also updates
accordingly.

64

Figure 7.4: Interaction diagram for displayStatistics()

In UC-5, displayStatistics, the user begins with two button presses to achieve their goal.
First, they bring up the menu button in the top right hand corner and then press “Statistics”
from the dropdown. The controller passes this request to the database manager, which
quickly retrieves and updates the data. Then, it calculates statistics, creates some graphs,
and then returns the output to the controller to display. (Note that the user must select
from the options available in order to view his workout history.)

65

Figure 7.5: Interaction diagram for getHeartRate()

UC-6, getHeartRate is very similar to UC-5. This use case is also applicable for UC-
1, because the Heart Rate is important, needing to be determined continuously. The
controller takes the request from the user and passes it to the Data Manager to handle.
The database manager then takes the current BPM value from the Heart Rate Monitor
and updates the value for the mobile interface to display to the user.

Figure 7.6: Interaction diagram for alertUser()

UC-7, alertUser is very similar to UC-6 as well. The request is constantly checked by the

66

system, with the controller constantly retrieving current heart rate from the data manager.
If preconditions are met (the user’s heart rate is at a dangerous level) then an emergency
stop will be called to the controller.

Figure 7.7: Interaction diagram for setRestingHeartRate()

UC-8, setRestingHeartRate is very similar to UC-6 as well. The user must submit his
request, and then the controller takes the request from the user and passes it tothe Data
Manager to handle. The database manager will then retrieve the current BPM from the
Heart Rate Monitor and update the value of the resting heart rate for the mobile interface
to display to the user.

67

Figure 7.8: Interaction diagram for calculatePeak()

UC-9, calculatePeak is solely between the user and the controller, not needing to bother
the database or music player. This use case is simply an interaction between the User and
the UI - the user requests a calculator, which requires input. Once input is entered, the
UI returns a safe target heart rate to the user.

7.1 Design Patterns

This project was developed through a mainly object-oriented approach. We were able to
boil our system down to a few, distinct actors, and an object-oriented approach seemed
appropriate to model our system. As evidenced by the interaction diagrams, there are five
main actors: the user, the mobile interface, the data manager, the music player, and the
heart rate monitor. Each of these actors has a specific set of actions that they can perform,
and these actions are not very tightly coupled to those of other actions in the system. For
example, the music player is designated to solely play the music on the device. It does not
have access to the music algorithm or the heart rate; its sole job is to respond to requests
about playing or pausing the music. Similarly, the data manager is solely responsible for
manipulating data and handling requests. These characteristics are prime examples of
the High Cohesion principles, because each actor in the system has its own specific tasks,
and the respective actors are designed to that their tasks are carried out very well. We

68

acknowledge that some of the actors are more important than the others, such as the data
manager and the mobile interface, but this is out of necessity. The user interacts directly
with the interface, and the interface talks directly to the database in most cases. The
other objects in the system are more supplementary in the sense that they carry out the
commands given to them by the database-mobile-interface pair. Although there is some
communication between the different objects, the communication has been designed such
that each method call is specific, efficient, and effective. This cuts back on unnecessary
communication between the objects and allows for the system to be optimized. The Low
Coupling Principle requires that objects should “not take on too many communication
responsibilities”, and our design fulfills the requirement because we have minimized the
number of interactions to just the necessary ones. All in all, our object-oriented design
encompasses aspects from both the High Cohesion and Low Coupling principles, and creates
and effective solution to the heart rate monitoring problem.

7.2 Assignment of Responsibilities

A prime example can be found in UC-4, togglePlayback. Each object submits a request
to the next object in line before reaching the Music Player, which is supposed to fulfill the
“pause” function. At this point, the interactions start coming back. It is clearly seen that
each object in this example transmits at most two messages, and no object performs more
than a single computation. A similar theme exists in UC-6, getHeartRate. Each object
essentially sends one message and receives one message. Furthermore, each object does
not need to fulfill more than two active responsibilities. We believed that by distributing
the workload for each object through the High Cohesion Principle and the Low Coupling
Principle, we would be reaching the best balance. The Expert Doer Principle was not
followed as closely because the communication links of the objects we used are a bit longer.
In our design, the “one who knows” often passes on the knowledge to another object that
“needs to know” before the task is actually fulfilled. For instance, the Database Manager
often causes the Controller to update the display and show the user rather than directly
communicating with the user. Basically, our Controller and Database Manager are both
extremely important, so oftentimes, they both end up with most of the implementation
details.

69

70

8 Class Diagram and Interface
Specification

8.1 Class Diagram

8.1.1 Class Diagram for Data Management

Figure 8.1: Class relationship for managing data71

8.2 Data Types and Operation Signatures
Data Manager

Variables:

• db: Data Assembler. This is a Data Assembler object which stores records
created from the Audio Subsystem into the SQLite Database. It is responsible
for managing all data and graphs in the database.

Functions:

• store(Record) : void. This function will pass Record objects to the Data
Assembler object, which will then store the Record into the database. The
Record object is assembled using data from the Audio Subsystem

• graphArtist() : graph. This function will access the data stored in the Data
Assembler and create a histogram displaying the artist who’s songs were played
most often at different BPMs.

• graphGenre() : graph. This function will create a histogram of the most
frequent genres at different BPMs.

• graphSong() : graph. This function will return a graph of the music’s tempo
versus the user’s BPM.

