
Software Engineering - Spring 2019

Report 3

Group 12

Harshil Parekh, Adarsh Gogineni, Shivum Mehta, Shaan Parikh, Andy Guo,

Avi Patel, Nathan Silva, Parth Patel, Kyle Abed

April 14, 2019

sites.google.com/scarletmail.rutgers.edu/softwareengineeringspring2019/

14:332:351 Software Engineering Report 3
Department of Electrical and Computer Engineering

The State University of New Jersey,
Rutgers

https://sites.google.com/scarletmail.rutgers.edu/softwareengineeringspring2019/

Contribution Breakdown for Report 3:
Responsibility Harshil

Parekh
Adarsh
Gogineni

Shivum
Mehta

Shaan
Parikh

Andy
Guo

Avi
Patel

Nathan
Silva

Parth
Patel

Kyle
Abed

Project Management 11.11% 11.11% 11.11% 11.11
%

11.11% 11.11% 11.11% 11.11% 11.11%

Revisions 11.11% 11.11% 11.11% 11.11
%

11.11% 11.11% 11.11% 11.11% 11.11%

Table of Contents
1. Summary of Changes ……………………………………………………………………. 2

2. Section 1: Customer Statement of Requirements ……………………………………….. 2

3. Section 2: Glossary of Terms …………………………………………………..……….. 6

4. Section 3: System Requirements ………………..……………………………………… 8

5. Section 4: Functional Requirements Specification …………………………...…..….... 13

6. Section 5: Effort Estimation Using Use Case Points ………….………………….......... 24

7. Section 6: Domain Analysis …………………………………….…………………….... 26

8. Section 7: Interaction Diagrams ………………………….………………….................. 33

9. Section 8: Class Diagram and Interface Specification …………………………………. 43

10. Section 9: System Architecture and System Design….……………………………….... 53

11. Section 10: Algorithms and Data Structures……………………………………………. 60

12. Section 11: User Interface Design and Implementation………………………………... 61

13. Section 12: Design of Tests……………………………………………………………...

62

14. Section 13: History of Work ………………………………………………………….... 71

15. Section 14: References …………………………………………………………………. 72

1

16. Project Management …………………………………………………………………… 73

Summary of Changes:

Throughout this semester, we have gone through many changes in implementation of this
project. Notable changes can be seen in the Glossary of Terms, System Requirements, Functional
Requirements Specification, Domain Analysis, Interaction Diagrams, Class Diagram and
Interface Specification, System Architecture and System Design, User Interface Design and
Implementation, and Design of Tests.

Key notable changes throughout the evolution of this project:

- Change from AWS database to Google Firebase
- Change in Sensor-intensive to App-intensive development in features
- Addition of Emergency Contact Number feature
- Addition of Lock Mode feature
- Addition of sensor design manuals
- Addition of Map feature
- Addition of window protection sensors (security)
- Addition of fire and carbon monoxide sensors (home hazard)
- Addition of Camera is under-development

Section 1: Customer Problem Statement:

Problem Statement:

Residential Family Home:

Home Monitoring System Team,

I currently live in a residential area in the suburbs with my wife, my three children (ages
16, 10, and 5), and my mother in law who is not very well coordinated due to old age. We also
have 2 well-behaved dogs. With that being said, you can only imagine how hectic our home
becomes on a daily basis trying to run around and get everything done. Between my wife and I
going to work, the kids going to school, taking care of my mother in law, as well as a
never-ending list that goes on and on, it is extremely difficult to ensure nothing goes wrong in
the process. Like most parents, our main concern during all of this pandemonium is the safety
and security of our family.

We are burdened with a lot of extra and unnecessary stress that stems from trying to
remember if we did something important or not. Many little things can be easily overlooked due
to the constant chaos going on. Little things such as remembering if we left the stove on, if all of
the doors and windows are closed and locked, or if we shut off the lights become very difficult.
Other things such as checking the basement for water leakage or flooding due to rain, or making

2

sure the heat/AC is turned off before we leave seem minimal but are actually major safety
concerns. A stove being left on could, in an extreme case, burn our entire house down. Leaving
windows and doors unlocked increases the likelihood of a burglar successfully invading our
home. On a less serious note, even the money being saved from ensuring the heat/AC is turned
off is something we value tremendously. We are looking for a solution that will put our minds at
ease and let us continue on with our day without having to worry about the security and safety of
our family or home.

Ideally, for us, a system that can be implemented into our mobile devices would be the
most beneficial. We would like some sort of infrastructure to be set-up within our home that
passively checks for all of the aforementioned problems. My wife and I will then be able to have
customized settings on our mobile application that alerts us of potential problems based on our
desired preferences. For example, I can turn on “monitoring” when I leave the house (would be
even better if the application recognizes I left automatically) and be notified if the stove is still
on after 10 minutes. Knowing this, I could go back home (or call somebody who is there) to turn
the stove off. This would help us keep our family safe from any possible home issues.

A reliable system of this nature would be invaluable to my family. Knowing I will be
alerted anytime there is an issue will allow me to focus more on the things that really matter in
life.

Corporate Lab:

I lead a research laboratory where safety is our number one priority. Part of my job is
supervising all of the lab technicians to make sure they practice safe work habits and closely
follow the rules. Unfortunately, I am only one person and the company employs many tab
technicians. It is difficult to keep an eye out on everyone while simultaneously catching every
single safety measure they might forget. To remedy this problem, I am in the market for a sort of
security system to help me monitor everyone’s work and keep our laboratory a safe workspace.

Some experiments our lab technicians carry out require heating up different liquids and
chemicals. Believe it or not, I have caught technicians leaving burners on after using them.
Besides the obvious fire hazard, this is extremely problematic considering the fact that
technicians sometimes work with flammable substances. Another problem we have is with the
storage of all these materials used in experiments. We have this huge storage facility where
everything the technicians need can be found. On occasion, materials are mishandled by either
our lab technicians or our suppliers and we’ll have stuff leaking. This is a big issue because if
some extremely reactive chemical spills into another reactive substance, then not only are the
technicians in danger, but our equipment in storage can also be destroyed. While we’re on the
topic of our storage facility, another problem we have is unauthorized personnel getting access to
storage. We have a few select technicians in charge of the storage facility. They keep it clean,
organized, and retrieve materials that any other technicians request. The problem, however, is

3

that the storage technicians often leave the door open or unlocked when they go to retrieve
materials for other technicians. In the past, we’ve had impatient lab technicians go into storage to
grab what they needed rather than waiting for a storage technician to help them. This is
obviously a big issue as these technicians are breaking the rules and are entering a restricted area.
What’s even worse is that they will move around chemicals, which messes up the organization
system of the storage technicians. We are concerned not only about reinforcing the storage
facility, but also our records room. We have someone to oversee the records room, but they’re
always in and out of there retrieving and storing documents for technicians. The door leading
into where our documents are stored ends up open and unlocked most of the time. It is a big
concern of ours that someone might try to steal information from our laboratory as we have
many competitors in our business.

This only scratches the surface of the problems we have in our laboratory. Ideally we are
looking for a monitoring system that: monitors the use of the burners and notifies us if they has
been left on for long, monitors our storage facility for any leaks/flooding and notifies us where it
is occuring, monitors our doors to the storage and records rooms and notifies us if it is open or
unlocked. These specific issues are of highest priority to us and we would invest a great amount
into anything that would help us solve them.

School/ College:

I am the team director for undergraduate campus housing. My job is to make sure the
living conditions and dorms are capable of handling students living necessities. Students come
from different places and have so many unique hobbies and traits so we want them to feel
welcomed and at home on campus. In every dorm we have showers, bathrooms, heating, and
cooling. We also have safety features such as fire alarms and carbon monoxide alarms. To
increase the safety of our dorms we have security locks that only open with certain verifications.
As the director for campus housing, my team has been working to make sure every student’s life
is as smooth and comforting as possible.

 As we continue to add more features and safety precautions in every building, we have
come up with an adversity. With the added features, our staff has several applications that they
have to go back and forth from. One application for the fire alarms, another for the security
system, and others for every parts of the student dorms. Our staff wants to monitor all the
activities in one screen. Not to mention the students will find it much more comforting if they
can have access and knowledge about their own building. On top of this, we would want to know
what in the building is malfunctioning, has been broken, or is in use.

 There is a certain company that has everything we are looking for to solve all these
problems. A company is selling their home automation system product. With this product we

4

want to know all of the safety precautions in each building. If the fire alarm is on, the security
system is not locking people out or locking people in. There is no plumbing errors. We want to
know everything about our dorms in one screen. Also we would want the company to make a
notification if something does go wrong what is it and how to attack the problem. Either calling
the fireman, police, or a plumber.

