
Report #2, Part #3: Home Security Automation
Group 2

14:332:452:01:00614 Software Engineering

Harmit Badyal
Nikunj Jhaveri

Abhishek Kondila
Kaavya Krishna-Kumar

Kaushal Parikh
Miraj Patel
Nirav Patel

Andrew Russomagno
Sagar Shah

Ashwin Suresh

March 17, 2019

Website: https://sites.google.com/view/ruhome2019/home

1

https://sites.google.com/view/ruhome2019/home

Individual Contributions Breakdown

Team Member Name
Sagar Ashwin Andrew Abhishek Nikunj Miraj Kaavya Harmit Kaushal Nirav

Interaction
Diagrams

50% 50%

Class Dia-
gram

100%

Data
Types
and Op-
eration
Signa-
tures

50% 50%

Traceabil-
ity Matrix

50% 50%

Architect-
ural
Styles

100%

Identifying
subsys-
tems

100%

Mapping
subsys-
tems to
hardware

100%

Persistent
Data
Storage

50% 50%

Network
Protocol

50% 50%

Global
Control
Flow

50% 50%

Hardware
Require-
ments

50% 50%

Algorithms 100%

2

Data
Struc-
tures

50% 50%

User In-
terface
Design
and
Imple-
mentation

33% 33% 33%

Design of
Tests

50% 50%

Merging
Contribu-
tions

100%

Project
Coordina-
tion and
Progress
Report

100
%

Plan of
Work

100%

Breakdown
of Re-
sponsibili-
ties

50% 50%

References 100%

3

Contents

1 Interaction Diagrams 6

2 Class Diagram and Interface Specification 12
2.1 Class Diagram . 12
2.2 Data types and Operation Signatures . 13

2.2.1 LoginActivity . 13
2.2.2 FirstTimeUserSetup . 14
2.2.3 SystemSetup . 15
2.2.4 MainControlActivity . 16
2.2.5 AccessCamera . 17
2.2.6 Pictures . 18
2.2.7 SelectedPicture . 19
2.2.8 GeneralUserSettings . 20
2.2.9 NewUserSetup . 22
2.2.10 AdminSettings . 23
2.2.11 RegisteredFaces . 24
2.2.12 SelectedRegisteredFaces . 25
2.2.13 RegisterNewFace . 26
2.2.14 Photo . 27
2.2.15 User . 27

2.3 Traceability Matrix . 29

3 System Architecture and System Design 34
3.1 Architectural Styles . 34
3.2 Identifying Subsystems . 36
3.3 Mapping Subsystems to Hardware . 37
3.4 Persistent Data Storage . 37
3.5 Network Protocol . 38
3.6 Global Control Flow . 39
3.7 Hardware Requirements . 39

4 Algorithms and Data Structures 40
4.1 Algorithms . 40
4.2 Data Structures . 41

5 User Interface Design and Implementation 42

6 Design of Tests 42

4

7 Project Management and Plan of Work 45
7.1 Merging the Contributions from Individual Team Members 45
7.2 Project Coordination and Progress Report 45
7.3 Plan of Work . 46
7.4 Breakdown of Responsibilities . 46

8 References 48

5

1 Interaction Diagrams

UC-1: Take Picture

This System Diagram will use the Single Responsibility Principle (SIP) as Firebase (our
database connection) should only change if the user requests to take a picture. Further, we
took into account the Liskov Substitution Principle (LSP) as the user interface for taking
a picture (Arducam) should be able to execute taking and saving the picture. Lastly, we
considered the expert doer principle as each part of our controller should know who it is
communicating with in order to properly execute the request.

6

UC-2: Facial Recognition

For this system, wew considered This System Diagram will use the Single Responsibility
Principle (SIP) as Firebase (our database connection) should only change if the motion
sensor is triggered to take a picture. We also considered the Low Coupling Principle as the
controller should not take on too many responsibilities communicating as the sequence of
actions between the Ardu Cam, Motion Sensor and Database are highly dependant on the
signals from the controller. Further, we took into account the Liskov Substitution Principle
(LSP) as the user interface for taking a picture (Arducam) should be able to execute taking
and saving the picture. Lastly, we considered the Expert Doer principle as each part of our
system should know who it is communicating with in order to properly execute the desired
tasks.

7

UC-3: Light Control

For this diagram, we considered the Low Coupling Principle as the controller should not
take on too many responsibilities communicating since each of the following parts of the
system is dependant on the controllers communication. Further we considered the LSP
and Open Closed Principle (OCP) as each element of the system (ie. lights) be allowed to
be enabled and disabled but the methods to activate should not be altered in the process.
Lastly, we took into account the Interface Segregation Principle as the change of lights
should only be dependant on the user request and controler interaction and nothing more.

8

UC-4: Gyroscope is Triggered

For this diagram we took into account the Low Coupling Principle as the controller should
not take on too many responsibilities communicating as the sequence of actions between
the lights, alarm, and Motion Sensor are highly dependant on the signals from the con-
troller. Further, we took into account the Interface Segregation Principle as the change of
any part of the signal should only be dependant on the the activation from the gyroscope.
Lastly, we took into account the Liskov Substitution Principle (LSP) as the user interface
for disarming the alarm should be able to execute request properly.

9

UC-7: System Control Features

For this diagram, we considered the Low Coupling Principle as the controller should not
take on too many responsibilities communicating since each of the following parts of the
system is dependant on the controllers communication. Further we considered the LSP and
Open Closed Principle (OCP) as each element of the system (ie. motion sensor and alarm)
should be allowed to be enabled and disabled but the methods to activate should not be
altered in the process.

10

UC-10: User Profile Creation and Settings

For this system we took into account we considered the Low Coupling Principle as the con-
troller should not take on too many responsibilities communicating since its main goal is to
add the new user in the database. Moreover, we took into account the Interface Segregation
Principle as the change to create the new user should not change any other element of the
controller, base, or user app interface.

11

2 Class Diagram and Interface Specification

2.1 Class Diagram

12

Our class diagram has 3 main components, the mobile app, the hardware which incor-
porates the arduino, lights, camera, alarm and gyroscope, and Firebase. All three main
components are connected to each other and are in constant communication. The main set
of classes is contained in the mobile app. The mobile app is built using Android Studio
and the code is written in Java. Our design requires that each new page in the app have
its own class to control any events or actions on the page. Every double arrow line in the
diagram describes a possible transition from one page to another. Each white background
box represents a controller class in the UML diagram. These are the classes that each
control one page in the app. The blue shaded boxes represent the UI (User Interface) code
in the app. The UI code is done in xml. Each UI related file is shown connected to its
controller class. The red shaded boxes represents objects we will create. The Photo object
will allow us to easily utilize and display the photos taken from the Firebase and the User
object will enable us to store the specific user’s privileges to allow us to check whether or
not a specific user action is allowed. These objects will also help us pass data back and
forth between the classes without having to pull data from the firebase everytime.