• graphData() : graph. This function will return a graph of the user’s heart rate
over time.

• getTimestamp() : bool. This is an auxiliary function which retrieves the
current system time in the data storage every time storeCurrentHR() is called.
It will associate the time with the current heart rate.

• getCurrentHR() : int. This function will return the user’s current heart rate.

72

Data Assembler

Variables:

• DATABASE VERSION: int. Stores the version of the SQLite Database.

• DATABASE NAME:String. Records the name of the database.

• KEY HEARTRATE:String. Records a column name called "heart rate".

• KEY TIMESTAMP:String. Records a column name called "time stamp".

• KEY ARTIST:String. Records a column name called "artist".

• KEY GENRE:String. Records a column name called "genre".

• KEY SONG:String. Records a column name called "song".

• TABLE RECORDS:String. Records the name of the table.

Functions:

• addRecord(Record): void. This function organizes the Record object into
a correct format for insertion, and then stores the Record into the SQLite
database.

• getRecord(int timeStamp): Record. This function looks through the database
and finds a Record with the given timeStamp. If there is no match, a Record is
not returned. If there is a match, the corresponding Record object is returned.

• getAllRecords(): Record array. This function goes through the entire database
and returns all the Records in an array.

• updateRecord(Record): int. This function updates the information in a par-
ticular Record. Returns 1 on success, 0 on failure.

• deleteRecord(Record): void. This function deletes a particular Record from
the database.

73

Record

Variables:

• heartRate : int. This variable stores the heart rate.

• timeStamp : int. This variable stores the time stamp.

• Artist : String. This variable stores the name of the Artist.

• Genre : String. This variable stores the Genre of the song.

• Song : String. This variable stores the name of the Song.

Functions:

• getHeartRate() : int. This function returns the heart rate.

• setHeartRate(int) : void. This function sets the heart rate.

• getTimeStamp() : int. This function returns the time stamp.

• setTimeStamp(int) : void. This function sets the time stamp.

• getArtist() : String. This function returns the Artist’s name.

• setArtist(String) : void. This function sets the Artist’s name.

• getGenre() : String. This function returns the name of the Genre.

• setGenre(String) : void. This function sets the name of the Genre.

• getSong() : String. This function returns the name of the song.

• setSong(String) : void. This function sets the name of the song.

74

Heart Rate Adjuster GUI

Variables:

• targetHeartRate: int. This variable will store the target heart rate for the
user’s workout. This variable is private but can be accessed and changed from
other methods.

• restingHeartRate: int. This variable will store the user’s initial resting heart
rate before the workout begins. This variable is private but can be accessed
and changed from other methods.

• isWorkingOut: boolean. This variable will store data on whether the applica-
tion detects that the user is currently working out or not.

• isRecording: boolean. This variable will store data on whether the application
is recording the user’s heart rate or not.

• currBPM: int. This variable will store the BPM of the current track that is
playing.

• isReady: boolean. This variable will store data on whether the system is ready
to begin or not.

75

Functions:

• getRestingHeartRate(): int. This function will return the data stored in vari-
able targetHeartRate.

• getTargetHeartrate(): int. This function will return the data stored in variable
currentHeartRate.

• setTargetHeartRate(): void. This function will set the data stored in variable
targetHeartRate to equal the given parameter.

• setRestingHeartRate(): void. This function will set the data stored in variable
restingHeartRate to equal the given parameter.

• displayBPM(): int. This function will return the data stored in variable cur-
rBPM.

• setBPM(): void. This function will set the data stored in variable currBPM
to the passed parameter.

• displayReady(): boolean. This function will return the data stored in variable
isReady.

• startWorkout(): void. This function will initiate the workout and attempt to
adjust the currentHeartRate toward the targetHeartRate.

• stopWorkout(): void. This function will stop the workout from continuing its
functions.

• nextSong(): void. This function will skip the current track which is being
played, and use the algorithm to play the next appropriate song.

• displayTitle(): String. This function will display the title of the currently
playing track.

• checkRecording(): boolean. This function will return the data stored in the
variable isReady.

• checkPlaying(): boolean. This function will return the data stored in the
variable isREady.

• menu(): void. This function will display the menu for the application.

• getStatistics(): graph. This function will return graphs which contain statistics
from the data manager.

76

• openCalculator(): void. This function will open the peak heart rate calculator

• alertUser(): boolean. This function will check to see if the user’s current heart
rate is safe. Alert user if false.

• setAge(): void. This function will set the age of the user for peak heart rate
calculation.

• setActivity(): void. This function will set the activity level of the user for
peak heart rate calculation.

• calculatePeak(): void. This function will calculate a recommended peak heart
rate for the user.

• displayRecommendation(): int. This function will display the calculated rec-
ommended target heart rate for the user.

Heart Rate Adjuster Hardware

Variables:

• currentHeartRate: int. This variable will store data on the user’s current heart
rate, as measured by the hardware device.

Functions:

• recordCurrentHeartRate(): int. This function will retrieve the current heart
rate of the user as measured by the hardware device and update the variable
currentHeartRate.