Restaurant:

Hello Home Monitoring System team, I am a small restaurant owner who is interested in
your product. As a small business owner I am always making decisions that I believe will benefit
my business. I am also, however, the only one who keeps track of all the problems that happen
around my restaurant. Some problems go unnoticed until it is too late. And as a small business
owner, my main incentive is to increase profit while diminishing loss.

There are many problems I face daily and I believe your system will benefit me. One
such problem is checking for water leakage. As an owner of a restaurant it is important to make
sure that there is no water leakage near any of my food. Many times when we notice a water
leakage in the freezer, it is already too late. This is because we only go into the freezer when the
kitchen is out of a certain product, such as lettuce for example. By the time we discover a
leakage in the fridge, our food products are already damaged. This leads to a great loss of money
for us as well as a safety hazard for our customers. We want to use healthy ingredients in our
products and also decrease food waste. We face another common problem during closing time.
We always have to make sure that our stove is turned off. On busy nights, however, it is very
easy to forget this simple task. I always find myself back at the restaurant after it is closed to
ensure that everything is properly handled. This not only wastes my time, but causes a great deal
of worry for me on a nightly basis. If I do not do this, this can easily lead to a fire and can greatly
damage my restaurant.

Another great fear of every restaurant owner is the chance of a burglary. Every night

there is a chance that someone could easily break into my restaurant and steal valuable items.
With a system notifying me of any break ins, I would be able to quickly reach out and call the
police department.

Having a system that can detect all of these issues and provide immediate feedback
would be very nice to have. Instead of subscribing to multiple systems that only control
individual aspects, I would be able to have one central system that monitors everything. Things
such as home security and water leakage detection are not currently sold in one package, which
means I have to purchase two different detection systems. With a centralized system like yours, I
will be able to easily detect all types of problems in my restaurant without spending money or
time on multiple products. I will get all my feedback in one device with a system that will notify
me when there is a water leak, as well as if there is a break in. I will be able to fix numerous
problems at once before significant damage is done. This will help me save money as well as
keep my restaurant safe and secure.

5

Section 2: Glossary of Terms:

Application Programming Interface (API) A set of functions and procedures allowing the
creation of applications that access the features or
data of an operating system, application, or other
service

Arduino Uno

Picture of Arduino Uno board

A microcontroller board equipped with sets of
digital and analog I/O pins that may be interfaced
to various expansion boards and and other
circuits

Bread Board

A board for making an experimental-model of an
electric circuit

Circuit Board A thin rigid board containing an electric circuit.
A printed circuit.

Database A collection of information that is organized so
that it can be easily accessed, managed, and
updated

Firebase Realtime Database

A cloud-hosted NoSQL database that lets you
store and sync data between users in real time.
This service is offered and managed by Google.

6

Internet of Things (IOT)

A system of interrelated computing devices that
transfer data over a network without requiring
any human interaction

Mobile Application A type of software application designed to run on
a mobile device

Raspberry Pi

Picture of Raspberry Pi Model 3 B+

A low cost Linux and ARM-based computer on a
small circuit board

nodeMCU

A micro-controller unit capable of WiFi
modularity and offers Analog and Digital GPIO
pins

Sensor

Picture of Arduino compatible temperature and humidity sensor.

A device to detect or measure a physical property
and records, indicates, or responds to it

Server A computer that serves information to other

7

computers, called clients. These computers can
connect to each other through a local area
network (LAN) or a wide area network (WAN).

User Interface (UI) The means by which the user and the computer
system interact, in particular the use of input
devices and software

WiFi Module An independent self-contained unit capable of
accessing WiFi network

Section 3: System Requirements:
We have extracted and analyzed the functional and nonfunctional system requirements

from the Product Statements that our customers have given us. Using User Stories, we are able to
make a clear and concise table to show exactly what our system aims to accomplish.

The most important task for any software to accomplish is to satisfy the requirements of
the customer. Using what the customers have given us in the product statements, we were able to
extract the major requirements for our specified system. These requirements however, are not in
any order of importance to the customer. For us developers though, priorities in requirements
matter. Hence, we need to prioritize all the requirements that were extracted and order them from
highest to lowest priority in development. This will moreover help in the development of the
software.

With prioritization in mind, we have created the table below. In the table there is a
column for priority, which ranges from 1 - 5, with 1 being optional and 5 being absolutely
mandatory.

Enumerated Functional Requirements:

ID Priority User Story

ST-1 5 As a user, I can check if the stove is on/off.

ST-2 5 As a user, I can check the status of my doors and windows if they are
properly locked.

ST-3 5 As a user, I can check if there is a gas leak in my house.

8

ST-4 5 As a user, I can check whether or not my basement has flooded.

ST-5 1 As a user, I can look at reliable businesses near me to solve my problem.

ST-6 5 As a user, I will be alerted if a fire is detected in my home.

ST-7 1 As a user, I can turn off the monitoring system alerts.

ST-8 5 As a user, I can check to see if anyone has broken into my house.

ST-9 3 As a user, I can use this system on a cellular device.

ST-10 5 As a user, I can view a live camera feed of my home when anything is
detected.

The priority of the functional system requirements has considerations of practicality and

safety in them. Keeping these two principles in mind, we chose checking if the stove is on/off
(ST-1), locked/unlocked doors and windows (ST-2), checking if the basement is flooded (ST-4),
checking whenever anyone has entered the house (ST-9), and viewing a camera feed of
dangerous/damaging occurrences (ST-6, ST-11) as the top priorities. Checking if the the doors
are locked and if anyone has entered the user’s home or business could also pose an important
safety factor regarding potential thieves. We also included mobile integration for the system
(ST-10) and being able to control the system remotely from any wifi destination (ST-8) as
priorities three and four respectively.

The rest of the functional system requirements are identified as a lower priority, but are in
no means unnecessary for the function of the system. Making sure the lights in the home or
business are off (ST-3) may also be an important safety concern. Lastly, we marked off being
able to turn off the monitoring system (ST-7) and looking at reliable businesses to solve the
problem (ST-5). Being able to turn off the monitoring system allows for privacy and safety for
users in case of any system failures that may result due to safety hazards. Additionally, the
practicality of being able to identify reliable businesses should be a functional concern for our
product.

Enumerated Nonfunctional Requirements:

ID Priority User Story

ST-11 2 As a user, I should understand how to use the system easily. The user
interface should be easy to read and be usable for anyone.

ST-12 5 As a user, I should be able to check the status of my home at all times, so
there cannot be any downtime for the application where my house is left

9

vulnerable.

ST-13 4 As a user, I should be able to access the application from anywhere.

ST-14 4 As a user, I should be able to use this system on any Android device.

ST-15 3 As a user, I should be given quick and informative directions in case of
an emergency.

ST-16 5 As a user, as soon as a problem is detected in my house, I should be
alerted of it and be able to view a camera feed so I can address it as soon
as possible.

ST-17 1 As a user, I should be able to contact the support team to troubleshoot
any possible hardware/software errors.

ST-18 1 As a user, I should be able to easily install the sensors in my home.

As for the Non-Functional Requirements we broke them down to 4 categories: Usability,
Reliability, Performance, and Supportability.

Usability:​ Usability is the ease of use and learnability of a device and object. A user should be
able to access this application through (ST-14). Not only that but the application itself should be
easy to learn and utilize.

Reliability:​ ​Reliability, or dependability, describes the ability of a system or component to
function under stated conditions for a specified period of time. A user should be able to check the
status of their home, restaurant, etc. whenever they want (ST-12). As such the user should also
be able to access the application from any location as long as they have an Internet connection
(ST-13).

Performance:​ Performance of a computer is essentially estimated in terms of efficiency,
effectiveness and speed. If an emergency at a user’s home occurs, the said user should be alerted
immediately (ST-16). Furthermore, alongside the alert, the user should also be given quick and
informative instructions (ST-15).

Supportability:​ Supportability refers to the ability of ​technical support​ personnel to install,
configure, and monitor computer products. Technical support personnel should also be able to
identify exceptions or faults, ​debug​ or isolate faults to ​root cause analysis​, and provide hardware
or ​software maintenance​ to solve a problem and restore the product into service. The user should

10

https://en.wikipedia.org/wiki/Technical_support
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Root_cause_analysis
https://en.wikipedia.org/wiki/Software_maintenance

also be able to install the sensors easily (ST-18). In case of any technical problems with the
application or sensors, there should be a support team that they can contact (ST-17).

