Musical Heart Rate Adjuster

Software Engineering 14:332:452 — Group #12
https://github.com /revan /HeartRateAdjuster

Kenny Bambridge, Jonathan Chang, Samani Gikandi,
Tae-Min Kim, Nikhil Shenoy, Revan Sopher

March 20, 2014

Contents

1

Customer Statement of Requirements/Project Proposal|

(1.1.1 More Specifically|]
(1.1.2 Background|

[1.2.3 System Architecture Diagram|,
(1.2.4 Product Usage|
[1.2.5 Product Ownership (tentative)
(1.3 Glossary of Terms|.o

[2

System Requirements|

[2.1 Functional Requirements| 000
[2.2 Non-Functional Requirements|
[2.3 On-Screen Appearance Requirements|
[2.4 Organization]

[2.5.1 Casual Description ot Use Cases|
[2.5.2 Traceability Matrix| o0
[2.5.3 Fully-Dressed Description of Use Cases|
[2.50.4 Use Case Diagram|
[2.5.0 System Sequence Diagrams|
[2.5.6 System Operation Contracts|
2.0.7 Mathematical Modell o0

User Interface Specification|

[3.1 Prelimmmary Design|
[3.1.1 Use Case UC-1: Log Datal
[3.1.2 Use Case UC-2: Set Target Heart Rate|
[3.1.3 Use Case UC-3: Skip Trackl

—_
OO © o]~ ooO;m

—_ =
N =

13
13
15
15
22
22
24
24
25
25
27
37
38
43
44

B.14

Use Case UC-4: Toggle Playbackl

B15

Use Case UC-5: Display Statistics|.

3.1.6

Use Case UC-6: Get Heart Ratel

B.1.7

4 Domain Modell
[4.1 Concept Definitions|
4.2 _Association Definitions

[4.4 Tracability Matrix| o

5 Plan of Workl

[5.2 Product Ownership| oo

[5.3 Breakdown of Responsibilities|

|6

Interaction Diagrams|

6.1 Alternate Scenarios|o

[6.2 Design Patterns|

[6.3 Assignment of Responsibilities| 000000

Class Diagram and Interface Specification|

[7.1 Class Diagram|.

711

Class Diagram for Data Management|

[7.2 Data Types and Operation Signatures|

[7.3 Traceability Matrix|

System Architecture and System Design|

[8.1 Architectural Styles| oo oo

[8.2 Identifying Subsystems| o oo

[8.3 Mapping Subsystems to Hardware|

[8.4 Persistent Data Storage|

862

[8.6.3

Algorithms and Data Structures|

9.1 Algorithms|

0.1.1

Pattern Recognition| o000

Time Dependency|. oL
CONCUITENCY| . .+« v v v v o e e e e e e e s e e e
[8.7 Hardware Requirements|

[9.1.2 Danger Detection

[10 User Interface Design and Implementation|

(11 Design of Tests|

[12 Project Management and Plan of Work|
(12.1 Merging Contributions|

Team Profile

Nikhil Shenoy C-+-+, Python
Revan Sopher Android programming, web programming, Java, Python

Tae-Min Kim Java, C++, Python

82
83

85

86

Samani Gikandi Java, C, Ruby, Network programming, Device driver/firmware program-

ming
Kenny Bambridge 10S programming, web programming, Java, Python

Jonathan Chang documentation, organization, C++

1 Customer Statement of
Requirements/Project Proposal

1.1 Problem

There seems to be a growing concern over the bevy of health-related issues that society
faces: cancer, obesity, heart diseases. This is evidenced by the estimated $25.9 billion
that consumers spent on fitness membership in 2013 or the government’s seemingly carte
blanche spending on "perfecting" the healthcare.gov website. While it is impossible to
completely eliminate health problems, we focus on a small, albeit interesting subset of the
health industry - personal health monitoring. Just like "an apple a day keeps the doctor
away," our project seeks to maintain the personal health of an individual, keeping him in
the best physical shape possible, and reducing the risk of health problems.

1.1.1 More Specifically

Lack of education about proper fitness is a widespread problem. Many people in the
country would like to exercise and stay in shape, but only a small subset of those peo-
ple know how to monitor their health in a way that allows them to stay fit. There are
several methods out there which people can use to get the proper information; tools such
as fitness blogs, the President’s Council on Fitness, Sports, and Nutrition, and the classic
visit to the doctor’s office are all excellent examples. However, many people don’t know
about those methods or choose not to utilize them, and they do their body a disservice
by performing exercises that could be detrimental to their health. The Internet is littered
with articles such as "9 Exercises You're Doing Wrong" and "The 7 Fitness Myths You
Need to Know". With information like this readily available to exercisers, it can be hard
to find correct information. And even if one does find correct information, he must check
to see if that information applies to a person with his body shape and size. The general
problem of finding correct exercise information is that there is no set standard; there is
no "one size fits all" set of guidelines which one can follow to have an effective workout.
Everybody’s body responds differently to different exercises, so the best that the medical
community can do is to provide a set of recommendations for people of the most average
body type. While this set of recommendations is good in the general, they will never tailor
to the needs of one’s body and workout. Finding the correct exercise information for one’s

body type is quite a difficult problem, and it will continue to be a problem until a solution
is provided to track each person’s exercise routine.

Of all the different metrics for measuring the quality of one’s fitness, heart rate is the
most important factor in determining whether a workout was effective. Monitoring one’s
heart rate is useful because it determines whether the exerciser is performing his exercise
safely as well as successfully. Experts recommend that one’s target heart rate during ex-
ercise should be between 60-85% percent of the maximum heart rate, and that anything
higher than 85% increases cardiovascular and orthopedic risk to the exerciser. Naturally,
the target heart rate varies for people of different ages, so one should always take this into
account before starting a fitness regimen. Also, the frequency of exercise before the new
regimen should be considered. If one has not exercised frequently before starting the new
regimen, then he should start exercising at a rate that is towards the lower end of the target
heart rate zone and then gradually increase his activity once his body gets accustomed to
the exercise. Heart rate is a significant, if not the most important, factor in determining
whether a workout was done correctly and effectively, and it must be monitored closely in
order to prevent injury.

Unfortunately, there are people who don’t know how to correctly monitor their heart
rate, and they mistakenly create a certain fitness plan based on wrong information and end
up not optimizing their workout. They go to the gym, run on the treadmill at a light pace,
and consider that enough to maintain their health. They do not check their heart rate and
make sure they are in the safe region of activity. This critical lack of measurement affects
the entire workout. For an exercise to be effective, one must maintain a heart rate that
is within the target range for an extended period of time. If not, the exerciser either puts
himself at risk of injury or completes a workout that does very little to improve his fit-
ness. Some use exhaustion and soreness after a workout as a judge of an effective workout.
Although these methods do give an indication as to how effective the exercise was, they
do not provide an insightful and accurate description of one’s health. As a result, these
people continue bad habits and routines that hinder their progress to stay fit; in fact, they
may not be even making progress.

A solution to the problem of uninformed exercise must have three main components; it
must include all relevant medical data such as heart rate information, create a fitness plan
that fits relatively well to the client’s body, and provide the client with feedback about
the effectiveness of his workout. Once all these components come together, the client will
be able to correctly monitor his health during exercise and get the most out of his workout.

1.1.2 Background

A healthy lifestyle depends upon a plethora of factors including environment, nutrition,
socialization, and mental stability. However, we identified physical fitness and sleep as the
two key factors to leading a healthy lifestyle. Their importance cannot be overstated.

Physical fitness or exercise fortifies the body, allowing one to stay in shape, avoid in-
juries, develop confidence, become stronger, and sleep better. Sufficient physical activity
can reduce the risk of such symptoms as stress, depression, diabetes, high blood pressure,
osteoporosis, and obesity.

Meanwhile, sleep is critical to the mind. It refreshes the brain, helps with daily func-
tioning, uplifts one’s mood and emotional well being, increases productivity, and improves
learning and memory. "Good" sleep can lower the probability of contracting the following:
heart disease, kidney disease, high blood pressure, diabetes, and stroke.

1.1.3 Devices and Specifications

Heart Rate monitor:
Uses Bluetooth or ANT+ to connect to smartphone

Smartphone:
Needs to be running Android 4.3+
Needs to have radio supporting Bluetooth 4.0+

1.2 Solution

It has been well documented that exercise and sleep both hold a significant impact on heart
rate[14-15|. However from experience, we believe that the link between exercise and sleep
and heart rate holds true for the converse as well. One of the targets of a good workout is
an increased heart rate. On the other hand, high-quality sleep entails a decreasing heart
rate.

Our proposed solution is designed to affect people’s health by providing limited control
to their heart rates. Our Musical Heart Rate Adjuster is targeted to operate in two areas
where it can be the most effective - workouts and sleep - which in turn offer the aforemen-
tioned health benefits. We do not plan on adjusting heart rate with the intent of skipping
the rigors of exercise or the process of falling asleep; on the contrary, we wish to adjust

heart rate to induce better quality workouts and sleep.

Our plan is composed of a few steps. First, we intend to increase the effectiveness of
workouts by matching heart rate to an appropriate selection and tempo of music. This
music can be adjusted accordingly to stimulate heart rates to reach a desired intensity of
exercise. The music, which will be discussed later, performs the task of simulating work-
out difficulty. As an added benefit, studies have shown exercising while listening to music
to provide many benefits, such as increased motivation and endurance, distraction from
otherwise unbearable stress, and increased heart rate, among others.

Then, we seek to improve the quality of sleep by finding soothing music to gradually
slow down a user’s heart rate. In this instance, we use music as an instrument to aid users
in falling asleep more quickly, and hopefully improve the performance of their rest. Lis-
tening to right music can also improve the quality of sleep; for instance, music by classical
composer Mozart has been shown to increase health factors such as relaxation and mental
stimulation.

1.2.1 Music

We utilize music to affect heart rate in two ways. In addition to identifying and playing
music with speeds in the same vicinity as heartbeat, we also wish to be able to adjust the
tempo of the music. A simple compound microscope has both a coarse adjustment knob
as well as a fine adjustment knob. Our song library will organize songs into different cat-
egories, acting as a coarse adjuster for heart rates. Meanwhile, to add a little fine-tuning
to adjust the heart rates, we will either write or find an existing application for an audio
tempo changer. Given current heart rate, and subsequently, current music tempo, we will
continually adjust the music tempo while measuring for changes in heart rate. This will
occur until we hit the specified target heart rate, give or a take a few BPM. Thus, if there
is no difference in heart rate, either the targeted heart rate has been reached - otherwise,
the music tempo has not been adjusted enough.

We are interested in analyzing the magnitude of the effect of our music application on
heart rate and finding a rough correlation based on the data that the MOTOACTYV pro-
vides. All parties should remember, however, that correlation is not causation. While we
take the assumption that the general public will react to music in similar ways (music with
a slower tempo will decrease heart rate while music with a higher tempo will increase heart
rate), it is difficult to know how every individual will react to the same music and can
never be 100 percent accurate.

This will probably take some experimentation with test subjects in several situations
such as rest, running, weight-lifting, and playing basketball. Time-permitting, we will also

find the ability of music to slow down heart rate and affect sleep by analyzing sleep monitor
graphs. As a side experiment, we could measure the effect of several well-known classical
songs on sleep quality.

Finally, we will be able to develop an algorithm for ranking the songs that induce the
best performance. Even better, we could potentially toy around with machine learning
to have our algorithm improve after more and more data sets. With the application of
machine learning, each user’s individual MOTOACTYV device may correct itself in the case
that a specific user does not follow the general trend as stated previously (a user’s heart
rate might increase from slow music rather than fast music). This way, our MOTOACTV
will be able to increase both exercise and sleep performance through our own custom music
player application, located on and loaded by the device. This application will utilize the
user’s music library stored locally on the device’s memory.