77

8.3 Traceability Matrix

Class

Domain Concepts
Data
Man-
ager

Data
Assem-
bler

Graph
Con-
tainer

Ordered
Pair

Heart
Rate

Monitor
GUI

Heart
Rate

Monitor
Hard-
ware

HRM Manager X X
Log Retriever X
Track Logger X
Music Playerbacker X X
Track Queuer X X
General UI X X X
Playback View X X X X
Heart Beat View X X X X
Workout View X X X X
History View X X X X
Workout Store X X X
Metadata Store X X X
Music Store X X X
Rest Setter X X
Peak Calculator x
User Alerter X X X X

From our domain concepts, we derived four classes: data manager, data assembler, graph
container, and ordered pair. Our data manager is essentially involved with every domain.
Its purpose is to log and manage various types of data, and store the packaged data other
objects to retrieve. Essentially, the data manger acts as an intermediary in most steps,
but only providing a minimal interface for modules so that data cannot be tampered with
or seen, just used.

Next, our data assembler is charged with retrieving the appropriate data from the
database and packaging it in a convenient form for usage. For instance, we can take
songs and metadata from their storage locations and return playlists. We can also take our
data and create ordered pairs for our graph container. Then, our graph container contains
an array of the requested graphs, and it is involved with the domain concepts that require
various views. Using our data assembler allows us to have a nice container of data to graph.
Finally, our ordered pair class was derived from the storage concepts. We use it to store
data points, so that we will be able to access them.
For the user interface and hardware communication, two other classes were derived rather

clearly: the Graphical User Interface class, and the Hardware communication class. The
graphical user interface is involved with many domains, save the few domains relating to
data storage - that is taken care of by the data manager portion. The purpose of the
graphical user interface is for users to be able to easily interact with the application. This
includes being able to easily view different portions of the application such as information

78

on their current workout, their history, etc. The next class, Hardware, was derived as a
modularized way to communicate with the Heart Rate Monitor which is required to retrieve
information about the user’s heart rate. This class is simple - its only function is to receive
information from the HRM being used, and to update the user’s current heart rate in real
time.

8.4 Design Patterns

Although our system can be refactored to match any of the design patterns we learned in
lecture, we believe that the command pattern most accurately describes our system. The
command pattern is as simple as it seems: an object invokes methods on other objects.
Because our project is an Android application, the user input occurs primarily through
the touchscreen. Our UI is responsible for receiving these inputs and then calling the
appropriate methods to fulfill these calls. Each "invoker" knows which object or method
to call, and after requesting, the receiving class fulfills the requests. Our system does not
really support reversible actions, which are physically impossible, but it can either pause
or attempt to return to a previous state for instance by reverting to a previous song.
Our system also makes use of the proxy class with the HeartRate class. As learned

in lecture, a proxy object preprocesses requests before forwarding them to subjects when
appropriate. In order to interface with our piece of hardware, the chest strap, we made an
object to deal directly with the chest strap returning the information to the User Interface,
and thus aid the process. Meanwhile, the decorator pattern is used to add non-essential
behavior to key objects in our design. In our project, we used a number of "fake" classes
to simulate behavior that we were unable to implement for various reasons. For instance,
the ChestStrapFake and AudioSystemFake classes were created so we could view the effect
of interaction between the UI and Chest Strap or the UI and the Audio System. Upon
pressing the appropriate button, we get a nice display on our UI that confirms that the
appropriate method has been called. There are a number of other embellishments used
that follow the decorator pattern such as the graph appearances within the data subsystem.
However, these are non-essential functional-wise, and the command pattern captures the
essence of our design.

8.5 User Interface Specification

8.5.1 Preliminary Design

Use Case UC-1: Log Data

This Use Case doesn’t have a User Interface component.

79

Use Case UC-2: Set Target Heart Rate

80

For this Use Case, the user’s goal is to select a target heart rate for his workout. There
are two ways a user can trigger this Use Case: modification of the currently active number
selector, or pressing the toggle between Raise/Lower. As seen from the screenshots of our
"home" screen above, we seek to minimize user effort in accomplishing his desired goal.
The number selectors are standard Android UI components, so the user is presumably

81

already familiar with their functioning. Changing the target direction requires only one
press, of the Raise/Lower button. The existence of this button means that, once a user
has set their target preferences, they won’t need to change the sliders much, reducing the
effort of selecting numbers.

Once the user has selected a number, the system uses it in playback.

82

Use Case UC-3: Skip Track

To switch tracks is also very simple. It takes the user one simple tap to achieve his desired
outcome. On the provided image of our concept interface, our application appears very
similar to a mainstream music player. In the bottom right corner is the double-arrowed

83

fast forward button. The user taps this button to advance to another song, and then the
system fulfills that request by running its algorithm and picking out another track from
the user’s music library. The "Current Track:" label will also be updated accordingly.

Use Case UC-4: Toggle Playback

84

Use Case 4, togglePlayback also proves to be intuitive. Just like most music players, our
application has a button located on the bottom center of the screen designed for the pur-
pose of pausing the current song, or playing it, depending on the current state. The user
just needs a single tap on the universal play/pause button to achieve his goal of playing or
pausing the song.

When this is done, if the system was previously playing, the system responds by stopping
its collection of heart rate data, and freezing the screen in its current state. If the system
were not previously playing, the system responds by beginning its collection of heart rate
data, and beginning playback.

