
Report #3 Iteration #2: Home Security Automation

Group 2

14:332:452:01:00614 Software Engineering

Harmit Badyal

Nikunj Jhaveri

Abhishek Kondila

Kaavya Krishna-Kumar

Kaushal Parikh

Miraj Patel

Nirav Patel

Andrew Russomagno

Sagar Shah

Ashwin Suresh

April 14, 2019

Website: ​https://sites.google.com/view/ruhome2019/home

GitHub: ​https://github.com/nikunjjhaveri123/HomeSecurityAutomationApp

https://sites.google.com/view/ruhome2019/home
https://github.com/nikunjjhaveri123/HomeSecurityAutomationApp

Individual Contributions Breakdown
All members contributed equally towards this report.

Table of Contents
Individual Contributions Breakdown 2

Table of Contents 3

Summary of Changes 6

Customer Statement of Requirements 7

Glossary of Terms 10

System Requirements 12
Enumerated Functional Requirements 12
Enumerated Nonfunctional Requirements 16
User Interface Requirements 17

Functional Requirements Specification 19
Stakeholders 19
Actors and Goals 19
Use Cases 20

Casual Description 20
Use Case Diagram 23
Traceability Matrix 23
Fully-Dressed Description 25
System Sequence Diagrams 30

Effort Estimation With Use Case Points 35

Domain Analysis 38
UC-1: Take Picture 38
Domain Analysis UC-2: Facial Recognition 40

Domain Analysis UC-3: Light Control 43
Domain Analysis UC-4: Gyroscope is Triggered 46
Domain Analysis UC-7: System Control Features 48
Domain Analysis UC-10: User Profile Creation and Settings 50
Traceability Matrix 53

Interaction Diagrams 54
UC-1 54
UC-2 55
UC-3 56
UC-4 57

UC-7 58
UC-10 59

Class Diagram and Interface Specification 60
Class Diagram 60
Data Types and Operation Signatures 61

LoginActivity 61
FingerPrintHandler 63
FirstTimeUserSetup 63
MainControlActivity 64
AccessCamera 66
GridViewAdapter 67
Pictures 68
UserSettings 69
DeleteUser 69
NewUserSetup 70
AdminSettings 71
RegisteredFaces 73
RegisterNewFace 74
Photo 75
User 76
Uploads 77
Socket_AsyncTask 78

Traceability Matrix 79
Design Patterns 80
Object Constraint Language (OCL) Contracts 81

System Architecture and System Design 81
Architectural Styles 81
Identifying Subsystems 83
Mapping Subsystems to Hardware 84
Persistent Data Storage 84
Network Protocol 85
Global Control Flow 86
Hardware Requirements 87

Algorithms and Data Structures 87
Algorithms 87
Data Structures 88

User Interface Design and Implementation 89

Design of Tests 90

History of Work, Current Status, and Future Work 92

References 93

Summary of Changes
When we first started pursuing this Home Security Automation project we initially focused on
the ability to give users access to control a multitude of devices such as cameras, lights, speakers,
and motion sensors, in addition to other hardware components that can be added on at a later
date. In conjunction with an Android App as well as enhanced facial recognition software, the
system would be automated as to allow for the security system to require minimal human
intervention and interaction. Once we started actually implementing our design and gave more
thought to our project objectives, we realized that our project should place more emphasis on the
impact of facial recognition and have that serve as the focal point of our Home Security
Automation project. We decided to have the facial recognition be able to trigger our alarms and
lights and also deactivate the security system as a whole, almost immediately upon taking a
picture of an approaching intruder.

We also re-evaluated our need to give the base unit the ability to control the functions of these
hardware components attached to the Arduino Base Unit. We realized that we are trying to
modernize home security, so if we are relying on facial recognition to be the primary trigger
point for the home security automation, there is no need to have control via the base unit as the
mobile application should suffice as a very practical backup should the facial recognition falter.
And after all, mobile technology is so ubiquitous and always in everyone’s possession, that
having all controls within the application should be more than plentiful for the average user, as
this would significantly reduce costs for the typical user as well. Many of our use cases had to be
adjusted because we decided to remove this hardware component to streamline our system as a
whole.

In our desire to connect our Arduino to the Firebase, and give the arducam the ability to upload
images directly to this database, we realized that Arduino itself in conjunction with the wifi
shield would not suffice as the system would not be able to hold multiple high quality images
and subsequently upload them to the Firebase. With this in mind, we decided to implement a
Raspberry Pi which would be directly connected to the Arduino and also give the camera the
ability to directly upload images to the Firebase, and also store images needed for the facial
recognition software to execute and to have facial recognition software work directly within the
Raspberry Pi, avoiding the need to have the software run on an external processing unit.
Including the Raspberry Pi in our design affected several of our use cases as this would affect
how the camera would communicate with the Firebase and then as a result affect how the user’s
mobile application got the image from the database.

Customer Statement of Requirements

As our world becomes more and more connected and open, the threat of intrusion and

theft constantly burdens our thoughts. No matter what we do to protect ourselves and our
property, there is always that fear in the back of our minds that we are not protected enough, and
have left ourselves vulnerable to unwanted incidents. If cost was not a factor, and if accessibility
was not an issue, everyone would without a doubt want to get their hands on an advanced home
security system that would allow them to be more cognizant of household threats and be able to
better manage devices in their own homes. There are a lot of products out there that that we
could use to make our homes more secure, but it would be so much more convenient to have
access to a singular application that could give us the ability to control multiple devices. Having
a system consisting of a network of motion-sensors, accelerometers, cameras, lights, and
speakers with the ability to work together, would without a doubt help scare off potential and
actual threats. In addition to the security benefits that inherently come with the utilization of our
product, we have taken it upon ourselves to go one step further and implement enhanced facial
recognition technology to be able to better determine if unrecognized visitors to the house are
low risk or are potential threats.

With our product, we aspire to make the consumer feel as safe as possible in their own
home and to have them feel confident in their ability to protect their premises. Being able to have
manual control of our homes from our wireless devices is a gamechanger, especially with how
nearly everything today can be controlled by our smartphones. With our enhanced facial
recognition feature, we want to make it easier for the user to be able to identify potential threats
and also to be able to reduce the number of false alarms that the system may trigger. For
example, we don’t want systems going off multiple times in a day because of a person, whether
it is the user itself or the user’s friends or family, forgetting to disarm the system before entering
the house. The facial recognition feature has the ability to filter people who come up to the front
door, determine if they are a recognized person, and if not, upload the intruder/unknown
individual’s picture to the database, allowing for the user to extract the image from anywhere
with internet connection, and if necessary, manually call emergency services. We believe that
with our enhanced facial recognition feature, we will able to reduce the number of home
burglaries that occur as a direct result of the presence of our arducam in our home security
system [3]. Even if our system doesn’t deter threats, we will be able to capture images of the
intruders, and with the cooperation of local police departments, we believe that you will feel
much safer knowing that it will be easier to trace down perpetrators. With one singular
application controlling various devices all on a singular network, and with the facial recognition

feature, we not only eliminate a majority of false alarms to the user, but also allow the user to
become more aware of who is setting off the alarms upon entering the house.

Our system is comprised of a base unit, a mobile application, and a motion

sensor/accelerometer that can trigger various devices, including lights, an alarm, and a camera.
The camera will be able to take a picture whenever the motion sensor detects movement. Ideally,
the camera would be installed within the door, facing the point of entry, in order to potentially
capture the intruder’s face [9]. The accelerometer would be attached to the door, and would be
triggered upon movement of the door. The lights and alarm would be installed within the door
and would be automatically triggered once the accelerometer identifies the opening of the door.
With the use of the mobile application, the user can wirelessly connect to the base unit when
connected to the same wifi network, and request for a picture from the camera [2]. This is
especially useful when there are suspicions of an intruder trying to break in and would help scare
off the threat and identify the criminal, all without even having to move from where you are. As
a customer, this feature minimizes risk of having to deal with a violent criminal face-to-face, and
gives them better information if they would like to call the authorities and report the incident.
This feature would also come in handy if the user just wanted to check if the door was not
properly closed. The lights and alarm work similarly, in that when the security system is
engaged, if movement is detected by the motion sensor, the lights will turn on and the alarm will
ring. We also plan to implement an “away mode” feature which would automatically turn all the
lights off and turn on the motion sensor detection functionality when activated. This is especially
useful for users who have left the house and do not recall if they turned off all the lights before
leaving, as this feature would inherently turn off all the lights in the house. Once the system is
engaged by the mobile application, the customer can be confident that their home is not only
more secure, but also saving a lot of energy with reduced electricity consumption. We also plan
on implementing a “home mode” feature, in which the motion sensor movement detection which
we have to trigger the alarms and cameras will be deactivated, and turn the lights on. Below is a
summarized list of features we plan to implement with our system:

● Devices
○ Camera

■ Picture
● Can be taken manually through app

○ Substitution for live feed
● Save a picture of unrecognized detected face

○ Low priority
● Disable/enable motion sensor for triggering of camera

○ Lights
■ On/off manually

■ On/off when motion sensor trips
○ Alarm

■ off manually
■ On when motion Sensor tripped
■ Disable/enable motion sensor

● Mobile App
○ Sign-In Functionality

■ Turn on/off light
■ Turn on/off alarm
■ Take picture
■ “Away Mode”
■ “Home Mode”
■ Profiles for each user
■ Call emergency services/primary contact

● Connection between base and phone
○ Arduino connected to Wifi Shield

■ Allow for HTTP request interaction between Arduino Base Unit and
mobile app on the same wifi network

A key factor that will differentiate our system from the rest of the competition is the

facial recognition functionality. The facial recognition functionality will allow for the home
security system to automatically disarm the system once a recognized visitor approaches the
door. This will help us to better identify visitors to the home, and also reduce false alarms by the
user, making our system much more efficient. The mobile application will also be able to call
emergency services or a saved emergency contact, if the user were ever to feel unsafe in their
home so they can quickly get the assistance they need. This feature in combination with our
facial recognition technology would put our system over the top.

Currently, the field for home security systems is disparate and small, with only a few

companies that have developed solutions to home security. We have noticed that all of these
solutions are proprietary and do not necessarily work with other systems. We also found that the
prices of these bundles sets are unreasonably high, likely determining value based on the promise
of security rather than the actual costs of research and development. Our product provides a
different angle to home security, by allowing for the integration of various components such as
cameras, motion sensors, lights, and alarms, and making it much more cost-effective. We also
provide more advanced features than most of these systems currently on the market with our
facial recognition feature, making our system one of the most innovative out there.

The market leader in home security is SimpliSafe’s Home Security System
(https://simplisafe.com/build-my-system), which runs close to $300, including only a base unit
that contains the alarm, a key fob, few entry sensors, and a motion sensor, with the ability to
purchase a camera for an additional $100. The functionality of this base unit is extremely
limited; only alarming the user if the system is tripped by motion while engaged. The user would
be able to disengage the system with the included key fob.

This system, the market leader right now, is neither modern nor convenient. Interaction

with the system is strictly button based. Our solution would allow for disarming of the system
via facial recognition, revolutionizing how we view modern day home security systems. The key
fob is not convenient at all, as homeowners will likely not be carrying around the fob when they
are in the house. With the development of mobile technology in the past decade, we believe it is
crucial to have control of our home security system via mobile application. With our solution,
the homeowner and any other member of the household can interact with the security system
through the mobile application. With the omnipresence of mobile technology, and with our
smartphones in today’s era always being within reach, we believe this functionality will truly
change the way consumers think about home security systems and make it much more
user-friendly.

We will be using mass-produced, common hardware to solve the security issue. We will

be able to keep costs down significantly, at approximately half the cost of SimpliSafe’s camera
bundle Home Security System. This makes our product appealing for all home owners and
tenants, because of our ability to provide a feature as inaccessible as home security at a
significantly reduced cost. Customers that previously decided to not invest in home security
because of the initial costs will now be able to invest in our system and implement it within their
homes, making their lives that much easier.

The absence of fear enables people to continue doing the great things that they love to do.

We hope to make safety and security an afterthought for all, but still easily accessible when
necessary. Our system accomplishes this mission, inspiring confidence and comfort to all.

Glossary of Terms

HCI:​ Human computer interaction (back-end or with user).

HUI:​ Handset user interface through the mobile app.

Arduino Base Unit (ABU):​ The Arduino Mega is a microcontroller electronic board. Its list of
specs contains 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog
inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power
jack, an ICSP header, and a reset button. It possesses all the needed support for the
microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC
adapter or battery to get started. The Mega is compatible with most shields designed for the
Arduino Duemilanove or Diecimila [1]. This device is used to control the other hardware pieces
of the security system such as the lights, alarm, camera, motion sensor and accelerometer. The
arduino system consists of a Raspberry Pi unit which serves to connect the hardware components
to the Firebase.