On-Screen Appearance Requirements:

ID PW Description

ST-19 5 The interface shall allow the user to input a username and password
to securely log into their home server.

ST-20 5 The interface shall show users the status of different parts of the
home by clicking different icons/buttons.

ST-21 5 Users should be able to click a button to turn on notifications that
send alerts to their phones when something goes wrong.

ST-22 3 The interface shall allow a user to switch to an "Account" screen to
view database information and the other users logged in.

ST-23 4 The interface shall allow a user to “Favorite” specific appliances to
view when the application starts up.

ST-24 3 The interface shall allow user to switch to a "Support" screen to view
local businesses using Google Maps.

ST-25 4 The user will be able to click a "Log Out" button to log out of their
server.

ST-26 1 The interface shall allow a user to directly call a business from the
support section when clicking a "Call" button.

ST-27 3 The interface shall allow a user to call emergency phone numbers.

ST-28 5 The application shall allow a user to view a live camera feed when
motion is detected in the home.

The priority of the On-Screen Appearance Requirements is to provide the best possible user
experience. Because dependability and safety are crucial aspects of our system, it is important to
provide an easy and quick user interface to navigate through the application.

To ensure that this application is safe and secure, a login screen (ST-19) will be the first graphic
a
user will see on startup, similar to the one shown below. After this, the rest of the

11

application will be easy to navigate through the application using different tabs for each section,
each showing important features ranging from ST-20 to ST-27, shown below. Each tab will take
the user to the appropriate page in the application.

 (ST-19) (Navigating from ST-20 to ST-28)

12

Section 4: Functional Requirements Specification

Stakeholders:

1. Internal Stakeholders
a. Developers : The people who have designed the system and decide how and what

requirements to prioritize and fulfill.
2. External Stakeholders

a. Home Owners: The customers who own the homes that have installed our product
for security and protection. They value the reliability, function, cost performance,
and quality of our system.

b. Business Owners: The customers who own businesses like office workplaces that
have our product installed for security and hazard prevention. They value the
reliability, function, cost performance, and quality of our system.

c. Restaurants: The customers who are the restaurant owners that installed our
product into their workplace for everyday security protection. They value the
reliability, function, cost performance, and quality of our system.

d. Institutions: The customers who own an institution such as a school or college
that have our system installed for security protection. They value the reliability,
function, cost performance, and quality of our system.

Actors and Goals:

Actors Type Goal

Users Initiating/Participating To turn on/off the system, download, and use the
application to check the status of all the
appliances

Sensors Initiating To collect various signals and send it to the
Firebase instance

Firebase Server Initiating To store data from sensors

Application Initiating/Participating To receive data from the Firebase instance and

13

alert users about the status of their homes.

To allow users to check the status of their homes.

Use Cases:

Casual Description:

Actor Actor’s Goal (What the actor intends to accomplish) Use Case Name

User To download the application on any Android Device Download(UC-1​)

User To use the application with an Internet connection Connect (UC-2)

User To disarm the system Disarm (UC-3)

Sensor Send a signal when safety or security hazards are detected Signal (UC-4)

App To inform the user which support team to contact in case of an
emergency

Contacts (UC -5)

App To notify the user when there is a leak, stove is left on, and/or an
intruder enters the home, company, etc.

Notify (UC-6)

User To create new accounts to access the system New Accounts
(UC-7)

User To add new sensors to the system Add (UC-8)

User To check the status of all the sensors of the system Check (UC-9)

User To control how often the notifications are sent

Control Alert
(UC-10)

App To notify the user if there is a network error or the signal of the
network is weak

Network Error
(UC-11)

User To unlink user account from the phone application Log Out (UC-12)

14

Use Case Diagram:

User Case 1:​ Download

Related Requirements​: ST-9, ST-14
Initiating Actor​:User
Actors Goal​: To download the application from the Android store and be able to use it on any
Android device
Participating Actor: ​Application
Precondition:​ User has an updated Android device with an internet connection
Postcondition: ​The application successfully downloads and connects to a server via Internet
Flow of Events for Main Success Scenario​:
→ 1. User downloads the application from Android Store
→ 2. User makes an account on the application
← 3. User successfully connects

User Case 2:​ Connect

Related Requirements:​ST-6, ST-12, ST-16
Initiating Actor:​ User
Actors Goal:​ To be able to access the application and receive notifications while away from
home via cellular data or any WiFi.
Participating Actor: ​Server
Precondition: ​The user has cellular data enabled or is connected to some WiFi and has an
account already made
Postcondition: ​The user will be able to check the status of the home and receive alerts
Flow of Events for Main Success Scenario:
← 1. The user connects to the Firebase Server
← 2. The Firebase Server sends data to the application via the Internet
→ 3. The application sends the data received by the Firebase server to the user as a notification

User Case 3:​ Disarm

Related Requirements: ​ST-7
Initiating Actor: ​User
Actors Goal: ​ The ability to view various appliances in your home and safely shut down the

15

notification of the appliance through user’s cellular device
Participating Actor: ​App
Precondition: ​The user, as well as the sensors, are connected to the application.
Postcondition: ​The user has deactivated certain sensors
Flow of Events for Main Success Scenario:
→ 1. The user opens the application and checks specific sensors
→ 2. User clicks on the sensor he/she wants to disable
← 3. The interface has a “disarm” option that the user clicks
→ 4. The user clicks “disarm” and receives a notification stating that the sensor is disabled

User Case 4:​ Signal

Related Requirements:​ ST-6, ST-12, ST-16
Initiating Actor:​ Sensor
Actors Goal:​ To send a notification to the user that informs them when there is a leak, when
the stove is left on, and/or when an intruder enters the home, company, restaurant,etc.
Participating Actor:​ App, User, Server
Precondition: ​The sensors are continuously checking the status of the home
Postcondition:​ A signal is sent to the server, and the user receives a notification via Firebase
Database.
Flow of Events for Main Success Scenario:
← 1. The sensors picks up a signal that there is a change in the system.
← 2. The signal is sent to the Firebase Server
← 3. The application receives the signal from the Firebase Server
← 4. The user is notified through the application

User Case 5:​ Contact

Related Requirements:​ ST-5, ST-15, ST-16, ST-17
Initiating Actor:​ App
Actors Goal:​ Once the app alerts the user about any possible issues, the app will provide the
user with detailed steps on how to solve the issue.
Participating Actor:​ User
Precondition:​ A problem occurs and is detected by the sensor and the user is notified
Postcondition:​ The user is informed and will be able to act accordingly to solve the issue
Flow of Events for Main Success Scenario:
← 1. App notifies user on any possible issues(fire, water leak, gas leak, etc.)
→ 2. The notification is clicked and user is taken to the application
← 3. Depending on the problem, the application will display suggestions on steps to resolve
the issue.

User Case 6​: Notifications

16

Related Requirements:​ ST-5, ST-6, ST-8, ST-9, ST-10, ST-15, ST-16
Initiating Actor:​ Application
Actors Goal:​ Notify the users about any signals that have been picked up by the sensors
Participating Actor:​ User, Server, Sensor
Precondition:​ The User is logged into the App on the Android device, Sensors are properly
connected to the App, User is connected to any WiFi or data network and has notifications on
Postcondition:​ Notification will have enough info for the User to be able to take appropriate
action
Flow of Events for Main Success Scenario​:
← 1. Sensor picks up a signal
← 2. Signal is sent to the Firebase Server
← 3. Firebase Server sends this data to the App
← 4. App will send a push notification to the User

User Case 7:​ New Accounts

Related Requirements:​ ST-11, ST-13, ST-14
Initiating Actor:​ User
Actors Goal​: To create new accounts to access the system
Participating Actor:​ Application
Precondition:​ Having the app on an android phone
Postcondition:​ Multiple accounts can log in to the application.
Flow of Events for Main Success Scenario:
← 1. App displays the login interface.
→ 2. User selects ‘add a new account’ button.
← 3. User fills out information.
← 4. App sends a confirmation email.
→ 5. User confirms account and logs in to the app with the new account.

User Case 8:​ Add

Related Requirements:​ ST-18
Initiating Actor:​ User
Actors Goal:​ To add sensors to the system.
Participating Actor:​ Application, Sensors, System
Precondition:​ Need an account and require the sensors to be properly installed physically
beforehand.
Postcondition:​ The sensor will be able to send alerts to the app.
Flow of Events for Main Success Scenario:
→ 1. User logs in to the app.
→ 2. User selects to add a new sensor.
← 3. System looks for a new sensor signal.
← 4. Sensor connects to the system.