85

Use Case UC-5: Display Statistics

For use case 5, the user desires to view the statistics of his workout. To simplify the
process for the user down to two clicks, we added a menu button in the top right corner
of the screen. After pressing that menu button, a scroll-down menu with three options

86

appears. The user needs to tap "Statistics" to bring up his workout information. The
system is constantly logging the user data, and compiles a few useful graphs such as heart
rate versus time.

Use Case UC-6: Get Heart Rate

87

This Use Case requires no user interaction.
The UI is updated once a second with the current heart rate read from the chest strap.

Use Case UC-7: Provide Music Data

88

This Use Case requires no user interaction.
The UI is updated by the Audio subsystem with the title of the current track.

Use Case UC-8: Set Resting Heart Rate

89

For this use case, the user simply needs to press the "Set Current" button. The user should
press this button at the beginning of his/her workout. The system will then retrieve the
user’s current heart rate and set it as the user’s resting heart rate.

Use Case UC-9: Calculate Peak Heart Rate

90

For this use case, the user must first press the button labeled "Calculate". They will
then be shown a pop-up where they may enter their age, and level of activity. Age is
chosen similarly to selecting a peak heart rate manually, and level of activity is chosen on a
default android scrollbar between light and intense. The system then uses this information
to calculate a recommended target heart rate.

91

9 System Architecture and System
Design

9.1 Architectural Styles

Our system utilizes a three-tier architecture system and consists of 3 layers. These include
a presentation tier, an application tier, and a data tier. Our presentation layer is primarily
represented by our mobile interface which is used to display our applicationâĂŹs relevant
information. It also allows the user to interact with our system by inputting commands
and accepting outputs. Meanwhile, our application layer consists of logical operations and
data access. For example, our song-selection algorithm would be included in this layer.
This application layer uses logical operations to convert raw user data into readable results.
Finally, our data tier consists of our database where our information is stored and retrieved.

These three tiers are separated from each other to allow for encapsulation and data
abstraction. We want each tier to hide its usage from implementation and to preserve
the integrity of our data. We also want to reduce the overall complexity of our system.
However, each tier must maintain a sufficient level of communication and be able to retrieve
needed data from each other. In a common scenario for our system, our application layer
may request information from the data tier. It then processes this information and returns
it to the presentation tier in response to the user request. A visual diagram was provided
in our earlier stage of planning in the section titled System Architecture Diagram.
The Audio BlackBox Subsystem uses a Client-Server architecture internally. The pri-

mary motivations behind this are scalability and agnosticism. The server utilizes HTTP
for control and for streaming content. This allows multiple webservers to be used as re-
quirements and environmental variables change. Due to the inherent scalable and flexible
nature of the server, clients can be developed for any platform that supports TCP/IP
network communication and the codecs used in the audio stream.
Within the context of this project, the client is a mobile device. The client abstracts

the server’s behavior into a native interface for retrieving metadata and toggling playback.
Additionally, the client interfaces with the mobile device’s faculties for outputting audio.

92

9.2 Identifying Subsystems

Our software is designed around three primary subsystems. The core subsystem is the
UI Subsystem, responsible for interfacing with the user and other subsystems. The Data
Logging Subsystem saves heartrate and music playback information, and produces graphs
of this data. Finally, the Audio BlackBox subsystem handles all audio faculties. In general
terms, the Audio BlackBox is the entire audio subsystem. It handles the management of
tracks, queueing of songs, and interfacing with native Android subsystems for audio play-
back, and it communicates with a server backend.

93

Figure 9.1: Subsystems

94

9.3 Mapping Subsystems to Hardware

The Audio BlackBox subsystem contains two primary components within the context of
this application. A server component and a native client interface. The server and client
speak to one another using an API implemented over HTTP. Both server and client im-
plementations can be replaced or reimplemented and should function as desired as long as
the API interface is provided. This project provides a reference server implementation.

9.4 Persistent Data Storage

Since Android provides full support for SQLite databases, it is the type of storage that we
have chosen for the application. The wide variety of fully-developed features allows us to
focus more on the actual organization and management of the data in relation to the other
modules. All that is needed is a simple call to the data base to retrieve the raw data, and
the custom designed objects illustrated in the Class Diagram then do their own processing
on the data. SQLite allows us to store all the data specific to application on the device
itself, which is advantageous for a mobile application such as ours. The goal is for the
user to be able to record and view his workout data without having to use any external
devices other than his phone and the chest strap, and internal data storage via the SQLite
database allows our application this benefit.
The database will be accessible only to the Data Manager and the Data Assembler. In
regards to the Data Manager, the only interactions with the database will be to store the
initial state of the system, store the current music track, and store the current heart rate.
It will not retrieve anything from the database, because that is the purpose of the Data
Assembler. The Data Assembler is the other object that will interact with the database. It
will issue requests for the various data that the UI would like to graph, which include the
heart rate, the current times, and the songs. Thus, the Data Manager and Data Assembler
are the only objects that have direct access to the database.
The reference implementation of Audio BlackBox utilizes mongoDB for storing information
about the available music library.

9.5 Network Protocol

The Audio BlackBox is implemented entirely over HTTP. HTTP Live Streaming is used
to provide audio streams and a server-side WEB API is used to exchange information
regarding said streams.

95

9.6 Global Control Flow

9.6.1 Execution Orderness

The execution order is a mix of procedure-driven and event-driven. From a broad view,
the use of the program follows the same steps: the user starts the music, the system runs,
then the user stops the music. However, the system provides a variety of interface options
to activate events during the execution: a user may pause or skip playback, and view their
statistics, at any time.
Internally, data transfer between the Audio BlackBox server and client device is procedural.
Clients make requests and the content of those requests determines the information the
server returns.