Security System:​ Refers to the entire unit as a whole which is composed of the Arduino, lights,
alarm, camera, motion sensor, accelerometer, and the mobile app. Mobile interface/ User
Interface(UI): A web-based interface converted for the user’s Android smartphones, where they
can view and execute operations through the application. These operations can include: device
manipulation, system settings, personal information management, and system maintenance [4].

Properties of security:​ Refers to features such as confidentiality, authenticity, and/or
integrity of transferring secure information.

Away Mode:​ Motion sensor is on, alarm is on. Lights are on/off depending on the customer’s
choice

Home Mode:​ Motion sensor is off, alarm is off. Lights are on/off depending on the customer’s
choice.

FireBase:​ Google’s mobile platform that helps you quickly develop high-quality apps and store
data.

Database:​ A collection of information that is organized so that it can easily be accessed,
managed, and updated to suit the needs of the data. Said data can be classified based on the types
of content: graphic, text, numeric, etc.

Facial Recognition:​ A method of identifying or verifying the identity of an individual
using their face.

Unrecognized Visitor:​ An individual who does not have his/her face registered on the
security system [10].

Recognized Visitor:​ An individual who has his/her face registered on the security system.

Accelerometer:​ A device used for measuring or maintaining orientation and angular velocity

Arducam:​ A camera shield available for Arduino devices that can be utilized to take pictures.

Motion Sensor:​ A device used to detect if there is motion in front of it.

User/Owner:​ An individual with access to the mobile app and is able to control the different
security features provided by the security system.

User Profile:​ A personalized profile to interact with the security system for each person that has
a registered profile on the security system.

User Privileges/Permission:​ An ability granted to a particular person who has access to the
security system (i.e. Turning on lights and/or setting security modes)

Mobile App:​ An application that is run on a mobile device to interact with the security system.

Fingerprint Authentication:​ Using fingerprint to log into a user profile for the security system.

Saved Faces:​ Faces that have been registered and stored in the database.

System Requirements

Enumerated Functional Requirements

Identif
ier:

Priority: Requirement: Acceptance Test Cases

REQ-1 5 The system should have an
“Away Mode” where alarm and
motion sensor are enabled.

● Test with user activating
“Away-Mode” and alarm system
and motion sensor subsequently
being armed by default (pass).

REQ-2 5 The system should have a
“Home-Mode” where alarm is
disabled.

● Test with user activating
“Home-Mode” and alarm system
subsequently being disarmed by
default (pass).

REQ-3 4 The user should be allowed to
take a picture manually using the
mobile app (phone must be in the
same network as the ABU).

● Test with user taking a photo
through the mobile app,
capturing a real-time event, and
subsequently being saved to the
mobile application’s gallery
(pass).

REQ-4 4 The Arduino base unit is
connected to a motion sensor that
is placed right before the doorstep
to sense a motion. When motion
is detected, it will signal the
Arduino base unit to take a
picture.

● Test with triggering motion
sensor with human close to
Arduino base unit to have picture
taken (pass).

● Test with triggering motion
sensor with human far away
(approximately 15 yards) from
Arduino base unit to have picture
taken (fail).

REQ-5 3 The facial recognition software
will match a picture, taken with
the Arduino Base Unit which
occurs when the motion sensor is
triggered, with pictures in the
saved faces database on Firebase.
If not matched, the picture will be
uploaded to the Firebase and the
mobile application’s photo
gallery, with the appropriate time
stamp.

● Test with triggering motion
sensor by human who is in
database and is a recognized
tenant (pass)

● Test with triggering motion
sensor by human who is not in
database and thus is not a
recognized tenant (fail), resulting
in their photo being uploaded to
the Firebase and homeowner’s
mobile application (pass)

REQ-6 1 The system shall allow the user to
turn the lights on and off

● Test with user turning on the
lights, and the Arduino base unit

manually using the mobile app
when on the same network as the
ABU.

powering the lights (pass)
● Test with user turning off the

lights, and the Arduino base unit
turning off the lights (pass)

REQ-7 3 The system should be able to turn
on the lights after the
accelerometer is triggered on the
door, which identifies that the
door has been opened.

● Test with triggering
accelerometer at certain angle to
react and notify Arduino Base
Unit to turn on lights (pass)

REQ-8 5 When the ​system​ is in “away
mode,” and the accelerometer is
triggered, the alarm shall sound
until the user manually turns off
the alarm using the mobile app.

● Test with triggering
accelerometer while Arduino
Base Unit is in “away mode” to
see if alarm turns on (pass)

REQ-9 5 When in away mode, the alarm
will not sound when a registered
face opens the door that triggers
the accelerometer.

● Test with recognized person
while Arduino Base Unit is in
“away mode”, and trigger
accelerometer to see if alarm
stays silent (pass)

REQ-1
0

5 When in away mode, the alarm
will sound if an unregistered face
opens the door that triggers the
accelerometer.

● Test with unrecognized person
while Arduino Base Unit is in
“away mode”, and trigger
accelerometer to see if alarm
sounds (pass)

REQ-1
1

2 The user should be able to turn
off the alarm system through the
mobile app.

● Test with alarm sounding off
(begin with in ringing) when
homeowner turns off alarm
system in mobile app (pass).

REQ-1
2

2 The mobile app should be able to
successfully authenticate users
through fingerprint authentication

● Test with user logging in with
correct username/password
combination (pass).

or passcode verification. If the
wrong fingerprint or passcode is
inputted, the app should not let
the user in.

● Test with user logging in with
incorrect username/password
combination (fail).

● Test with user logging in with
recognized fingerprint iD (pass).

● Test with user logging in with
unrecognized fingerprint iD
(fail).

REQ-1
3

4 The mobile app shall give user
control of the camera, lights, and
alarm.

● Test with user turning lights, and
alarm, off or on, as well as
taking a photo (pass)

REQ-1
4

4 Independent of “Home mode” or
“Away mode”, the mobile app
shall allow the user to separately
enable or disable the camera and
alarm functionality.

● Test with user disabling
automatic photographing by
camera and alarm system (pass)

REQ-1
5

3 The mobile app should allow for
multiple devices to control the
system. (Addition/deletion of
users).

● Test with users, other than the
system admin, controlling and
adjusting settings that they have
permission for (pass)

● Test if users, other than the
system admin, can control and
adjust settings that they don’t
have permission for (fail)

REQ-1
6

2 The system should call 911 or an
emergency contact in case of
emergencies.

● Test with user pressing button
and being connected on a call
with an emergency contact
(pass)

REQ-1
7

3 The mobile app should allow for
user to logout of their user
account

● Test with user logging of their
account on mobile application
(pass)

Enumerated Nonfunctional Requirements

REQ 20, 21 22, 23, 27, 28 were removed. Numbers were kept the same for
convenience.

Identi
fier:

Priority: Requirement: Acceptance Test Cases

REQ-
18

2 When the user turns on/off light
by pressing a button in the mobile
app, the mobile app will send a
signal to the server on the arduino
base to toggle the lights.

● Test with user clicking the on
button for lights on mobile
application, and system
responding by turning on light
system (pass)

● Test with user clicking the off
button for lights on mobile
application, and system
responding by turning off light
system (pass)

REQ-
19

3 When the user enables or disables
the motion sensor and
accelerometer by selecting either
“Home Mode” or “Away Mode”
in the mobile app, the app should
send a signal to the arduino base
to enable or disable the motion
sensor.

● Test with user turning on “Away
Mode” through mobile app, then
seeing if system responds
accordingly by simulating
movement in front of Arduino
and seeing if it acts as indicated
(pass)

● Test with user turning on “Home
Mode” through mobile app, then
seeing if system responds
accordingly by simulating
movement in front of Arduino
and seeing if it acts as indicated
(pass)

REQ-
24

4 When connected to wifi, the user
should be able to access all of the
camera and alarm features.

● Test with user keeping mobile
app open without WiFi
connectivity and seeing if
pictures are prevented from being
taken and alarm system are
prevented from being disabled
(fail)

REQ-
25

4 System should maintain and be
aware of its state (i.e. “away
mode” or “home mode”) even
when the app is restarted on any
device.

● Test with user recording current
set settings in mobile app, then
restarting device, and seeing if
settings are maintained (pass)

REQ-
26

4 Product should be up to date and
usable on the current Android OS
platform.

● Test with user with Android
device on latest Operating
System version if they are able to
download mobile app (pass)

REQ-
29

4 When a person walks up to the
door and the motion sensor is
triggered, the arduino base should
take a snapshot of the person and
save it to Firebase. The server
should compare the picture to
those stored in the saved faces
album.

● Test with recognized user
triggering motion sensor and
system identifying correctly
(pass).

● Test with unrecognized user
triggering motion sensor and
system identifying as unknown
user (pass).

User Interface Requirements

Identi
fier:

Priority: Requirement: Acceptance Test Cases

REQ- 5 The User Interface should be ● Test with user being able to

30 created such that every page of
the UI is intuitive to the user. For
example if they want to view
photos taken by the arducam,
there is a “photos button” on the
UI. Or if they want to put the
system in “home mode” or
“away mode”, there should be
buttons for those.

navigate to every mobile app
window, as well as making the
customizable settings
convenient for the user (pass).

REQ-
31

4 The User Interface should
include a login for users to sign
into the application, which can be
both typed credentials or
biometrics (i.e. fingerprint) [11].

● Test with user opening mobile
application and being met with a
login page, which offers
fingerprint authentication or
empty username/password fields
(pass)

REQ-
32

3 The User Interface should
provide a button to turn lights on
and off.

● Test with user being able to
locate and switch light settings
(pass)

REQ-
33

3 The User Interface should
provide a button to arm and
disarm the alarm.

● Test with user being able to
locate and switch alarm settings
(pass)

REQ-
34

3 The User Interface should
provide a button to take a picture
using the home system’s camera.

● Test with user being able to
locate and take photo through
camera window (pass)

REQ-
35

4 The User Interface should
provide a page/button which
allows the user to view an image
the arducam has taken.

● Test with user being able to
locate and access photo library,
which stores all photos the
Arduino-Base Unit has taken
(pass)

REQ-
36

2 The User Interface should
provide a button to alert the

● Test with user being able to
connect to a call with

authorities in case of an
emergency.

emergency services (9-1-1)
(pass).

REQ-
37

3 The User Interface should
provide a button to quickly
toggle modes for the home
system (“home mode”/”away
mode”).

● Test with user being able to
locate and switch between
“home mode” and “away mode”
and settings being adjusted
accordingly (pass).

REQ-
38

4 The User Interface should
provide a settings menu to check
the permissions of users
connected to the same device and
to add other users.

● Test with system admin user
being able to create/delete users
and change their permissions
(pass).

REQ-
39

4 The User Interface should be
navigated through easily with
proper placements of back and
other buttons.

● Test with user being able to
locate “RETURN/BACK”
buttons and traverse to all other
windows in mobile app from
any starting window (pass)

REQ-
40

4 The User Interface should
provide a settings menu to allow
the addition of a new face to the
recognized list of faces.

● Test with system admin user
being able to add new faces to
list of recognized faces (pass).