17

User Case 9: ​Check

Related Requirements:​ ST-1, ST-2, ST-3, ST-4, ST-8, ST-9, ST-10, ST-12, ST-13, ST-14
Initiating Actor: ​User
Actors Goal:​ To check the status of all the sensors in the system.
Participating Actor:​ App, Sensors, System
Precondition: ​User must be logged in the app and the sensors must be properly connected.
Postcondition: ​User will be shown the status of all the sensors through the app interface.
Flow of Events for Main Success Scenario:
→ 1. User logs into the app.
→ 2. User goes into the dashboard
← 3. The status of all appliances at home are displayed

User Case 10:​ Control Alert

Related Requirements: ​ST-6, ST-11, ST-13, ST-14
Initiating Actor:​ User
Actors Goal:​ To have control over the notifications that are sent and to control their
regularity.
Participating Actor:​ Application
Precondition:​ App on Android phone, Connected system with other sensors in place
Postcondition: ​Full adaptive control of the notifications sent to the User
Flow of Events for Main Success Scenario:
← 1. User goes to Settings and clicks on the notifications tab
→ 2. User can view each sensor and their notification settings
→ 3. User can toggle on/off notifications for specific sensors that they do not want to view

User Case 11:​ Network Error

Related Requirements: ​ST-6, ST-12, ST-16, ST-17
Initiating Actor:​ App
Actors Goal: ​To be notified in case a network error or weak signal may occur.
Participating Actor: ​User
Precondition: ​App is downloaded and set up on Android phone, Notification system is
properly set up
Postcondition: ​User is notified of a network error, and can take the appropriate steps to
resolve the network connection
Flow of Events for Main Success Scenario:
→ 1. The signal weakens or disconnects
→ 2. The application detects a network error
→ 3. App sends notification to the User

18

User Case 12:​ Log Out

Related Requirements​: ST-11
Initiating Actor​: User
Actors Goal​: To remove the user from the application
Participating Actor: ​Application
Precondition:​ The user downloads the software and is able to successfully log into the system
Postcondition: ​The user is now logged out of the system and is unable to see his/her account
details
Flow of Events for Main Success Scenario​:
→ 1. User goes into the application settings
→ 2. User presses the “Logout” button
← 3. App unlinks the user account from itself and returns to the “User Registration” screen

Traceability Matrix:

Req PW UC
1

UC
2

UC
3

UC
4

UC
5

UC
6

UC
7

UC
8

UC
9

UC
10

UC
11

UC
12

ST1 5 X

ST2 5 X

ST3 5 X

ST4 5 X

ST5 1 X X

ST6 5 X X X X X

ST7 1 X

ST8 4 X X

ST9 5 X X X

ST
10

3 X X

ST
11

2 X X X

ST 5 X X X X

19

12

ST
13

4 X X X

ST14 4 X X X X

ST
15

5 X X

ST
16

5 X X X X X

ST
17

1 X X

ST
18

1 X

ST
19

ST
20

1

ST
21

1

ST
24

3

ST
25

1 X

ST
26

5

ST
27

2

Max
PW

 5 5 1 5 5 5 4 1 5 5 5 1

Total
PW

 9 15 1 15 12 27 10 1 42 15 16 3

20

Fully-Dressed Description:

21

System Sequence Diagrams:

Connect sequence diagram UC-2:

Signal sequence diagram UC-4:

22

Check sequence diagram UC-9:

Network Error sequence diagram UC-11:

23

Section 5: User Effort Estimation:

● Logging into account
1. Navigation: 1 button tap, assuming application is already open, the “User

Registration” screen will be the first thing the user sees.
a. Tap “Already Registered? Sign in here.” button

2. Data Entry: 3 button taps in addition to the button taps corresponding to the length
of the email and password.

a. Tap the “Enter your Email” text field
b. Enter your email address
c. Tap “Enter your Password” text field
d. Enter your password
e. Tap the “Login” button

● Creating a new account
1. Navigation: 0 button taps, assuming application is already open, the “User

Registration” screen will be the first thing the user sees.
2. Data Entry: 3 button taps in addition to the button taps corresponding to the length

of the email and password.
a. Tap the “Enter your Email” text field
b. Enter your email address
c. Tap “Enter your Password” text field
d. Enter your password
e. Tap the “Register User” button

24

● Connecting/Syncing to the network
1. Navigation: 1 button tap, assuming the “Your connected device” screen appears

directly after logging in or registering.
a. Tap “Network Settings”

2. Action: 1 button tap, assuming the network being connected to is the same one the
sensors are connected to.

a. Tap “SYNC NOW”
● Disconnecting from the network

1. Navigation: 1 button tap, assuming “Your connected device screen appears
directly after logging in or registering.

a. Tap “Network Settings”
2. Action: 1 button tap

a. Tap “DISCONNECT”
● Adding a new sensor

1. Navigation: 0 button taps, assuming application is already open and the user is
already logged in, the “Sensor List” screen will be the first thing the user sees.

2. Action: 2 button taps to finish registering a new sensor.
a. Tap the “+” button
b. Tap desired sensor from list

● Disarming Appliance
1. Navigation(1): 2 button taps, assuming application is already on “Sensor List”

screen when the application opened and user logged in or registered
a. Tap sensor that is associated with a specific appliance

2. Action(1): 1 button tap, assuming the appliance is currently on
a. Tap the “Lock mode” button (shuts down appliance)

3. Navigation(2): 0 button taps, assuming a notification appears letting the user
know an appliance is still on

4. Action (2): 1 button tap
a. Tap the “Lock mode” button (shuts down appliance notifications)

● Checking status of a registered sensor
1. Navigation: 0 button taps, assuming application is already open and the user is

already logged in, the “Sensor List” screen will be the first thing the user sees.
2. Action: 1 button tap to open the “Details” screen of the desired sensor.

a. Tap desired sensor from list
● Modifying the notification settings

1. Navigation: 2 button taps, assuming application is already open and the user is
already logged in, the “Sensor List” screen will be the first thing the user sees.

a. Tap the “Settings” button
b. Tap the “Notifications” button

25

2. Action: 1 button tap to modify notification settings of a specific sensor.
a. Tap to toggle notifications for any given sensor

● Logging out of account
1. Navigation: 1 button tap, assuming application is already open and the user is

already logged in, the “Sensor List” screen will be the first thing the user sees.
a. Tap the “Settings” button

2. Action: 1 button tap to disconnect user account from application.
a. Tap the “Logout” button

Section 6: Domain Analysis:

Domain Model:
Concept Definitions

Responsibility Description Type Concept Name

RS1:​ Interacts with all of the subsystems of the home
security system

D Controller

RS2:​ Verifies the credentials of the User in order to get the
User successfully logged into the app

D IDChecker

RS3: ​User interacts with this and enters a UserID and
Password in order to be logged in

K IDEntry

RS4: ​User​ ​opens the main menu of the Status app to check
each sensor status

K StatusDisplay

RS5: ​Responsible for acquiring the status of the sensors by
speaking to the sensors directly

D SensorOperator

RS6: ​Obtains the status of each of the sensors in order to
efficiently display the status to the User

D StatusDisplayList

RS7: ​Alerts the user of a potential problem or security issue K Alert

26

received from the sensor

RS8: ​Notifies the user of a home hazard such as a gas leak,
a water leak, etc.

K Notification

RS9: ​Connects the sensor controller to the application
controller

D Firebase

Association Definitions

Concept Pair Association Name Association Description

Controller ↔ IDChecker Verifies identity Verifies User credentials
when logging into the app

IDChecker ↔ Controller Passes check Passes the success or failure
back to the controller of
identity verification

Controller ↔ StatusDisplayList Obtain/Refresh from
query

Obtain the status display list
in order to efficiently relay
the information to the user

StatusDisplayList ↔ SensorOperator List query Lists all the sensor status
types

Firebase ↔ Controller Connects Firebase server connects the
sensor controller to the
application controller

SensorOperator Request from sensor Requests and obtains the
status of the sensors from the
sensors themselves

Attribute Definitions

Concept Name Attribute Name Attribute Description

Controller numOfAttempts

Used to determine the
number of attempts the user
inputted as identity
verification

Controller listUpdate Updates the lists on the

27

sensor statuses

Controller listRefresh Periodically refreshes the
sensor list with new statuses

Controller receiveStatus Used to receive an incoming
status notification

Controller sendStatus Used to send the notification
to the User

Controller isAlert Determines if the
notification is an emergency
alert

Controller sensorCheck Check the sensors for alers
or notifications

IDChecker validID Matches the ID and
password with an ID -
password combination
already present in the
database

IDChecker sensorRequest User request to check status
of sensors

Notification sendNotify Pushes notification to the
User

App displayStatus Checks to see if the display
is accurately showing sensor
statuses

App isNotify Determines if the
application needs to send out
a notification or alert

App alertStatus Further determines the type
of alert to best help the User

StatusDisplayList loadSensor Responsible for putting the
sensor statuses acquired into
list form

SensorOperator sensorStatus/sensorConnection Distinguishing sensor
statuses as acquired by the

28

sensor

Login and Check:

The login and check domain model of the Home Security and Safety System is shown as
follows. The user is responsible for initiating one of two possible interactions: logging into the
Status app, or opening the main menu of the Status app to check the sensor status. This then
goes through a common controller to check the number of attempts that the user tried to login to
the app with. It then verifies the credentials using an IDChecker entity and if it passes, it obtains
the Status Display List on the dashboard of the Home Security application.