2.2 Data types and Operation Signatures

2.2.1 LoginActivity

LoginActivity

- LoginButton
- SetupButton
- editTextEmail
- editTextPassword
- TextViewSignin
- firebaseAuth
- registerUser()
- LoginUser()
- onClick()

LoginButton:Button
SetupButton:Button
editTextEmail:EditText
editTextPassword:EditText
TextViewSignin:TextView
firebaseAuth:FirebaseAuth

registerUser():void
LoginUser():void

13

onClick():void

In this page the user can log in to the system with their email and password or for a
first time user they can use the setup button to redirect them to a new page and begin the
initial setup of the Home Security Automation system. The LoginButton and SetupButton
are two buttons that allow the user to navigate to the main control activity page or the
setup of pages to set up the initial system. The editTextEmail and editTextPassword
objects are two input textboxes for the user to enter their login credentials into. The
TextViewSignin is a text output message on the screen. The firebaseAuth is part of the
Firebase API that will allow the user to authenticate themselves to log in to the app. The
registerUser() method will redirect the user to a new screen to register themselves and
set up the system. The LoginUser() will check the user’s credentials and log them into
the app. The onClick() method will take in the user’s button input and redirect to the
proper method.

2.2.2 FirstTimeUserSetup

FirstTimeUserSetup

- CreateAccountButton
- Cancel
- editTextEmail
- editTextPassword
- editTextConfirm
- TextViewMessage
- firebaseAuth

- registerUser()
- cancel()
- onClick()

CreateAccountButton:Button
Cancel:Button
editTextEmail:EditText
editTextPassword:EditText
editTextConfirm:EditText
TextViewMessage:TextView
firebaseAuth:FirebaseAuth

registerUser():void
cancel():void

14

onClick():void

This page lets a user create the first account on their system by entering a email and
a password which the Firebase system will confirm and add to its authentication database.
After successfully registering a user, the user will be redirected to a page to connect and
setup up the Arduino system. The CreateAccountButton is a button what will take the
user’s credentials and create a new user account on the Firebase and for the app. The
Cancel button is used to take the user back to the previous screen. The editTextEmail
and editTextPassword objects are two input textboxes for the user to enter their login
credentials into. The firebaseAuth is part of the Firebase API that will allow the user to
authenticate themselves and register for the app. The TextViewMessage is a text output
message on the screen. The registerUser() method is create the user’s account on the
Firebase and then redirect them to the next page to setup the Arduino system. The
cancel() method takes the cancel button press and takes the user back to the previous
screen. The onClick() method will take in the user’s button input and redirect to the
proper method.

2.2.3 SystemSetup

SystemSetup

- HomeImage
- WifiImage
- PhoneImage
- CancelButton
- ConfirmButton
- TextViewMessage
- cancel()
- confirm()
- onClick()

HomeImage:ImageView
WifiImage:ImageView
PhoneImage:ImageView
CancelButton:Button
ConfirmButton:Button
TextViewMessage:TextView

cancel():void
confirm():void
onClick():void

15

This class is used to help the user set up their phone with the Arduino system. It
checks through the wifi and the Arduino system and will connect the app to the user’s
home security system. The HomeImage, WifiImage, and PhoneImage are image objects to
show the user the required components for the system to connect and be set up. The
CancelButton and ConfirmButton buttons are for the user to either cancel the action, or
confirm the setup once its completed. The TextViewMessage is an output text on the screen
to communicate messages to the user. The cancel() and confirm() methods respond the
the CancelButton and ConfirmButton and perform the designated actions. The onClick()
method will take in the user’s button input and redirect to the proper method.

2.2.4 MainControlActivity

MainControlActivity

- LightsOn
- AlarmOn
- AccessCameraButton
- DialEmergencyServicesButton
- PresetMode
- SettingsButton
- ExitButton
- setHomeMode()
- setAwayMode()
- setOffMode()
- turnOnOffLights()
- disarmArmSecurity()
- onClick()
- logOut()
- onActivityResult()

LightsOn:ToggleSwitch
AlarmOn:ToggleSwitch
AccessCameraButton:Button
DialEmergencyServicesButton:Button
PresetMode:Integer [-1 = Away Preset, 0 = Off Preset, 1 = Home Preset]
SettingsButton:Button
ExitButton:Button

setHomeMode():void
setAwayMode():void

16

setOffMode():void
turnOnOffLights():void
disarmArmSecurity():void
onClick():void
logOut():void
onActivityResult():void

This class serves as the backend for the Security System Control Panel window on
the mobile application. The user will be able to customize their home automation sys-
tem settings or use preset combinations Home and Away modes. This window will also
serve as a portal to other windows, such as the settings page, the login page (logging out),
and the camera page. The LightsOn ToggleSwitch is a .xml component that will indicate
whether the lights are currently on or not, and will allow the user to switch its state via
the turnOnOffLights() method. The AlarmOn ToggleSwitch is a .xml component that
will indicate whether the indicate whether the alarm system is currently armed or dis-
armed, and will allow the user to switch its state via the disarmArmSecurity() method.
The AccessCameraButton is a button that will allow the user to transition to the Access-
Camera page (class #5). The DialEmergencyServicesButton is a button for the user’s
convenience to quickly call 9-1-1. The PresetMode integer will indicate if a preset mode is
currently selected, and will connect to an .xml slider switch component that will indicate
the current mode appropriately through the front-end. The user will be able to transition
between the preset modes with the setHomeMode(), setAwayMode(), setOffMode() meth-
ods. The SettingsButton will allow the user to transition to the settings page (which
can either be the admin settings page or normal user settings page). The ExitButton
will allow the user to log out of his/her account by calling the logOut() method. The
onClick() method will take in the user’s button input and redirect to the proper method.
The onActivityResult() method will reload up this screen when the user returns to it
from another screen.

2.2.5 AccessCamera

AccessCamera

- TakePicture
- CallButton
- BackButton
- PhotosButton
- firebaseDB
- StorageRef
- image

17

- onClick()
- takePicture()
- callEmergency()
- Back()
- onActivityResult()

TakePicture:Button
CallButton:Button
BackButton:Button
PhotosButton:Button
image:ImageView
firebaseDB:FirebaseDatabase
StorageRef:StorageReference

onClick():void
takePicture():void
callEmergency():void
Back():void
onActivityResult():void

This class gives the user access to the camera and allows the user to take a picture of
the current camera view and display the image on the app. The user can also navigate to
a page to see older photos taken by the Arducam. The TakePicture attribute represents
a button used to take a picture on the Arduino camera. The CallButton is used by the
user to quickly call 9-1-1. The BackButton is a button object that will return the user to
the previous screen. The PhotosButton will take to user to another screen to view all the
photos currently stored on the Firebase. The FirebaseDB and StorageRef attributes are a
part of the Firebase API to access the Firebase storage and database systems. The image
attribute is an ImageView object that is used to display the photo. The onClick() method
will take in the user’s button input and redirect to the proper method. The takePicture()
method responds to the TakePicture button and will take a picture on the Arducam. The
callEmergency() method will respond to the CallButton and will call 9-1-1. The Back()
method will respond to the BackButton and return the user to the previous screen. The
onActivityResultMethod will reload up this screen when the user returns to it from another
screen.

2.2.6 Pictures

Pictures

18

- photoList
- Exit
- StorageRef
- gridview
- onClick()
- onActivityResult()
- displayImage()
- exit()

photoList:List<Photo>
Exit:Button
StorageRef:StorageReference
gridview:GridView

onClick():void
onActivityResult():void
displayImage():void
exit():void

This class displays the to user the set of pictures the Arducam has taken over time. The
pictures are loaded from the Firebase storage reference and are stored into a List<Photo>
object. A user can select a specific image and have the image displayed in a full screen
mode. This will take the user to another screen in the app. The photoList object contains
a list of photos that are obtained from the Firebase. The Exit object is a button for the
user to return to the previous screen. The StorageRef object is used to obtain a Firebase
storage instance to retrieve data. The gridview object is used to display the images in a
grid. The onClick() method will read in user input such as a button or photo press and
call the appropriate method. The onActivityResult() method reloads this screen when
the user returns to it after viewing a specific photo. The displayImage() method sends the
user to a new screen to view a photo and the exit method returns the user to the previous
screen in the app.