9.6.2 Time Dependency

The system is real-time, with a timer firing once a second. This timer triggers the fetching
of the heart rate from the monitor, and triggers the logging of this data.
With respect to the other subsystems the Audio BlackBox is event-driven. It can be told
to pause or play and it will provide an audio stream. It does not need to know where a
client is in said stream.

9.6.3 Concurrency

The Android standard concurrency model is that the main thread handles UI, so lengthy
tasks must be performed on a background thread else the UI becomes unresponsive. As
such, the network IO of the music selection system must certainly be in a different thread.
Synchronization is unnecessary as there are no shared resources.
The Audio BlackBox is responsible for transcoding audio, storing meta information about
the audio files, and serving audio streams. These operations are all performed asyn-
chronously from one another however, depending on the media encoder, web server, and
data store used there may be concurrent threads or processes handling these asynchornous
tasks. The beauty of this design is that concerns about such things are abstracted away
from our implementation.

9.7 Hardware Requirements

The system requires:

• Touch screen display with minimum resolution of 640 x 480 pixels

• Storage space for music library, minimum size of 100 MB

• Bluetooth for communication with a heart rate monitor

96

• Network connection for communicating with music selection service

• Audio playback capabilities

All of these requirements are met by most Android phones on the market.

The Audio BlackBox Server component requires a server with the processing capacity
to transcode, mux, and serve audio on the fly. The mobile client is simply responsible for
implementing the web API and passing the received audio streams to the native decoders
on a given platform

97

10 Algorithms and Data Structures

10.1 Algorithms

As mentioned throughout this document, music has an undeniable effect on heart rate
and exercise. The goal of this project is to both induce and measure that effect. Our
system requires good algorithms to ensure functionality, the most important of which, are
discussed here.

10.1.1 Pattern Recognition

We wish to recognize a trend in user heart rate data to determine the state of exercise a
user is in for a given range. For simplicity, we break down bpm ranges into three categories
of intensity:

Light (x<50%)

• Sitting

• Walking

• Golfing

• Shopping

• Fishing

Moderate (50≤ x< 70%)

• Lifting weights

• Riding a bike

• Playing doubles tennis

• Mowing a lawn

Vigorous (70≤ x<85%)

• Running

98

• Skiing

• Playing basketball

• Hiking

• Playing soccer

• Shoveling snow

Now to determine which of these categories a user"s workout falls under, we need to
determine the user"s maximum heart rate by subtracting user age from 220. A light work-
out is defined as less than 50% of a user"s maximum heart rate. A workout of moderate
intensity falls in between 50-70% of a user"s maximum heart rate. Finally, a vigorous
workout occurs at 70-85% of a user"s maximum heart rate. These numbers allow us to
calculate the minimum and maximum bounds for each category given a specific user.

Thus, classification is extremely simple. We can find the average bpm for a time period
and determine which of the following category ranges it falls under. If for some reason, a
user does not offer his age, then we will assume the maximum heart rate to be 180.

10.1.2 Danger Detection

It is important to determine when the user’s bpm is abnormal. If the user’s heart rate
is abnormally high or abnormally low, we need to alert the user of their condition and
advise them to discontinue their workout and seek medical help if necessary. Our data
logging subsystem continually receives bpm data from the chest strap, and for every heart
rate received, it does a periodic check to ensure that the user"s workout doesn"t cause an
unhealthy stress on his heart.

For our comparison purposes, we use the following conditions. Any normal adult (older
than 18) should not have a resting heart rate below 60 bpm, and any normal child (aged
6-17) should not have a resting heart rate of lower than 70 bpm. This means that children
younger than 6 years old should not be using our heart rate adjuster. There can be some
exceptional cases where people in excellent physical conditions can sustain even lower heart
rates than the cutoff conditions we used, but it is safer to send a warning anyway.

As for our upper bound, we use the formula from our previous algorithm, maximum
heart rate = 220 –age. That is, if a user’s bpm is above their maximum heart rate, we will
send an alert message as a warning. The actual comparison implementation is trivial, but
it is important to recognize how we are determining our thresholds. Again, if the user does
not provide his age, we will assume a minimum heart rate of 60 bpm and a maximum of

99

180 bpm.

10.1.3 Song Selection

In order to determine what song the user hears, we take their current heart rate and find a
song that has bpm that comes close to matching it. We maintain a song queue of at least
two songs where all but the first song are hidden from the user. The ideal BPM of the
next song is determined by this equation:

n = sign(t− c) ∗ 5 + c (10.1)

Where c is current heart rate, and t is target heart rate.
If the user’s heart rate changes past a set threshold during a song, (we used the number 5)
then we rechoose the second song in the playlist so we keep the user in the right direction.

10.2 Data Structures

The overarching data structure that our system uses is the database. More specifically,
we will use the SQLite relational database management system to store the information
pertinent to our system. Our database will use the following data types in conducting
logging sessions.

Name: string –The name or ID will be the unique identifier to differentiate between users.

Age: int –The age of a user will be necessary for the algorithmic purposes of determining
the maximum heart rate described in the previous section.