Periodically, the list much refresh in order to display an accurate reading of the sensor
status. This is done by allowing the sensor operator to request an accurate reading from the
sensors themselves. The attributes pertaining to these concepts are as follows: the IDchecker
contains a validID parameter to check a credential match; the controller contains a
numOfAttempts attribute to make sure the user does not exceed a certain number of ID-password
attempts; the Status Display List contains a loadSensor attribute in order to efficiently load
existing sensors; and the Sensor Operator contains a sensorStatus attribute to correctly obtain a
sensor status for the application to list.

Add/Remove Sensor:

Assuming the user is logged into their account, this is how the domain model for
modifying the sensor list works: First the user will indicate which sensor they want to
remove/add. The Controller then updates the StausDisplayList by removing/adding the particular
sensor. Next, the SensorOperator disconnects from/connects to the desired sensor. Finally, the
Controller refreshes the StatusDisplay using the new StatusDisplayList.

29

Regarding the attributes: the UserInput will have a sensorRequest attribute which
indicates to the Controller what sensor they want to add or remove; the Controller will have a
listUpdate attribute which will modify the StatusDisplayList when the user adds or removes a
sensor, as well as a listRefresh attribute which will refresh the StatusDisplay after using the
listUpdate attribute; the SensorOperator will have a sensorConnection attribute which will
establish or destroy a connection to a particular sensor.

System Emergency Alert/Notification:

Assuming the user is logged into their account and connected to the various sensors
through the network, the below diagram represents the domain model for emergency
alert/notification of the system.

The four (4) sensors (water, gas, smoke, carbon monoxide) are all constantly checking for
their respective issues. This data is then linked into Firebase which will be accessible through the
applications controller. The controller manages the data send to and received from the
user-facing application along with the alert system. The controller will send the status of the
sensor to application which in turn determines if the user needs to be notified or not. If so, the
application sends the user a notification. When a user receives a notification, they have the
option of telling the application to alert emergency services (police, fire dept., etc). From there,
the application will send this alert to the controller. The controller then triggers the “isAlert”
function which contacts the appropriate service. Emergency services can then take action from
there in helping the user.

30

System Operation Contracts:

Name: Connect

Responsibilities: This operation must connect the user to the Firebase server through the
app.

Notes: UC-2

Output: A link is established between the App and the Firebase Server.

Pre-Conditions: App already downloaded and installed on the Android device. Account
already set-up.

Post-Conditions: App retrieves the data from the Firebase server

Name: Signal

31

Responsibilities: This operation must send a signal from the sensor to the user by using
the Firebase server and the app.

Notes: UC-4

Output: The sensor is linked to the app by the Firebase. This link allows the
transfer of data.

Pre-Conditions: A sensor is installed and connected to the Firebase server

Post-Conditions: Signal is captured and send from the sensor to the server

Name: Check

Responsibilities: Must update the current status of the sensors and display on the App for
User to view.

Notes: UC - 9

Output: Firebase Server requests status update from the Sensor, and the Sensor
will respond with an updated status.

Pre-Conditions: Firebase Server and Sensor are already connected to each other.

Post-Conditions: Firebase Server will share the updated status.

Name: Network Error

Responsibilities: Must update the user if the sensors are down due to network error/
outage.

Notes: UC - 11

Output: Firebase Server requests status update from the Sensor. After interval,
no response recorded. Firebase Server describes this occurrence as
network error.

Pre-Conditions: Firebase Server and Sensor are already connected to each other.

Post-Conditions: Firebase Server will keep checking with the Sensor during intervals for
an updated status.

32

Section 7: Interaction Diagrams:

User Case 1- Download:

33

User Case 3 - Disarm:

34

In times in which a user does not require the sensor to notify them, they can opt to disarm the
sensor. For this the user will need to go to the sensor user interface in the app where all the
sensors are listed out and are displaying their statuses. Once there the user will select a sensor
and the user interface controller will display a drop down menu. The user will have the option to
disarm or remove the sensor. For our purpose we want to select disarm. This will tell the U.I.
controller to disarm the sensor and return a true value to indicate that the sensor has been
successfully disarmed. While creating the responsibilities I had thought of including another user
interface for the individual sensor’s menu; however, I realized that this could be added to the
existing user interface through a drop down menu. I had also thought of using a display and
touch indicator.

User Case 4 - Signal:

35

This user case allows the application to push a notification to the user once the sensor detects a
signal (or a change).

The sensors will always be on, and periodically loop through the code given to check for signals
in the household. These sensors are directly linked to the firebase database through WiFi. There
are variables set up on the database that are linked to the same exact variables on the sensors.
When the sensors notice a change or a signal, they will update the variable in the firebase to the
correct value. For example if the door is opened, they will update “doorOpenStatus” to “true”
which means that the door is opened. This will then be relayed to the application where the code
in the app will recognize this change and send a notification to the user.

 This would enable to immediately know of a potential hazard and could make a difference in
allowing the user more time in making a decision. The reason this design was chosen was
because it was believed that the inpreted change and appropriate contact listed would be the most
user-friendly option, while also not compromising the user’s time too much. All in all, this
design is both practical and informative for anyone using the service.

User Case 5 - Connect:

36

This user case informs the user of contacts of any of the local businesses that are available in
order to fix the issue that is detected. For example, if the sensor picks up change in water levels
in the basement and detects a flood, a notification will inform the user about the flood and give
details on who to call to fix this issue. For this to happen, the Application Control will first send
the notification to the display of the phone. Through this, the User will be able to interact with
the notification. When clicked, the application control will then use the GPS API to fetch the
data of the local businesses around, which is then displayed onto the phone. The reason this
design was chosen is because the four main objects in all communicate with each other in order
to make for a smooth user interface.

User Case 7 - New Accounts:

37

Creating a new account would require for the user to already have installed the application.
Launching the app will bring the user to the default screen where they have the option of logging
into or creating an account. The user would hit the “Create a new account” button and the Login
UI would notify the UI Controller which in turn presents the user with the registration screen.

The user enters all the necessary information which the Login UI relays to the UI Controller. The
information is brought to the Database Controller which makes sure the information provided by
the user is valid. If it isn’t, the Database Controller returns a false boolean which will notify the
user that an error has occurred, giving them the option to try again. If it is valid, the Database
Controller will return a true boolean which allows the user to access the app’s features. It will
also store all this user’s information in the Database and send a confirmation email to the user
which can be confirmed at anytime.

User Case 8 - Add:

38

To add a new sensor, a user would first click a button on the application, which is where

the user would be able to see all of the sensor information. Because of this, the Application is an
important responsibility. The application will not display anything, however, without a User
Interface Controller to manage the operations needed to display the correct information, which is
why this is another important responsibility. The Sensor is the foundation of our GlassHome
product, which is why it is a major responsibility, and to properly connect to the application, a
Server Controller as well as the Firebase Server is needed to send and receive important Sensor
data. All of the operations between the User Interface, Sensor, and Firebase Server will be
performed by the UI and Server Controllers, which will then display all of the information to the
Application, allowing the User to connect a new sensor and receive its data.

User Case 9 - Check:

39

To check the status of the sensor the user will go to the sensor user interface, here all the

sensors are listed out. From there the user can select the status option and the application will
request it from the UI controller. This will send a signal to the server to update the status of the
sensor. The updated status will be sent back to the UI controller which will update the display to
the new screen dashboard UI for the sensor.

While creating the responsibilities, there could’ve been another UI for the settings.
However, it was more efficient to included it in the sensor UI via the drop down menu.