2.2.7 SelectedPicture

SelectedPicture

19

- selectedPicture
- imageView
- deleteButton
- exitButton
- StorageRef
- imageInfo
- deletePicture()
- onClick()
- exit()

selectedPicture:Photo Object
imageView:ImageView
deleteButton:Button
exitButton:Button
StorageRef:StorageReference
imageInfo:TextView

deletePicture():void
onClick():void
exit():void

This class magnifies a picture that the user selected from the previous Picture Library
Window (#6). It displays the time the picture was taken (dd/mm/yy: hh: mm: ss), as
the title. The selectedPicture variable is a photo object that will hold the image and
a vector that holds the date captured of the photo. The StorageReference variable, called
StorageRef, will help in acquiring the image from the Firebase DB by giving a reference
point to the database for accessing it. The imageView is a .xml component that serves
as a container for displaying the image. The deleteButton is a button that will call the
deletePicture() method upon being pressed. The deletePicture() will delete the image
from the Firebase database of pictures. The exitButton will call the exit() method once
pressed, which will transition the user to the previous page. There will be a textview .xml
component that is simply a textbox. It will display the photo’s date of capture, for the
user’s convenience and understanding of what photo is being examined. The onClick()
method will read in user input such as a button press and call the appropriate method.

2.2.8 GeneralUserSettings

GeneralUserSettings

20

- tableView
- enableFingerPrint
- backButton
- manager
- cipher
- keyStore
- keyGenerator
- image
- onClick()
- addFingerPrint()
- generateKey()
- initCipher()
- Back()

tableView:TableView
enableFingerPrint:Button
backButton:Button
manager:FingerprintManager
Cipher:Cipher
keyStore:KeyStore
keyGenerator:KeyGenerator
image:ImageView

onClick():void
AddFingerPrint():void
generateKey():void
initCipher():void
Back():void

This page is used for the general user settings. Any non-admin user can view the
privileges for themselves in a table and they can enable fingerprint authentication on their
app. The tableView object is used to display information about the user’s privileges. The
enableFingerPrint button is used by the user to enable fingerprint authentication on their
app. The backButton button and Back() method are used together to read user input and
return to the previous screen. The onClick() method is used to listen for user input and
respond with the appropriate method. The manager, cipher, keyStore, keyGenerator
attributes and the AddFingerPrint(), generateKey(), and initCipher() methods are all
used together to enable fingerprint authentication for the user. The image object is used
to display images on the screen to the user.

21

2.2.9 NewUserSetup

NewUserSetup

- usernameTextField
- passwordTextField
- confirmpasswordTextField
- createaccountButton
- username
- password
- ExitButton
- firebaseAuth
- StorageRef
- onClick()
- Back()
- CreateAccount()

usernameTextField:TextField
passwordTextField:TextField
confirmpasswordTextField:TextField
createaccountButton:Button
username:String
password:String
ExitButton:Button
firebaseDB:FirebaseDatabase
StorageRef:StorageReference

onClick():void
Back():void
CreateAccount():void

This class serves as the backend for the first time user setup page. The usernameTextField
is the .xml component where the user enters their desired username. The passwordTextField
is the .xml component where the user enters their desired password. The confirmpasswordTextField
is the .xml component where the user attempts to match the password entered in the above
text field (passwordTextField). The createaccountButton will check the two password
textfields to see if they match. If they do, the username and password will subsequently be
sent to the Firebase database. If not, an error message will be printed. The username and
password variables will thus store the values passed, and this will be sent to the Firebase
database. The firebaseDB and StorageRef attributes are a part of the Firebase API to
access the Firebase storage and database systems. The onClick() method will take in the

22

user’s button input and redirect to the proper method. The Back() method will transition
the user back to the previous page. The CreateAccount() method will send the user-
name and password variables to the firebaseDB and StorageRef methods to store into the
database. It will be called once the createaccountButton() is pressed, and the passwords
of the two text fields are deemed to match.

2.2.10 AdminSettings

AdminSettings

- tableView
- backButton
- lightsEnabled
- alarmsystemEnabled
- cameraEnabled
- facialrecognitionsettingsButton
- createnewuserButton
- lightsandalarmenabled
- onClick()
- Back()
- CreateNewUser()

tableView:TableView
backButton:Button
lightsEnabled:ToggleSwitch
alarmsystemEnabled:ToggleSwitch
cameraEnabled:ToggleSwitch
facialrecognitionsettingsButton:Button
createnewuserButton:Button
Lightsandalarmenabled:Boolean

onClick():void
Back():void
CreateNewUser():void

This class is the backend for the Admin Settings page of the Mobile Application, which
will enable the homeowner (administrator) of the security system to add users to the system
and choose which privileges they have, i.e which aspects of the security system they can
change. The tableView is a TableView .xml component, which serves as a container to
indicate which users have which privileges. The backButton is a button that will call
the Back() method, and transition the user to the previous page. The lightsEnabled

23

ToggleSwitch is a .xml component that will indicate whether the user that is being created
will have the privilege to change the lights. The alarmsystemEnabled ToggleSwitch is
a .xml component that will indicate whether the user that is being created will have the
privilege to disarm/arm the system. The cameraEnabled ToggleSwitch is a .xml component
that will indicate whether the user that is being created will have the privilege to take
pictures and access the Firebase DB pictures. The facialrecognitionsettings button
is a button that will transition the user to the Facial Recognition Settings UI page of the
mobile app. The createnewuserButton is a button that will transition the user to the
First Time User Setup Page of the Mobile Application, and will call the CreateNewUser()
method, which will take the current state of the ToggleSwitches and set the privileges of
the new user accordingly. The lightsandalarmenabled variable is a boolean set to true if
the new user is able to arm/disarm the security system and turn on/off the lights, and will
enable the user to thus have the privilege of switching modes from “Home” to “Away” to
“OFF”. The onClick() method will read in user input such as a button press and call the
appropriate method.

2.2.11 RegisteredFaces

RegisteredFaces

- photoList
- Exit
- StorageRef
- gridview
- AddFace
- onClick()
- onActivityResult()
- displayImage()
- exit()
- addNewFace()

photoList:List<Photo>
Exit:Button
StorageRef:StorageReference
gridview:GridView
AddFace:Button

onClick():void
onActivityResult():void
displayImage():void
exit():void

24

This class displays to user the set of registered faces on the system. The pictures are
loaded from the Firebase storage reference and are stored into a List<photo> object. A
user can select a specific image and have the image displayed in a full screen mode. This will
take the user to another screen in the app. The photoList object contains a list of photos
that are obtained from the Firebase. The Exit object is a button for the user to return
to the previous screen through the use of the exit() method. The StorageRef object is
used to obtain a Firebase storage instance to retrieve data. The gridview object is used to
display the images in a grid. The onClick()method will read in user input such as a button
or photo press and call the appropriate method. The onActivityResult() method reloads
this screen when the user returns to it after viewing a specific photo. The displayImage()
method sends the user to a new screen to view a photo and the exit() method returns the
user to the previous screen in the app. The AddFace button and addNewFace() method
will redirect the user to a new screen to register a new face for the security system.