Functional Requirements Specification

Stakeholders
Homeowners, Tenants, Landlords, Store Owners, Building/Property Managers, Home Insurance
Companies, Home Security Companies

Actors and Goals
Owner​ - Set up arduino base unit, create and delete users, set privileges for each user

User​ - they can actively put the arduino base unit in away mode and home mode. They can take a
picture from the mobile app of the front door if they suspect someone is there. They can control
all of the system features from the app (as long as they have the privilege for it.9
Recognized Visitor​ - This is a person whose face has been registered in the system and will be
recognized by the facial recognition.
Unrecognized Visitor​ - This is a person whose face has not been recognized in the system but
they are not attempting to break into the home. This person is only passing by the door (ex.
Mailman).
Intruder​ - This is an individual whose face is not recognized by the system and they are
attempting to break into the home or open the door.
Arduino Base Unit​ - This consists of a Raspberry Pi and Arduino unit connected together.This
actor controls, sends data, and receives data from all other hardware components of the entire
system.
Mobile App - ​This is the application that runs on a smartphone. Users of the system will utilize
this app to interact with the entire system.
Arducam​ - Camera connected directly to Arduino base unit, allowing us to take images of those
outside of the door
Motion Sensor​ - senses when there is movement outside of the door, and activates the camera to
take a picture
Database​ - stores recognized faces, and user login credentials
Lights​ - lights within the home, activated when user enters
Alarm​ - alarm within home, activated when unrecognized visitor enters the home
Accelerometer​ - sensor that measures the amount of movement: this measurement will be used to
determine when the door is opened

Use Cases

Casual Description

Use Case Name Actor Actor’s Goal System Requirements

UC-1: Take Picture Owner, User,
Arducam, Arduino
Base Unit, Mobile
App

To see what/who is
outside the door

REQ-3, REQ-4,
REQ-13, REQ-35,
REQ-36

UC-2: Facial Arduino Base To determine if the REQ-4, REQ-5,

Recognition Unit, Arducam,
Mobile App

visitor is an unknown
person

REQ-8, REQ-30

UC-3: Light Control User, Owner
Lights, Arduino
Base Unit, Mobile
App

To turn lights on/off REQ-6, REQ-7,
REQ-13, REQ-19,
REQ-31, REQ-33

UC-4: Accelerometer
Triggered/Not
Triggered

Arduino Base
Unit, User,
Owner, Alarm,
Intruder,
Arducam,
Accelerometer,
Mobile App

To turn on lights and
turn on alarm once
accelerometer sensor is
triggered, if visitor is
unknown/known

REQ-8, REQ-9,
REQ-10, REQ-11

UC-5: Alarm Control User, Owner,
Alarm, Mobile
App

To turn alarm on/off REQ-11, REQ-13,
REQ-35

UC-6: Login Control User, Owner,
Mobile App

To restrict access to
user only (login
authentication through
fingerprint or email and
password)

REQ-12, REQ-29,
REQ-32

UC-7:Automatic
Feature Control

User, Owner,
Arduino Base
Unit, Mobile App

To enable/disable
automatic alarm,
automatic camera,
automatic lights
functionality, as well as
the sensors

REQ-1, REQ-2,
REQ-14, REQ-15,
REQ-38

UC-8: Call
Emergency Services

User, Owner,
Mobile App

To be able to call 911 if
deemed necessary
according to potential
threats

REQ-17, REQ-37

UC-9: System
Connectivity

Owner, User,
Mobile App,
Arduino Base Unit

To connect user’s
devices to the arduino
base unit and connect
the arduino base unit to
the server via internet
connection.

REQ-16, REQ-24

UC-10: User Profile User, Owner, To allow the owner to REQ-29, REQ-39

Creation and Settings Mobile App create new user profiles
and give different users
different privileges
such as which function
the new user can
control.

UC-11: User Logout User, Owner,
Mobile App

To logout of current
user account on mobile
application

REQ-18

UC-12: Registering a
New Face

Owner, User,
Recognized
Visitor,
Unrecognized
Visitor, Mobile
App

To add another face to
the list of recognized
faces.

REQ-41

Use Case Diagram

Traceability Matrix

Req PW UC-
1

UC-
2

UC-
3

UC-
4

UC-
5

UC-
6

UC-
7

UC-
8

UC-
9

UC-
10

UC-
11

UC-
12

1 5 X

2 5 X

3 4 X

4 4 X X

5 3 X

6 1 X

7 3 X

8 5 X X

9 5 X

10 5 X

11 2 X X

12 2 X

13 4 X X X

14 4 X

15 1 X

16 3 X

17 2 X

18 3 X

19 2 X

24 5 X

25 4

26 4

29 4 X X

30 4 X

31 5 X

32 4 X

33 3 X

34 3 X

35 3 X

36 4 X

37 2 X

38 3 X

39 4 X

40 4

41 4 X

Max
PW

 4 5 5 5 4 4 5 2 5 5 3 4

Total
PW

 19 16 18 17 9 10 18 4 8 8 3 4

Fully-Dressed Description

Use Case UC-1: Take Picture

Related Req.: REQ-3, REQ-4, REQ-13, REQ-36, REQ-37

Init. Actors: User or Owner

Actor’s Goal: To see what/who is outside the door

Participating
Actors:

Arduino Base Unit (ABU), Mobile App, Arducam

Preconditions: None worth mentioning

Postconditions: The picture is sent from the arduino base unit to user/owner’s mobile
application

Flow of Events for Main Success Scenario:

 →

→
←

←
→

1. The owner logs in to the mobile app and navigates to the
camera section of the app.

2. The owner taps the take picture button
3. A signal is sent to the ABU for the Arducam to take a

picture
4. The ABU signals the Arducam and a picture is taken
5. The ABU sends the picture back to the owners mobile app

Use Case UC-2: Facial Recognition

Related Req.: REQ-4, REQ-5, REQ-8, REQ-31

Init. Actors: Unrecognized Visitor

Actor’s Goal: To determine if the visitor is an unknown person

Participating
Actors:

Mobile app, unrecognized visitor, Arducam, recognized visitor,
unrecognized visitor, Motion sensor, alarm

Preconditions: ● The arduino base unit (ABU) is in away mode, meaning the alarm is
enabled

Postconditions: The owner is notified there is a recognized/unrecognized person outside the
door

Flow of Events for Main Success Scenario:

 →

←
←
→

→

1. The motion sensor detects motion in the front door and
sends a signal to the ABU

2. The ABU sends a signal to the arducam to take a picture
3. The arducam takes a picture and sends it to the ABU
4. The ABU runs a facial recognition algorithm and checks

whether there is a face in the picture that matches any
saved faces in the Firebase

5. If it is an unrecognized visitor, the ABU sends a signal to
the user on their mobile application and rings alarm in the
home

Flow of Events for Alternate Success Scenario

←

 1 - 4. Same as steps 1 to 4 of main success scenario
 5. The person at the door is a recognized visitor and the
system does not do anything after.

Use Case UC-3: Light Control

Related Req.: REQ-6, REQ-7, REQ-13, REQ-19, REQ-32, REQ-34

Init. Actors: User

Actor’s Goal: To turn lights on/off manually through the mobile app

Participating
Actors:

Arduino Base Unit (ABU), Light, Mobile App

Preconditions: ● The arduino base unit (ABU) is in away mode
● The owner is in their bedroom as it is night time

Postconditions: The ABU was successfully able to turn on the lights

Flow of Events for Main Success Scenario:

 →

→

→

→

→
←

←
→

←

1. The owner is in their bedroom when they hear something at
the door

2. They log in to the mobile app however they see that no
pictures have been updated to the app lately (No one is at
the door)

3. Yet still to for safety measures, the owner decides to turn on
the lights to scare anyone away

4. The user navigates through the mobile app by clicking the
light tab

5. They toggle the lights on with the light button
6. A signal is sent through the google firebase to the ABU to

turn the lights on.
7. The lights are turned on.
8. After a few minutes, as the owner gets assured they are safe,

they toggle the lights to turn off from the mobile app.
9. Another is signal sent to the ABU and the lights are turned

off

Use Case UC-4: Accelerometer is triggered

Related Req.: REQ-8, REQ-10, REQ 11

Init. Actors: Arduino Base Unit (ABU), User/Owner

Actor’s Goal: The ABU should make the alarm ring when needed and the user should be
able to turn off the alarm if need be.

Participating
Actors:

Arducam, Alarm, Motion Sensor, Recognized Visitor, Mobile App

Preconditions: ● The arduino base unit (ABU) is in away mode, meaning the alarm is

enabled
● No one is in the house
● A recognized visitor is dropping something off for the owner and has

the house key

Postconditions: The user was successfully able to turn off the alarm

Flow of Events for Main Success Scenario:

 →

→

→

←
←

→
→

1. A recognized visitor comes to drop something off at the
owner’s home

2. They walk to the doorstep and the motion sensor detects the
person, the arducam takes a picture and the ABU doesn’t
recognize the visitor as a known person

3. The person opens the door with the key and the
accelerometer is triggered

4. A signal is sent to the alarm and it rings
5. Meanwhile, the owner gets a notification from the ABU that

there is someone at the door.
6. The owner sees that it is their friend through the mobile app.
7. The owner quickly navigates to the alarm tab of the mobile

app and toggles the alarm system to off.

Use Case UC-7: System Control Features

Related Req.: REQ-1, REQ-2, REQ-14, REQ-15, REQ-21, REQ-39

Init. Actors: User

Actor’s Goal: To put the system in home mode

Participating
Actors:

Mobile App, Arduino Base Unit (ABU), Motion Sensor, Alarm

Preconditions: ● The arduino base unit (ABU) is in home mode, meaning the alarm is
disabled

● The user just entered the house from work but forgot to put the system
in home mode from the ABU

● An unregistered person (friend) is to follow in the house

Postconditions: The recognized visitor is able to walk in and the alarm does not ring

Flow of Events for Main Success Scenario:

 →
→

→

←

←
→

1. The user gets into the house and closes the door
2. He/She realizes that his friend, a recognized visitor, is still

to follow and he hasn’t put the system into the home mode
yet

3. He/She logs in to the mobile app and toggles the “home
mode” switch

4. A signal is sent to the ABU from thru the firebase for the
system to turn into home mode

5. The ABU disables the motion sensor and the alarm
6. The friend enters the house and the alarm does not go off

Use Case UC-10: User Profile Creation and Settings

Related Req.: REQ-23, REQ-29, REQ-39

Init. Actors: Owner

Actor’s Goal: To add and give another family member control of system features.

Participating
Actors:

Mobile app, User, Owner, Database

Preconditions: ● There are already a few devices connected to the system

Postconditions: A new family member was added to the group members who can control
the system features on the mobile app

Flow of Events for Main Success Scenario:

 →
→

→
→

→

←

1. The owner wants to add a family member to the system
2. He/She logs in to the mobile app and navigates to the

settings page
3. He/She taps on the create new user option
4. He/She enters a new username and password for the family

member
5. The user gives all the permissions to the family member:

can change lights, can change alarm, can take photo,, can
change mode

6. The mobile app sends this data to the Firebase and the new
user is now officially added to the system.

System Sequence Diagrams

Effort Estimation With Use Case Points

 Category weight

UC-1 Average 10

UC-2 Complex 15

UC-3 Average 10

UC-4 Complex 15

UC-5 Average 10

UC-6 Simple 5

UC-7 Average 10

UC-8 Simple 5

UC-9 Average 10

UC-10 Simple 5

UC-11 Simple 5

UC-12 Complex 15

 Total 115

UUCW - 115

 Description weight score Factor

T1 Distributed system 2.0 3 6

T2 Response time/​performance​ objectives 1.0 4 4

T3 End-user efficiency 1.0 4 4

T4 Internal processing complexity 1.0 2 2

T5 Code reusability 1.0 2 2

T6 Easy to install 0.5 4 2

T7 Easy to use 0.5 5 2.5

T8 Portability to other platforms 2.0 3 6

T9 System maintenance 1.0 2 2

T10 Concurrent/parallel processing 1.0 2 2

T11 Security features 1.0 5 5

T12 Access for third parties 1.0 2 2

T13 End user training 1.0 3 3

 Total 42.5

TCF - 1.025

Factor Description Weight Impact Factor

E1 Familiarity with ​development​ process used 1.5 2 3

E2 Application experience 0.5 3 1.5

E3 Object-oriented experience of team 1.0 4 4

E4 Lead analyst capability 0.5 2 1

E5 Motivation of the team 1.0 5 5

E6 Stability of requirements 2.0 5 2.5

E7 Part-time staff -1.0 0 0

E8 Difficult programming language -1.0 3 -3

 Total 14

ECF - .98

UCP = (UUCW + UAW) x TCF x ECF = (115+12)(1.025)(.98) = ​127.6

Domain Analysis

UC-1: Take Picture

Concept Definitions

Concept Name Type Responsibility Description

Controller D Rs. 1: Coordinate actions of concepts associated with this
use case and delegate the work to other concepts.

User Activated
Picture

D Rs. 2: Take in the requests of the user and relay the signal
to the ArduCam to take a snapshot

Login Confirmation D Rs. 3: Takes login from user to allow them to access
features in the app.