1.2.2 Database

Users will want to monitor their personal health status, so our project will allow the user to
view his workout data directly on his phone. This eliminates the inconvenience of having
the user log in to a personal account on a website to view his data, because everything he
needs will be on the phone itself. All the data collected from the workout will be stored
locally on the phone, and the system will perform the necessary database calls to retrieve
that data. That data will be processed and formatted into different graphs that will display
the correlation between music and heart rate.

1.2.3 System Architecture Diagram

This diagram highlights our system architecture: Our heart rate monitor senses the user’s
BPM and transmits the data to the Android phone via Bluetooth as requested by the app.
The phone then uploads the data to the server and database which processes the data.
The system is then able to select the appropriate songs, and then display suitable graphs
once the workout is completed.

Heart Rate Monitor 1

Phone/Android App 1

W=

A g
—

2345 456

ok . -

Computer/Webpage Server/Database

Figure 1.1: System design

1.2.4 Product Usage

e The heart rate monitor should only be worn while it is in use - only while the user is
exercising. While it is safe to wear the heart rate monitor during other times, there
will be no benefit unless the application is currently running.

10

e Users may choose to use the Musical Heart Rate Adjuster while not sleeping or
exercising if they wish to adjust their heart rate for alternate reasons (possibly for
playing video games or preparing for an exam).

e The user will run the android application, and then input a target heart rate. The
software will then choose a song based on your current heart rate and begin to either
raise or lower it. Once the target heart rate is obtained within a certain tolerance,
the software will work to maintain this heart rate rather than increasing/decreasing
it.

e Music will be selected from the user’s own personal music library (which should be
stored on the flash memory of the Android device) to either increase or decrease the
user’s heart-rate. Music will be played by our software.

e The software will select and play music according to the user’s current heart rate in
real-time as it receives information from the connected heart rate monitor.

e Music will be delivered through the headphone jack on the Android device or through
any bluetooth device.

e Receive information on the songs that are listened to in relation to their usage of the
Android device. (What songs were listened to, which songs were the most effective
at changing their heart rate, etc.)

1.2.5 Product Ownership (tentative)

Our team will be divided into three smaller sub-teams of two individuals each, the pairings
listed below. Each sub-team will be responsible for music, hardware, or web and provide a
brief description of their work on a shared Google drive folder. They will also include the
necessary UML diagrams and charts. Every week (or bi-week) we will meet together for 1-3
hours during the timeframe determined by When2meet. During the meeting, we will have
a specific agenda that primarily involves the week’s progress and upcoming deliverable.
Our discussion will probably be centered along the following questions: 1) What did you
work on this past week? 2) What do you plan on working on next week? 3) Are there any
changes that need to be made to the project? Every week, a different team member will
take the lead for the next deliverable to ensure that everything is on time.

e Kenny and Samani will develop a system to select or modify a track based on re-
quested BPM. If possible they will incorporate machine learning into the system.

e Jonathan and Nikhil will work on a database that receives, stores, and processes the
data from the Android device. They will also be responsible for creating the graphs
that measure different metrics of the workout.

11

e Revan and Tae-min will program the Android application and work on interfacing
with the heart rate monitor.

1.3 Glossary of Terms

Electrocardiography (ECG) ECG is an interpretation of the electrical activity of the
heart over a period of time as measured across the thorax or chest. This interpretation
is produced by attaching electrodes to the surface of the skin. This is generally used
to measure the heart’s electrical conduction system by picking up electrical impulses
generated by the polarization and depolarization of cardiac tissue.

Beats per Minute (BPM) BPM is the amount of times that the heart beats given one
minute of time.

Resting Heart Rate The resting heart rate is the heart rate measured while the subject is
both awake and inactive, not having performed physical activity prior. This resting
heart rate, measured in bpm, is the initial value that the user should have before
using our device to raise or lower their heart rate.

Database Databases are a place to store information. In our case, this is where we will
store and process important data received from our health devices, allowing our
system to simply act as a pleasant interface for the user.

Target Heart Rate The target heart rate is the heart rate which the user wishes to
achieve. This will be lower than the recorded resting heart rate if the user is at-
tempting to sleep, and higher than the recorded resting heart rate if the user is
planning to work out. The user’s maximum heart rate is based on how old the user is
(220 minus the user’s age), and the recommended target heart rate while exercising
is between 50 and 85 percent, depending on how active the user normally is. While
sleeping, people’s heart rates generally drop approximately 8 percent from their rest-
ing heart rate, so the user’s target heart rate should be approximately [(heart rate
before sleeping)*0.92]

Smartphone Smartphones are mobile phones which contain features that are more ad-
vanced than basic mobile phones. In our case, any Android device which has the
capability to use Bluetooth will suffice to interact with the sensors which will be put
on the body.

Heart Rate Monitor A device which is able to monitor the user’s heart rate. In our
experiment we will be using a third party heart rate monitor (worn as a chest strap)
which has sensors that are connected to the skin along with the MOTOACTYV watch.
The chest strap will record the heart rate while the watch will display the user’s
current heart rate in real time.

12

2 System Requirements

Based upon our consumer needs, we derived a list of requirements for our system to pos-
sess. For features that must be implemented by the system, we state that "The user
shall," whereas for features that are preferred, but not "mandatory," we state that "The
user should." For each requirement, we assign an identifier in the form of REQ-x, as well
as a priority weight from 1 to 5. A higher priority weight indicates that the corresponding
requirement is more essential to the success of the project, and more critical to fulfilling
the customer’s needs.

2.1 Functional Requirements

Identifier

Priority

Description

REQ-1

5

The system shall log user BPM data using
the Heart Rate Monitor sensor during
active periods.

REQ-2

The system shall allow user to select a
target heart rate on the Android
application.

REQ-3

The system shall determine a song to play

based on whether the target heart rate is

greater than or less than the resting heart
rate.

REQ-4

The system shall play the designated song
through either headphones or Bluetooth
speakers to adjust user heart rate.

REQ-5

The system shall store the BPM data of
each song in the database.

REQ-6

The system shall at the very least, output
graphs relating BPM versus song speed.

13

The system should adjust the tempo of the
REQ-7 1 song to attempt to match the user’s BPM
and stop when within a defined range.
The system should allow the user some
control when they use the "Display
Statistics" feature. That is, they should be
able to customize the details of how the
data is displayed (type of graph or specific
categories of data).

The system should rank the songs that
induce the best performance and use
machine learning to improve the song
selection algorithm.

The user should be able to change the
current song if he is unsatisfied with it.
The user should be able to view his current
REQ-11 1 heart rate as long as the chest strap is

recording that information.
The user should be able to pause the
REQ-12 1 current track if he needs to interrupt his
activity for some reason

REQ-8 1

REQ-9 1

REQ-10 1

Our functional requirements spell out the behavior of our system and reaction to user
input. Our system is composed of several aspects such as the heart rate monitor, android
device, server and database. These requirements describe some of the interactions between
these components and the effects that the system as a whole produces. The images in the
appearance requirements section later on provide more insight on the requirements and
functionality of our system.

For our system to be able to accomplish any of its goals, it must first be able to record the
relevant BPM data. Therefore, our REQ-1 is of utmost important. There is, however, an
important scenario we must consider. If the the heart rate sensor is removed (accidentally
or intentionally) while the user is active, any later data collected and song played may be
skewed. Thus, the time in between active periods is irrelevant and will have no effect on
the software.

In regards to music playback, it is desirable for our system to do the data processing
and song section, to reduce the burden on the user. Again, after collecting the BPM data
and storing it in our database, our system will use a pre-determined algorithm to analyze
song tempo and bpm correlation to determine song selection (REQ-3 & REQ-5). As for
physical playback, the choice of whether to use headphones or speakers will not have any
effect on the performance of the system. The choice is simply the user’s preference (REQ-4).

14

To safeguard against mistakes, and prevent negative side-effects, if the system makes an
incorrect decision, there will be no negative consequences on the user’s health. It should be
able to re-adjust once it realizes that the song’s tempo does not match the user’s current
and target heart rates (REQ-7). For REQ-9, this ranking system will be completely local
and only relevant to the user of the system. This is just an optional improvement to our
system to enhance the user’s experience.

2.2 Non-Functional Requirements

Require- Priority

ment Weight Description
The Android interface shall have a minimal
REQ-13 5 number of navigation menus; the user

should not need more than three taps to
find the information he needs

The user shall not be able to directly modify
REQ-14 5 any data in the database. All data must be

programmatically gathered and processed
The user should wear the device only when
the user wishes to alter their heart-rate; the
REQ-15 3 device will not provide useful information if

it is worn when the user does not plan to

increase or decrease their heart-rate.
The Android application should be intuitive
and simple to use.

REQ-16 3

Meanwhile, our non-functional requirements are more descriptive than practical, listing
the qualities of our system. These requirements are based on the term FURPS+, which
includes functionality, usability, reliability, and performance.

2.3 On-Screen Appearance Requirements

This section contains mockups of the Android application’s user interface. Although the
arrangement and display is subject to change, these images contain all the essential infor-
mation that needs to be conveyed to the user, as well as all the necessary inputs.

The inputs used while exercising, such as the BPM sliders and the music controls, take up
a large amount of screen space to facilitate active use. Information display, such as the
current track and BPM, is placed unobtrusively around the input methods. The configu-

15

ration settings are hidden in a drop-down menu, as per the Android design standard.

i

izl

Jeak BPM 120 Rest

gBPMm 70

Figure 2.1: The main screen of the app provides a menu button, selectors for Target Peak
and Resting BPM, a display of the current track, a display of the current BPM,
and the option to Play/Pause and Skip the current track.

16

Heart Rate Adjuster

Peak BPM 120 RestingPMm 70

Figure 2.2: Pressing the “Raise/Lower” button toggles between attempting to raise or lower
the BPM.

17

Figure 2.3: Pressing the menu button opens the context menu, providing the option to
view statistics, edit settings, and view information about the app.

18

Statistics

al =

[Graph goes here]

Figure 2.4: Selecting the Statistics option from the context menu displays a graph of user
heart rate and song transitions.

19

Figure 2.5: The settings page allows the user to open a menu to Log in, to edit the location
of the media library (this is done via the OS’s directory selection), and configure
additional parameters such as music generation (if there is time to implement
this feature).

20

Heart Rate Adjuster

Figure 2.6: Selecting the Log in option prompts the user for their credentials.

21

Heart Rate Ad]

About

Persius officiis eloquentiam ut sed,ius
nostrud sensibus ea. Eu ullurm inani
posidonium que, zzril quaestio
intellegat in quo

Figure 2.7: Selecting the About option from the context menu provides a description of
the application.

2.4 Organization
2.4.1 Stakeholders

Stakeholders include individuals and organizations which are interested in the completion
and use of a given product. The amount of stakeholders and different types of stakeholders
relies on the versatility and ease-of-use of the product in question. Due to this software’s
very simple interface and design, stakeholders may include users of all ages and multiple
types of organizations who are interested in obtaining easier sleep or a more energetic
workout. Examples of potential stakeholders include:

1. Individuals who are interested in maintaining their health personally without out-

22

side help. With the many functions of the application, users have the capability of
maintaining their health without the need to consult other people. People who are
introverts or do not have easy access to another person who is able to easily analyze
the individual’s personal health would be very interested in this application. After
running this application through their workout or sleep, users can easily consult the
graphs which are produced rather than consulting a personal trainer or doctor about

their health.

2. Organizations that specialize in helping people fall asleep. Rather than having to
prescribe pills to every customer who has trouble sleeping, they will have the option
to suggest this product to the customer for minor cases. While prescribing pills may
tend to have slightly more dangerous side-effects, our product does not introduce any
chemicals to the body which may potentially cause harm to the consumer. Organi-
zations who are interested in a cleaner alternative to help people with their sleeping
problems would be stakeholders for this product.