2.2.12 SelectedRegisteredFaces

SelectedRegisteredFaces

- selectedRegisteredFace
- exitButton
- deleteRegisteredFaceButton
- StorageRef
- imageView
- onClick()
- deleteRegisteredFace()
- exit()

selectedRegisteredFace:Photo Object
exitButton:Button
deleteRegisteredFaceButton:Button
StorageRef:StorageReference
imageView:ImageView

onClick():void
deleteRegisteredFace():void
exit():void

This class magnifies a picture of a registeredFace that the user selected from the pre-
vious Registered Faces Library Window (#12). The selectedRegisteredFace variable is a
photo object that will hold the image. The StorageReference variable, called StorageRef,

25

will help in acquiring the image from the Firebase DB by giving a reference point to the
database for accessing it. The imageView is a .xml component that serves as a container
for displaying the image. The deleteRegisteredFaceButton is a button that will call
the deleteRegisteredFace() method upon being pressed. The deleteRegisteredFace()
will delete the image from the Firebase database of pictures. The exitButton will call
the exit() method once pressed, which will transition the user to the previous page. The
onClick() method will read in user input such as a button press and call the appropriate
method.

2.2.13 RegisterNewFace

RegisterNewFace

- TakePicture
- BackButton
- RetakeButton
- firebaseDB
- StorageRef
- image
- AddFaceButton
- onClick()
- takePicture()
- Back()
- onActivityResult()
- displayImage()
- addNewFace()

TakePicture:Button
BackButton:Button
RetakeButton:Button
image:ImageView
firebaseDB:FirebaseDatabase
StorageRef:StorageReference

onClick():void
takePicture():void
Back():void
onActivityResult():void
displayImage():void
addNewFace():void

26

This class gives the user access to the camera and allows the user to take a picture
of the current camera view and display the image on the app. This is similar to the
AccessCamera class (#5), however, this is for the sole purpose of adding a registered face
to the firebaseDB so that the security system will recognize the new entry upon their
next arrival. The TakePicture attribute represents a button used to take a picture on the
Arduino cam, via the takePicture() method. The BackButton is a button object that will
return the user to the previous screen, by calling the back() method.. The RetakeButton
will allow the user to retake a photo, and will call the onActivityResult() method, which
will reload this screen, removing the previously taken photo from the imageView. The
onActivityResult()method will reload the screen when the user returns to it from another
screen. The firebaseDB and StorageRef attributes are a part of the Firebase API to access
the Firebase storage and database systems. The image attribute is an ImageView object
that is used to display the photo. The onClick() method will take in the user’s button
input and redirect to the proper method.

2.2.14 Photo

Photo

- url
- date
+ getURL()
+ getDate()

url:String
date:String

getURL():String
getDate:String

This class contains the Photo object. The url attribute is a string data type that
contain information to display the object and the date attribute holds the date of the
photo. The two methods are "getter" methods that are used to retrieve the attribute data
for a Photo object.

2.2.15 User

User

27

- username
- password
- lightsPriv
- alarmPriv
- callPriv
- cameraPriv
- modePriv
+ getUsername()
+ getPassword()
+ getLightsPriv()
+ setLightsPriv()
+ getAlarmPriv()
+ setAlarmPriv()
+ getCallPriv()
+ setCallPriv()
+ getCameraPriv()
+ setCameraPriv()
+ getModePriv()
+ setModePriv()

username:String
password:String
lightsPriv:Boolean
alarmPriv:Boolean
callPriv:Boolean
cameraPriv:Boolean
modePriv:Boolean

getUsername():String
getPassword():String
getLightsPriv():Boolean
setLightsPriv():void
getAlarmPriv():Boolean
setAlarmPriv():void
getCallPriv():Boolean
setCallPriv():void
getCameraPriv():Boolean
setCameraPriv():void
getModePriv():Boolean

28

setModePriv():void

This is the User object class. It stores the user’s username and password along
with their privileges. There are several attributes, lightsPriv, alarmPriv, callPriv,
cameraPriv, modePriv, each control a different user privilege. Each attribute has a "get-
ter" and "setter" method associated with it to get the value of the attribute and to set the
value of the attribute.

2.3 Traceability Matrix

Domain Concepts (Columns) vs. Classes (Rows)

Controller
(ABU)

Mobile
App Pic
Interface

Mobile
App
Security
Interface

Server
Connec-
tion

Arducam Database
Connec-
tion

Alarm Lights

LoginActivity X X X
FirstTimeUserSetup X X X X X
SystemSetup X X X
MainControlActivity X X X X X
AccessCamera X X X X
Pictures X X X
SelectedPicture X X
GeneralUserSettings X X X X X
AdminSettings X X X X X X
NewUserSetup X X X X
RegisteredFaces X X X
RegisterNewFaces X X
SelectedRegisteredFace X X
User X X X
Photo X X

We took the liberty of combining certain domain concepts:

Lights = [Lights + LightsChecker + LightStatus + UserLightsPref + Lights UI]

Controller (ABU) = [Controller (ABU) + Gyroscope + TargetAngle]

Alarm = [Alarm + RemoteAlarmDisable]

29

Domain Conceptions

Controller (ABU):

FirstTimeUserSetup: This class provides the process by which the user begins setting up
their ABU by creating a username and password and proceeding to the systemsetup
page.

SystemSetup: This class administer the necessary networking connection setup to connect
the user’s device to the same network as the ABU and allow for all of the other
functionality to be possible.

MainControlActivity: This class is the main menu layout of the mobile app which lets
the user toggle different components of the ABU, such as the lights and the alarm.

AccessCamera: This class allows the user to utilize the arducam on the ABU and be able
to take pictures with it.

GeneralUserSettings: This class provides a means to view the user’s permissions and
privileges for the components of the ABU.

AdminSettings: This class allows the admin to view the permissions of everyone con-
nected to their ABU and allows the admin to enable and disable certain permissions
for other users.

Mobile App Pic Interface:

FirstTimeUserSetup: This class provides the setup process when the user is setting their
ABU for the first time. It requires the user to take a photo and register a face which
utilizes the mobile app pic interface.

AccessCamera: This class provides a means to access the Arducam and utilizes the mobile
app pic interface when viewing the camera view and taking a picture.

Pictures: This class allows the user to view all of the pictures taken by the Arducam on
the ABU, and it utilizes the mobile app pic interface to view them.

SelectedPicture: This class gives the user a way to view a specific picture in the pictures
class, but in a larger scale along with the time of capture and is a part of the mobile
app pic interface.

NewUserSetup: This class allows the admin to create a new user and when this is done,
it must utilize the mobile app pic interface when taking a picture to register the new
user’s face.

RegisteredFaces: This class provides a way for the user to view the pictures of all the
registered faces, which utilizes the mobile app pic interface to view them.

30

RegisterNewFaces: This class gives the user a way to register a new face for the ABU
and when the user does this it utilizes the mobile app pic interface.

SelectedRegisteredFace: This class provides the user to view a specific photo from the
registeredfaces class and utilizes the mobile app pic interface to do this.

Photo: The photo class is the primary content that is located within the mobile app pic
interface.

Mobile App Pic Interface:

LoginActivity: This class provides the user with the ability to log into the ABU and
involves the mobile app security interface for credentials.

FirstTimeUserSetup: This class gives the user the ability to create user credentials when
setting up the ABU for the first time and involves the mobile app security interface
for credentials.

NewUserSetup: This class allows the admin to create a new user profile and utilizes the
mobile app security interface for the credentials.