Signal to Server K Rs. 4: Take in request sent from mobile app interface to
send a signal to the arduino base

Motion Activated
Picture

D Rs. 5: Takes picture when motion sensor is activated

Archiver K Rs. 6: Stores picture data that user requested, and stores the
username and passwords of the system users (Firebase)

Association Definitions

Association
Name

Concept Pair Association Description

Conveys
request

Mobile App
Security
Interface →
Database
Connection

Mobile app security Interface checks password against
what is stored in database

Conveys
request

Mobile App
Picture Interface

When user requests to take a picture, the app will send a
signal to server to execute request

→ Server
Connection

Conveys
request

Server
Connection →
Controller

Request from server is sent to the Arduino base
controller

Execute Controller →
Arducam

Controller instructs arducam to take picture

Execute
Request

Arducam →
Server

Arducam sends signal to server when picture has been
taken

Save Data Server
connection ← →
database
connection

Server signals save picture to database
Database notifies server to update mobile app picture
interface

Send
Information

Database
connection →
Mobile app
picture interface

Mobile picture interface is updated with picture from
database

Attribute Definitions

Concept Attributes Attribute Description

Login
Confirmation

User identity Used to determine the user’s credentials to authorize them
to enter application

Signal to
Server

Application
Display

Execute request from the user and display necessary
information on app (front-end display)

Archiver Picture storage Needs to store and update database for system update as a
new picture is taken (read and write to Firebase)

Controller
Request

Call for Action Tells arduino basse to execute function (ie. take picture)

Call for
Storage

Calls to Database to store information

Call for Search Searches existing stored information to verify user request
(ie. authororize if user is allowed to enter application)

System Operations Contract

Operation Take Picture

Preconditions ● One user is already registered into the
system and has access to the mobile app.

● The Arduino system has already been set
up.

● The Arducam is on and working

Postconditions ● A new photo is added to the database
● A new photo is displayed on user's mobile

device

Domain Model Diagram

Domain Analysis UC-2: Facial Recognition
Concept Definitions

Concept Name T
y
p
e

Responsibility Description

Controller
(Arduino Base)

D Rs. 1 : Coordinate actions of concepts associated with this use case
and delegate the work to other concepts.

Connect to
Database

K Rs. 2 : Reads and writes pictures that have been taken to Firebase

Motion Activated
Picture

D Rs. 3 : Takes a picture when triggered by the user or motion sensor

Trigger Motion
Sensor

D Rs. 4 : Determines when there is someone at the door so the
arducam can take a picture

Mobile App
Notifier

D Rs. 5 : Sends a notification to a user’s device to notify them about
suspicious persons

Signal to Server K Rs. 6 : Take in requests when the ArduCam takes a picture of a
suspicious person and sending a signal to the arduino base

User Display
Picture

K Rs. 7: Provides a way for the user to view a picture taken by the
ArduCam

Association Definitions

Association
Name

Concept Pair Association Description

Conveys
Request

Motion Sensor →
Controller

Motion Sensor sends a signal to the controller when there
is movement at the door.

Execute Controller →
ArduCam

Controller instructs ArduCam to take a picture

Save Data Server Connection
←→ Database
Connection

Server signals to save the picture to the database and
perform facial recognition. The Database notifies the
server to update the mobile app picture interface.

Send
Information

Server Connection
→ Controller

Send and receive signals from the server to the controller
and vice versa.

Send
Information

Database
Connection →
Mobile App

Mobile app picture interface is updated with picture from
database

Picture Interface

Send
Information

Server Connection
→ Mobile App
Notifier

The server updates the mobile app notifier to send a new
notification to notify the user about the picture taken by
the ArduCam.

Attribute Definitions

Concept Attributes Attribute Description

Connect to
Database

Access
Database

Provides a means to access the database when required by the
mobile app.

Picture
Transfer

Storing and retrieving pictures taken that are saved on Firebase

Controller
Request

Call for Action Tells arduino basse to execute function (ie. take picture)

Call for
Storage

Calls to Database to store information

Call for server
and database
connect

Tells the controller to connect to the database and send/receive
signals to the server

System Operation Contract:

Operation Facial Recognition

Preconditions ● One user is already registered into the
system and has access to the mobile app.

● The Arduino system has already been set
up.

● The Arduino system is armed and the
ArduCam is active.

Postconditions ● A new photo is added to the database
● A notification is sent to the user on their

mobile app.

Domain Model Diagram

Domain Analysis UC-3: Light Control

Concept Definitions

Concept Name Typ
e

Responsibility Description

Controller
(Arduino Base)

D Rs1. Coordinate actions of concepts associated with this use
case and delegate the work to other concepts.

DetectAngle K Rs2. Uses Gyroscope to calculate and store the angle
measurement

LightsStatus K Rs3. Holds the current state of the lights in the house. 1 for
being on, 0 for being off.

LightsChecker D Rs3. Checks that the LightsStatus is 0 when the controller is in
away mode. Checks that the LightsStatus is equal to the
UserLightsPref when controller is in home mode. Triggers the
LightsStatus to 1 when receiving a signal from the Controller

TargetAngle K Rs4. Stores value that, when exceeded, says that the door is
opened

UserLightsPref K Rs6. Stores the value of lights that the user’s inputs.

LightsUI D Rs7. Shows the user a switch to turn the lights on or off and
sends the current status of the switch to the UserLightsPref

Association Definitions

Association
Name

Concept Pair Association Description

Sends Angle
Data

Controller +
Gyroscope

Gyroscope passes angle data to the Controller.

Open Door Controller +
TargetAngle

Controller checks if Gyroscope angle is greater or equal
to the TargetAngle

Control Lights LightsChecker +
LightsStatus

LightsChecker gets the LightsStatus and changes it
according only

Trigger Lights Controller +
LightsChecker

Once the gyroscope angle exceeds the TargetAngle, the
controller sends a signal to the LightsChecker to trigger
the lights to 1.

User Preference UserLightsPref
+ LightsUI

LightsUI sends the current status of what the user chose
as their lights preference to the UserLightsPref. This
value is stored.

Set Lights to
User Pref

Controller +
UserLightsPref

Controller sends a signal to the LightsChecker about the
UserLightsPref so that it changes to what the user wants.

Attribute Definitions

Concept Attributes Attribute Description

Target
Angle

TargetAngle Angle at which the door is considered open

DoorAngle Used to hold the current angle of the door.

Lights
Status

Status If Lights are on, the value is 1. If the Lights are off the value is
0.

Lights
Checker

Status Copied over from the Lights Status concept, holds the current
value of the lights

Trigger Listens to Controller for a signal to change the value of the
status is 1.

UserLightsPre
f

Stores the value that the user puts for the lights.

System Operations Contract

Operation Light Control

Preconditions ● The Controller is set up.
● The Gyroscope is listening and

transmitting data on the angle of the door.
● Lights work and respond to the

Controller’s commands.

Postconditions ● Light is enabled/disabled manually by
user via app.

● Arduino Base Unit enables light upon
gyroscope being triggered.

Domain Model Diagram

Domain Analysis UC-4: Gyroscope is Triggered

Concept Definitions

Concept Name Typ
e

Responsibility Description

Controller D Rs1. Send signal to alarm and light to turn on

DetectAngle D Rs2. Read angle change when door is opened

TriggerAlarm D Rs3. Sound an alarm if unrecognized face is detected and door
is gyroscope passes TargetAngle

TriggerLights D Rs4. Turn on light if unrecognized face is detected and door is
gyroscope passes TargetAngle

TargetAngle K Rs5. Stored value that, when exceeded, says that the door is
opened

FaceRecognized K Rs6. Store collection of recognized faces, and send signal to
camera if unrecognized face is detected

MotionSensor D Rs7. Send signal to turn on camera if motionSensor detects
motion

MotionPicture D Rs8. Take a picture if motion sensor is triggered.

MobileAppNotify D Rs9. User notified when unrecognized face opens door

DeactivateAlarm D Rs10. Send signal to controller to disable alarm

Association Definitions

Association
Name

Concept Pair Association Description

Sends Angle
Data

Controller +
Gyroscope

Gyroscope passes angle data to the Controller.

Alarm Activate Controller +
Alarm

Controller send signal to activate the Alarm noise.

Lights Activate Controller +
Lights

Controller send signal to activate the Lights on.

Gyroscope
Trigger

Gyroscope +
TargetAngle

TargetAngle checks if the Gyroscopes angle matches
and activates the alarm system accordingly.

Face
Recognized

Controller +
FaceRecognized

Controller sends the picture the FaceRecognized for
picture authentication.

User Notified Controller +
MobileApp

Controller sends a signal to the MobileApp to notify the
user of alarm trigger.

Alarm Disabled Controller +
DeactivateAlarm

Controller sends DeactivateAlarmsignal to the alarm
system to turn it off.

Alarm Disable
Requested

MobileApp +
DeactivateAlarm

MobileApp requests that DeactivateAlarm is activated.

Picture Capture
Requested

MotionSensor +
Camera

MotionSensor signals the Camera to take a picture.

Picture
Authorization
Requested

Controller +
Camera

Camera sends picture data to Controller to be processed.

Attribute Definitions

Concept Attributes Attribute Description

Controller
Request

User’s Identity Used to determine if the user is a resident, which in turn allows
a user to enter the house.

Door Angle Used to detect the possibility of unauthorized opening of the
door.

MobileApp
Notify

Mobile App
Alert

Mobile app of the owner that gets notified of any alarm
triggers.

Postproces
sor

Recognized
Picture

Recognized face for entry or denial of access.

Trigger Angle Marks when the door has been triggered as open.

Disable Ready to be disabled after alarm is activated.

System Operations Contract

Operation Gyroscope

Preconditions: ● The arduino base unit (ABU) is in away mode, meaning the alarm
is enabled

● No one is in the house
● A friend of the owner is dropping something off for the owner and

has the house key

Postconditions: The user was successfully able to turn off the alarm

Domain Model Diagram

Domain Analysis UC-7: System Control Features

Concept Definitions

Concept Name Type Responsibility Description

Controller D Rs1. Send signal to alarm and light to turn off

TriggerAlarm D Rs2. Turn off alarm once Controller sends the off signal

FaceRecognized K Rs4. Store collection of recognized faces, and send signal to
camera if unrecognized face is detected

DetectAngle D Rs5. Send signal to turn on camera if motion sensor detects
motion

MotionPicture D Rs6. Take a picture if unrecognized signal is detected

MobileAppHome D Rs7. User clicks the”home mode” switch

DeactivateAlarm D Rs8. Send signal to controller to disable alarm

CheckcCredential K Rs9. Checks users login credentials.

Association Definitions

Association
Name

Concept Pair Association Description

Alarm
Deactivate

Controller +
Alarm

Controller send signal to disable the Alarm.

Face
Recognized

Controller +
FaceRecognize
d

Controller sends the picture the FaceRecognized for
picture authentication.

User Notified Controller +
MobileApp

Controller sends a signal to the MobileApp to notify the
user of alarm trigger.

Alarm Disabled Controller +
AlarmDisable

Controller sends AlarmDisable signal to the alarm system
to turn it off.

Alarm Disable
Requested

MobileApp +
AlarmDisable

MobileApp requests that AlarmDisable is activated.

Picture Capture
Requested

MotionSensor
+ Camera

MotionSensor signals the Camera to take a picture.

Picture
Authorization
Requested

Controller +
Camera

Camera sends picture data to Controller to be processed.

Attribute Definitions

Concept Attributes Attribute Description

Search
Request

User’s Identity Used to determine if the user is a resident, which in turn allows
a user to enter the house.

Notifier Mobile App
Alert

Mobile app of the owner that gets notified confirming the alarm
disable.

Postproces Disable Ready to be disabled by the owner at any time.

sor

System Operations Contract

Operation Control Features

Preconditions: ● The arduino base unit (ABU) is in home mode, meaning the
alarm is disabled

● The user just entered the house from work but forgot to put the
system in home mode from the ABU

● An unregistered person (friend) is to follow in the house

Postconditions: The friend is able to walk in and the alarm does not ring

Domain Model Diagram

Domain Analysis UC-10: User Profile Creation and Settings

Concept Definitions

Concept Name Type Responsibility

Database K Rs 1. Stores the list of current users and each user’s
respective privileges.

UserAdder D Rs 2. Connect to and update database to add new Users and
give new users privileges on the mobile app

Database Connection D Rs 3. Send request to database to retrieve all user
information and current privileges.

Mobile App User List
Interface

D Rs 4. Provide an interface on the mobile app for a user to
view all the other users with access to the system and view
each user’s privileges

FormProvider D Rs 5. Provide a form that asks for the new user’s
information such as name, picture etc.

Association Definitions

Association
Name

Concept Pair Association Description

Conveys
requests

Database Connection
+ Mobile App User
List Interface

Database Connection obtains the data from the
database and pass the data to Mobile App User List
Interface to displays the results to the user.

Provides new
user form

FormProvider +
Mobile App User
List Interface

The Mobile App User List Interface provides the
user the option to add a new user and the
FormProvider gives the page to specify the user’s
credentials

Relays user
data

FormProvider +
User Adder

The inputted data from the user on the FormProvider
is passed to the UserAdder which connects to the
database and updates it with the new user.