3. Organizations that specialize in promoting exercise and personal health. Not only
does this product help those who are trying to sleep, but also those who wish to be
more fit. While personal trainers may know how to help the customers and be great
motivators, organizations may be interested in helping a larger pool of customers
without having to increase the amount of hands that they have working. With
this product organizations may grant customers the option of being self-sufficient,
helping to increase self-esteem, as well as a great motivator as the application works
to increase the user’s heart rate allowing them to push onward and burn calories
easily.

4. Organizations interested in monitoring and researching people’s health. While there
are many users who are able to use the product’s graphs and understand how their
health and workout are, there are many users who still prefer the assistance of outside
sources. This product may also be used by these outside sources to help them collect
extra data on an individual’s health. Rather than having the customer come to their
location and run a couple tests in a single day, the organization will have the ability
to provide this product to the customer and collect more regular data to understand
the customer’s day-to-day life rather than a couple of tests run at their office.

More specifically, this product may see stakeholders in:
e Personal Trainers

o Athletes

e Coaches

e Doctors

23

Researchers

Pharmacies

Therapists

General population

2.4.2 Actors and Goals

Actors can be defined as are people or devices that will directly interact with the product,
and can also be loosely labeled as either "initiators" or "participators". These actors will
have a specific goal with the given product, which is what the actors are attempting to
achieve by interacting with the system. Actors and their respective goals are:

Actor Actor’s Goal

User (initiator) To increase heart rate for exercising

User (initiator) To decrease heart rate for sleeping

User (initiator) To analyze health information from given graphs
Chest Strap (initiator) To alert the user of an abnormal heart rate
Chest strap (participator) | To monitor the user’s heart rate

This product is one which only requires the interaction of one human actor, the user of
the product. While there is the potential for other humans to interact with the user’s
health information which is produced, only the user himself is considered an actor. The
headband and chest strap are participating actors that are worn by the user to monitor
information and relay the information via Bluetooth back to the smartphone which is
running the application. The one exception is that our chest strap (used interchangeably
with heart-rate sensor) may be an initiating actor and notify the user if his/her heart rate
is abnormally high or low. In this case, the user would be the participating actor.

2.5 Use Cases

Use Cases are specific tasks that are created together by the designer and the client to
simulate what the client wants out of his software solution. They are meant to describe
the main features of the project such that the designer can easily address the needs of the
client and create a product around those needs. Below is a casual description of the use
cases for the reader to get a general idea of how the software should be used. Later, fully
described use cases are shown for additional insight into the different cases.

24

2.5.1 Casual Description of Use Cases

Use Case Action Description
UC-1 logData The system will log heart rate and music metadata.
setTarget- | The user can change the heart rate that the system is
UC-2 .
HeartRate targeting.
Ue.3 skipTrack The user can elect ‘to sklp the cu‘rrent song. The
system will begin playing a different song.
toggle- The user can toggle the system between playing and
uC-4 X .
Playback not playing music.
dis- The user can request the statistics about the current
UC-5 playStatis- | workout. This can be performed while the workout is
tics in progress or after the workout has been completed.
The user can view his current heart rate. This can be
U6 getH- used when the user does not want to see all of the
eartRate statistics from the workout and just wants his heart
rate.
The heart-rate sensor detects an abnormally high or
veT alertUser low heart rate and notifies the user at once.

2.5.2 Traceability Matrix

The Traceability Matrix allows the reader to cross the functional and non-functional re-
quirements described earlier with the use cases. This demonstrates which use cases fulfill
each requirement, and the total priority weight of each use case will determine which cases
are the most important. If an X is present at any point in the the column for a Use Case,
then the corresponding requirement’s priority weight must be added to the sum. The re-
maining Xs in the column are similarly considered, and the total priority weight for the

Use Case is listed at the bottom of the column.

25

Pri-

ority | UC-1 | UC-2 | UC-3 | UC-4 | UC-5 | UC-6 | UC-7
Weight

REQ- 5 X X X X X

1

REQ-| 4 X X

2

REQ-| 3 X X X

3

REQ-| 5 X X

4

REQ- 3 X X X

5

REQ-| 2 X

6

REQ- 1 X X X

7

REQ- 1 X

8

REQ- 1 X

9

REQ-| 1 X

10

REQ- 1 X X

11

REQ- 1 X X

12

REQ-| 5 X X X X X X X

13

REQ- 5 X X X

14

REQ-| 3 X X X X X X X

15

REQ-| 3 X X X X X X X

16

Total

Weight

37

37

21

17

25

19

21

26

2.5.3 Fully-Dressed Description of Use Cases

Use Case UC-1: logData

Related Requirements: REQ-1, REQ-2, REQ-3, REQ-4, REQ-5, REQ-7,
REQ-13, REQ-14, REQ-15, REQ-16

Initiating Actor: User Interface
Participating Actor: Data Manager

Actor’s Goal: Begin logging data about the user’s heart rate and about the
song currently being played.

Preconditions:

e The user has not begun his workout

e The user is wearing the device correctly; the chest strap is securely fastened to
the user’s chest near the solar plexus, and the musical heart rate application
is open to the main screen on the Android device.

Postconditions:

e The system starts recording the initial heart rate, initial time stamp, and
music data from the workout, if not already recording.

e The data is stored internally on the Android device in an SQLite database.
Flow of Events for Main Success Scenario:

e — User Interface calls the storelnitialState() function in the Data Manager to
record the initial heart rate and time stamp of the user.

e The Data Manager calls the storeCurrentHeartRate() while there is no stop
signal from the User Interface. This retrieves the current heart rate from the
chest strap, combines it with the time stamp, and stores it in the database.

e — UI sends the stop signal, and the Data Manager stops recording data in
the database.

e < Data Manager sends signal back to the User Interface to indicate that the
recording has stopped successfully.

27

Flow of Events for Alternate Success Scenario (Start Error):

e — User Interface calls the storelnitialState() function in the Data Manager to
record the initial heart rate and time stamp of the user

e Chest strap reports an error in measurement. Sends signal to Data Manager
about invalid data.

e < Data Manager returns signal to the User Interface that the data was unable
to be retrieved and that the data logging has not begun.

Flow of Events for Alternate Success Scenario (Error During Data
Logging):

e — User Interface calls the storelnitialState() function in the Data Manager to
record the initial heart rate and time stamp of the user.

e — Data Manager starts recording data in the database.

e < Chest strap reports at least 10 successive errors in measurement. Sends
signal to Data Manager about invalid data.

e < Data Manager stops recording data. Sends signal that invalid data was
received from the chest strap, but some data was recorded.

This use case describes how the system will begin storing data. The User Interface, via
the commands entered by the user, will initiate the data storage by calling the storelni-
tialState() function in the Data Manager. The Data Manager will then retrieve the initial
state of the system and current time stamp of the system and then store it in the database.
Then the Data Manager will loop into the storeCurrentHeartRate() call until it receives a
stop signal from the User Interface. Once this signal is received, the Data Manager will
stop the loop and send a signal back saying that the data logging has stopped successfully.
Two error scenarios could occur during this use case; the initial retrieval of the user’s state
could be unsuccessful, or a particular retrieval during the data logging could be invalid.
To address the first case, the Data Manager will check for a signal from the chest strap
to make sure that it is ready to transmit data and that the reading the strap picks up is
correct. If the Data Manager receives a low signal, then it will send a signal to the User
Interface that the storage of the initial state did not succeed. If the chest strap records
some invalid data during the data storage, then it will send a signal to the Data Manager
that an invalid value was recorded. The Data Manager will keep a counter of how many
successive invalid entries were received. If the number of consecutive invalid entries crosses
10, then the Data Manager will send a signal to the User Interface that the chest strap is

28

recording invalid values. Thus, this use case accounts for the success of the main scenario
and reactions to the two error scenarios.

Use Case UC-2: setTargetHeartRate

Related Requirements: REQ-2, REQ-3, REQ-7, REQ-13, REQ-14, REQ-15,
REQ-16

Initiating Actor: User
Actor’s Goal: To change the heart rate that the system is targeting
Preconditions:

e The system displays the selection menu for heart rate
Postconditions:

e The system updates the target heart rate used for music selection
Flow of Events for Main Success Scenario:

— User selects “Raise” option on main Ul

— System sets current value of “Raise” selector as current target

OR

— User selects “Lower” option on main Ul

— System sets current value of “Lower” selector as current target
OR

— User modifies current selector value on main Ul

— System sets new value of selector as current target

In this use case, the user can modify the heart rate targeted by the music selection al-
gorithm. This can be achieved by modifying one of the UI selectors, or by toggling the
direction (raise or lower). For this reason, this could be split into several use cases, but
since the functionality is the same we consolidate into one.

29

Use Case UC-3: skipTrack

Related Requirements: REQ-3, REQ-4, REQ-7, REQ-10, REQ-13, REQ-16
Initiating Actor: User
Actor’s Goal: To play a different song.
Preconditions:
e The system is currently playing music.
Postconditions:

e A different song is being played at the same rate at which the previous song
was playing

Flow of Events for Main Success Scenario:

e — User selects the "Skip Track" button.

e — Mobile interface requests a new song from the Music Selector

Music Selector retrieves new track from file system while maintaining the cur-
rent rate of workout.

— Music Selector passes the new song to the Music Player

< Music Player begins playing the new track

The skipTrack case is one of the conveniences for the user. If the user does not like the
song he is currently listening to, he can select a button on the Android device to advance
to a new song. The Mobile Interface will request a different song from the Music Selector.
The Music Selector will choose a song that will be adjusted to match the path that the
algorithm has set out to reach the target heart rate. The songs will be selected from the
user’s music library which has already been loaded onto the device. In the case that the
device does not contain another song which matches the current song’s bpm/tempo to
switch to, the device will select a song from the next highest/lowest level to reach the
target heart rate (a faster song if heart rate is to be increased, a slower song if heart rate
is to be decreased). Although the song may be out of range for the user’s current heart
rate, there will be no negative effects of using a song which is only slightly lower or slightly
higher. The device will not choose a song that is very far out of the current range.

30

Use Case UC-4: togglePlayback

Related Requirements: REQ-1, REQ-12, REQ-13, REQ-16
Initiating Actor: User
Actor’s Goal: Toggle the playback of music (pause or play).
Preconditions:

e The system is currently working.
Postconditions:

e If the system was already playing a track, the track will stop. If the system
was not already playing a track, it will play the current one.

Flow of Events for Main Success Scenario:

e — User selects "Pause" option on mobile interface.

e — Mobile interface tells the Music Selector to hold its current state and the
Music Player to stop playing music.

< Mobile interface displays a play button so that the user can resume the
workout.

OR

— User selects "Play" option on mobile interface.

— Mobile interface tells the Music Selector to continue its paused state and
the Music Player to continue playing music.

< Mobile interface displays a pause button so that the user can pause the
workout.

The togglePlayback case is another straightforward, convenience-based use case. If the
user needs to interrupt the workout for some reason and needs to stop the music, then all
the user has to do is press the pause button on the device. To resume the music, he must
press the button again, which will now be a play button. The system will make sure that
this function is working properly. If no music is currently being played, it is considered to
be paused and may be resumed. If music is being played, it is considered to be resumed
and may be paused. The system will know whether music is playing or not. The heart

31

rate monitor shall also be paused/resumed as the music is. If it is not already recording,
and should be, it will start recording (refer to postconditions for UC1, UC2).

32

Use Case UC-5: displayStatistics

Related Requirements: REQ-1, REQ-5, REQ-6, REQ-8, REQ-9, REQ-13,
REQ-14, REQ-16

Initiating Actor: User Interface
Participating Actors: Data Manager, Data Assembler, Graph Container
Actor’s Goal: Return graphs about the user’s workout.

Preconditions:

e The system is no longer playing music.
e The system is no longer loggin data.
e The user is no longer working out.

e The User Interface has completed error checking on the user’s request for
graphs.