RegisterNewFaces: This class provides a way for the user to register new faces for the
ABU, however before this occurs the user must provide authentication for security
purposes and this involves the mobile app security interface.

User: The mobile app security interface deals with the user class primarily and its creden-
tials.

Server Connection:

LoginActivity: This class gives the user a way to log into the ABU and when the user
enters their credentials a server connection is involved to authenticate the credentials
and connect to the ABU.

FirstTimeUserSetup: This class provides the user with the initial setup process and
requires a server connection to send user credentials to the server to store them.

SystemSetup: This class allows the user’s device to connect to the ABU through the wifi
network and establishes the connection from the phone to the server of the ABU.

MainControlActivity: This class acts as a main menu so the user can toggle different
components of the ABU such as the lights and the alarm and in order to send infor-
mation to the ABU to perform these actions it requires a server connection to send
data to the server and then to the firebase so the ABU can detect the changes and
perform the action.

31

AccessCamera: This class provides the user with a way to access the arducam to take
pictures and for this to occur a server connection must be made in order for the
arducam to become active on the ABU.

Pictures: This class allows the user to view all of the pictures taken by the Arducam and
to have this access to the pictures a server connection must be made to the Firebase
database to get the data.

GeneralUserSettings: This class provides the user with a way to view their permissions,
but in order to get the permission data a server connection must be made to the
Firebase database.

AdminSettings: This class gives the admin a way to view all of the other user’s permis-
sions and have the ability to change them and to get the permission data a server
connection must be made to the Firebase database.

NewUserSetup: This class allows the admin to create new user profiles and to add all
the credentials to the server a server connection must be made.

RegisteredFaces: This class allows the user to see all of the registered faces on the ABU
and to get the data of the faces a server connection must be made to the Firebase
database.

User: The data utilized using the user class such as the credentials must be stored within
the database and in order to do this a server connection must be made to store the
data.

Arducam:

MainControlActivity: This class provides the basis for the main menu of the mobile
app, you would be able to navigate to the arducam page of the mobile (the way you
can take a picture).

AccessCamera: This class gives the user direct access to the arducam (The page where
you can click a button to take a picture.

AdminSettings: Since this class is what provides the backend for the Admin Settings
page, it is important when the user wants to change privileges on who can/cannot
take pictures through the Arducam.

Database Connection:

LoginActivity: When a user wants to login to the account their input credentials (user-
name and password) must be cross-referenced to the actual credential on the database.

FirstTimeUserSetup: All the new user information must be loaded onto the database
for future purposes

32

SystemSetup: When the user first wants to set up the system, this class will be used to
connect the app to the arduino system. In order to do this, the app will need to
connect to the server and then to the database to establish a connection with the
ABU

Pictures: This allows the user to view pictures that the Arducam has taken. All the
pictures are saved on the database so we would need to have a connection to it in
order to provide the user with the pictures

SelectedPicture: This class allows the zooming of a taken picture, and with the picture
shows up some information about it such as when the picture was taken. This info
will also need to be pulled from the database.

GeneralUserSettings: This class provides the backend for the general settings page which
is where the user can see their privileges. This information has to be pulled from the
database.

AdminSettings: This is similar to the general user settings but is meant for the admin.
Since the admin can view and update the user privileges, we once again need to view
and update information on the database.

NewUserSetup: If you want set up a new user for the first time, their information such
as their picture, credentials, and privileges need to be saved on the database.

RegisteredFaces: This class displays to user the set of registered faces on the system.
These pictures need to be loaded from the database.

SelectedRegisteredFace: Like the SelectedPicture this class also allows the zooming of
a picture only this time the picture is of a registered person. With the picture comes
the information about when the picture was taken so once again we need a database
connection.

User: This class is what provides the backend to store a user’s username, password and
privileges. This information is stored on the database, thus we need a database
connection

Photo: This class is what brings to the user all the data of a picture and the picture itself.
This is info is also stored on the database.

Alarm:

MainControlActivity: Since this class provides what is the backend of the main menu,
you can access the alarm controls from here as well. From there, you can change the
state of the alarm.

33

GeneralUserSettings: This is the class that provides the settings page for the general
user. This page includes the privileges of the user and alarm may be one of them,
therefore, Alarm is a related concept.

AdminSettings: This is the class that provides the settings page for the admin. This
page includes the privileges of the admin and alarm control is one of them, therefore,
Alarm is a related concept.

Lights:

MainControlActivity: Since this class provides what is the backend of the main menu,
you can access the light controls from here as well. From there, you can change the
state of the alarm.

GeneralUserSettings: This is the class that provides the settings page for the general
user. This page includes the privileges of the user and lights may be one of them,
therefore, Lights is a related concept.

AdminSettings: This is the class that provides the settings page for the admin. This
page includes the privileges of the admin and lights control is one of them, therefore,
Lights is a related concept.

3 System Architecture and System Design

3.1 Architectural Styles

The architecture styles of this project are the typical styles you would find for a project
revolving around the Internet of Things (IoT). The project can be encompassed by four
conceptual models: database, server-client, event-driven architecture, and layered architec-
ture.

Database Architecture: Since our whole product is based on taking pictures of people
entering the house or simply of people who are at the door, we would need to make
use of a database. For our product, we are using the Google Firebase as the database
in which we can store these images. Furthermore, the database will not only store
the pictures taken, but it will also contain information about the users of the app
such as their privileges. If the user ever requests pictures taken by the ArduCam, the
database is where they will get it from. Also any updates to the system, e.g. updating
user privileges, needs to be stored somewhere to provide consistent behavior.

Server-Client Architecture: If we want multiple users to be accessing the product through
different devices, some sort of controlled communication is important. In the mod-
ern world, the server-client architecture is the most widely used approach for such a
problem. If multiple devices (clients) require access to the home automation system,

34

we need a central system (server) that can use multithreading to provide each client
the resources/services they require.

Event-driven Architecture: Home-Automation is all about providing the user with con-
venient access to modify the states of the home (i.e lights, alarm, camera). In terms
of software architecture, events are defined as “state changes” and so in order to drive
the system on events we require major communication between the user and the sys-
tem. For example, if the user uses the mobile app to toggle the switches or to take
a picture, this message needs to be relayed to the actual hardware for the event to
occur. The same applies when the hardware (Arduino Base Unit - ABU) wants to
send notifications to the user.

Layered Architecture: The reason behind why we will be using a layered architecture is
because we will need to make abstractions on how our product interacts with the user.
In a layered architecture, each layer is separated in a way to create a hierarchy. Each
layer provides the necessary services to the layer above it. For example, The most basic
layer would be how our product actually does it’s work (technical layer). This part
would include the all the mechanisms of the ABU (motion sensors, gyroscope, etc),
the actual storing of data and the client and server. Then we would have the domain
layer in which the server would be retrieving information from the technical layer for
the user. This layer would also include general functions such as user authentication
which allows a user to get to this layer. Lastly, we would have the user-interface layer.
This is where the app would be found. This is the layer in which the user mostly
directly connect to the system. You can see how the bottom most layer (technical)
does not need to know anything above any of the above layer, and this pattern follows
on as you keep moving upward through the layers towards the user. In this way, we
can subdivide the entire system.

35

3.2 Identifying Subsystems

36

We were able to divide our system into several different subsystems to better represent
the relationships of the layers in our project. There were four main layers that we divided
our system into. First we identified the presentation layer which is the view that the user
will see. This included the user application and the basic presentation logic as this is the
only part of the system that our user will have an influence over. From there we defined
the services layer. In this layer we defined the part of the user application that will be
influenced by the external devices. The execution of requests on the external devices will
influence the logic on the application and vice versa.