User Case 10 - Control Alert:

40

To update notifications setting, the user will first select “notifications” on the application.
The application will this request to the UI Controller in which the UI Controller displays the
current notification settings to the user (through the Notifications UI). Now the the user has the
notification status of all the sensors displayed to them, they can now toggle a notification from
on to off or off to on. The application will then tell the database controller this user action and
the database controller will then send an update to the actual database. After that, the database
will acknowledge to the controller that it has been updated. The database controller makes the UI
Controller aware of this update and displayed the updated status of the sensor notification to the
user (again, through the Notifications UI).

User Case 11 - Network Error:

41

In order to have an instant notification the server controller will be constantly requesting

an update from the sensor controller. If the sensor controller doesn’t send back any data then the
server controller will send a network error to the app, which will notify the user that there is a
network error.

User Case 12 - Log Out:

42

To log the user out of the application the user will go to the settings user interface and

select the log out option. The user interface controller will then log the user out of the server. To
notify a successful log out the server controller will return a true value and the user interface
controller will then send the user to the login user interface. I thought of adding a display UI as
another responsibility, however it is more efficient the do it this way because everything is
through the settingsUI and the controllerUI rather than the displayUI. By making it with these
four main responsibilities it will be the most efficient for the application allowing the user to log
out easily.

43

Section 8: Class Diagram and Interface Specification

a) Class Diagram

In this figure, we can break the classes down into three main User Interfaces: New
User/Account, Sensor Interface, and Notification Interface. The class diagram shown illustrates
these interfaces and highlights the necessary usage functions needed in order to get the home
security system running. The application starts off by prompting a login/new account mode.
This then logs the user in and they are presented with a new interface where they can view sensor
statuses (Main Interface) or change their preferences (User Preferences Interface). The sensors
also communicate to the main interface as shown in the diagram by updating their status
periodically for the user to view. This is done in a two-step process: the wifi module first
receives the data from the hardware component in the arduino template, where it then pushes an
alert to the Firebase server. Then, the Firebase server interprets this message and decides a
notification to push to the application relevant to the user account. This then leads to the
notification interface, or the control, where users will receive alerts or notifications that allow the
statuses to be pushed to them with a vibration or sound. The control is also connected directly to
the Firebase server, which is useful for storing the data and receiving new sensor status data.

44

The entire setup can be summarized in these three GUI’s and are necessary for the working
condition of this system.

b) Data Types and Operation Signatures

1)

Username: string
Password: string
Authenticate: boolean
username(): string
password(): string
authenticate(): boolean

Class determines if the user can successfully authenticate and login to the application

given a username and password as input. Login data is sent from the New Account class (shown
next). The supplied credentials from the user will be matched with the stored data to determine if
a match is made. If so, authenticate() will be value True, and it will be value False if the login
does not match. If the login is successful, the user will be able to see their main interface and/or
preferences. If not, the user must try again or create a new account.

2)

Username: string

45

Password: string
Email Address: string
newAccount: void
newUsername(): void
newPassword(): void
storeAccount(): void

Class is used for creating new accounts. A user will enter their desired username,
password, and email address so that the data can be forwarded to Login. newAccount() is
executed when the user initiates creating the new account and storeAccount() is executed was the
account is created and pointing toward a Login class. The other 2 methods/functions are used to
actually adjust the attributes of the class. After creating a new account, the user can try to login
to their account, which was shown in the Login class.

3)

Set Notifications: string
setNotificationInterval: int
turnNotificationsOff(): boolean
turnNotificationsOn(): boolean

Class is used when one wants to adjust their notification settings for the various sensors.

As there as multiple sensors and scenarios a user may or may not want to have a sensor activate,
this screen allows them to toggle between on/off. turnNotificationsOff() will turn off all
notifications for a specific sensor. turnNotificationsOn() will turn on all notifications for a
specific sensor. Additionally, the user has the option to set a notification interval. The set interval
is a period of time in which it checks if a sensor is returning an issue and will send a notification
to the user.

4)

46

Check Door Status: boolean
Check Window Status: boolean
Check Basement Flood Status: boolean
Check Carbon Monoxide Status: boolean
Check Gas Status: boolean
Receive Notifications: string
checkDoor(): boolean
checkWindow():boolean
checkFlood(): boolean
checkCarbon(): boolean
checkGas(): boolean
receieveNotfications(): string

The Main Interface is arguably the most important class. This is the class that is

constantly checking if one of the sensors are being “activated.” The Main Interface will know
who is currently logged in, check to see if the sensors are detecting any issues, and be able to
send notifications to the user when there is a problem (based on their preferences from the
previous class). This class will check for open/closed doors, broken windows, basement
flooding, and traces of carbon monoxide and gas. All of these checks are of boolean type since
they are either “True” which means the issue was detected or “False” which means everything is
how it should be. The “True” values will cause potential notifications to be sent to the user.

5)

47

Sensor Location: string
Data: string
Deactive: boolean
Add Sensor: boolean
getLocation(): string
showData(): string
deactivateSensor(): void
addSensor(): void

Class act as the interface for the various sensors a user may want to have associated with

their account. The attributes list here is the sensor location, the corresponding sensor data, and
the boolean values for Deactivate and Add Sensor. The user will be able to call the
method/functions getLocation() and showData() to show those respective attributes, but they will
also be able to add and deactivate sensors. A user will addSensor() to begin tracking a new
sensor and potentially receive notifications. However, they also have the option to deactivate a
currently active sensor if they wish to longer monitor that specific situation.

6)

Display Notifications: string
showNotifications: string

48

The Notification Interface class is fairly simple; it displays the notification that the Main
Interface sends due to a “True” sensor picking up an issue. A string value will be stored here as
an attribute that will be shown when showNotifications() is called upon.

7)

Receive Data: string
Store Data: string
receiveData(): string
storeData(): string

The Server class is where all of the data associated with the application is stored.

Whether it be the user’s login information, preferences, or current sensor statuses, the Main
Interface will have to speak to the Server to both send AND receive data. All data will be of
string type and the two methods/functions that will be called is receieveData() and storeData().
Having a reliable and efficient server is essential to the entire operation of the application.

8)

Read Data: string
Send Notifications: string
readData(): string
sendNotifications(): string

49

This class is responsible for sending the notifications to the user within the Firebase
server. The control interprets the new data from the user or the sensors and is responsible for
populating the notifications interface, allowing a clean and efficient method of pushing
notifications based on not only the specific sensor (home hazard or home security) but also the
user’s notification preferences set up in the preferences interface of the application.

c) Traceability Matrix (explanation)
As seen in the Class Diagram above, the different classes all interact with each other in

different ways. The Main Interface acts as this sort of “main hub” for the application. Users
create and login to accounts to reach the Main Interface to adjust sensors, change preferences,
and send/receive notifications. While we have already provided specific details regarding each
specific class above, the purpose of this section is to provide a written explanation from a
high-level view on how all of the class work together and “trace” to each other. Since this
application requires sensors to be associated with specific users, consumers must create and login
to an account that is unique to them - this is where the New Account and Login class come into
play. Once there user logins, they will redirected to the aforementioned Main Interface.
Additionally, the user will be able to adjust their preferences (User Preferences) in terms of what
sensors are on/off and notification intervals. The purpose of the Control Class is just to
send/receive data between the Main Interface and the Server. Control acts as a “middleman”
between the two. Finally, Control will also send notifications (Notification Class) based on the
status of the different sensors in Main Interface.

d) Design Patterns
Three Types of Design Patterns:

● Creational Patterns
● Structural Patterns
● Behavioral Patterns

Creational Patterns are patterns that create objects rather than having the user create an
objects directly.

Structural Patterns deal with class and object composition. They use inheritance to
compile interfaces and define ways to compose objects to obtain new functionality.

Behavioral Patterns deal with the interaction and communication between objects.
Our project design is mainly behavioral. The whole premise of GlassHome is to lay

sensors out around the house or building and allow them to communicate with the app to
recognize and potential dangers, threats, break ins or any other emergencies. As a result there is
an interaction between multiple objects resulting in a more behavioral pattern.

50

e) Object Constraint Language (OCL) Contracts
The classes we are using are: Login, User Preferences, Control, New Account, Sensor
Interface, Notifications Interface, and Server. There are some invariants, preconditions,
and postconditions which we should consider for each class. We broke this down into
three main GUI’s: New User/Account, Sensor Interface, and Notification Interface. We
can break down the Invariants, Preconditions, and Postconditions for these three user
interfaces first:
New User/Account:

Invariants:
- The user enters a valid email address and password String that is

not already in the database.
- “Create Account” Button
- “Username” and “Password” Strings

Preconditions:
- The user does not have a string stored in the database for their

account.
Postconditions:

- The user successfully enters a username and password and creates
an account.