Provides
Information

Database Connection
+ Database

Database Connection access stored information the
database and obtains the data to pass on to other
concepts.

Sends user info User Adder +
Database Connection

UserAdder sends the new user’s information to the
Database Connection

Attribute Definitions

Concept Attributes Attribute Description

UserAdder User’s
Information

Used to identify the person using the system

User’s
privileges

Used to determine what features the user can access in the
system.

Form Textboxes The user needs a place to write their credentials (name,

Provider username, password, etc)

Toggle buttons Used to set the desired privileges for the new user (can control
lights, alarm, camera, etc)

Database User List Contains the list of Users and each user’s information

Privileges Contains data on each users different privileges

Mobile
App User
List
Interface

User List Shows all the recognized users of the system

System Operation Contract:

Operation User Profile and Creation Settings

Preconditions ● One user is already registered into the
system and has access to the mobile app.

● The Arduino system has already been set
up.

Postconditions ● A new user was added to the system
● The database is updated and the new

user’s face is added to the list of
recognized faces

Domain Model:

Traceability Matrix

 Use Cases

UC-1 UC-2 UC-3 UC-4 UC-7 UC-10

 PW 19 16 18 17 21 11

Domain
Concepts

Controller x x x x x

Mobile App Pic Interface x x x x

Mobile App security
Interface

x x x

Mobile App Notifier x

Server connection x x x x x

Arducam x x x x

Motion Sensor x

Database Connection x x x x x x

Database x x

UserAdder x

Form Provider x

Mobile App User List
Interface

 x

Gyroscope x x

Alarm x x

Lights x x x

Target Angle x

LightsChecker x

LightStatus x

User Lights Pref x

Lights UI x

RemoteAlarmDisable x

Interaction Diagrams

UC-1

This System Diagram will use the Single Responsibility Principle (SIP) as Firebase (our database
connection) should only change if the user requests to take a picture. Further, we took into account the
Liskov Substitution Principle (LSP) as the user interface for taking a picture (Arducam) should be able to
execute taking and saving the picture. Lastly, we considered the expert doer principle as each part of our
controller should know who it is communicating with in order to properly execute the request.

UC-2

For this system, we considered This System Diagram will use the Single Responsibility Principle

(SIP) as Firebase (our database connection) should only change if the motion sensor is triggered to take a
picture. We also considered the Low Coupling Principle as the controller should not take on too many
responsibilities communicating as the sequence of actions between the Arducam, Motion Sensor and
Database are highly dependant on the signals from the controller. Further, we took into account the
Liskov Substitution Principle (LSP) as the user interface for taking a picture (Arducam) should be able to
execute taking and saving the picture. Lastly, we considered the Expert Doer principle as each part of our
system should know who it is communicating with in order to properly execute the desired tasks [17].

UC-3

For this diagram, we considered the Low Coupling Principle as the controller should not take on
too many responsibilities communicating since each of the following parts of the system is dependant on
the controllers communication. Further we considered the LSP and Open Closed Principle (OCP) as each
element of the system (ie. lights) be allowed to be enabled and disabled but the methods to activate should
not be altered in the process. Lastly, we took into account the Interface Segregation Principle as the
change of lights should only be dependant on the user request and controler interaction and nothing more.

UC-4

For this diagram we took into account the Low Coupling Principle as the controller should not

take on too many responsibilities communicating as the sequence of actions between the lights, alarm, and
Motion Sensor are highly dependant on the signals from the controller. Further, we took into account the
Interface Segregation Principle as the change of any part of the signal should only be dependant on the the
activation from the gyroscope. Lastly, we took into account the Liskov Substitution Principle (LSP) as the
user interface for disarming the alarm should be able to execute request properly.

UC-7

For this diagram, we considered the Low Coupling Principle as the controller should not take on
too many responsibilities communicating since each of the following parts of the system is dependant on
the controllers communication. Further we considered the LSP and Open Closed Principle (OCP) as each
element of the system (ie. motion sensor and alarm) should be allowed to be enabled and disabled but the
methods to activate should not be altered in the process.

UC-10

For this system we took into account we considered the Low Coupling Principle as the controller

should not take on too many responsibilities communicating since its main goal is to add the new user in
the database. Moreover, we took into account the Interface Segregation Principle as the change to create
the new user should not change any other element of the controller, base, or user app interface.

Class Diagram and Interface Specification

Class Diagram

Our class diagram has 3 main components, the mobile app, the hardware which
incorporates the arduino, lights, camera, alarm and gyroscope, and Firebase. All three main
components are connected to each other and are in constant communication. The main set of
classes is contained in the mobile app. The mobile app is built using Android Studio and the code
is written in Java. Our design requires that each new page in the app have its own class to control
any events or actions on the page. Every double arrow line in the diagram describes a possible
transition from one page to another. Each white background box represents a controller class in
the UML diagram. These are the classes that each control one page in the app. The blue shaded
boxes represent the UI (User Interface) code in the app. The UI code is done in xml. Each UI
related file is shown connected to its controller class. The red shaded boxes represents objects we
will create. The Photo object will allow us to easily utilize and display the photos taken from the
Firebase and the User object will enable us to store the specific user’s privileges to allow us to
check whether or not a specific user action is allowed. These objects will also help us pass data
back and forth between the classes without having to pull data from the firebase everytime. Our
app will connect to the hardware through socket programming techniques. For each action we
want to perform that involves the hardware the mobile app opens a socket to connect to the
hardware, sends a signal, and then immediately closes the socket. This allows the hardware
connection to remain open and listen for signals from different devices.

Data Types and Operation Signatures

LoginActivity

Login Activity

-LoginButton
-SetupButton
-EnableFPButton
-editTextEmail
-editTextPassword
-TextViewSignin
-firebaseAuth
-fingerprintManager
-keyguardManager
-keyGenerator
-KEY_NAME
-cipher
-cryptoObject
+helper
-userlist
-newPass

-isPressed

-registerUser()
-LoginUser()
-onClick()
#onCreate()
#generateKey()
+cipherInit()
-FingerPrintScan()
-LoginUser()
+attemptLogin()

LoginButton:Button
SetupButton:Button
editTextEmail:EditText
editTextPassword:EditText
TextViewSignin: TextView
firebaseAuth: FirebaseAuth
fingerprintManager: FingerprintManager
keyguardManager: KeyguardManager
keyGenerator: keyGenerator
KEY_NAME: String
Cipher: Cipher
cryptoObject: CryptoObject
Helper: FingerprintHandler
Userlist: List<User>
newPass: String
registerUser():void
LoginUser():void
onClick():void
onCreate():void
generateKey():void
cipherInit():boolean
FingerPrintScan():void
LoginUser():void
attemptLogin():void

In this page the User can login to the system with their email and password or for a first time
user they can use the setup button to redirect them to a new page and begin the initial setup of the
Home Security Automation system. The LoginButton and SetupButton are two buttons that
allow the user to navigate to the main control activity page or the setup of pages to set up the
initial system. The editTextEmail and editTextPassword objects are two input textboxes for the
user to enter their login credentials into. The TextViewSignin is a text output message on the

screen. The firebaseAuth is part of the Firebase api that will allow the user to authenticate
themselves to log in to the app. The registerUser() method will redirect the user to a new screen
to register themselves and set up the system. The LoginUser() will check the user’s credentials
and log them into the app. The onClick() method will take in the user’s button input and redirect
to the proper method.

FingerPrintHandler

FingerPrintHandler

- cancellationSignal
- appContext
- success

+startAuth
+onAuthenticationError
+onAuthenticationHelp
+onAuthenticationFailed
+onAuthenticationSucceeded
+isSuccess

cancellationSignal: CancellationSignal
appContext: Context
success: boolean

startAuth: void
onAuthenticationError: void
onAuthenticationHelp: void
onAuthenticationFailed: void
onAuthenticationSucceeded: void
isSuccess: boolean

This class is used to manage the Fingerprint authentication for the user. All of the
onAuthentication methods are used to process the the fingerprint when scanned by the
phone and output the appropriate response.

FirstTimeUserSetup

FirstTimeUserSetup

-createAccount
-back
-emailText
-passwordText
-firebaseAuth
-database

+ registerUser()
+ onClick()
onCreate()

createButton: Button
back: Button
emailText: EditText
passwordText: EditText
firebaseAuth: FirebaseAuth
Database: DatabaseReference

registerUser(): void
onClick(): void
onCreate(): void

This page lets a user create the first account on their system by entering a email and a
password which the firebase system will confirm and add to its authentication database.
After successfully registering a user, the user will be redirected to a page to connect and
setup up the arduino system. The createAccount is a button what will take the user’s
credentials and create a new user account on the firebase and for the app. The back button
is used to take the user back to the previous screen. The emailText and passwordText
objects are two input textboxes for the user to enter their login credentials into. The
firebaseAuth is part of the Firebase api that will allow the user to authenticate themselves
and register for the app. The registerUser() method is create the user’s account on the
firebase and then redirect them to the next page to setup the arduino system. The
onClick() method will take in the user’s button input and redirect to the proper method.
The onCreate() method creates the buttons and onClicklisteners for page.

MainControlActivity

MainControlActivity

- lightON
- alarmON
- lightOFF
- alarmOFF
- alarmDIS
- alarmARM
- camera
- call
- homeButton
- awayButton
- offButton
- settings
+ databaseReference
+ userP
+ action
- LogoutButton

- onClick()
- onCreate()
- ExecuteAction()
- dialContactPhone()

lightON:Button
alarmON: Button
lightOFF: Button
alarmOFF: Button
alarmDIS: Button
alarmARM: Button
Camera: Button
Call: Button
homeButton: Button
awayButton: Button
offButton: Button
Settings: Button
databaseReference: DatabaseReference
userP: User
Action: String
LogoutButton: Button

onClick(): void
onCreate(): void
ExecuteAction(): void
dialContactPhone(): void

This is the main class where the user can control most of the hardware features for the system.
Each button corresponds to the specific action the user can do with the system. The user in this
screen can control the lights, alarm, call for help, and navigate to other pages such as camera
features and settings. The onClick() method takes care of dealing with which button has been
pressed and performing the appropriate action.

AccessCamera

AccessCamera

-takePic
-call
-back
-mainPic
-gallery
+databaseReference
+dataFace
+faceRecStatus
+faceListener
+photoURI
+FaceStatus

+onClick()
+TakePicture()
+LoadPic()
+UpdateFaceRecStatus()
- onCreate()
+IntruderDetected()

takePic: Button
call: Button
back: ImageButton
mainPic: ImageView
gallery: ImageButton
databaseReference: DatabaseReference
dataFace: DatabaseReference
faceRecStatus: TextView
faceListener: ValueEventListener
FaceStatus: String
photoURI: String

onClick(): void
TakePicture(): void
LoadPic(): void
UpdateFaceRecStatus(): void
onCreate(): void
IntruderDetected():void

This class gives the user access to the camera and allows the user to take a picture of the
current camera view and display the image on the app. The user can also navigate to a
page to see older photos taken by the Arducam. The takePic attribute represents a button
used to take a picture on the arduino came. The call is used by the user to quickly call
9-1-1. The back is a button object that will return the user to the previous screen. The
firebaseDB and StorageRef attributes are a part of the firebase api to access the firebase
storage and database systems. The image attribute is an ImageView object that is used to
display the photo. The onClick() method will take in the user’s button input and redirect
to the proper method. The TakePicture() method responds to the TakePicture button and
will take a picture on the arducam. The LoadPic() method captures the picture that was
taken and loads it in the program.The UpdateFaceRec() method updates the database with
the picture.The onCreate() method creates the buttons and onClicklisteners for page.
After pressing the take picture button the screen will display the image and run the facial
recognition algorithm and if the person in unrecognized the alarm will sound.

GridViewAdapter

GridViewAdpater

+ mContext
+photoList

+ getCount
+ getItem
+ getItemId
+ getView

 mContext: Context
photoList: List<Photo>

getCount: int

getItem: Object
getItemId: long
getView: View

This is an adapter class and is used to take an arraylist of Photo objects and load each picture into
the View object so that they can be all displayed together in a gridview component. This allows
the user to easily view multiple pictures at once and scroll through a selection of pictures.
Classes such as the “Pictures” class and the “RegiseteredFaces” class utilize this
GridViewAdapter object to display photos on the app screen.