All of these layers need access to the database package of the system. The presentation
layer and the service layer use the database package as a way to update their application
and the external devices use the update the database package with every new request
completed. Next, we have the facial recognition package which is standalone, as the logic
for the facial recognition is different than the logic used for the external devices. Lastly, we
have the security package which authenticates the user before being able to enter the user
application.

3.3 Mapping Subsystems to Hardware

Our system requires multiple computers for its use. The system has a client and a
server subsystem. The clients are our mobile devices and they will be running on their own
machines. Each client has to connect to the server which will be running on the arduino
wifi board. The arduino wifi board allows us to set up a server that can connect to the
firebase. It will be able to send and receive data from the firebase. This server will also
allow mobile devices (clients) to send command signals from one end, and the server will
send these signals to the arduino base unit on the other end.

3.4 Persistent Data Storage

With our system, we need to be able to save data that can be accessed by both the
user and the arduino. We plan to use Firebase to satisfy our database storage needs.
In order to utilize our facial recognition functionality we need to store all the faces that
should be approved by the facial recognition software to automatically disable the alarms
when opening the door. The Arduino Base Unit should be able to access this and cross
reference these pictures with pictures it takes to determine if the images match. Also, the
ABU should be able to store images of perceived intruders in a separate collection in the
Firebase, so that the user will be able to access these images remotely. In addition to
pictures for the saved faces, and intruder images, we have to be able to store info about
users that have access to the Android app and adjust privileges if necessary, and be able
to authenticate them with a password. Because we are implementing Firebase, we don’t
necessarily use relational tables, as it is an unstructured database that follows more closely
to a json format. Json stands for JavaScript object notation, which is a form of storing and
displaying information in a collection of key:value pairs.

37

Firebase

– store saved faces for facial recognition

– store pics of intruders/unrecognized visitors

– user info for login authentication

– username, password, privileges

– sheets (collections) vs. tables

– There are many commands that we can use when we connect firebase with our
android app, such as:

– FirebaseDataReference = FirebaseDatabase.getInstance().getReference();

– This establishes a connection to your firebase with the proper authenti-
cation. This lets you read and write through this reference.

– DatabaseReference messageRef = FirebaseDataReference.child();

– The child of the current reference is a way to navigate when a key value
has multiple values.

– StorageReference storageReference = FirebaseStorage.getInstance() .getRe-
ferenceFromUrl(imageUrl);

– Similar to the database reference, this is the reference to the storage
area that will hold images.

– FirebaseDatabaseReference.child(MESSAGES_CHILD) .push().setValue(friendlyMessage);

– Instead of reading from the database, this is how to write into the
database

– StorageReference storageReference = FirebaseStorage.getInstance() .getRef-
erence(mFirebaseUser.getUid()) .child(key) .child(uri.getLastPathSegment());

– putImageInStorage(storageReference, uri, key);

– This is a way to put images into the storage of the database.

3.5 Network Protocol

In order to connect the entire system so that multiple devices can interact with it,
a server client network system will be implemented. The server client network system
will utilize simple java sockets. When a user logs into the mobile application, they, as
a client, ping the server and attempt to make a connection to the server. By utilizing
multithreading, multiple users can connect to the aforementioned server at the same time
using their mobile application and all send requests which will be handled on a queue basis.
Once a device is connected to the server, the user can send requests to the server, which
in turn send requests to the firebase, and then finally tell the Arduino Base Unit to switch
its components on and off. When the user toggles the lights, for example, on the mobile

38

application, data is sent as a client to the server. The server will then send data to edit
on/off values in the Firebase database. The Arduino Base Unit is connected to Firebase
and with its configuration it can detect a change in value within Firebase and will toggle
its components in correspondence. In this case if the user tapped the button for turning
the lights on, the value of the Lights_On variable in Firebase will change to one, and in
response, the Arduino Base Unit’s corresponding pin out for the lights will produce a high
value and thus turn the light on.

3.6 Global Control Flow

Our program is event-driven, since certain events will occur depending on the user
triggering it. For example, the alarm will only go off if the door is opened and away mode
is still enabled. Furthermore, the order that the events occur are variable, since they are
all dependent on what action the user initiates. While we do have loops and waits, they
can generate different actions based on the order that they are executed.

As per time dependency, there are a few timers in our system. Mainly, once the alarm is
triggered, the user will have 30 seconds to disable it through the mobile application. Despite
that, our system is mostly an event response system. Some examples of this include:

– The motion sensor immediately tiggers the Arducam to take a picture

– The picture will be automatically cross-checked with the list of saved faces stored in
firebase

– Anyone with the mobile app should also immediately be able to view the pictures
that the arducam captured

– If desired, the user can also take an immediate picture of what is outside the door
with the Arducam

– Once the accelerometer detects motion of the door opening, the alarm and lights will
be enabled immediately

For concurrency, we plan on using multiple threads when we initiate different users
as they connect to the base unit. This will prevent multiple users from simultaneously
changing the system and causing issues. We can prevent these issues my using mutex locks
so variables controlling certain devices cannot get changed at the same time. We can also
create threads when we push images up into the firebase server, as there might be some wifi
latency that we can shorten by having multiple images uploading at the same time with
threads.

3.7 Hardware Requirements

Below is the proposed structure for or hardware will be set up, and connected. In the
base unit, the arduino will control the actions of the external devices. To communicate

39

with the mobile application, the wifi shield is needed to let the arduino effectively become
an Internet of Things device, allowing us to control and trigger events through the mobile
application over the internet, and to connect the arduino to Firebase to pull data and photos
from that online database. We can connect the alarm directly to the arduino in the base
unit. However, to communicate with the light, since that will often be an external light
somewhere else in the house, we will be using a transmitter and a receiver to communicate
signals wirelessly. While we only have one LED, this system easily offers expandability
towards adding multiple LEDs. Finally, the Camera, motion sensor, and accelerometer will
be in an enclosed box attached to the door, with the camera poking through the existing
peephole of the door. They will be connected through a wire to the base unit.

4 Algorithms and Data Structures

4.1 Algorithms

The facial recognition API sourced in the OpenCV library utilizes face detection and
deep learning in order to accurately recognize people in images and video streams. The
overall process begins by receiving an input image. The presence and location of faces are
detected and found from the input using pre-trained models from dlib and OpenCV, both
of which are libraries with facial detection functions [21]. The detection algorithm places a
bounding box around the profile of the face, and calculates average fixed reference points
based on all the fixed reference points that can be detected [22]. Using the bounding box
and mean fiducial points, the face is then transformed for the neural network, which is a
construct in machine learning that utilizes different algorithms to process complex data

40

inputs [23]. Using the real-time pose estimation function from the dlib library and the
affine transformation function from the OpenCV library, the input image is transformed to
make the eyes and bottom lip appear in the same location on each image [22]. The deep
neural network then quantifies the face (cropped by the bounding box) by embedding the
face on a 128-dimensional unit hypersphere [22]. The embedding generalizes the inputted
face, and is able to compare with other embeddings based on quantitative measures, making
clustering, similarity detection, and classification more efficient and successful [21]. Creating
the embedding involves training the neural net by positioning nodes (which have equal or
near equal embeddings) closer to each other, and pushing the embeddings with different
values (which don’t have near similar faces) farther away [21]. The below activity diagram
summarizes the process pipeline.