Postconditions:

e The User Interface will receive graphs of workout data that it requested
through the Data Manager

Flow of Events for Main Success Scenario:

e — User Interface makes call(s) to any or all of the following functions:
getArtist VsBPM(), getGenreVsBPM(), getTempoVsBPM(), getHRVsTime(),
or getPlaylist().

e — The Data Manager will then make calls to the appropriate aAlJassembleaAl
function.

e The assemble function will retrieve the data from the database, package it as
either an ordered pair of doubles or an ordered pair of a string and a double
(for the music sections).

e — The Data Assembler will then be passed to the Graph Container, which will
extract the data from the Data Assembler and graph the data that it contains.
These graphs will be stored as an array in the Graph Container.

33

Use Case UC-6: getHeartRate

Related Requirements: REQ-1, REQ-11, REQ-13, REQ-15, REQ-16
Initiating Actor: User
Actor’s Goal: View the current heart rate.
Preconditions:

e The device should already be monitoring the user’s heart rate.
Postconditions:

e The current heart rate is displayed on the screen of the Android application.
Flow of Events for Main Success Scenario:

— Mobile Interface requests current heart rate from chest strap.
<— Chest Strap returns the current value of the heart rate.

< Mobile Interface displays the heart rate to the user.

The getHeartRate case is similar to the displayStatistics case, but it allows the user to
see only his current heart rate. The full analysis provided by getStatistics may not be
necessary at times, and this case allows the user to easily see his heart rate during the
exercise. Once a second, the system requests the current heart rate from the chest strap.
The chest strap then returns the heart rate, and the User Interface displays to the screen.
For this function to work, the chest strap must be strapped firmly to the chest in the
region of the heart. If not, the Chest Strap will be unable to record the current heart rate
correctly. Also, the chest strap should not be moved or tampered with in any way while
the device is recording the current heart rate. If no data is received from the chest strap,
the system will present the user with a message saying that the chest strap is not properly
fastened.

34

Use Case UC-7: alertUser

Related Requirements: REQ-1, REQ-5, REQ-11, REQ-12, REQ-13, REQ-15,
REQ-16

Initiating Actor: Chest Strap

Participating Actors: Human User, Data Manager

Actor’s Goal: Alert the user when an abnormal heart rate is detected.
Preconditions:

e The user is currently in the midst of a workout session.

e The user is wearing the device correctly; the chest strap is securely fastened to
the user’s chest near the solar plexus, and the musical heart rate application
is open to the main screen on the Android device.

e The system is functioning properly.
Postconditions:

e The User Interface displays a warning notification to the user.

e The User has the option of stopping the workout session or ignoring the noti-
fication completely.

35

Flow of Events for Main Success Scenario:

— The Chest Strap continally gathers heart rate data and sends it to the Data
Manager as long as there is no stop signal given.

For every piece of data received, the Data Manager checks the heart rate
using an algorithm described later on in the report to determine if it is in the
appropriate range.

— If the Data Manager detects that a heart rate is outside of a safe range
(above the normal maximum or below the normal minimum), the Data Man-
ager communicates sendAlert() to the UL

— The UI displays a warning notification to the user and advises the user to
end his workout session.

< The user responds by stopping the workout session on the UI. (The UI
sends a stop signal to the Data Manager which then discontinues logging data
from the Chest Strap.)

Flow of Events for Alternate Success Scenario (Ignore Warning):

— The UI displays the warning notification to the user, advising him to end
his workout session.

+The user chooses to ignore the notification and continues his workout
The Data Manager continues to log data from the Chest Strap.

— If after 15 data points, the user’s heart rate has not fallen into the acceptable
range, the system automatically pauses.

— The UI informs the user that the system has been paused because it is not
safe to use, and advises the user to consult a physician.

This use case describes the unfortunate scenario where, during the course of a user’s
workout, his heart rate has become dangerously high or dangerously low. The system
therefore needs to notify the user of his condition. The Data Manager, which records the
information from the chest strap makes the detection, and communicates to the UI to
display a warning message. Normally, a user would take the advice of the notification and
stop his workout. However, the user may choose to ignore the message, and if after 15
his heart rate has not dropped into the normal range, the system automatically
pauses. A second message is sent informing the user of the pause, and the user is advised

seconds,

36

to see a health care provider. Our device is geared primarily towards the casual workout
enthusiast, so prime athletes who can stand extreme heart conditions would not likely
use this device. Meanwhile, if the user has a pre-existing heart condition where he might
receive this warning, it would be best for him not to use our device. In any case, it is
better to be safe and pause the system.

2.5.4 Use Case Diagram

System

UC-2: 5et Target Heart Rate

N

Initiates

Initiates Audio Subsys

UC-7: Provide Music Data

UC-3: Skip Song

Initiates

Initiates

UC-4: Toggle Playback

User UC-1: Log Data

N

L Initiates
Initiates

UC-5: Display
Statistics

UC-6: Get Heart Rate
Data Subsys

Chest Strap [onkine diagramming & design] CIreately com

Figure 2.8: Arrows imply participation unless specified

37

2.5.5 System Sequence Diagrams

et Heart Rate

UC-1: logData
Ul Data Subsystem Chest Strap
Begin Session ’
loop | [1sec]

|

follows sequence specified in UC-8 j

et Time Stamp and Music Metadata ’

‘ Store Time Stamp and Music Metadata

Stop Session ’

l‘ Recording Stoped

Ul

Data Subsystem

38

Chest Strap

UC-2: Set Target Heart Rate

User Ul Audio Subsystem

Changes a Ul ualue’

Motify of new target}

User Ul Audio Subsystem

UC-3: Skip the Current Song

User Ul Audio Subsystem

Presses a UI I:butmn’

MNotify of necessary sl-:ip’

l‘ FPlays new track
[

User Ul Audio Subsystem

39

UC-4: Toggle Playback

User Ul Audio Subsystem

|
alt] [Pause]

Presses "Pause" buttﬂn’

MNotify of necessary pause’

‘ Pauses current track

Presses "Play" button ’

Motify of necessary play ’

N Plays current track
I

User Ul Audio Subsystem

40

UC-5: displayStatistics

Ul

Data Subsystem

et Graph ’

Assemble Data :I

N Display Graph

Ul

Data Subsystem

41

UC-6: Get Heart Rate

Data Subsystem Chest Strap Ul
loo [1 !'-EI'-‘-]
Gets Heart Rate
A l
Display Heart Rate ’
Data Subsystem Chest Strap Ul

42

UC-7: Alert User

Chest Strap Data Subsystem Ul

|
loo [while I= stop()]

Store BPM and Time Starnp’

Check for Abnormality :]
alt | [iffAbnormality Detected)]

Alert User ’

Chest Strap Data Subsystem Ul

2.5.6 System Operation Contracts
OC-1: Enter Target Heart-rate

e Precondition: The application is open to the main screen and prompts the user
for input.

e Postcondition: The system saves the input heart rate and will use it in selecting
a song.

OC-2: Select Function("Skip Song")
e Precondition: The device is playing a song which needs to be changed.

e Postcondition: A different song is being played at the same rate at which the
previous song was playing.

OC-3: Select Function("Toggle Playback")

e Precondition: The system is currently playing a song

43

e Postcondition: If the system was playing a song, it stops playing the song and
recording the data from the workout. If the system is paused, toggling the playback
will cause the system to start playing a song and recording data from the workout.

OC-4: Select Function("Display Statistics")

e Precondition: The user has either finished his workout or is in the middle of his
workout and would like to see his statistics.

e Postcondition: The device retrieves the data from the databases, organizes it,
and presents it to the user in the form of charts and tables.

OC-5: Select Function("Display Heart Rate")
e Precondition: The device should already be monitoring the user’s heart rate.

e Postcondition: The current heart rate is displayed on the screen of the Android
application.

2.5.7 Mathematical Model

The selection of which track to play requires a mathematical model. At its simplest, this
consists of selecting the track with the closest BPM, that is to say minimizing the difference
in BPM:

man(| targetgpyr — trackppy |) (2.1)

If time permits, this simple model can be replaced with a more complex model incorporating
Machine Learning to learn which tracks are more effective than others at changing pulse.

44

3 User Intertace Specification

3.1 Preliminary Design
3.1.1 Use Case UC-1: Log Data

This Use Case doesn’t have a User Interface component.

3.1.2 Use Case UC-2: Set Target Heart Rate

>eak BPM 120 RestingsPm 70 Peak BPM 120 RestingBPm 70

Current Track: Current Track:

For this Use Case, the user’s goal is to select a target heart rate for his workout. There
are two ways a user can trigger this Use Case: modification of the currently active number
selector, or pressing the toggle between Raise/Lower. As seen from the screenshots of our
"home" screen above, we seek to minimize user effort in accomplishing his desired goal.
The number selectors are standard Android UI components, so the user is presumably

45

already familiar with their functioning. Changing the target direction requires only one
press, of the Raise/Lower button. The existence of this button means that, once a user
has set their target preferences, they won’t need to change the sliders much, reducing the
effort of selecting numbers.

Once the user has selected a number, the system uses it in playback.

3.1.3 Use Case UC-3: Skip Track

2eak BPM 120 Resting BPM 70

Current Track:

To switch tracks is also very simple. It takes the user one simple tap to achieve his desired
outcome. On the provided image of our concept interface, our application appears very
similar to a mainstream music player. In the bottom right corner is the double-arrowed
fast forward button. The user taps this button to advance to another song, and then the
system fulfills that request by running its algorithm and picking out another track from
the user’s music library. The "Current Track:" label will also be updated accordingly.

46

3.1.4 Use Case UC-4: Toggle Playback

>eak BPM 120 Resting BPM 70

Current Track:

Use Case 4, togglePlayback also proves to be intuitive. Just like most music players, our
application has a button located on the bottom center of the screen designed for the pur-
pose of pausing the current song, or playing it, depending on the current state. The user
just needs a single tap on the universal play/pause button to achieve his goal of playing or
pausing the song.

When this is done, if the system was previously playing, the system responds by stopping
its collection of heart rate data, and freezing the screen in its current state. If the system
were not previously playing, the system responds by beginning its collection of heart rate
data, and beginning playback.

47

3.1.5 Use Case UC-5: Display Statistics

For use case 5, the user desires to view the statistics of his workout. To simplify the
process for the user down to two clicks, we added a menu button in the top right corner
of the screen. After pressing that menu button, a scroll-down menu with three options
appears. The user needs to tap "Statistics" to bring up his workout information. The
system is constantly logging the user data, and compiles a few useful graphs such as heart
rate versus time.

48

3.1.6 Use Case UC-6: Get Heart Rate

>eak BPM 120 Resting BPM 70

This Use Case requires no user interaction.
The UI is updated once a second with the current heart rate read from the chest strap.

49

3.1.7 Use Case UC-7: Provide Music Data

>eak BPM 120 Resting BPM 70

This Use Case requires no user interaction.
The Ul is updated by the Audio subsystem with the title of the current track.

3.2 Effort Estimation

First we need to calculate the Use Case Points (UCP).

UCP = UUCP + TCF « ECF (3.1)

Where Unadjusted Use Case Points (UUCPs) are computed as a sum of these two com-
ponents:

20

1. The Unadjusted Actor Weight (UAW), based on the combined complexity of all the
actors in all the use cases.

2. The Unadjusted use Case Weight (UUCW), based on the total number of activities
(or steps) contained in all the use case scenarios.

Unadjusted Actor Weight (UAW) and Unadjusted Use Case Weight (UUCW)

Actor Complexity Weight
Users Complex 3
Mobile App Average 2
UAW =3+2=5 (3.2)

Now we reference the Use Case table from 2.5.1 to calculate the UUCW.

UUCW =154+15+8+10+124+18 =178 (3.3)
There the UUCP is:

UUCP =5+ 78 =83 (3.4)

Technical Complexity Factor (TCF)-Nonfunctional Requirements

Below is a table of Technical complexity factors and their weights.