- The string that the user enters will get saved and sent to the server
to be used in the database

Sensor Interface:
Invariants:

- Sensors are properly connected and powered on.
- There is an internet connection to access the server
- Wifi SSID and Password are coded into the Sensors

Preconditions:
- The user wants to view sensor information on their application.
- The user clicks a Sensor

Postconditions:
- The database collects the sensor information and sends it to the

application
- Sensor information is displayed on the dashboard in a TextView

format
Notification Interface:

Invariants:
- Notification channels are created in the Android Code
- Notification actions are coded for each notification

Preconditions:

51

- Notifications are allowed on the cell phone for GlassHome
Postconditions:

- Notification channels send notifications when data has changed

Classes:
Login:

Invariants:
- “Log in” Button created
- Username and Password Strings are not empty
- Firebase UID created for user

Preconditions:
- User’s information is stored in the server and database

Postconditions:
- The Username and Password Strings locate user’s UID and open

their account
User Preferences:

Invariants:
- Notification Classes are created
- String is created for specific sensor
- Notification Switch button connected to database

Preconditions:
- Notification classes and channels are connected to the server
- Notifications are allowed on Android phone

Postconditions:
- The user can change settings
- String is sent to change the Boolean value to True/False based on

user’s personal settings
New Account:

Invariants:
- User does not have a firebase UID created

Preconditions:
- User does not have account stored in Database

Postconditions:
- Username and Password Strings sent to database
- User’s UID stored in server for authentication

Sensor Interface:
Invariants:

52

- Wifi SSID and Password are coded into the Sensors
Preconditions:

- The user clicks a Sensor’s TextView
Postconditions:

- Sensor information collected from database and displayed in a
String

Notifications Interface:
Invariants:

- Notification channels are created in the Android Code
- Notification actions are coded for each notification

Preconditions:
- Notifications are allowed on the cell phone for GlassHome

Postconditions:
- Notification channels send notifications when data has changed

53

Section 9: System Architecture and System Design

a) Architectural Styles
Our product GlassHome is structured to have multiple tasks and functions simultaneously

running in parallel. Each part of our system works independently on its unique functions, and
then sends the data collected to our server. To make this development manageable, we have
multiple people working on the different parts of this system so that everyone is able to work on
a crucial step. Our GlassHome system can be divided into three main parts: the Sensor, the
Firebase Server, and the Mobile Application. The architectural styles needed to ensure smooth
functioning of our product are:

a) Event Driven architecture
b) Database architecture
c) Client and Server Architecture

Our system interacts with itself through its ​Event Driven architecture​. The output that a

user receives on his/her mobile application is based on what information is detected, produced,
collected, and sent by the Sensor, Firebase Server, as well as Mobile Application. The sensors
can detect a change in movement or a door opening/closing. This will trigger the sensor and will
cause it to send a signal to our Firebase Server, which will then send the data to the Mobile
Application. The user will receive a notification when an event occurs due to each part of the
system working together based on the specific event that occured.

Since there are many unique functions which must operate in parallel with one another
and process the same information, each component of the system must be able to communicate
with the other subsystems. Data must also be stored for and sent to the correct user. This is where
we need a ​Database architecture​. A user will first register his/her account on GlassHome, and
this information will be stored in our Firebase Server and Database. The Sensors that the user
adds to his/her device will also be sent to the Server and Database in order to collect the
information as well as store it for both safety and management reasons. Private home
information as well as account information will be stored in the database, which is why it is a
crucial architecture that needs to be implemented in order to have a successful and user friendly
product.

The ​Client and Server Architecture​ is what will allow proper communication between the
user and the Sensor information as well as Application notifications. In our system, we want
different users to be able to access similar information and feel connected to the sensors, which
are connected to the Firebase Server. We want to create a Client and Server Architecture to allow
the user to have access to all of the features included in GlassHome. After the user inputs their

54

relevant information, it is the server’s job to process all of the information given in order to
display what the user needs.

b) Identifying Subsystems
Users with interact with our GlassHome system from the mobile application.
There are many subsystems, however, that allow GlassHome to provide the
proper information to every user.

- The first subsystem is the User - Sensor subsystem. The user first interacts
with when buying the product in order to set up the monitoring and
security system. It includes functions such as sensor setup, detection, and
sharing data with the Server subsystem.

- The second subsystem is the Firebase Server, which will directly interact
with the Sensors and Mobile Application, and with the user indirectly.
This will hold all of the data sent by the Sensors as well as user
information. The server will also be the middle child in our subsystems,
sending data to and from both the Sensors as well as the Mobile
Application.

- The third subsystem is the User - Mobile Application subsystem. This is
what the user will use to view all of his/her information, as well as
perform functions such as view sensor information, add/disable sensors,
turn on/off notifications, view emergency contact information, and much
more. This is one of the most important subsystems because it will allow
GlassHome to work directly with the user. The network protocol would be
HTTP.

- UML Package Diagram:

55

c) Mapping Subsystems to Hardware

Our system will require running on multiple computers to work successfully. As
mentioned previously, our key subsystems include a user running our application, sensors
set up wherever our client desires (home, workplace, etc.), and some sort of a
server/database that will connect everything together.

The mobile application subsystem will run on a smartphone. Right now, we’re
developing exclusively for android devices. These devices are built to connect to the
internet and so connecting to the server/database and sensor subsystems should be
possible.

The sensors subsystems will run on sensors we build for our customers. They will
be built on arduino boards and will have wifi modules installed. This will allow for
successful communication with the other subsystems.

The server/database subsystem will run on Firebase. Firebase offers services that
will allow us to store the data of our customers as well as relay this data along with data
from the sensors between the other subsystems.

56

d) Persistent Data Storage
Glass Home requires a very simple storage of database. One case is the constant

storage using the login and logout features. When a user requests for an account log in or
logout the system will send this information to the server and compares it to the data that
was saved in the database. The database that will store all this information is very simple
and can be stored in a table such as the one below:

ID# Name Username Password Login Attempts

1234 John Smith Smith123 12345 0

2345 Michael Brown MBrown245 12345 0

3456 Sarah Miller Miller!182 12345 0

In the table above the database stores the login username and password that the

user was able to successfully create. When the user creates an account, the system will
create an ID number for the user and store the information within that ID number. Things
such as the user’s full name, password, username, and the number of failed login attempts
are saved.

We have other important datas that will need saved into the database. Such

keeping a history of all the actions and a live feed recording from the cameras installed.
Under each ID number, the user will be able to see the full history of the sensors. One
such is if the motion sensor picks up that there was movement, the camera will pick up
and start a recording. This data is then send to the database and saved there. The time and
the date of the event will also be recorded as well. An example of this database can be
shown in the table below:

ID# Sensor ID Status Report Status

1234 1111 online Viewed

1234 1112 online Not Viewed

1234 1113 online Viewed

This table shows the database of all the sensors and shows if the sensor is on or off.

Essentially this shows the status of all the sensors.

57

ID# Sensor ID Time Message Footage

1234 1111 1/10/19 @ 12:40 AM Movement detected Not Viewed

1234 1112 2/11/19 @ 1:30 PM Water hazard detected Not available

1234 1113 2/21/19 @ 3:45 PM Sensor successfully
installed

Not available

This table shows the history alert history of all the sensor. If a motion sensor detects

movement it will be recorded and the time as well as a footage of the event will also be recorded.

As we can see, the three databases are all related to each other, we can conclude that this

is a relational database to organize all three of the tables together. The logic relationship of the
three database table can be shown below:

58

e) Network Protocol
Our system, GlassHome, runs on multiple machines working together coherently.

This includes the sensors, the Firebase server, and the mobile application. The sensors
receive various signals from around the house (water leaks, gas leaks, doors open, etc.).
Once they pick up a specific signal, they send this data through the WiFi module to the
Firebase server which then sends the notification to the mobile application. Since the
system works simultaneously with multiple parts, communication between the three is
very important. To understand this we can look at what network protocols are in use.

Our system uses the ESP8266 WiFi Module for Arduino coupled with the

sensors, in order to create a line of communication from the sensors to the Firebase
Server over the internet. There are multiple protocols within this connectivity, called the
stack of protocols. This stack has multiple layers that are important in order to connect
and communicate with the other objects in the system:

● The Link Layer​ : This layer contains the physical link between two devices. In
our system, this is done using a WiFi connection. Once the WiFi link is
established the ESP8266 is part of the local area network (LAN) and can
communicate with all devices on the LAN.

● The Internet Layer​ : Every device on the network has a personal Internet Protocol
(IP) address. This allows each sensor to send a message to a specific address. The
ESP uses these IP addresses to know where it should send the data. With this
layer, it is possible that the device can send packets over the internet.