4.2 Data Structures

Our application makes minimal use of data structures as most of our data will be stored
into the Firebase. Our app will utilize arraylists that contain all the images the user can
view. The arraylist will contain photo objects that the app can easily manipulate and
select from different pictures to display to the user. Storing the pictures in an arraylist also
reduces the amount of times the app must interface with the Firebase to retrieve data in
one session. Every time the app is loaded and the user wants to view the pictures stored on
the Firebase the app will retrieve the data from the firebase and load it into an arraylist for
the current session. We utilize arraylists because they can easily change size and allow for

41

random memory access. Arraylists are also better for displaying data in different types of
Android UI components as many UI functions are set to already interface with arraylists.
Furthermore, we will also be using arraylists for the list of users that will appear on the
mobile app. The users will of course be user objects which will contain the user privileges.

5 User Interface Design and Implementation

Utilizing Android Studio, we have created very similar User Interface Design for the
project. While the process is still in progress, it seems as though there have not been any
significant changes to our designs and we will be following the mock up designs. The mock
up designs were structured in a way to keep the design intuitive and possible to replicate
on an android development platform such as Android Studio. A potential edit would be
to implement pop up boxes upon waiting for fingerprint authentication or the status of
an action (i.e. succeeded or failed). There may also be the need to implement a photo
inspection page so the user can choose whether they want to use the picture they just
took to add to the facial recognition database. The feature of facial recognition will also
require more than one picture so the model can be trained properly, instead it will require
five pictures of the person being registered into the facial recognition database, so this user
interface will indicate the number of pictures taken, the ability to view them and the ability
to take other pictures.

6 Design of Tests

Testing Manual Operation of Arduino Base Unit

• User manually takes picture on the arducam

– We want to be able to have a user make the system take a picture of whatever the
camera currently sees to show that the camera does have functionality beyond
the automatic photo taken when the system is activated and can be controlled
manually.

– In our demo, we are planning to connect to the arduino and send the signal for
it to activate the camera to take a picture and retrieve the photo taken.

– For our demoes beyond the first, we plan to have the mobile app/arduino system
have a more directly connected relationship to each other so the function in the
application talks to the arduino to take the photo without needed so much of a
middle man laptop.

• User manually turns on/off motion sensor

– We want to be able to turn on/off the motion sensor to show how when the
system is disengaged, the system’s motion sensor will not be constantly seeking

42

out movement, which would then consequently trigger the arducam to take a
picture of any visitor that approaches the door.

– In our demo, we plan on showing our progress by directly connecting a laptop
to the Arduino Base Unit and using commands from the laptop to simulate how
the user would be able to manually take a picture of the exterior of the door.

– For our final product and the next demo, we plan on having the Android app have
the capability to directly connect to the ABU and directly toggle this setting,
without the need for a direct connection established between the laptop and the
ABU.

• User can tell if door is open (accelerometer)

– We want to be able to know if the door is opened or in the process of being
opened by having the accelerometer report data of motion and angle and send
notification of the doors status.

– In our demo, we plan to have a display with a miniaturized model door with
a hinge and begin to open it until the accelerometer identifies the motion and
angle and notifies on the device used of the door’s status changing from open to
close.

– For our future demoes, we plan to have the mobile appconnect more directly to
the arduino so the notification is presented to the user in the application without
needing any device in between.

Testing App Operation

• App should be able to log user in and out

– We want the app to be accessible by multiple users and we want to make sure
that the mobile app itself is not accessible by just anyone. That is why we
wanted to implement a login page to restrict access to users with privileges and
also restrict users with restricted access.

– For this demo, we are going to demonstrate how our mobile app has the ability
to restrict access to only those users that have access with their usernames and
passwords. We will demonstrate this by pulling up a version of the Android
app on an Android device, and show the user authentication system for the app.
We will also be able to show how the main page allows for the creation of new
accounts in addition to logging in.

– In the final product and the next demo, we plan to show how we can create addi-
tional accounts with restricted access, and show how user settings/privileges can
be added or modified. We also plan on implementing fingerprint authentication
if the Android device allows for it.

• App should allow management of user settings

43

– We want the app to not only be able to have more than one user but also possess
the ability to show said user’s settings so different features or priorities can be
adjusted depending on the user.

– In our demo, we plan to show that after a authorized user is able to login then
they can go to a page that displays their user settings and to show that they
can’t be changed and toggled.

– In future demos, we plan to have the direct connectivity between the app and
the whole system be more viable and have different users login and adjust their
settings to then demonstrate what works and what does not based on what that
user’s settings allow.

• App should connect to firebase and read and write data

– We want our app to be have a connection to our firebase in order for it to read
and write information necessary for the system whether it is in the form of login
data and face data for facial recognition for example.

– In our demo, we plan to have some communication between the app and the
firebase in order to show other functions such as logging in as that is a function
that needs that connection and also show off the firebase and layout.

– In future demos, we plan to take this connectivity to the next level so it will
all be connected as a system allowing each function to work properly without
a intermediary device acting as a trigger or anything and show interconnected
actions that lead to the manipulation of the alarm system.

Facial Recognition

• Person Detection

– We want to be able to have the facial recognition software determine if the user is
one of the registered users so that the system can confidently disarm the system
knowing that a registered user is outside.

– For this demo we are going to demonstrate our progress made in the facial
recognition software by showing how a picture will demonstrate the closeness of
matches to an individual.

– For the final product and the next demo, we hope to have this facial recognition
software run automatically upon image capture, and determine if it wants to
disarm the system. The results and matching should be much more accurate
than they currently are.

44

7 Project Management and Plan of Work

7.1 Merging the Contributions from Individual Team Members

No issues were encountered while compiling the final report. Each member followed the
directions of the respective section they were assigned very closely. I served as an anchor
in checking over their work and making sure that everyone followed the guidelines laid
out on the class website. The closest thing to an issue was the time as to when everyone
finished their parts. Combining everyone’s part into latex adds another challenge as the
automatic formatting requires strenuous programming behind the scenes to ensure that the
layout is to standard, and the final version of the report is presentable. Receiving individual
contributions close to the deadline left very little time for the latex formatting, however,
this has never resulted in a tardy submission, nor an achievement in less than the full
potential of the report.

7.2 Project Coordination and Progress Report

Over the past few weeks, we have been working on the design aspect of the project
and have been actively working on the actual hardware and software implementation of our
home security system. With our demo coming up, we have to make sure we are ready to
present several tests that show the progress we have made on our project.

In regards to hardware, we have started working on connecting various devices (alarms,
camera, LED lights) to the arduino board and have successfully connected the arduino
board to the wifi shield allowing for the board to potentially be connected to the mobile
app, so that it can be controlled wirelessly. As of right now, we have manual wired connec-
tion between the laptop and the arduino board. We have tested the alarm, and have set the
alarm to trigger when a signal is sent. We are also able to read data from the motion sensor
as well as the accelerometer when directly connected. In the future, the motion sensor and
the accelerometer should be triggered automatically and should cause the alarms and lights
to turn on. Currently the arducam saves pictures onto the connected computer, but in the
future it should be able to connected directly to a Raspberry Pi computer and connect to
the Firebase and save images there.

Our mobile app currently has the ability to log in and log out, with password protected
accounts. The user interface is relatively set up, but there is still much room for improve-
ment. In the future, the app should be able to connect to the arduino via its wifi shield,
and have the functionality to turn on/off certain features of the arduino board. It also will
eventually have the ability to push and pull images to/from the Firebase.