Session: int –The session number is incremented and stored every time the user conducts
a new workout. This is necessary if a user wishes to view information about a particular
workout.

TimeStamp: int –The time stamp is available in conjunction with BPM. Every time
our data logger retrieves BPM from the chest strap, it will also take note of the time the
information was received.

BPM : int –Last but not least, we have the most critical piece of data, the beats per
minute measure of a user"s heart rate which will probably be used in every graph.

As introduced earlier on, we will also need to introduce a new class, Record. This Record
object holds all the information about the song that is currently being played, the user’s
current heart rate, and the time at which this data was recorded. Our graphing engine

100

can extract these Records from the SQLite database and graph a combination of the in-
formation within the Record.. For instance, a generated graph could show the change of
the user’s heart rate over time. We could also introduce the frequency of songs listened to,
or the frequency of genre listened to. However, none of this would be possible without the
Record class. Java does not contain a class that holds ordered pairs for graphing, so we
implemented our own as described in our class section. The Record object is convenient
in that it contains all the information about the system at a particular snapshot in time.
Thus, the graphing engine can easily extract information about the system for the duration
of the workout and assemble that data into meaningful graphs.

101

11 User Interface Design and
Implementation

Since we spent the time to make high quality mockups early on in this project, the UI
was already well thought out and designed with standard Android UI elements such that
it does not have to change much in implementation.

One significant difference with regards to our initial design was the removal of a few
features. In the original mockup, there is a settings page with the options to change Mu-
sic library location, Login, and enable music generation. These features are nonessential,
not documented in our Use Cases, and therefore will be removed from the design until
essential features are delivered. The Music library location shall be the default Android
Music library location, the app shall be single-user (reasonable, since phones are personal
items), and music generation is of secondary interest to music playback. We also removed
the About page, reasoning that the simple UI should be intuitive to the user and it would
not be worth cluttering the UI with help.

Since we now only have one element to display on the dropdown menu, we will instead
have a fixed button to access the Statistics screen in place of the menu. This halves the
user effort to access the Statistics screen, now only requiring one click, therefore friendlier
to the exercising user. Otherwise, User Interface interactions remain as planned.

In an effort to maximize user safety in our product, we have also implemented three new
UI components - setting the user’s resting heart rate, recommending a target heart rate,
and alerting the user if their current heart rate is at a dangerous level. These components
have been implemented in areas which are simple and straight forward for the user to
understand - setting the user’s resting heart rate was placed under their resting heart rate
selector, recommending a user’s target heart rate was placed under the target heart rate
selector, and the danger alert will only show up to the user when necessary, minimizing
the amount of UI components the user is forced to look at.

102

12 Design of Tests

Increase/Decrease Target Heart Rate

Test covers : Graphical User Interface

Assumption: The application is showing the correct screen.

Integration Testing

Steps:

• Press the button to increase target heart rate

• → If the target heart rate has diisplayed an increase in its value, press the
button to decrease target heart rate

Expected: Target heart rate is successfully incremented/decremented when the
correct buttons are pressed

Fails if:

• Target heart rate does not change

• Target heart rate changes in an incorrect direction

103

Start/Pause Workout (Music Playback)

Test covers : Graphical User Interface

Assumption: The heart rate monitor is ready to begin collecting data and a
target heart rate has been selected.

Integration Testing

Steps:

• User presses button to initialize music playback.

• → If the music playback successfully begins, press button to pause music
playback.

Expected: When the user presses the button to begin the music playback, the
workout will begin. When the user presses the button pause the music playback,
the music playback will pause.

Fails if:

• The music playback does not begin when the button is pressed

• The music playback does not pause when the button is pressed

104

Skip Track

Test covers : Graphical User Interface

Assumption: Application has already begun music playback and a song is
currently playing.

Integration Testing

Steps:

• User presses the button to skip the current track

Expected: The application will play a new song

Fails if:

• Pressing the button does not play the next song

Display Graphs

Test covers : Graphical User Interface

Assumption: User has logged data into the application and is on the correct
screen

Integration Testing

Steps:

• User presses the button to display statistics

Expected: The application will display graphs for the

user

Fails if:

• The user presses the button and graphs do not display

105

Music Algorithm

Test covers : Data Manager

Assumption: The application has been running long enough for sufficient BPM
and Heart Rate data to be logged for graphing.

Integration Testing

Steps:

• User requests a graph on Music Tempo vs Heart Rate

Expected: A graph that shows Music Tempo vs Heart Rate should be displayed,
and there should be an approximately linear relationship.

Fails if:

• The BPM vs Heart Rate graph does not display.

• The BPM vs Heart Rate graph’s data does not match the expected data from
the selection algorithm.

Return from Graphs

Test covers : Graphical User Interface

Assumption: The application is currently displaying graphical data.

Integration Testing

Steps:

• User presses the "back" button on the android device

Expected: The application will return to the main screen from the graph display
screen.

Fails if:

• The user presses the "back" button but the screen does not change.

106

Initiate Data Logging

Tests: Data Manager

Assumption: The User Interface has received an input from the user which
indicates a desire to start the system.

Integration Testing

Steps:

• The User Interface calls the store() function from the Data Manager

• → Data Manager retrieves the current heart rate from the chest strap and
time stamp from the device, and stores it in the database.