Perceived
Technical e : Calculated
Factor Description Weight Coril})flex— Factor
T1 Friendly interface that the 9 1 9

user understands
Internal processing of heart
beat data to music and
12 adjusting BPM shouldn’t 2 3 0

be too complex

T3 Good Performance 1 2 2
T4 Security is a minor concern 2 2
No direct access to third
ThH) 2 3
partles
T6 Easg of use is very 3 3 9
umportant
Technical Factor Total o7
(TFT)

And TCF =C1+C2x TFT, and C1 =0.6,C2 = 0.01, so

TCF = 0.6+ 0.01 % 27 = 0.87 (3.5)

o1

Environment Complexity Factor (ECF)

The environmental factors measure the experience level of the people on the project and

the stability of the project.

Environmental e . Perceived | Calculated
Factor lost]]l))escrlptlon OWT Weight Impact Factor
ostly beginners at
El based development 1 ! 1
B9 Decenjc famlllarlty with 0.5 3 15
application problem
Quite knowledgable about
E3 the Object-Oriented 1.5 3 4.5
approach
o Somewhat motivated about) 9 9
the problem
5 Progammmg language 9 3 6
proficiency
Environmental Factor 155
Total (EFT) '
Here is the formula to calculate ECF
ECF=C14+C2xEFT (3.6)
Where C'1 =1.4,C2 = 0.03. Therefore we calculate the ECF.
ECF =14+ (—-0.03%15) = 0.965 (3.7)
So we calculate the final UCP:
UCP =83 %0.87 % 0.965 = 69.68 (3.8)

If we assume that productivity factor is 30 hours per user case point. The effort estima-

tion would be 2,090.

02

4 Domain Model

4.1 Concept Definitions

Responsibility Type Concept
Pairing /communicating with HRM D HRM manager
Retrieve logged data D log retriever
Musical Playback D music playerbacker
Logging tracks as they are played D track logger
Queue Next Track(s) D track queuer
Listen for user input D general Ul
Graphically displaying music information D playback view
Graphically displaying heart rate info D heart beat view
Graphically displaying current workout data D workout view
Graphically displaying previous workout data | D history view
Data store for workout data K workout store
Data store for music metadata K metadata store
Data store for music files K music store

23

4.2 Association Definitions

Concept Pair

Association Description

Association Name

music playerbacker <+
metadata store

music playerbacker retrieves infor-
mation about the current track from
metadata store

data retrieval

history view <> work-
out store

history view retrieves data about
previous workouts from the workout
store

data retrieval

track logger <> music
playerbacker

tracks played by music playerbacker
are logged by track logger

data logging

music playerbacker <
track queuer

music playerbacker retrieves the
next track from the track queuer

data retrieval

music playerbacker <
playback view

playback view displays information
based on the data in music player-
backer

human data interface

hrm manager <> gen-

eral Ul

general Ul pairs and reports hrm
status based on hrm manager

human data interface

heart beat view <«
hrm manager

retrieves and displays heart rate
data from the hrm manager

human data interface

log retriever <» work-
out store

log retriever fetches logs from the
workout store and barks at the mail-
man

data logging

music playerbacker <+
music store

music playerbacker plays songs from
the music store

data retrieval

o4

4.3 Attribute

Definitions

Concept

Attribute

Attribute Definition

HRM manager

log retriever

track logger

data logging

Data logging has to with the
storage or retrieval of logged data
or the logging of data.

music playerbacker

track queuer

general Ul

playback view

heart beat view

workout view

history view

human data interface

Human data interfaces deal with
the interaction between the user
and the data.

workout store

metadata store

music store

data storage

Data storage deals with the storage
of the data.

25

4.4 Tracability Matrix

9J073S o1Snut

9103S ejRpRIOW

9I01S INONIOM

MITA AT0YSTY

MOIIA INONIOM

MOIA YBd(}Ie97

MotA yoeqderd

I Tetoue3

XXX | X

Tonoanb oeIy

1o3DRqIDAR[d O1SNWI

XXX]| X
XXX]| X

X

I19830[¥oeI)

X1 X[X|X|X

IOADLINDI SO]

pgeuew NHH

UC-1

UcC-2 | X

UC-3

UC4 | X

UC-5

UC-6 | X

26

5 Plan of Work

Looking ahead at some of the due dates in the near future, our group will probably be
mixing documentation with development during the course of March. Up until now, we
have been primarily working on laying the foundations of our project. We have been
examining customer and system requirements and extracting specifications from them. We
have been envisioning preliminary design as well as analyzing user estimation. We have
derived our domain and mathematical models. In the upcoming weeks, we will be working
on some UML diagrams to make our lives a lot easier when we begin to code. We will
complete the sequence and class diagrams to help us understand exactly which attributes
and classes we need to account for. We will also design our system architecture to further
our understanding on how each of the components of our system interface and communicate
with each other. We will identify any data algorithms or structures needed to store the
information generated by the phone and the heart rate monitor. Finally, we will continue to
revise our designs and implementations from our previous iteration and construct tests to
ensure that our system works as planned. By doing this preliminary design and analysis in
conjunction with the upcoming deliverables, we will develop a solid understanding of what
pieces of software actually need to be written. We will have a snapshot of our system and
hopefully foresee some of the problems that might have occurred had we rushed straight
into coding. The included Gantt chart serves as a visual roadmap of our project plan.

27

5.1 Gantt Chart

Gantt Chart
24-Feb B-Mar 16-Mar 26-Mar 5-Apr 15-Apr 25-Apr 5-May 15-May
nteraction Diagrams -

Class Diagrams and Specifications -

System Architecture and Design -

Algorithmsand Data Structures -

First Demo -
Sections1-7; 9-10; 13-14 -

FullReport #3 (w/ Sections 8, 11,12)

Second Demo

Figure 5.1: Our Gantt Chart details our plan of work in the upcoming weeks leading up
the second report, and also lists our hopes for the second iteration.

5.2 Product Ownership

Our team will be divided into three smaller sub-teams of two individuals each, the pairings
listed below. Each sub-team will be responsible for developing a specific sub-product
during the bulk of their time. Upon completion of a significant portion of work, they will
provide a brief description of their activity before they push it to our Github repository.
In addition to documentation, they will also include the necessary UML diagrams, charts,
algorithms, and source code. Every week, or at least once before each deliverable, we will
meet together for 1-3 hours during a timeframe determined by a combination of GroupMe
and When2meet. During the meeting, we will have a specific agenda that primarily involves
the week’s progress and upcoming deliverable. Our discussion will probably be centered
along the following questions: 1) What did you work on this past week? 2) What do you
plan on working on next week? 3) Are there any revisions that need to be made to the
project? Every week, a team member will take the lead for the next deliverable to ensure
that everything is on time.

e Revan and Tae-Min will work on the general user interface of the mobile application.
They will design the layout and basic functionality of the Android app, and set up
the communication protocol between the heart rate monitor and the phone.

e Kenny and Samani will work on the music aspect of the mobile application. They
will study music playback features such as track selection and queuing to provide

o8

customers with a seamless music player experience. They will also be responsible for
the nuances of audio playback such as crossfading transitions and tempo adjustments.

e Jon and Nikhil will work on the data logging faculties that are necessary to provide
the user with feedback about his/her workout. They will work with a server that
captures heart rate and music data from the phone and possibly directly from the
heart rate monitor. They will determine how to process this information on the

server and create customizable graphical displays for user’s to view.

5.3 Breakdown of Responsibilities

Past Present Future
Project
Problem Statement, Enumerated Management,
Jonathan Functional Requirements, Plan of Work Interaction
Preliminary Design, References Diagrams, Class
Diagrams
System
Domain Architecture
enny User Effort Estimation Analysis and System
Design
Enumerated Nonfunctional Project
. System Management,
R Requirements, Use Cases (Casual _ i
Nikhil o . . Operation Interaction
Description, Traceability Matrix,)
D Contracts Diagrams, Class
Fully-Dressed Description) _
Diagrams
Class Diagrams,
i A t
On Screen ppearance Mathematical Sy.s em
Revan Requirements, Use Case Architecture
. Model
Diagrams and System
Design
System
Samani System Sequence Diagrams Domain Architecture
ama Y 4 & Analysis and System
Design
. Glossary of Terms, Stakeholders, System Algorithms and
Tae-min Operation
Actors, Goals Data Structures
Contracts

29

6 Interaction Diagrams

UC-1: logData

m Mobile Interface Controller Database Manager

logData() ._

Audio Subsystem

storelnitialState()

ICIT [while 1= stop()]

&N
Sefquence described In UC-6.

Heart rate and time stamp retrieved
and stored concurrrently.

getHeartRate() .',

|| getTimeStamp() II

¢ storeHeartRate()
_i. storeTimeStamp()

getMusicMitadata() bl .
i

¢ stopConfirm() '

- displayResult()

Figure 6.1: Interaction diagram for the logData() use case.

For our first use case, we wish to record information about the user’s heart rate as well as
some additional information. This includes a time stamp of when the heart rate data was
recorded, and could also include some of the song metadata such as artist, album, or genre.
For our main success scenario, the user interacts with the Ul which communicates with the
Database Manager. As long as user does not tell the Ul to stop recording, the Database
Manager will continually ask the Chest Strap for BPM Data and a time stamp for every
piece of data received. When the user tells the Ul to stop, we break out of our loop, and

60

the Database Manager returns to the Ul and displays updated information. Alternate
scenarios could occur when the Chest Strap is not functioning correctly and reports an
error in measurement, and when this occurs up to 10 times, the Database Manager stops
recording. Another alternate scenario would be if the system detects an abnormal heart
rate in the user, and alerts the user to stop his workout. This process is described more
thoroughly in the Algorithms section.

| User | Mobile Music Music
Interface: Selector Player
T etk _'L

Controller
I

|
| | Uses recommendatio
| | algorithm to choose next

1 rack atthe same rate as
nextSong()

v

hefore.

requestMext()

v

algorithmicSelection(

a

playMusic()

ackSongChange(

displayTitle(

displayCoverAn(

returnToHoms(

L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

| |
| |
| |
| |
| |
| |
|
I ! igh] Creately com

Figure 6.2: Interaction diagram for getNextSong|()

For our third use case, the user’s goal is to listen to another song. Similar to the “skip”
button on most standard music players, we included a double fast-forward arrow for users’
convenience. When pressed, the controller immediately contacts the database manager.
The database manager selects another track based on its song-selection algorithm for the
music player to play. (If the user is currently trying to change his/her heart rate, the
database manager will take that into count and select a song of a similar speed.) It also
returns the cover art and new song title for the mobile interface to display.

61

| User Mobile
T Interface:

Controller
T

|
I |
—— —

Music

pauseAlgorithm(

Selector
5=

—l

% pauseWorkout(N
Ld

ackAlgoPause()

v

Music
Player

pauseusic(

ackMusicPause(

F

ackWorkoutPause(

L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Figure 6.3: Interaction diagram for togglePlayback()

Our togglePlayback sequence is fairly simple. The user initiates the request by tapping
the play/pause button. Then the controller informs the database manager to store the
current state settings for future use, and the database manager proceeds to stop recording
data and allows the music player to stop the song. The mobile display also updates

accordingly.

62

& desigh] CIreately com

Mobile
Interface:
Controller

Data
Manager

pushMenu()

T
L

hdh 4

pushStatistics()

displayStatistics()

getTempoVsBPM(or
getGenreVsBPM(or
getArtistvsBPM(or

getHRVSTime(

Database Graph
I Container

returnStatistics(

Loop: retrig|
data until
data from the

Data
A b

T
|

T
|
assembleTempoVsBPMO : 1
or |
assembleGenreYsBPMO ! |
or | |
assembleArtistVsBPM(or | |

{RVSTime |
0 | retrieveHRQ or |

| retrieveSong() |—|—|
- ——;:
! return heart rate or |
: song 1
| ¢ 1
| |
calculateStatistics() | retrieveTime() |
' I
4 | return time stam

4 | P |
1
| '
| I
| |
| |

TempoVsBFMQ or

GenreVsBPM() or

ArtistVsBPM() or
HRYsTime(

current workout
has been
collected.

return graphs

-~

L
|
|
|
!
!
|
|
|
!
!
1

Figure 6.4: Interaction diagram for displayStatistics()

gramming & design] CI@ALE|Y com

In UC-5, displayStatistics, the user begins with two button presses to achieve their goal.
First, they bring up the menu button in the top right hand corner and then press “Statistics”
from the dropdown. The controller passes this request to the database manager, which
quickly retrieves and updates the data. Then, it calculates statistics, creates some graphs,
and then returns the output to the controller to display. (Note that the user must select
from the options available in order to view his workout history.)