For our facial recognition development, we currently have it set up so that given a
collection of images taken from before can be compared to the image taken through the
arducam and using OpenCV, we can more confidently determine who the person is. In the

45

future, the software should be able to automatically determine who the person is and if
they match anyone in the Firebase. We also will be able to have family members upload
selfies of themselves through the app and make the facial recognition more accurate and
work more seamlessly.

In terms of use cases we have tackled, we have gotten to at least attempting to solve
use cases UC-1: Take Picture, UC-2: Facial Recognition, UC-3: Light Control, UC-6: Fin-
gerprint & Passcode Verification, UC-9: System Connectivity, UC-11: Create New User
Account, UC-12: User Logout. As described, we plan on strengthening the functionalities
of these use cases and also implementing the remaining use cases.

7.3 Plan of Work

Above is the estimated plan of work for our projet. We have shifted our dates of com-
pleting specific parts of our project based on the rate of what we have already accomplished
and having a realistic view of what we can accomplish in the future.

7.4 Breakdown of Responsibilities

The project is well divided into hardware section and software section and we plan on
combining the two parts in the end.

The Software section of the project is with Nikunj, Nirav, Abhishek, and Ashwin. We
are making the application in Android Studio using Java. The responsibility of UI of the
application is with Nirav and Kaushal. The responsibility of the backend development with

46

Firebase is Abhishek and Nikunj. This includes the Data Structure of the database we’re
using and how to optimize storing data and photos. Miraj is dealing with the Algorithms
that correlate with the Application. This includes optimizing class structure and design of
the overall app. Ashwin deals with Debugging aspect of the application.

The Hardware section is mainly Sagar and Harmit. They are doing a great job of combing
their knowledge and building a system that efficiently integrating the hardware component
to the app and the real world application.

Design Testing for each side of the project is divided between Andrew and Ashwin. Andrew
checks with the hardware part of the system while, Ashwin does system testing with the
andriod application.

Kaavya is running through documenting the project, along with managing everyone’s re-
sponsibility and helping out where she sees fit.

47

8 References

[1]ARDUINO/BLUETOOTH APP CONNECTION.

https://www.youtube.com/watch?v=evVRCL9-TWs

[2]ARDUINO WIFI CONNECTION.

https://www.instructables.com/id/How-to-connect-your-Arduino-WiFi-shield-to-a-custo/

[3]ARDUINO CAMERA.

https://www.instructables.com/id/ArduCAM-Mini-ESP8266-Web-Camera/

[4]ARDUINO/ANDROID APP REAL-TIME COMMUNICATION.

https://medium.com/coinmonks/arduino-to-android-real-time-communication-for-iot-
with-firebase-60df579f962

[5]ARDUINO WEB SERVER.

https://startingelectronics.org/tutorials/arduino/ethernet-shield-web-server-tutorial
/basic-web-server/

[6]RASPBERRY PI/ARDUINO COMMUNICATION.

https://maker.pro/raspberry-pi/tutorial/how-to-connect-and-interface-raspberry-pi-with-arduino

[7]ARDUINO/ANDROID APP CONNECTIVITY.

https://www.makeuseof.com/tag/6-easy-ways-connect-arduino-android/

[8]GANTT CHARTS.

https://www.officetimeline.com/make-gantt-chart/google-docs

[9]ARDUINO FACE RECOGNITION.

https://www.hackster.io/team-enzi/alexa-controlled-face-recognizing-arduino-door-bell-465a58

[10]FIREBASE USER REGISTRATION.

https://www.youtube.com/watch?v=0NFwF7L-YA8

[11]FIREBASE USER LOGIN AND USER SESSION.

https://www.youtube.com/watch?v=KFULmVXpO-A

[12]USER STORIES.

https://en.wikipedia.org/wiki/User_story

48

https://www.youtube.com/watch?v=evVRCL9-TWs
https://www.instructables.com/id/How-to-connect-your-Arduino-WiFi-shield-to-a-custo/
https://www.instructables.com/id/ArduCAM-Mini-ESP8266-Web-Camera/
https://medium.com/coinmonks/arduino-to-android-real-time-communication-for-iot-with-firebase-60df579f962
https://medium.com/coinmonks/arduino-to-android-real-time-communication-for-iot-with-firebase-60df579f962
https://startingelectronics.org/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server/
https://startingelectronics.org/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server/
https://maker.pro/raspberry-pi/tutorial/how-to-connect-and-interface-raspberry-pi-with-arduino
https://www.makeuseof.com/tag/6-easy-ways-connect-arduino-android/
https://www.officetimeline.com/make-gantt-chart/google-docs
https://www.hackster.io/team-enzi/alexa-controlled-face-recognizing-arduino-door-bell-465a58
https://www.youtube.com/watch?v=0NFwF7L-YA8
https://www.youtube.com/watch?v=KFULmVXpO-A
https://en.wikipedia.org/wiki/User_story

[13]FURPS.

https://en.wikipedia.org/wiki/FURPS

[14]PROJECT ROADMAP.

https://blog.asana.com/2018/08/product-roadmap-tips-templates/

[15]ACCEPTANCE TESTING.

https://en.wikipedia.org/wiki/Acceptance_testing

[16]INTERACTIVE DIAGRAMS.

https://en.wikipedia.org/wiki/Unified_Modeling_Language#Interaction_diagrams

[17]SEQUENCE DIAGRAMS.

https://en.wikipedia.org/wiki/Sequence_diagram

[18]SOFTWARE ARCHITECTURE.

https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.
2F_Patterns

[19]ARDUINO-FIREBASE LIBRARY

https://github.com/FirebaseExtended/firebase-arduino

[20]LAYERED-ARCHITECTURE

https://herbertograca.com/2017/08/03/layered-architecture/

[21]OPENCV FACIAL RECOGNITION

https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/

[22]FACIAL RECOGNITION ALGORITHM

https://cmusatyalab.github.io/openface/#overview

[23]UDACITY TENSORFLOW COURSE

https://classroom.udacity.com/courses/ud187

49

https://en.wikipedia.org/wiki/FURPS
https://blog.asana.com/2018/08/product-roadmap-tips-templates/
https://en.wikipedia.org/wiki/Acceptance_testing
https://en.wikipedia.org/wiki/Unified_Modeling_Language#Interaction_diagrams
https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
https://github.com/FirebaseExtended/firebase-arduino
https://herbertograca.com/2017/08/03/layered-architecture/
https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/
https://cmusatyalab.github.io/openface/#overview
https://classroom.udacity.com/courses/ud187

	Interaction Diagrams
	Class Diagram and Interface Specification
	Class Diagram
	Data types and Operation Signatures
	LoginActivity
	FirstTimeUserSetup
	SystemSetup
	MainControlActivity
	AccessCamera
	Pictures
	SelectedPicture
	GeneralUserSettings
	NewUserSetup
	AdminSettings
	RegisteredFaces
	SelectedRegisteredFaces
	RegisterNewFace
	Photo
	User

	Traceability Matrix

	System Architecture and System Design
	Architectural Styles
	Identifying Subsystems
	Mapping Subsystems to Hardware
	Persistent Data Storage
	Network Protocol
	Global Control Flow
	Hardware Requirements

	Algorithms and Data Structures
	Algorithms
	Data Structures

	User Interface Design and Implementation
	Design of Tests
	Project Management and Plan of Work
	Merging the Contributions from Individual Team Members
	Project Coordination and Progress Report
	Plan of Work
	Breakdown of Responsibilities

	References