Pictures

Pictures

- photos
- back
- databaseReference
- gridview
+adapter
- mProgressCircle

- onClick()
onCreate()

photos: List<Photo>
back: Button
databaseReference: DatabaseReference
gridview: GridView
adapter: GridViewAdapter

onClick(): void
onCreate(): void

This class displays the to user the set of pictures the arducam has taken over time. The pictures
are loaded from the firebase storage reference and are stored into a List<photo> object. A user
can select a specific image and have the image displayed in a full screen mode. This will take the
user to another screen in the app. The photos object contains a list of photos that are obtained
from the firebase. The back object is a button for the user to return to the previous screen. The

databaseReference object is used to obtain a firebase database instance to retrieve data and
storage. The gridview object is used to display the images in a grid. The onClick() method will
read in user input such as a button or photo press and perform the appropriate action.

UserSettings

UserSettings

- table
- userList
- databaseReference
- back

+ onClick()
onCreate()
+ initTable()
+ xOrSpace()

table: TableLayout
back:Button
databaseReference: DatabaseReference
userList: List<User>

onClick(): void
onCreate(): void
initTable(): void
xOrSpace(): TextView

This page is used for the general user settings. The tableView object is used to display
information about the user’s privileges. The back button is used together to read user input and
return to the previous screen.a The onClick() method is used to listen for user input and respond
with the appropriate method.

DeleteUser

DeleteUser

- back
- delete
+ list
+ users
- firebaseAuth
- databaseReference
- admin
- index

- onClick()
+ deleteUser()
onCreate()

back: Button
delete: Button
list: ListView
users: List<User>
firebaseAuth: FirebaseAuthentication
databaseReference: DatabaseReference
Admin: User
Index: int

onClick(): void
deleteUser(): void
onCreate(): void

This class is used by the admin to delete a user form the the home security system. The list object
is ListView that displays the list of users to the admin. The admin can select a user from the list
and press the delete button to remove a user. The onClick() method will take in any button input
on the screen and perform the appropriate action. The deleteUser() method is called form the on
click and proceeds to remove the user from the authentication system and the firebase database.

NewUserSetup

NewUserSetup

- emailText
- passwordText
- createAccount

- back
- firebaseAuth
- database
- lightsToggle
- alarmToggle
- callToggle
- modeToggle
- pictureToggle

- onClick()
+ registerUser()
onCreate()

emailText: TextField
passwordText: TextField
createAccount: Button
back: Button
firebaseAuth:FirebaseAuthentication
database: FirebaseDatabase
lightsToggle: ToggleButton
alarmToggle: ToggleButton
callToggle: ToggleButton
modeToggle: ToggleButton
pictureToggle: ToggleButton

onClick(): void
registerUser(): void
onCreate(): void

This class serves as the backend for the first time user setup page. The emailText is the .xml
component where the user enters their desired username. The passwordText is the .xml
component where the user enters their desired password. The username and password variables
will thus store the values passed, and this will be sent to the Firebase database. The firebaseDB
and StorageRef attributes are a part of the firebase api to access the firebase storage and database
systems. The onClick() method will take in the user’s button input and redirect to the proper
method. The Back() method will transition the user back to the previous page. The Toggle
buttons allow the admin to predefine and set the new user’s privileges.

AdminSettings

AdminSettings

-NewUserButton
-FaceRecButton
-back
-deleteUser
-EnableLight
-EnableCamera
-EnableAlarm
-table
+ databaseReference
+userList
+adminSwitchList

+ onClick()
#onCreate()
+ initTable()
+xOrSpace()

NewUserButton: Button
FaceRecButton: Button
back: Button
deleteUser: Button
EnableLight: Switch
EnableCamera: Switch
EnableAlarm:Switch
table: TableLayout
databaseReference: DatabaseReference
userList: List<User>
adminSwitchList: List<Boolean>

onClick(): void
onCreate(): void
initTable(): void
xOrSpace(): TextView

This class is the backend for the Admin Settings page of the Mobile Application. This page will
allow the Admin to navigate to other pages such as adding a new user, deleting a user, or facial
recognition settings. The admin can also disable certain features of the app such as the lights,
alarm or camera through the EnableLight, EnableAlarm, and EnableCamera switches. This
switches would disable the features permanently for all users no matter their privilieges until the
admin chooses to enable them again. The initTable() method creates the table with the list of

users and their privileges for the admin to see. The onClick() method takes in any button or
screen interaction and performs the appropriate action depending on which button or switch was
pressed.

RegisteredFaces

RegisteredFaces

-back
-addNewFace
+databaseReference
-gridview
+photos
+adapter
-mProgressCircle

- onClick()
onCreate()

back: Button
addNewFace: Button
databaseReference: DatabaseReference
Gridview: GridView
Photos: List<Photo>
Adapter: GridViewAdapter
mProgressCircle: ProgressBar

onClick(): void
onCreate(): void

This class displays to user the set of registered faces on the system. The pictures are loaded from
the firebase storage and are stored into a List<Photo> object using the databaseReference to
determine where the pictures are located in the storage. The photos object contains a list of
photos that are obtained from the firebase. The back object is a button for the user to return to the
previous screen. The gridview object is used to display the images in a grid. The onClick()
method will read in user input such as a button or photo press and call the appropriate method.
The addNewFace button and redirect the user to a new screen to register a new face for the
security system.

RegisterNewFace

RegisterNewFace

-takePictureButton
-back
-addFace
-rotate
-retake
-TAG
+Storage_Path
+Database_Path
+storageReference
+databaseReference
-textureView
#cameraDevice
#cameraCaptureSessions
#cameraRequestBuilder

- onClick()
#startBackgroundThread()
#stopBackgroundThread()
takePicture()
createCameraPreview()
#updatePreview()
- openCamera()
-openCameraBack()
+getFileExtension()
- UploadImageToFirebaseStorage()
onCreate()

takePictureButton: Button
back: Button
addFace: Button
Rotate: Button
Retake: Button
TAG: String
Storage_Path: String
Database_Path: String
storageReference: StorageReference
databaseReference: DatabaseReference
textureView: TextureView

cameraDevice: CameraDevice
cameraCaptureSessions: CameraCaptureSessions
cameraRequestBuilder: CameraRequestBuilder

onClick(): void
startBackgroundThread(): void
stopBackgroundThread(): void
takePicture(): void
createCameraPreview(): void
updatePreview(): void
openCamera(): void
openCameraBack(): void
getFileExtension(): String
UploadImageToFirebaseStorage(): void
onCreate(): void

This class is used for the user to register a new face on to the system It gives user access to the
phone’s camera on the device and directs the user to take multiple pictures of themselves to store
onto the firebase and add to the facial recognition database. Many on the variables and methods
all work together to give the user access to the camera and allow them to take pictures. The
UploadImageToFirebaseStorage() method takes all the pictures once the user is complete and
uploads them to the firebase. The onCreate() method sets up and initializes the contents of this
page for the user and the onClick() method takes in button input from the user and performs the
appropriate action.

Photo

Photo

- url
- date

+ getURL()
+ getDate()

url: String
date: String

getURL(): String

getDate: String

Up the Photo object. The url attribute is a string data type that contain information to display the
object and the date attribute holds the date of the photo. The two methods are getter methods that
are used to retrieve the attribute data for a Photo object.

User

User

- username
- password
- lightsPriv
- alarmPriv
- callPriv
- cameraPriv
- modePriv

+ getUsername()
+ getPassword()
+ getLightsPriv()
+ setLightsPriv()
+ getAlarmPriv()
+ setAlarmPriv()
+ getCallPriv()
+ setCallPriv()
+ getCameraPriv()
+ setCameraPriv()
+ getModePriv()
+ setModePriv()

username: String
password: String
lightsPriv: Boolean
alarmPriv: Boolean
callPriv: Boolean
cameraPriv: Boolean
modePriv: Boolean

getUsername(): String
getPassword(): String

getLightsPriv(): Boolean
setLightsPriv(): void
getAlarmPriv(): Boolean
setAlarmPriv(): void
getCallPriv(): Boolean
setCallPriv(): void
getCameraPriv(): Boolean
setCameraPriv(): void
getModePriv(): Boolean
setModePriv(): void

This is the User object class. It stores the user’s username and password along with their
privileges. There are several attributes, lightsPriv, alarmPriv, callPriv, cameraPriv,
modePriv, each control a different user privilege. Each attribute has a getter and setter
method associated with it to get the value of the attribute and to set the value of the
attribute.

Uploads

Uploads

- back
- Storage_Path
- Database_Path
- ChooseButton
- UploadButton
- ImageName
- SelectImage
- FilePathUri
- storageReference
- databaseReference
- Image_Request_Code

 # onCreate()
+ onClick()

 # onActivityResult()
+ GetFileExtension()
+ UploadImageToFireba

seStorage()

back: Button
Storage_Path: String
Database_Path: String
ChooseButton: Button
UploadButton: Button
ImageName: EditText
SelectImage: ImageView
FilePathUri: Uri
storageReference: StorageReference
databaseReference: DatabaseReference
Image_Request_Code: int

onCreate(): void
onClick(): void
onActivityResult(): void
GetFileExtension(): String
UploadImageToFirebaseStorage(): void

This is the Uploads class. This class is used to upload pictures to the firebase database. The
chooseButton is used to select an image which then is uploaded via Uri to the firebase.

Socket_AsyncTask

Socket_AsyncTask

+socket
+txtAddress
+wifiModuleIp
+wifiModulePort
+CMD

+getIPandPort()
+setMessage()
#doInBackground()

socket: Socket
txtAddress: String
wifiModuleIp: static String
wifiModulePort: static int
CMD: static String

getIPandPort(): void
setMessage(): void
doInBackground(): void

This class is responsible for communicating with the hardware for the entire home security
system. It utilizes socket programming to connect to the IP address and port of the raspberry Pi
and sends string messages based on the actions the user wants to perform. The socket object is
the socket that will open and connect to the raspberry pi everytime the user wants to send a
message to the hardware. The txtAddress, wifiModuleIp, and wifiModulePort variables are used
when attempting to connect to the hardware. The CMD string will contain the message that is
sent to the hardware.

Traceability Matrix
Domain Concepts (Columns) vs. Classes (Rows)

 Domain Concepts

Controll
er
(ABU)

Mobile
App Pic
Interface

Mobile App
Security
Interface

Server
Connect
ion

Ardu
cam

Databa
se
Conne
ction

Alarm Lights

LoginActivity X X X

FirstTimeUserS
etup

X X X X X

FingerPrintHan
dler

 X X

MainControlAct
ivity

X X X X X

AccessCamera X X X X

GridViewAdapt
er

 X

Pictures X X X

DeleteUser X X

UserSettings X X X X X

AdminSettings X X X X X X

NewUserSetup X X X X

RegisteredFaces X X X

RegisterNewFac
es

 X X

User X X X

Photo X X

Uploads X X X X

Socket_AsyncT
ask

X X X X X

We took the liberty of combining certain domain concepts:
Lights = [Lights + LightsChecker + LightStatus + UserLightsPref + Lights UI]
Controller (ABU) = [Controller (ABU) + Gyroscope + TargetAngle]
Alarm = [Alarm + RemoteAlarmDisable]

Design Patterns
For our project we implemented several design patterns that mix together to control our entire
system. For the app, each UI screen has its own backend class to control the features on that UI
screen. We chose to build the app in this form so that each page is responsible for its own
functions and features and if one page does not work then the other pages will not be affected.
Each page has sole responsibility over a majority of its own functions and features. This also
includes connecting to the database to update and retrieve data as each class that requires the
functionality does not need to go through another system to access the firebase. Our overall
system also implements a client server interaction between our mobile app and our hardware.
Through socket programming we were able to implement our ABU as a server and each mobile
app as a client. Whenever the mobile app (client) needs to send a command to the arduino such
as take picture, turn on lights, etc, the app connects to the arduino + raspberry pi (server) and
sends a string containing the action to perform. For our hardware systems our design pattern
involves having the ABU sends signals/commands to each of the other hardware pieces to
perform a specific action. All hardware related actions first pass through the ABU which then
sends information to a specific piece of hardware such as camera, lights alarm, etc. to perform a
specific action.