63

| User Mobile Data Data Chest

T Interface: Manager Assembler Strap
cantlroller | |

|
I |
—L —

|
| |
| |
getHeartRate() | |
L4
transferRequest() N | |
r gatCurrentHR0 !

retrieveHR ()

|___

w

w

return heartrate

return heart rate

updateDisplay() 4

displayBPM{)

ign] Create

Figure 6.5: Interaction diagram for getHeartRate()

UC-6, getHeartRate is very similar to UC-5. This use case is also applicable for UC-
1, because the Heart Rate is important, needing to be determined continuously. The
controller takes the request from the user and passes it to the Data Manager to handle.
The database manager then takes the current BPM value from the Heart Rate Monitor
and updates the value for the mobile interface to display to the user.

6.1 Alternate Scenarios

Alternate scenarios could occur mainly during the getStatistics() use case. Here, the user
can select which particular graphs or data he may want to see. In the original diagram,
dedicated Data Assembler and Graph Container objects were created to handle the orga-
nization and display of all statistics. These objects greatly simplify the displayStatistics()
case because all the calculations are done outside of the database. However, this is not
the only way to solve the case, with the alternative solution being that the statistics are
generated directly by the database. Advantages of this are that there is no need to transfer
the data between two objects and worry about the communication scheme between them.
Also, the time needed to flesh out an entirely new class to handle the calculations would
be eliminated. Although the statistics-generation functionality can be contained entirely
within the database, we implemented it through the Data Assembler and Graph Container
combination. This decision was made to keep consistency with the High Cohesion and
Low Coupling Principles. If we hadn‘t made the separation, then the database would have
too many responsibilities to take care of. By creating dedicated Assembling and Graphing
objects, the statistics can be fully fleshed out and managed without having to worry about
other responsibilities.

64

6.2 Design Patterns

This project was developed through a mainly object-oriented approach. We were able to
boil our system down to a few, distinct actors, and an object-oriented approach seemed
appropriate to model our system. As evidenced by the interaction diagrams, there are five
main actors: the user, the mobile interface, the data manager, the music player, and the
heart rate monitor. Each of these actors has a specific set of actions that they can perform,
and these actions are not very tightly coupled to those of other actions in the system. For
example, the music player is designated to solely play the music on the device. It does not
have access to the music algorithm or the heart rate; its sole job is to respond to requests
about playing or pausing the music. Similarly, the data manager is solely responsible for
manipulating data and handling requests. These characteristics are prime examples of
the High Cohesion principles, because each actor in the system has its own specific tasks,
and the respective actors are designed to that their tasks are carried out very well. We
acknowledge that some of the actors are more important than the others, such as the data
manager and the mobile interface, but this is out of necessity. The user interacts directly
with the interface, and the interface talks directly to the database in most cases. The
other objects in the system are more supplementary in the sense that they carry out the
commands given to them by the database-mobile-interface pair. Although there is some
communication between the different objects, the communication has been designed such
that each method call is specific, efficient, and effective. This cuts back on unnecessary
communication between the objects and allows for the system to be optimized. The Low
Coupling Principle requires that objects should ‘not take on too many communication
responsibilities”, and our design fulfills the requirement because we have minimized the
number of interactions to just the necessary ones. All in all, our object-oriented design
encompasses aspects from both the High Cohesion and Low Coupling principles, and creates
and effective solution to the heart rate monitoring problem.

6.3 Assignment of Responsibilities

A prime example can be found in UC-4, togglePlayback. Each object submits a request
to the next object in line before reaching the Music Player, which is supposed to fulfill the
“pause” function. At this point, the interactions start coming back. It is clearly seen that
each object in this example transmits at most two messages, and no object performs more
than a single computation. A similar theme exists in UC-6, getHeartRate. Fach object
essentially sends one message and receives one message. Furthermore, each object does
not need to fulfill more than two active responsibilities. We believed that by distributing
the workload for each object through the High Cohesion Principle and the Low Coupling
Principle, we would be reaching the best balance. The Expert Doer Principle was not
followed as closely because the communication links of the objects we used are a bit longer.
In our design, the “one who knows” often passes on the knowledge to another object that

65

“needs to know” before the task is actually fulfilled. For instance, the Database Manager
often causes the Controller to update the display and show the user rather than directly
communicating with the user. Basically, our Controller and Database Manager are both
extremely important, so oftentimes, they both end up with most of the implementation
details.

66

67

7 Class Diagram and Interface
Specification

7.1 Class Diagram

7.1.1 Class Diagram for Data Management

Data Manager

- workoutData ; Data Assembler
- workoutGraphs © Graph Container

Graph Container

+ storelnitialState(): bool
+ storeCurrentTrack() : bool
+ storeCurrentHR() - bool

- graphs : graph array

+ getAnistvsBPM{ : graph

+ getGenreVsBPM{): graph
+ getfTempoVsBPM : graph
+ getHRVsTime() : graph

+ AtistvsBPM{ : graph

+ GenreYsBPM(: graph
+ TempoVsBPM() : graph
+ HRVsTime() : graph

+ getPlaylist() : string array
+ getCurrentHR () : double
- storeCurrentTime(): bool

Data Assembler Ordered Pair Sstring Pair
- playlist : string array _x double - doubleValue ; double
- heartRates : orderedPair array -y double - stringValue : string
+assembleHRYsTimel : ordered pair array + setx() : bool + setDouble(double) ; bhool

+assembleAristVsBPM{) : string pair array
+assemhbleGenreVSBPM() : string pair array
+assemhbleTempoVsBPM] : string pair array
+assemblePlaylist]) : string array

- retrieveHR() © double

- retrieveSaong() : string

- retrieveTime() : double

+ getx() : double + getDouble() : double
+ setr(: bool + setString(string) : bool
+ gety() - double + getString () : string

s design] Creately con

Figure 7.1: Class relationship for managing data
68

69

7.2 Data Types and Operation Signatures

Data Manager

Variables:

e workoutData: Data Assembler. This is a Data Assembler object which stores
the data points retrieved from storage. It also stores the songs and their
metadata.

e workoutGraphs : Graph Container. This is a Graph Container object which
stores the different graphs that were requested by the User Interface.

Functions:

e storelnitialState(double initialRate, double targetRate) : bool. This function
stores the initial state of the system, which is captured in the form of the user’s
initial heart rate and the target heart rate.

e storeCurrentTrack(string song) : bool. This function is used by the Music
Module to store the current track being played. This information is later used
for the playlist.

e storeCurrentHR(double heartRate) : bool. This function is used to store the
current heart rate into the data storage. It is used by the User Interface while
the user is working out with the system.

e getArtistVsBPM() : graph. This function will access the data stored in the
Data Assembler and create a histogram displaying the artist who’s songs were
played most often at different BPMs. The Data Manager will select the ap-
propriate graph from the Graph Container and return it to the UL

e getGenreVsBPM() : graph. This function will create a histogram of the most
frequent genres at different BPMs. The data will be accessed from the Data
Assembler and plotted by the Graph Container. The final graph will be se-
lected by the Data Manager from the Graph Container

e getTempoVsBPM() : graph. This function will return a graph of the music’s
tempo versus the user’s BPM.

e getHRvsTime() : graph. This function will return a graph of the user’s heart
rate over time.

e getPlaylist(): string array. This function will return an array of the music that
was played during the workout.

e storeCurrentTime() : bool. This js an auxiliary function which stores the
current system time in the data storage every time storeCurrentHR/() is called.
It will associate the time with the current heart rate.

Data Assembler

Variables:

e playlist: string array. This variable will store the names of the songs that were
played during the workout.

e heartRates: Ordered Pair array. This variable will store the retrieved data
points in ascending order.

Functions:

e assembleHRVsTime() : ordered pair array. This function assembles the data
for an HR vs Time graph.

e assembleArtist VsSBPM() : string pair array. This function assembles the data
for an Artist vs BPM table.

e assembleGenreVsBPM() : string pair array. This function assembles the data
for a Genre vs BPM table.

e assembleTempoVsBPM() : string pair array. This function assembles the data
for a Tempo vs BPM table.

e assemblePlaylist() : string array. This function assembles the music playlist.

e retrieveHR() : double. This function retrieves a heart rate from the data
storage.

e retrieveTime() : double. This function retrieves a time from the data storage.

e retrieveSong() : string. This function retrieves a song name from data storage.

71

Graph Container

Variables:

e graphs : graph array. This variable contains an array of the different graphs
that were requested by the User Interface.

Functions:

o ArtistVsBPM(Data Assembler workoutData) : graph. This function takes the
names of the artists and heart rates stored in the Data Assembler and graphs
them against each other.

e GenreVsBPM(Data Assembler workoutData) : graph. This function graphs
the genre of the music versus the user’s heart rate using the data from work-
outData.

e TempoVsBPM(Data Assembler workoutData) : graph. This function graphs
the tempo of the music versus the user’s heart rate using the workoutData
object.

e HRVsTime(Data Assembler workoutData) : graph. This function graphs the
user’s heart rate versus time using the workoutData object.

Ordered Pair

Variables:

e x : double. This variable stores the x-coordinate of the data point.

e vy : double. This variable stores the y-coordinate of the data point.

Functions:

e setX(double newX) : bool. This function sets the value of the variable x.
e getX() : double. This function returns the current value of the variable x.
e setY(double newY) : bool. This function sets the value of the variable y.

e getY() : double. This function returns the current value of the variable y.

72

String Pair

Variables:

e doubleValue : double. This stores the double value of the pair

e stringValue : string. This stores the string value of the pair.

Functions:

e setDouble(double newDouble) : bool. This sets the double value of the pair
e getDouble() : double. This returns the double value of the piar
e setString() : double. This sets the string value of the pair.

e getString() : string. This returns the string value of the pair

Heart Rate Adjuster GUI

Variables:

e targetHeartRate: int. This variable will store the target heart rate for the
user’s workout. This variable is private but can be accessed and changed from
other methods.

e restingHeartRate: int. This variable will store the user’s initial resting heart
rate before the workout begins. This variable is private but can be accessed
and changed from other methods.

e isWorkingOut: boolean. This variable will store data on whether the applica-
tion detects that the user is currently working out or not.

e isRecording: boolean. This variable will store data on whether the application
is recording the user’s heart rate or not.

e currBPM: int. This variable will store the BPM of the current track that is
playing.

e isReady: boolean. This variable will store data on whether the system is ready
to begin or not.

73

Functions:

e getRestingHeartRate(): int. This function will return the data stored in vari-
able targetHeartRate.

e getTargetHeartrate(): int. This function will return the data stored in variable
currentHeartRate.

e setTargetHeartRate(): void. This function will set the data stored in variable
targetHeartRate to equal the given parameter.

e setRestingHeartRate(): void. This function will set the data stored in variable
restingHeartRate to equal the given parameter.

e displayBPM(): int. This function will return the data stored in variable cur-
rBPM.

e setBPM(): void. This function will set the data stored in variable currBPM
to the passed parameter.

e displayReady(): boolean. This function will return the data stored in variable
isReady.

e startWorkout(): void. This function will initiate the workout and attempt to
adjust the currentHeartRate toward the targetHeartRate.

e stopWorkout(): void. This function will stop the workout from continuing its
functions.

e nextSong(): void. This function will skip the current track which is being
played, and use the algorithm to play the next appropriate song.

e displayTitle(): String. This function will display the title of the currently
playing track.

e checkRecording(): boolean. This function will return the data stored in the
variable isReady.

e checkPlaying(): boolean. This function will return the data stored in the
variable isREady.

e menu(): void. This function will display the menu for the application.

e getStatistics(): graph. This function will return graphs which contain statistics
from the data manager.