• ← If the storage occurs successfully, a confirmation is sent to the Data Manager

• → Once confirmation is received, Data Manager begins calling storeCurren-
tHR() repeatedly.

Expected: The Data Manager is constantly listening for heart rate values, time
stamp values, and music data and is logging that information to the database.

Fails is:

• The chest strap does not return a valid heart rate for storage

• The Android device does not return a valid system time.

107

Set Resting Heart Rate

Tests: Graphical User Interface, Data Manager, Hardware Component

Assumption: The User Interface has received an input from the user indicating
a desire to set his resting heart rate.

Integration Testing

Steps:

• The setResting() function is called from the Graphical User Interface.

• → Data Manager retrieves the current heart rate from the chest strap.

• ← If retrieval is successful, the Data Manager will send the current heart rate
to the Graphical User Interface.

• → Once the current heart rate is received, the Graphical User Interface will
update its resting heart rate.

Expected: The Graphical User Interface will display the user’s current heart
rate as the resting heart rate.

Fails is:

• The chest strap does not return a valid heart rate

• The Graphical User Interface displays an obviously incorrect resting heart rate
(either extremely high or extremely low)

108

Recommend Target Heart Rate

Tests: User Interface

Assumption: The User Interface has received an input from the user which
indicates a desire to calculate recommendation.

Integration Testing

Steps:

• The User Interface receives input concerning the user’s age and level of activity.

• → The Graphical User Interface passes this information to our calculation
algorithm.

• ← The calculation algorithm returns a recommended target heart rate

• → The Graphical User Interface will display a recommended target heart rate
to the user.

Expected: The Graphical User Interface will correctly display a recommended
target heart rate to the user.

Fails is:

• The Graphical User Interface displays a recommendation which deviates from
the recommendation algorithm.

109

Alert User

Tests: Data Manager, User Interface, Hardware Component

Assumption: The Data Manager is receiving current heart rates from the
Hardware Component.

Integration Testing

Steps:

• The Data Manager correctly receives current heart rate from the Hardware
Component

• → The Data Manager recognizes that the current heart rate is within the
danger zone.

• ← Data Manager alerts the User Interface that the current heart rate is dan-
gerous.

• → The Graphical User Interface will display an alert that the user is in danger
and pause the workout.

Expected: The Graphical User Interface will initiate an emergency pause when
the user is at a dangerous heart rate.

Fails is:

• The Graphical User Interface initiates an emergency pause when the user is
at a safe heart rate.

• The Graphical User Interface does not initiate an emergency pause when the
user is at a dangerous heart rate.

• The Hardware Component is not correctly sending current heart rate to the
Data Manager.

• The Data Manager does not correctly recognize whether a heart rate is in the
danger zone or the safe zone.

Further testing must be done in order to validate the accuracy of displaying the user’s
current heart rate. This accuracy, however, is hard to validate because the application
simply displays the number that it receives directly from the heart rate monitor. If the
displayed number appears to be off, then the heart rate monitor may be faulty. Otherwise,

110

there is no way to check whether the displayed number is the actual number that the
monitor records.

111

13 History of Work, Current Status,
and Future Work

13.1 History of Work, Current Status, and Future
Work

As emphasized in our Summary of Changes, our GitHub website lists every single change
that has been made: https://github.com/revan/HeartRateAdjuster. Also, on the home-
page, we have a log of the key meetings that took place over the semester. In sections
5.1 and 12.3, the Gantt charts depict pretty accurately, our actual schedule of work. We
stuck almost exclusively to schedule and after the split within our group, we made an effort
to meet all the deadlines. The work completed was within the intervals specified by the
Gantt charts, and the milestones were roughly achieved towards the end of the intervals.
Although these dates may not match up exactly with our GitHub account, the work was
completed, just not pushed.

13.2 Key Accomplishments

Created an aesthetically pleasing Android Application

Constructed a SQLite database that could store information from the heart rate monitor

Application can calculate a good workout target heart rate and alert the user if their
heart rate is at a dangerous level.

Application can graph various statistics of the user workout information in real time.

Integration between UI and Data Subsystems

Developed an extensible robust audio backend that dynamically provides content to fa-
cilitate workouts.

Implemented simultaneous multi-user capabilities in the audio back-end

112

13.3 Possible Future Directions

There are so many possibilities for our project that we have only begun to scratch the
surface. First off, we could consider expanding to other platforms, namely iOS and windows
phone. This way, our project is more universal. We could also test our project to ensure
compatibility with different heart rate monitors. We could then add other functionality,
and record and convey other data to the user other than heart rate. However, the primary
goal of our application is to aid the users in working out through the adjusting of their heart
rates. Any other useful workout data is secondary. However, we could revise the algorithms
used to suggest heart rate, or detect unsafe heart rates. We could add a personalized login
for each user. We could compare workout data between friends. We could experiment
more with the correlation between the music being played and its effects on heart rate. To
conclude, there is always more work that can be done, and The Heart Rate Adjuster is
definitely a project that is both reusable and can be built upon with a number of additional
features. However, it was a good start, and a great way to familiarize ourselves with many
of the concepts of software engineering.
The Audio BlackBox is feature complete with regards to the original specification. Sim-

ply put it takes music provided by the user and provides them an audio stream based on
their current and target heart rates. The reference implementation is designed to be easily
extended to provide other features. One feature that we did not anticipate completing was
mutli-user capability. Features we’ve considered implementing are integration with online
music services (eg. Google Play, Spotify, etc.), persistent playlist storage for future play-
back, smarter file intake with more flexible audio transcoding, as well as social networking
features such as workout and playlist sharing.