Object Constraint Language (OCL) Contracts
Our app code has several main invariants, preconditions and postconditions that are required for
the successful operation of the system. For our initial LoginActivity class, when trying to press
the login button to sign into the app the preconditions are that the username and password fields
are filled in. The post conditions are if the login credentials are accurate the user will be able to
login, otherwise the app will not allow the user login. In all of our classes after the login page,
one invariant that much hold true is that the user is always signed in the the User objects in any
classes that require them are never null. If a User object is null the app should not allow any
access to the features and should log out the user. Another invariant that involves the
Socket_AsyncTask class is that the attributes relating to the IP address and the port should be
properly set to match the ABU. Otherwise any hardware related functionality will not be able to
operate. Due to our addition of user privileges, many preconditions for all features include
checking to see if the user has been granted the privilege of a certain functionality such as taking
a picture or turning on the lights. If the privileges for the user are true then they will be able to
interact with the app to perform a specific function. Another precondition that is required for a
user to perform a specific hardware related function is that if the Admin of the system has
enabled or disabled the feature. If disables, it will overwrite any user privileges and disable the
function until re enabled.

System Architecture and System Design

Architectural Styles

The architecture styles of this project are the typical styles you would find for a project
revolving around the Internet of Things (IoT) [18]. The project can be encompassed by
four conceptual models: database, server-client, event-driven architecture, and layered
architecture.

Database Architecture:​ Since our whole product revolves around the use of facial
recognition software to automatically disarm the system if a recognized user opens the
door and to remain armed otherwise, it makes most sense to utilize a database to store
pictures of users and pictures of visitors so that the software would be able to compare
and match pictures. For our product, we are using the Google Firebase as the database in
which we can store these images [25]. Furthermore, the database will not only store
pictures taken, but it will also contain information about the users of the app such as their
privileges. If the user ever requests pictures taken by the ArduCam, the user will be able

to get it from the Firebase [24]. Also any updates to the system, e.g. updating user
privileges, needs to be stored somewhere to provide consistent behavior.

Server-Client Architecture:​ If we want multiple users to be accessing the product
through different devices, some sort of controlled communication is important. In the
modern world, the server-client architecture is the most widely used approach for such a
problem. If multiple devices (clients) need to access to the Home Security Automation
System, we need a central system (server) that can use multithreading to provide each
client the resources/services they require [5]. We are implementing a Raspberry Pi unit as
a server to communicate between the Arduino hardware components and the Firebase as
well as with mobile devices that are running the mobile app [6]. The mobile app will
have the ability to communicate with the Raspberry Pi Unit using HTTP request in order
to manipulate settings locally for the Home Security Automation System.

Event-driven Architecture:​ The purpose of the Home Security Automation System is to
provide the user with the ability to modify the internal devices (i.e lights, alarm, camera).
In terms of software architecture, events are defined as “state changes” and so in order to
drive the system on events we require communication between the user and the system.
For example, if the user uses the mobile app to toggle the lights or alarms or to take a
picture, this needs to be relayed to the actual hardware components for the event to occur.

Layered Architecture:​ We will be using a layered architecture because we need to make
abstractions on how our product interacts with the user. In a layered architecture, each
layer is separated in a way to create a hierarchy. Each layer provides the necessary
services to the layer above it. For example, the most basic layer would be the technical
layer which shows how the product is able to do work. This part includes all the
mechanisms of the ABU (motion sensors, accelerometer, etc), the actual storing of data
and the client and server. Next, we would have the domain layer in which the server
would retrieve information from the technical layer for the user. This layer would also
include general functions such as user authentication which allows a user to get to this
layer. Last, we have the user-interface layer. In this layer, the app itself can be found.
This is the layer in which the user can mostly directly interact with the system. You can
see how the bottom layer (technical) does not need to know anything about any of the
above layers, and this pattern follows on as you keep moving upward through the layers
until you reach the top layer and the user itself. By dividing up our understanding of the
system into layers, we have the ability to subdivide the entire system.

Identifying Subsystems

We were able to divide our system into several different subsystems to better represent
the relationships of the layers in our project. There are two main layers that we divided
our system into, the presentation layer and the services layer. The presentation layer
consists of the view that the user will see. This includes the user application and basic
presentation logic as this is the only part of the system that our user will have control
over. The services layer is defined as the part of the user application that will be
manipulated by external devices. The execution of requests on the external devices will
influence the logic on the application and vice versa.

All of these layers need access to the database package of the system. The presentation
layer and the service layer use the database package as a way to update their application
and the external devices use the update the database package with every new request
completed. We have a facial recognition package which is standalone, as the logic for the
facial recognition is different than the logic used for the external devices. We also have
the security package which authenticates the user before being able to enter the user
application.

Mapping Subsystems to Hardware

Our system requires multiple connected devices in order to function normally. The
system has a client and a server subsystem. We can identify our clients to be mobile
devices running our mobile application which will represent their own independent
machines. Each client has to connect to the server, which is represented by the Raspberry
Pi unit we have working in conjunction with our Arduino Base Unit (ABU). The Arduino
Wifi Shield will give the system wifi capabilities allowing for connection to the Firebase
wirelessly as well as connection by the mobile devices via HTTP requests. The system
will be able to send and receive data from the Firebase, particularly photos taken by the
Arducam allowing for the facial recognition software to run efficiently. This server will
also allow mobile devices (clients) to send command signals from one end, and the
Raspberry Pi (server) to receive these signals and pass them to the Arduino Base Unit on
the other end.

Persistent Data Storage

With our system, we need to be able to save data that can be accessed by both the user
and the Arduino. We plan to use Firebase to satisfy our database storage needs [19]. In
order to utilize our facial recognition functionality we need to store all the faces that
should be approved by the facial recognition software to automatically disable the alarms
when opening the door. The Arduino Base Unit should be able to access this and cross
reference these pictures with pictures it takes to determine if the images match. Also, the
ABU should be able to store images of perceived intruders in a separate collection in the
Firebase, so that the user will be able to access these images remotely. In addition to
pictures for the saved faces, and intruder images, we have to be able to store info about
users that have access to the Android app and adjust privileges if necessary, and be able
to authenticate them with a password [7]. Because we are implementing Firebase, we
don’t necessarily use relational tables, as it is an unstructured database that follows more
closely to a json format. Json stands for JavaScript object notation, which is a form of
storing and displaying information in a collection of key:value pairs.

Firebase

- store saved faces for facial recognition

- store pics of intruders/unrecognized visitors
- user info for login authentication

- username, password, privileges,
- sheets (collections) vs. tables
- There are many commands that we can use when we connect firebase with

our android app, such as
- FirebaseDataReference =

FirebaseDatabase.getInstance().getReference();
- This establishes a connection to your firebase with the

proper authentication. This lets you read and write through
this reference.

- DatabaseReference messageRef = FirebaseDataReference.child();
- The child of the current reference is a way to navigate

when a key value has multiple values.
- StorageReference storageReference =

FirebaseStorage.getInstance()
.getReferenceFromUrl(imageUrl);

- Similar to the database reference, this is the reference to the
storage area that will hold images.

- FirebaseDatabaseReference.child(MESSAGES_CHILD)
.push().setValue(friendlyMessage);

- Instead of reading from the database, this is how to write
into the database

- StorageReference storageReference =
FirebaseStorage.getInstance()
.getReference(mFirebaseUser.getUid())
.child(key)
.child(uri.getLastPathSegment());

putImageInStorage(storageReference, uri, key);

- This is a way to put images into the storage of the database.

Network Protocol

In order to connect the entire system so that multiple devices can interact with it, a server
client network system will be implemented. The server client network system will utilize
simple java sockets. When a user logs into the mobile application, they, as a client, ping

the server (Raspberry Pi) and attempt to make a connection to it. By utilizing
multithreading, multiple users can connect to the aforementioned server at the same time
using their mobile application and all send requests which will be handled on a queue
basis. Once a device is connected, the user can send HTTP requests to the Raspberry Pi,
and tell the Arduino Base Unit to toggle its hardware components on or off. When the
user toggles the lights, for example, on the mobile application, the request is sent from
client to the server. The Raspberry Pi server will then send data to edit on/off values to
the Arduino Base Unit.

Global Control Flow

Our program is event-driven, since certain events will occur depending on the user
triggering it. For example, the alarm will only go off if the door is opened and away
mode is still enabled. Furthermore, the order that the events occur are variable, since they
are all dependent on what action the user initiates. While we do have loops and waits,
they can generate different actions based on the order that they are executed.

As per time dependency, there are a few timers in our system. Mainly, once the alarm is
triggered, the user will have 30 seconds to disable it through the mobile application.
Despite that, our system is mostly an event response system. Some examples of this
include:

- The motion sensor immediately triggers the Arducam to take a picture
- The picture will be automatically cross-checked with the list of saved faces stored

in firebase
- Anyone with the mobile app should also immediately be able to view the pictures

that the arducam captured
- If desired, the user can also take an immediate picture of what is outside the door

with the Arducam
- Once the accelerometer detects motion of the door opening, the alarm and lights

will be enabled immediately

For concurrency, we plan on using multiple threads when we initiate different users as
they connect to the base unit. This will prevent multiple users from simultaneously
changing the system and causing issues. We can prevent these issues my using mutex
locks so variables controlling certain devices cannot get changed at the same time. We
can also create threads when we push images up into the firebase server, as there might

be some wifi latency that we can shorten by having multiple images uploading at the
same time with threads.

Hardware Requirements

Below is the proposed structure for or hardware will be set up, and connected. In the base
unit, the arduino will control the actions of the external devices. To communicate with
the mobile application, the wifi shield is needed to let the arduino effectively become an
Internet of Things device, allowing us to control and trigger events through the mobile
application over the internet, and to connect the arduino to Firebase to pull data and
photos from that online database. In addition we are utilizing a Raspberry Pi, which
would allow us to store more pictures and give the Arduino system much more
functionality, as it is a mini computer. We can connect the alarm directly to the Arduino
in the base unit. However, to communicate with the light, since that will often be an
external light somewhere else in the house, we will be using a transmitter and a receiver
to communicate signals wirelessly. While we only have one LED, this system easily
offers expandability towards adding multiple LEDs. Finally, the camera, motion sensor,
and accelerometer will be in an enclosed box attached to the door, with the camera
poking through the existing peephole of the door. They will be connected through a wire
to the base unit.

Algorithms and Data Structures

Algorithms

The facial recognition API sourced in the OpenCV library utilizes face detection
and deep learning in order to accurately recognize people in images and video streams.
The overall process begins by receiving an input image. The presence and location of
faces are detected and found from the input using pre-trained models from dlib and
OpenCV, both of which are libraries with facial detection functions [21]. The detection
algorithm places a bounding box around the profile of the face, and calculates average
fixed reference points based on all the fixed reference points that can be detected [22].
Using the bounding box and mean fiducial points, the face is then transformed for the
neural network, which is a construct in machine learning that utilizes different algorithms

to process complex data inputs [23]. Using the real-time pose estimation function from
the dlib library and the affine transformation function from the OpenCV library, the input
image is transformed to make the eyes and bottom lip appear in the same location on each
image [22]. The deep neural network then quantifies the face (cropped by the bounding
box) by embedding the face on a 128-dimensional unit hypersphere [22]. The embedding
generalizes the inputted face, and is able to compare with other embeddings based on
quantitative measures, making clustering, similarity detection, and classification more
efficient and successful [21]. Creating the embedding involves training the neural net by
positioning nodes (which have equal or near equal embeddings) closer to each other, and
pushing the embeddings with different values (which don’t have near similar faces)
farther away [21]. The below activity diagram summarizes the process pipeline.

Data Structures

https://www.draw.io/?page-id=PzUN8kvUaVuxeYnmFf4x&scale=auto#G1Qv634AimClqPGGSgPzJec5sjYnog-mlu

Our application makes minimal use of data structures as most of our data will be
stored into the Firebase. Our app will utilize arraylists that contain all the images the user
can view. The arraylist will contain photo objects that the app can easily manipulate and
select from different pictures to display to the user. Storing the pictures in an arraylist
also reduces the amount of times the app must interface with the Firebase to retrieve data
in one session. Every time the app is loaded and the user wants to view the pictures stored
on the Firebase the app will retrieve the data from the firebase and load it into an arraylist
for the current session. We utilize arraylists because they can easily change size and
allow for random memory access. Arraylists are also better for displaying data in
different types of Android UI components as many UI functions are set to already
interface with arraylists. Furthermore, we will also be using arraylists for the list of users
that will appear on the mobile app. The users will of course be user objects which will
contain the user privileges.

User Interface Design and Implementation
Utilizing Android Studio, we have created very similar User Interface Design for the project.
While the process is still in progress, it seems as though there have not been any significant
changes to our designs and we will be following the mock up designs. The mock up designs were
structured in a way to keep the design intuitive and possible to replicate on an android
development platform such as Android Studio. A potential edit would be to implement pop up
boxes upon waiting for fingerprint authentication or the status of an action (i.e. succeeded or
failed). There may also be the need to implement a photo inspection page so the user can choose
whether they want to use the picture they just took to add to the facial recognition database. The
feature of facial recognition will also require more than one picture so the model can be trained
properly, instead it will require five pictures of the person being registered into the facial
recognition database, so this user interface will indicate the number of pictures taken, the ability
to view them and the ability to take other pictures.