74

Heart Rate Adjuster Hardware

Variables:

e currentHeartRate: int. This variable will store data on the user’s current heart
rate, as measured by the hardware device.

Functions:

e recordCurrentHeartRate(): int. This function will retrieve the current heart
rate of the user as measured by the hardware device and update the variable
currentHeartRate.

7.3 Traceability Matrix

Class

Heart

Domain Concepts

Data
Man-
ager

Data
Assem-
bler

Graph
Con-
tainer

Ordered
Pair

Heart
Rate
Monitor

GUI

Rate
Monitor
Hard-
ware

HRM Manager

X

Log Retriever

Track Logger

Music Playerbacker

Track Queuer

General Ul

Playback View

Heart Beat View

Workout View

History View

s el

i s e I st I e

Workout Store

Metadata Store

Music Store

PP P o o o S

slistetstslslslsls

slelks

From our domain concepts, we derived four classes: data manager, data assembler, graph

container, and ordered pair. Our data manager is essentially involved with every domain.
Its purpose is to log and manage various types of data, and store the packaged data other
objects to retrieve. Essentially, the data manger acts as an intermediary in most steps,
but only providing a minimal interface for modules so that data cannot be tampered with
or seen, just used.

75

Next, our data assembler is charged with retrieving the appropriate data from the
database and packaging it in a convenient form for usage. For instance, we can take
songs and metadata from their storage locations and return playlists. We can also take our
data and create ordered pairs for our graph container. Then, our graph container contains
an array of the requested graphs, and it is involved with the domain concepts that require
various views. Using our data assembler allows us to have a nice container of data to graph.
Finally, our ordered pair class was derived from the storage concepts. We use it to store
data points, so that we will be able to access them.

For the user interface and hardware communication, two other classes were derived rather
clearly: the Graphical User Interface class, and the Hardware communication class. The
graphical user interface is involved with many domains, save the few domains relating to
data storage - that is taken care of by the data manager portion. The purpose of the
graphical user interface is for users to be able to easily interact with the application. This
includes being able to easily view different portions of the application such as information
on their current workout, their history, etc. The next class, Hardware, was derived as a
modularized way to communicate with the Heart Rate Monitor which is required to retrieve
information about the user’s heart rate. This class is simple - its only function is to receive
information from the HRM being used, and to update the user’s current heart rate in real
time.

76

8 System Architecture and System
Design

8.1 Architectural Styles

Our system utilizes a three-tier architecture system and consists of 3 layers. These include
a presentation tier, an application tier, and a data tier. Our presentation layer is primarily
represented by our mobile interface which is used to display our applicationaAZs relevant
information. It also allows the user to interact with our system by inputting commands
and accepting outputs. Meanwhile, our application layer consists of logical operations and
data access. For example, our song-selection algorithm would be included in this layer.
This application layer uses logical operations to convert raw user data into readable results.
Finally, our data tier consists of our database where our information is stored and retrieved.

These three tiers are separated from each other to allow for encapsulation and data
abstraction. We want each tier to hide its usage from implementation and to preserve
the integrity of our data. We also want to reduce the overall complexity of our system.
However, each tier must maintain a sufficient level of communication and be able to retrieve
needed data from each other. In a common scenario for our system, our application layer
may request information from the data tier. It then processes this information and returns
it to the presentation tier in response to the user request. A visual diagram was provided
in our earlier stage of planning in the section titled System Architecture Diagram.

The Data Management section in specific implements a two-tiered layered architecture.
The first tier consists of the Data Manager, which serves as an interface between the Data
Managment module and the other two modules. It provides functions which the other
modules can use to store and access data from the database. In the second tier of the
architecture, we have the Graph Container and the Data Assembler components. These
components handle the actual manipulation and graphing of the data. The main reason
for this architecture is to implement data hiding and abstraction; the Data Manager in
the first tier serves as an intermediary which commands the Graph Container and Data
Assembler to perform certain actions. Thus, the management of the data is done internally,
and all the other modules get to see is the interface provided by the Data Manager.

7

8.2 Identifying Subsystems

Our software is designed around three primary subsystems. The core subsystem is the
UI Subsystem, responsible for interfacing with the user and other subsystems. The Audio
BlackBox Subsystem handles audio playback, and the selection of track. The Data Logging
Subsystem saves heartrate and music playback information, and produces graphs of this

data.

Identifying Subsystems

Data

logData @

Ul Audio

skipTrack

setTargetHeartrate n

4 toggleFlayback

togglePlayback ’

Tdi splayStatistics

getHeartRate n

‘ provideMusicData

provideMusicData

Data

Ul Audio

Figure 8.1: Subsystems

78

8.3 Mapping Subsystems to Hardware

8.4 Persistent Data Storage

Since Android provides full support for SQLite databases, it is the type of storage that
we have chosen for the application. The wide variety of fully-developed features allows us
to focus more on the actual organization and management of the data in relation to the
other modules. All that is needed is a simple call to the data base to retrieve the raw
data, and the custom designed objects illustrated in the Class Diagram then do their own
processing on the data. SQLite allows us to store all the data specific to application on
the device itself, which is advantageous for a mobile application such as ours. The goal
is for the user to be able to record and view his workout data without having to use any
external devices other than his phone and the chest strap, and internal data storage via
the SQLite database allows our application this benefit. The database will be accessible
only to the Data Manager and the Data Assembler. In regards to the Data Manager, the
only interactions with the database will be to store the initial state of the system, store the
current music track, and store the current heart rate. It will not retrieve anything from
the database, because that is the purpose of the Data Assembler. The Data Assembler is
the other object that will interact with the database. It will issue requests for the various
data that the UI would like to graph, which include the heart rate, the current times, and
the songs. Thus, the Data Manager and Data Assembler are the only objects that have
direct access to the database.

8.5 Network Protocol

8.6 Global Control Flow

8.6.1 Execution Orderness

The execution order is a mix of procedure-driven and event-driven. From a broad view,
the use of the program follows the same steps: the user starts the music, the system runs,
then the user stops the music. However, the system provides a variety of interface options
to activate events during the execution: a user may pause or skip playback, and view their
statistics, at any time.

8.6.2 Time Dependency

The system is real-time, with a timer firing once a second. This timer triggers the fetching
of the heart rate from the monitor, and triggers the logging of this data.

79

8.6.3 Concurrency

The Android standard concurrency model is that the main thread handles UI, so lengthy
tasks must be performed on a background thread else the Ul becomes unresponsive. As
such, the network 10 of the music selection system must certainly be in a different thread.
Synchronization is unnecessary as there is no shared resource.

8.7 Hardware Requirements

The system requires:

e Touch screen display with minimum resolution of 640 x 480 pixels

Storage space for music library, minimum size of 100 Mb

Bluetooth for communication with a heart rate monitor

Network connection for communicating with music selection service

Audio playback capabilities

All of these requirements are met by most Android phones on the market.

80

9 Algorithms and Data Structures

9.1 Algorithms

As mentioned throughout this document, music has an undeniable effect on heart rate
and exercise. The goal of this project is to both induce and measure that effect. Our
system requires good algorithms to ensure functionality, the most important of which, are
discussed here.

9.1.1 Pattern Recognition

We wish to recognize a trend in user heart rate data to determine the state of exercise a
user is in for a given range. For simplicity, we break down bpm ranges into three categories
of intensity:

Light (x<50%)

e sitting

e walking

e golfing

e shopping

e fishing

Moderate (50< x< 70%)
e lifting weights

e riding the bike

e playing doubles tennis
e mowing the lawn
Vigorous (70< x<85%)

e running

81

skiing

playing basketball

hiking
e playing soccer
e shoveling snow

Now to determine which of these categories a user"s workout falls under, we need to
determine the user"s maximum heart rate by subtracting user age from 220. A light work-
out is defined as less than 50% of a user"s maximum heart rate. A workout of moderate
intensity falls in between 50-70% of a user"s maximum heart rate. Finally, a vigorous
workout occurs at 70-85% of a user"s maximum heart rate. These numbers allow us to
calculate the minimum and maximum bounds for each category given a specific user.

Thus, classification is extremely simple. We can just find the average bpm for a time
period and determine which of the following category ranges it falls under. If for some
reason, a user does not offer his age, then we will assume the maximum heart rate to be
180.

9.1.2 Danger Detection

It is important to determine when the user"s bpm is abnormal. If the user'"s heart rate
is abnormally high or abnormally low, we need to alert the user of their condition and
advise them to discontinue their workout and seek medical help if necessary. Our data
logging subsystem continually receives bpm data from the chest strap, and for every heart
rate received, it does a periodic check to ensure that the user"s workout doesn"t cause an
unhealthy stress on his heart.

For our comparison purposes, we use the following conditions. Any normal adult (older
than 18) should not have a resting heart rate below 60 bpm, and any normal child (aged
6-17) should not have a resting heart rate of lower than 70 bpm. This means that children
younger than 6 years old should not be using our heart rate adjuster. There can be some
exceptional cases where people in excellent physical conditions can sustain even lower heart
rates than the cutoff conditions we used, but it is safer to send a warning anyway.

As for our upper bound, we use the formula from our previous algorithm, maximum

heart rate = 220 —age. That is, if a user"s bpm is above their maximum heart rate, we
will send an alert message as a warning. The actual comparison implementation is trivial,

82

but it is important to recognize how we are determining our thresholds. Again, if the user
does not provide his age, we will assume a minimum heart rate of 60 bpm and a maximum
of 180 bpm.

9.2 Data Structures

The overarching data structure that our system uses is the database. More specifically,
we will use the SQLite relational database management system to store the information
pertinent to our system. Our database will use the following data types in conducting
logging sessions.

Name: string —The name or ID will be the unique identifier to differentiate between users.

Age: int —The age of a user will be necessary for the algorithmic purposes of determining
the maximum heart rate described in the previous section.

Session: int —The session number is incremented and stored every time the user conducts
a new workout. This is necessary if a user wishes to view information about a particular
workout.

TimeStamp: int —The time stamp is available in conjunction with BPM. Every time
our data logger retrieves BPM from the chest strap, it will also take note of the time the
information was received.

BPM : int —Last but not least, we have the most critical piece of data, the beats per
minute measure of a user"s heart rate which will probably be used in every graph.

As introduced earlier on, we will also need to introduce two classes, GraphContainer
and OrderedPair. GraphContainer is essentially an array of possible graphs that the user
requests. For instance, our most common graph will probably be the graph of Heart Rate
vs. Time. We could also introduce BPM vs. Tempo or BPM vs. Song. However the
data type that allows us to create this data structure in the first place is the Ordered Pair.
Java does not contain such a class, so we implement our own as described in our class
section. Our y variable will almost definitely include BPM as an int or double because we
are interested in seeing change in heart rate. Meanwhile, our x value will usually be the
time stamp, but could also include Tempo, Song Title, or other music metadata that will
be retrieved from the audio subsystem.

Obviously, GraphContainer and OrderedPair are utilized to ensure that when a user
requests a graph, it will be readily available. Our graphs will be stored under session

83

number, which is the intuitive choice for a user to request a graph. If a user can request a
graph during a session, it will be done using the current session number.

84

10 User Interface Design and
Implementation

Since we spent the time to make high quality mockups early on in this project, the Ul
was already well thought out and designed with standard Android UI elements such that
it does not have to change much in implementation.

One significant difference with regards to our initial design was the removal of a few fea-
tures. In the original mockup, there is a settings page with the options to change Music
library location, Login, and enable music generation. These features are nonessential, not
documented in our Use Cases, and therefore will be removed from the design until essen-
tial features are delivered. The Music library location shall be the default Android Music
library location, the app shall be single-user (reasonable, since phones are personal items),
and music generation is of secondary interest to music playback.