113

References

[1] http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

[2] http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/
2013-g7-report3.pdf

[3] http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/
2013-g8-report3.pdf

[4] http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/
2012-g1-report3.pdf

[5] http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/
2012-g2-report3.pdf

[6] http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/
2012-g3-report3.pdf

[7] http://reviews.cnet.com/specialized-electronics/
motorola-MOTOACTV-gps-fitness/4505-3505_7-35163040.html

[8] http://en.wikipedia.org/wiki/Electroencephalography

[9] http://www.scholarpedia.org/article/Electroencephalogram

[10] http://www.statista.com/statistics/242190/us-fitness-industry-revenue-by-sector/

[11] https://yt4.ggpht.com/-knZVRWVniHU/AAAAAAAAAAI/AAAAAAAAAAA/QN5_n28x_
R0/s900-c-k-no/photo.jpg

[12] http://www2.hu-berlin.de/fpm/graphics/logo_heartbeat-note.png

[13] http://www.webmd.com/fitness-exercise/healthtool-target-heart-rate-calculator

[14] http://www.livestrong.com/article/105256-normal-heart-rate-sleeping/

[15] http://www.active.com/fitness/articles/how-does-exercise-affect-your-heart

[16] http://www.webmd.com/sleep-disorders/features/
how-sleep-affects-your-heart

114

http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2013-g7-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2013-g7-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2013-g8-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2013-g8-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2012-g1-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2012-g1-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2012-g2-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2012-g2-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2012-g3-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/HealthMonitor/2012-g3-report3.pdf
http://reviews.cnet.com/specialized-electronics/motorola-MOTOACTV-gps-fitness/4505-3505_7-35163040.html
http://reviews.cnet.com/specialized-electronics/motorola-MOTOACTV-gps-fitness/4505-3505_7-35163040.html
http://en.wikipedia.org/wiki/Electroencephalography
http://www.scholarpedia.org/article/Electroencephalogram
http://www.statista.com/statistics/242190/us-fitness-industry-revenue-by-sector/
https://yt4.ggpht.com/-knZVRWVniHU/AAAAAAAAAAI/AAAAAAAAAAA/QN5_n28x_R0/s900-c-k-no/photo.jpg
https://yt4.ggpht.com/-knZVRWVniHU/AAAAAAAAAAI/AAAAAAAAAAA/QN5_n28x_R0/s900-c-k-no/photo.jpg
http://www2.hu-berlin.de/fpm/graphics/logo_heartbeat-note.png
http://www.webmd.com/fitness-exercise/healthtool-target-heart-rate-calculator
http://www.livestrong.com/article/105256-normal-heart-rate-sleeping/
http://www.active.com/fitness/articles/how-does-exercise-affect-your-heart
http://www.webmd.com/sleep-disorders/features/how-sleep-affects-your-heart
http://www.webmd.com/sleep-disorders/features/how-sleep-affects-your-heart

[17] http://en.wikipedia.org/wiki/Multitier_architecture

[18] http://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=
1&ContentID=1209

[19] http://www.livescience.com/42081-normal-heart-rate.html

[20] HTTP Live Streaming Draft Specification

[21] Android Supported Media Formats

115

http://en.wikipedia.org/wiki/Multitier_architecture
http://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=1&ContentID=1209
http://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=1&ContentID=1209
http://www.livescience.com/42081-normal-heart-rate.html
http://goo.gl/rvuCs3
http://goo.gl/zUmG

	Customer Statement of Requirements
	Problem
	More Specifically
	Background
	Devices and Specifications

	Solution
	Music
	Database
	System Architecture Diagram
	Product Usage
	Product Ownership (tentative)

	Glossary of Terms
	System Requirements
	Functional Requirements
	Non-Functional Requirements
	On-Screen Appearance Requirements

	Functional Requirements Specification
	Organization
	Stakeholders
	Actors and Goals

	Use Cases
	Casual Description of Use Cases
	Traceability Matrix
	Fully-Dressed Description of Use Cases
	Use Case Diagram
	System Sequence Diagrams

	Effort Estimation
	Domain Analysis
	Domain Model
	Concept Definitions
	Association Definitions
	Attribute Definitions
	Traceability Matrix

	System Operation Contracts
	Mathematical Model

	Interaction Diagrams
	Design Patterns
	Assignment of Responsibilities

	Class Diagram and Interface Specification
	Class Diagram
	Class Diagram for Data Management

	Data Types and Operation Signatures
	Traceability Matrix
	Design Patterns
	User Interface Specification
	Preliminary Design

	System Architecture and System Design
	Architectural Styles
	Identifying Subsystems
	Mapping Subsystems to Hardware
	Persistent Data Storage
	Network Protocol
	Global Control Flow
	Execution Orderness
	Time Dependency
	Concurrency

	Hardware Requirements

	Algorithms and Data Structures
	Algorithms
	Pattern Recognition
	Danger Detection
	Song Selection

	Data Structures

	User Interface Design and Implementation
	Design of Tests
	History of Work, Current Status, and Future Work
	History of Work, Current Status, and Future Work
	Key Accomplishments
	Possible Future Directions