The user interface that was utilized in this project is, to the best of our knowledge, the most
optimal for our software. The User Interface models and schematics that were created prior to
actually making this project were used and followed closely for the majority of designing the UI
portion of this application. One of the changes that was made was part of the main menu page
with all of the buttons that interacted with the hardware components of the Arduino Base Unit.
This change was a functional change by adding the arm and disarm button to provide different
settings for the alarm. Changes were implemented to handle better user experience and make it
more intuitive while also allowing the user to be able to do everything they need to. The

aesthetics were unchanged as everything was already designed with color and text to make the
application easy to navigate.

Design of Tests
Testing Manual Operation of Arduino Base Unit
- User manually takes picture on the arducam

- We want to be able to have a user make the system take a picture of whatever the
camera currently sees to show that the camera does have functionality beyond the
automatic photo taken when the system is activated and can be controlled manually.
- In our demo, we connected to the arduino and sent the signal for it to activate the
camera to take a picture and retrieve the photo taken.
- We connected the mobile app to the arduino system to have a more directly connected
relationship to each other so the function in the application talks to the arduino to take the
photo without needed so much of a middle man laptop.

- User manually turns on/off motion sensor
- We want to be able to turn on/off the motion sensor to show how when the system is
disengaged, the system’s motion sensor will not be constantly seeking out movement,
which would then consequently trigger the arducam to take a picture of any visitor that
approaches the door.
- In our first demo, we showed our progress by directly connecting a laptop to the
Arduino Base Unit and using commands from the laptop to simulate how the user would
be able to manually take a picture of the exterior of the door.
- For our final product and second demo, we had the Android app have the capability to
directly connect to the ABU and directly toggle this setting, without the need for a direct
connection established between the laptop and the ABU.

- User can tell if door is open (accelerometer)
- We want to be able to know if the door is opened or in the process of being opened by
having the accelerometer report data of motion and angle and send notification of the
doors status.
- In our first demo, we made a miniaturized model door with a hinge and begin to open it
until the accelerometer identifies the motion and angle and notifies on the device used of
the door’s status changing from open to close.
- For our second demo, we had the mobile app connect more directly to the arduino so the
notification is presented to the user in the application without needing any device in
between.

Testing App Operation
- App should be able to log user in and out

- We want the app to be accessible by multiple users and we want to make sure that the
mobile app itself is not accessible by just anyone. That is why we wanted to implement a
login page to restrict access to users with privileges and also restrict users with restricted
access.
- For the first demo, we demonstrated how our mobile app has the ability to restrict
access to only those users that have access with their usernames and passwords. We
demonstrated this by pulling up a version of the Android app on an Android device, and
show the user authentication system for the app. We also showed how the main page
allows for the creation of new accounts in addition to logging in.
- In the final product and for the second demo, we showed how we can create additional
accounts with restricted access, and show how user settings/privileges can be added or
modified. We still plan on implementing fingerprint authentication if the Android device
allows for it.

- App should allow management of user settings
- We want the app to not only be able to have more than one user but also possess the
ability to show said user’s settings so different features or priorities can be adjusted
depending on the user.
- In our first demo, we showed that after a authorized user is able to login then they can
go to a page that displays their user settings and to show that they can’t be changed and
toggled.
- In the second demo, we had the direct connectivity between the app and the whole
system be more viable and have different users login and adjust their settings to then
demonstrate what works and what does not based on what that user’s settings allow.

- App should connect to firebase and read and write data
- We want our app to be have a connection to our firebase in order for it to read and write
information necessary for the system whether it is in the form of login data and face data
for facial recognition for example.
- In our demo, we plan to have some communication between the app and the firebase in
order to show other functions such as logging in as that is a function that needs that
connection and also show off the firebase and layout.
- In the second demo, we made this connectivity to the next level so it will all be
connected as a system allowing each function to work properly without a ​intermediary
device acting as a trigger or anything and show interconnected actions that lead to the
manipulation of the alarm system.

Facial Recognition
-Person Detection

-We want to be able to have the facial recognition software determine if the user is one of
the registered users so that the system can confidently disarm the system knowing that a
registered user is outside.
-For the first demo we demonstrated our progress made in the facial recognition software
by showing how a picture will demonstrate the closeness of matches to an individual.
-For the final product and the final demo, we had this facial recognition software run
automatically upon image capture, and determined if it wants to disarm the system. The
results and matching were much more accurate.

History of Work, Current Status, and Future Work
As per hardware for our system, we reached an impasse when we realized we could no

longer just use the wifi shield to communicate between the arduino and the app. The large
amounts of data that needed to be sent was inefficient and slow. Therefore, we had to switch to
using a Raspberry Pi since some processing power can be executed on it first, and then it can be
sent to the app. We are able to get the Pi and mobile app to communicate directly, and the Pi is
directly connected to the arduino as well.

For future work, we need to get the arducam to be able to send pictures through the Pi.
Currently, we can only get the pictures saved on the laptop we are using to test. Also, while we
can get readings from the motion sensor, we need to get those readings to activate the Arducam.
Additionally, we are learning how to set up the receiver-transmitter module so that we can
activate the light remotely.

For the mobile application, good progress has been made to be able to download pictures
from firebase and display it on the app. This will be helpful for when users want to be able to see
who is at the door. For future work, we need to find a way to upload pictures to firebase from the
Pi. Also, we need to create user-triggered methods to activate and deactivate the lights and
alarms through the app.

Specifically for firebase, we have been able to store images and URLs of the pictures.
However, a lot of work needs to be done to connect the firebase to Pi. One possibility is to run a
bash script to detect when a new picture is taken and stored in a folder. Then, the script will more
that image into a destination server, run a python script on that folder that will upload the images
to firebase, and take the URL of the images to retrieve the pictures in firebase. The app will go
through the URL to get the images, and then run the facial recognition python script in bash in a
loop once the pictures are uploaded. This is theoretically how we will approach solving this
issue.

Finally, for facial recognition, we made great progress in understanding the best way to
train the dataset necessary for accurate facial recognition. Things like neutral smiles and good
lighting are good image types to use. Right now, we are working on getting the facial recognition

connected to the Pi. We are having some complications with installing OpenCV on the Pi, and
firebase is frustrating to use since you cannot download entire folders - instead you must
download only pictures you know the exact image names of. We are working on getting through
these issues to connect all parts of the system.

References

[​1​]​ARDUINO/BLUETOOTH APP CONNECTION.
https://www.youtube.com/watch?v=evVRCL9-TWs
[​2​]​ARDUINO WIFI CONNECTION.
https://www.instructables.com/id/How-to-connect-your-Arduino-WiFi-shield-to-a-custo/
[​3​]​ARDUINO CAMERA. ​https://www.instructables.com/id/ArduCAM-Mini-ESP8266-Web-Camera/
[​4​]​ARDUINO/ANDROID APP REAL-TIME COMMUNICATION.
https://medium.com/coinmonks/arduino-to-android-real-time-communication-for-iot-with-firebase-60df5
79f962
[​5​]​ARDUINO WEB SERVER.
https://startingelectronics.org/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server/
[​6​]​RASPBERRY PI/ARDUINO COMMUNICATION.
https://maker.pro/raspberry-pi/tutorial/how-to-connect-and-interface-raspberry-pi-with-arduino
[​7​]​ARDUINO/ANDROID APP CONNECTIVITY.
https://www.makeuseof.com/tag/6-easy-ways-connect-arduino-android/
[​8​]​GANTT CHARTS. ​https://www.officetimeline.com/make-gantt-chart/google-docs
[​9​]​ARDUINO FACE RECOGNITION.
https://www.hackster.io/team-enzi/alexa-controlled-face-recognizing-arduino-door-bell-465a58
[​10​]​FIREBASE USER REGISTRATION. ​https://www.youtube.com/watch?v=0NFwF7L-YA8
[​11​]​FIREBASE USER LOGIN AND USER SESSION.
https://www.youtube.com/watch?v=KFULmVXpO-A
[​12​]​USER STORIES. ​https://en.wikipedia.org/wiki/User_story
[​13​]​FURPS. ​https://en.wikipedia.org/wiki/FURPS
[​14​]​PROJECT ROADMAP.​ ​https://blog.asana.com/2018/08/product-roadmap-tips-templates/
[​15​]​ACCEPTANCE TESTING.​ ​https://en.wikipedia.org/wiki/Acceptance_testing
[​16​]​INTERACTIVE DIAGRAMS.
https://en.wikipedia.org/wiki/Unified_Modeling_Language#Interaction_diagrams
[​17​]​SEQUENCE DIAGRAMS. ​https://en.wikipedia.org/wiki/Sequence_diagram
[​18​]​SOFTWARE ARCHITECTURE.
https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
[​19​]​ARDUINO-FIREBASE LIBRARY
https://github.com/FirebaseExtended/firebase-arduino
[20]LAYERED-ARCHITECTURE
https://herbertograca.com/2017/08/03/layered-architecture/

https://www.youtube.com/watch?v=evVRCL9-TWs
https://www.instructables.com/id/How-to-connect-your-Arduino-WiFi-shield-to-a-custo/
https://www.instructables.com/id/ArduCAM-Mini-ESP8266-Web-Camera/
https://medium.com/coinmonks/arduino-to-android-real-time-communication-for-iot-with-firebase-60df579f962
https://medium.com/coinmonks/arduino-to-android-real-time-communication-for-iot-with-firebase-60df579f962
https://startingelectronics.org/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server/
https://maker.pro/raspberry-pi/tutorial/how-to-connect-and-interface-raspberry-pi-with-arduino
https://www.makeuseof.com/tag/6-easy-ways-connect-arduino-android/
https://www.officetimeline.com/make-gantt-chart/google-docs
https://www.hackster.io/team-enzi/alexa-controlled-face-recognizing-arduino-door-bell-465a58
https://www.youtube.com/watch?v=0NFwF7L-YA8
https://www.youtube.com/watch?v=KFULmVXpO-A
https://en.wikipedia.org/wiki/User_story
https://en.wikipedia.org/wiki/FURPS
https://blog.asana.com/2018/08/product-roadmap-tips-templates/
https://en.wikipedia.org/wiki/Acceptance_testing
https://en.wikipedia.org/wiki/Unified_Modeling_Language#Interaction_diagrams
https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
https://github.com/FirebaseExtended/firebase-arduino
https://herbertograca.com/2017/08/03/layered-architecture/

[​21​]​OPENCV FACIAL RECOGNITION
https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/
[22]FACIAL RECOGNITION ALGORITHM
https://cmusatyalab.github.io/openface/#overview
[​23​]​UDACITY TENSORFLOW COURSE
https://classroom.udacity.com/courses/ud187
[24]Accessing images from the Firebase database
https://androidjson.com/retrieve-stored-images-firebase-storage/
[25]Saving images into the Firebase database
https://androidjson.com/upload-image-to-firebase-storage/
[26]Retrieving images from Firebase storage
https://codinginflow.com/tutorials/android/firebase-storage-upload-and-retrieve-images/part-6-retrieve-ima
ges
[27]Controlling a servo remotely with a raspberry pi
https://www.youtube.com/watch?v=t8THp3mhbdA

Project Management

What a week! We were all very stressed for the last demo, especially since just a week
before our scheduled time, even though we had a lot of the individual parts of the project
working, we did not have the pats all connected. However, we spent basically every night
together once we were all free to continue working on the project together as a unit, connecting
each part of the project. On Monday night, the day before our demo, we stayed up until 2am
finalizing the demo, the slide deck, the door model, and exactly which features we wanted to
show off during the demo. We had a great time together, making plenty of jokes that alleviated
the stress of the impending deadline. Overall, the team felt very close by the end of it. After the
demo, we were very proud of how it went, and we took a cute picture together with our project.
This was a rewarding experience that made us get significantly closer.

https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/
https://cmusatyalab.github.io/openface/#overview
https://classroom.udacity.com/courses/ud187
https://androidjson.com/retrieve-stored-images-firebase-storage/
https://androidjson.com/upload-image-to-firebase-storage/
https://codinginflow.com/tutorials/android/firebase-storage-upload-and-retrieve-images/part-6-retrieve-images
https://codinginflow.com/tutorials/android/firebase-storage-upload-and-retrieve-images/part-6-retrieve-images
https://www.youtube.com/watch?v=t8THp3mhbdA