We also removed the About page, reasoning that the simple UI should be intuitive to the
user and it would not be worth cluttering the UI with help.

Since we now only have one element to display on the dropdown menu, we will instead
have a fixed button to access the Statistics screen in place of the menu. This halves the
user effort to access the Statistics screen, now only requiring one click, therefore friendlier
to the exercising user. Otherwise, User Interface interactions remain as planned.

85

11 Design of Tests

Increase/Decrease Target Heart Rate

Test covers : Graphical User Interface

Assumption: The application is showing the correct screen.
Integration Testing

Steps:

e Press the button to increase target heart rate

e — If the target heart rate has diisplayed an increase in its value, press the
button to decrease target heart rate

Expected: Target heart rate is successfully incremented /decremented when the
correct buttons are pressed

Fails if:
e Target heart rate does not change

e Target heart rate changes in an incorrect direction

86

Start /Pause Workout (Music Playback)

Test covers : Graphical User Interface

Assumption: The heart rate monitor is ready to begin collecting data and a
target heart rate has been selected.

Integration Testing
Steps:

e User presses button to initialize music playback.

e — If the music playback successfully begins, press button to pause music
playback.

Expected: When the user presses the button to begin the music playback, the
workout will begin. When the user presses the button pause the music playback,
the music playback will pause.

Fails if:
e The music playback does not begin when the button is pressed

e The music playback does not pause when the button is pressed

87

Skip Track

Test covers : Graphical User Interface

Assumption: Application has already begun music playback and a song is
currently playing.

Integration Testing
Steps:
e User presses the button to skip the current track
Expected: The application will play a new song
Fails if:

e Pressing the button does not play the next song

Display Graphs

Test covers : Graphical User Interface

Assumption: User has logged data into the application and is on the correct
screen

Integration Testing
Steps:
e User presses the button to display statistics
Expected: The application will display graphs for the

user
Fails if:

e The user presses the button and graphs do not display

88

Music Algorithm

Test covers : Data Manager

Assumption: The application has been running long enough for sufficient BPM
and Heart Rate data to be logged for graphing.

Integration Testing
Steps:
e User requests a graph on Music Tempo vs Heart Rate

Expected: A graph that shows Music Tempo vs Heart Rate should be displayed,
and there should be an approximately linear relationship.

Fails if:
e The BPM vs Heart Rate graph does not display.

e The BPM vs Heart Rate graph’s data does not match the expected data from
the selection algorithm.

Return from Graphs

Test covers : Graphical User Interface
Assumption: The application is currently displaying graphical data.
Integration Testing
Steps:
e User presses the "back" button on the android device

Expected: The application will return to the main screen from the graph display
screen.

Fails if:

e The user presses the "back" button but the screen does not change.

89

Initiate Data Logging

Tests: Data Manager

Assumption: The User Interface has received an input from the user which
indicates a desire to start the system.

Integration Testing
Steps:

e The User Interface calls the storelnitialState() function form the Data Manager

e — Data Manager retrieves the current heart rate from the chest strap and
time stamp from the device, and stores it in the database.

e <« If the storage occurs successfully, a confirmation is sent to the Data Manager

e — Once confirmation is received, Data Manager begins calling storeCurren-
tHR() repeatedly.

Expected: The Data Manager is constantly listening for heart rate values, time
stamp values, and music data and is logging that information to the database.

Fails is:

e The chest strap does not return a valid heart rate for storage

e The Android device does not return a valid system time.

Further testing must be done in order to validate the accuracy of displaying the user’s
current heart rate. This accuracy, however, is hard to validate because the application
simply displays the number that it receives directly from the heart rate monitor. If the
displayed number appears to be off, then the heart rate monitor may be faulty. Otherwise,
there is no way to check whether the displayed number is the actual number that the
monitor records.

90

12 Project Management and Plan of
Work

12.1 Merging Contributions

We wrote this document in I¥TEX, so uniform formatting and appearance is guaranteed by
the compiler. We used git version control to share and merge everyone’s work, such that
each of us was responsible for merging elegantly when conflicts arose. However, as half
the team were beginners with both of these technologies, issues arose in improper LaTeX
coding leading to compile errors. In these cases, more experienced members would step in
to fix the mistakes.

12.2 Project Coordination and Progress Report

Our project is in a unique situation where, due to teamwork disagreements, the Audio
Subsystem team has split from the rest of the group. With the professor’s approval, we
will be submitting two separate reports for grading. As such, certain parts of this report
pertaining to the Audio subsystem are not complete.

No Use Cases have yet been implemented, but for the first demo we will have a fully
functional user interface and a working data logger. Since application of the Chest Strap
is a complicated process requiring the user to moisten the electrodes and strip down, for
purposes of the demo the Chest Strap’s output will be faked by a UI element allowing
real-time modification of the reported value.

91

12.3 Plan of Work

Gantt Chart 2

15-Mar 25-Mar 4-Apr 14-Apr 24-Apr 4-May 14-May

Ul Implementation

Data Logging Implementation
Graphing Implementation
Report Revisions

First Demo Logistics

Sections 1-7;9-10; 13-14

Full Report #3 (w/ Sections 8, 11, 12)

Reflective Essay

Secand Dema

E-archive

Figure 12.1: Our new Gantt Chart describes our plan of action until Demo #1, and it also
highlights some of our projected milestones for the second iteration.

12.4 Breakdown of Responsibilities

The breakdown of responsibilities follows the initial division.

Revan and Tae-Min will develop the User Interface and Hardware Interface. The Hardware
Interface was a part of the User Interface in our original design, but has since been moved
to the Data Logging subsystem. As the more experienced Android developer, Revan will
still be responsible for the Hardware Interface.

Nikhil and Jonathan will develop the Data Logging Subsystem.

Samani and Kenny will develop the Audio Subsystem, albeit independently.

Integration of the Ul and Data subsystem will be handled by Revan and Nikhil.

Since one of the elements is a Ul, integration testing will be trivial and performed during
integration.

92

Individual Contributions Breakdown

Contributions of report 1:

] Tae- o
. Keéu% Jonathan CS;szlr{nar; Min Sl\lll1kh11 SReV}?n
ambridge Chang ikandi Kim enoy opher
CSR 17 17 17 17 17 17
System Requirements 23 43 33
Func. Requirements o0 o0
Non-Func. Req. 100
Appearance Req. 100
Stake. Actors and Goals 100
System Sequence Diagrams 100
Use Cases 36 43 20
UT Spec 33 33 33
Domain Analysis 20 20 20 20 20
Plan of Work 100
Total 70 223 137 223 223 223
Percentage 6.37% 20.3% | 12.43% | 20.3% 20.3% 20.3%

Contributions for report 2:

93

Jonathan Tae-Min Nikhil Revan
Chang Kim Shenoy Sopher

Interaction Diag 50 o0
ClassDiag+Interface Spec 50 o0
Sys Arch+Sys Design 45.5 20.5 33
Algo+Data Struct 50 o0
UT Design+Implem 100
Design of Tests 100
Project Manag+Plan Work 25 75
Total 170.5 150 170.5 208
Percentage 24.5% 21% 24.5% 30%

94

References

References 1-5 are the final project reports of the previous groups who worked on the
Personal Health Monitoring projects. They were consulted in conjunction with Professor
Marsic’s Software Engineering textbook as a guide for formatting guidelines, content ideas,
and inspiration.

[0] http://www.ece.rutgers.edu/ marsic/books/SE/book-SE_marsic.pdf

[1] http://www.ece.rutgers.edu/ marsic/books/SE/projects/HealthMonitor/2013-g7-report3.
[2] http://www.ece.rutgers.edu/ marsic/books/SE/projects/HealthMonitor/2013-g8-report3.
[3] http://www.ece.rutgers.edu/ marsic/books/SE/projects/HealthMonitor/2012-gl-report3.
[4] http://www.ece.rutgers.edu/ marsic/books/SE/projects/HealthMonitor/2012-g2-report3.
[5] http://www.ece.rutgers.edu/ marsic/books/SE/projects/HealthMonitor/2012-g3-report3.

Reference 6 is a review of the Motorola MOTOACTYV device. They provided us with the
specifications and usage details to help us develop our project proposal.

[7] http://reviews.cnet.com/specialized-electronics/motorola-MOTOACTV-gps-fitness/4505-

References 7-8 are Wikipedia articles that helped educate us on electroencephalography
and electroencephalogram define the terms for our glossary.

[7] http://en.wikipedia.org/wiki/Electroencephalography
[8] http://www.scholarpedia.org/article/Electroencephalogram

Reference 9 provided us with an opening statistic to highlight the industry demand for
fitness.

[9] http://www.statista.com/statistics/242190/us-fitness-industry-revenue-by-sector/
References 10-11 are pictures that we used for our cover.

[10] https://yt4.ggpht.com/-knZVRWVniHU/AAAAAAAAAAT/AAAAAAAAAAA/QNS_n28x_R0O/s900-c-k-no
[11] http://www2.hu-berlin.de/fpm/graphics/logo_heartbeat-note.png

References 12-13 are information about target heart rates.

[12] http://www.webmd.com/fitness-exercise/healthtool-target-heart-rate-calculator
[13] http://www.livestrong.com/article/105256-normal-heart-rate-sleeping/

References 14-15 explain how exercise and sleep affect heart rate.

95

[14] http://www.active.com/fitness/articles/how-does-exercise-affect-your-heart
[156] http://www.webmd.com/sleep-disorders/features/how-sleep-affects-your-heart

Reference 16 was consulted in describing the Architectural style of our system.
[16] http://en.wikipedia.org/wiki/Multitier_architecture
References 17-18 were consulted in considering algorithmic design.

[17] http://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeIlD=1&ContentID=
[18] http://www.livescience.com/42081-normal-heart-rate.html

96

	Customer Statement of Requirements/Project Proposal
	Problem
	More Specifically
	Background
	Devices and Specifications

	Solution
	Music
	Database
	System Architecture Diagram
	Product Usage
	Product Ownership (tentative)

	Glossary of Terms

	System Requirements
	Functional Requirements
	Non-Functional Requirements
	On-Screen Appearance Requirements
	Organization
	Stakeholders
	Actors and Goals

	Use Cases
	Casual Description of Use Cases
	Traceability Matrix
	Fully-Dressed Description of Use Cases
	Use Case Diagram
	System Sequence Diagrams
	System Operation Contracts
	Mathematical Model

	User Interface Specification
	Preliminary Design
	Use Case UC-1: Log Data
	Use Case UC-2: Set Target Heart Rate
	Use Case UC-3: Skip Track
	Use Case UC-4: Toggle Playback
	Use Case UC-5: Display Statistics
	Use Case UC-6: Get Heart Rate
	Use Case UC-7: Provide Music Data

	Effort Estimation

	Domain Model
	Concept Definitions
	Association Definitions
	Attribute Definitions
	Tracability Matrix

	Plan of Work
	Gantt Chart
	Product Ownership
	Breakdown of Responsibilities

	Interaction Diagrams
	Alternate Scenarios
	Design Patterns
	Assignment of Responsibilities

	Class Diagram and Interface Specification
	Class Diagram
	Class Diagram for Data Management

	Data Types and Operation Signatures
	Traceability Matrix

	System Architecture and System Design
	Architectural Styles
	Identifying Subsystems
	Mapping Subsystems to Hardware
	Persistent Data Storage
	Network Protocol
	Global Control Flow
	Execution Orderness
	Time Dependency
	Concurrency

	Hardware Requirements

	Algorithms and Data Structures
	Algorithms
	Pattern Recognition
	Danger Detection

	Data Structures

	User Interface Design and Implementation
	Design of Tests
	Project Management and Plan of Work
	Merging Contributions
	Project Coordination and Progress Report
	Plan of Work
	Breakdown of Responsibilities