● The Transport Layer​ : The transport layer in the ESP8266 uses a protocol called
Transmission Control Protocol (TCP). This protocol makes sure that all packets
are received, and that the packets are in order, and that the corrupted packets are
re-sent. It solves the issue of any corrupt packages sent and checks that everything
is in order.

● The Application Layer​ : The application layer is mainly for understanding the
language that the data is sent through. We use the HyperText Transfer Protocol
(HTTP) in this layer in order to communicate. It uses text to perform requests and
interpret responses from the client to the server and back.

Representation of the TCP/IP Stack in the ESP9266 WiFi Module:

59

f) Global Control Flow
Event driven system: An event can be described as a significant change in state. Our
system GlassHome monitors the house continuously and is always checking to see
whether there is a case of an event through the sensors, which are laid out throughout the
home, building, restaurant, etc. When combinations of sensors are triggered GlassHome
sends a notification to the user and also depending on the situation notifies any
emergency hotline. Considering that our system is an event driven system our system is
of an event response type.

g) Hardware Requirements
Our system relies on several different sensors, an arduino board to connect them to, a wifi

module to connect to the WiFi, and a stable internet connection.
Sensor Requirements:

● Hazard Prevention : Carbon Monoxide Sensor, Water Sensor, Smoke Sensor, Gas Sensor
● Home Security: Motion Sensors coupled with Sound Sensors, Magnetic Read Sensors

The sensors included will detect various signals around the house and send these signals to the
real time firebase database using the Arduino and the NodeMCU WiFi module. The signals
include, open/closing doors, gas leaks, floods, window breaks, as well as carbon monoxide leaks.

Hardware Requirements:

● Arduino UNO
● NodeMCU WiFi Module

The NodeMCU will connect the sensors to the firebase and send real time updates when turned
on. This is paired with the arduino and connected to the sensors to pick up the signals. The
NodeMCU will be connected over a stable WiFi connection supplied by an access point or
router.
Examples of Sensors:

60

The application interface is downloadable on an Android Smartphone, updated to the current
version of Android OS. There are no restrictions on screen resolution and it will require minimal
space to install, (<15 Mb).

Section 10: Algorithms and Data Structures
a. Algorithms

The current plan for our project will not make use of any specific algorithms. The

only algorithms that ​may​ come into play later on in the project is searching (for logins

and hash keys). In those situations, the complexity will be O(n).

b. Data Structures

Our project will make use of a few data structures to store information. First, the

database is essentially a collection of tables that can be accessed to obtain a various

information. Information includes attributes such as username/login, password (would

have to encrypt), email address, phone number, etc). The other idea is to use Hash Tables

to store user objects in. A user object will have many off the above attributes all stored

and accessible via unique hash key. Hash Table will be used within the application itself

while the database will always be up and running regardless if the application is or not.

Our final report will have more in-depth details regarding the data structures that were

61

used in the process. We must fully expose ourselves to building the application to know

what other data structures may be needed along the way.

Our decision to work with Firebase was made because of the platform’s

compatibility with our ideas and flexibility. It made sense to use Firebase as it is a

Google product and we are developing for Android devices; the two go hand in hand.

Beyond this, Firebase provides us with not only the data structures we needed but the

server we wanted to use to bridge together the application and the sensors. The

alternative would be to use two platforms that each do one of these things, but in an effort

to work smarter, not harder, using only Firebase should make our application and sensor

integration a much smoother process.

Section 11: User Interface Design and Implementation

Use Case:​ New Accounts.

62

To create a new account, a user can open the application once it is downloaded and click
“Not Registered? Click Here”. This will direct the user to the same page, but instead of the Sign
In option, the user will be able to register an account. After this is done, the user can log in with
an Email and Password as shown above. We have modified this from our previous version by
adding a feature to create accounts, and sign in all on the same page.

Use Cases:​ Check (Status), Log Out.

This is the dashboard where the user can check the status of the different home
appliances by clicking on the specific button. Once clicked, the user will be directed to a page
showing all of the information for that specific sensor and area of the home. We have modified
this by adding specific areas of the home that the user can click to see more information for.

63

Once the user installs sensors, he/she will also be able to customize this page to view different
information.

The user will also be able to log out by clicking on a tab on top of the application which
is not visible, until clicked. This will give them an option to go to a different page or log out.

Use Cases​: Add, Disarm

This use case allows the user to quickly add a new sensor to their set of existing sensors,
or to add their first sensor to the list. Once logged into the application, a list (empty at first) will
be presented to the user, and the user can click on the “three dot” drop down menu to be
presented with a list of pages. The user can then click on “Settings” and subsequently press
“ADD SENSOR”. The user will then be presented with a new screen that scans the existing
server and lists all possible sensors that the application can connect to. In order for this to work,
the user must be in range of the sensor and both the application and the arduino module must be
connected to the same WiFi network. Once the user clicks the appropriate sensor they want
connected, the screen will present the user with a “Connect” or “Not Connected” status. Users
can then repeat this process for multiple sensors or keep any amount of sensors they already
registered.

In order to disable a sensor, the User could go through a similar set of steps in order to
get to the settings screen but instead of clicking “ADD”, they can click “DISABLE”. This would

64

present the user with a list of already connected sensors to the application, and they can click on
one of them in order to disarm a sensor from their dashboard. The user can repeat this process
for any number of sensors they had connected.

Use Case​: Contact

In this User Interface, the user can view a map of nearby businesses as well as the contact
information for these locations. In order to access this section, the user can go to the “3 dot
menu” and select “Map”. From there, a color-coded pinpointed location of certain particularly
useful selection of businesses and help information will be presented to the user. More
specifically, based on the user’s home location, nearby businesses based on a certain radius are
going to be listed. If the user clicks on one of the pinpoints, a popup explaining the name, contact
info, and services of the particular business will be displayed. The user then has the option of
moving on to another business or writing down the contact info of this particular business in
order to call them.

65

Section 12: Design of Tests
A) This test we will attempt to connect our sensors with a server for our own app. The

sensor we plan on testing is the gas testing or door alarm.
B) The gas testing we will see if the sensor will be triggered by a gas leak and then send an

alert to the user. Similarly with the door alarm, once the door is open or triggered, there
should be a signal that travels to the server and then to the application which will send an
alert notification.

C) For the tests we will attempt to break the sensor and see if there will be connectivity with
the server and application to send an alert notification.

Unit Testing:

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC - 1

UC - 1 (Disarm)

-Test passes if disarm option is clicked and
notifications stop

-Disarm option (in sensor settings)

Test Procedure: Expected Result:

Step 1: Select sensor to disarm

Step 2: Select disarm setting

Step 3: Trigger sensor to see if notification is
sent through

Application shows the sensor options and
status

Application stops sending the notifications to
the phone

No notification is sent to the user’s phone

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

TC - 2

UC - 2 (Signal)

-Test passes if a sensor sends a signal through
WiFi to the database and the database records
this change when an event occurs

66

Input Data: -Sensor Signal

Test Procedure: Expected Result:

Step 1: Create a triggering event for any
sensor

Step 2: Check to see if the database receives
and records this change

Sensor sends the signal to the database

The database updates in real time to show the
current signal

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC - 3

UC - 3 (Contact)

-Test passes when the user is notified and
recommended a list of correct local businesses
to resolve the issue detected by the sensor

-Sensor Signal

Test Procedure: Expected Result:

Step 1: Create an emergency situation by
triggering sensors

Step 2: Click on recommended businesses

User is sent a notification to alert about the
situation

App analyzes the change in the database and
lists possible local businesses to resolve the
situation

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC - 4

UC - 4 (Notifications)

-Test passes when an event is recorded by the
sensor and a notification is sent to the user’s
phone

Sensor Signal, Database Change

Test Procedure: Expected Result:

67

Step 1: Create a triggering event

Step 2: Check phone

Sensor will send a signal to the database to
record a change

The change in the database will trigger the
application to send a notification to the user

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC - 5

UC - 5 (New Account)

-Test passes if user can create a new account
and is able to log in with that account.

-Username, Password

Test Procedure: Expected Result:

Step 1: Type in a username and and a
password

Step 2: Log into new account

System saves account information into
database.

System checks to see if the username and
password are correct; if correct, user is logged
into the account.

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC - 6

UC - 6 (Add)

-Test passes if a new sensor is added and
shows up on the dashboard of the application

-Sensor signal

Test Procedure: Expected Result:

Step 1: Add a new sensor to the account

Step 2: Check sensor list to see if the sensor
has been added

System saves the new sensor to the accounts
database.

Sensor is shown in the list of sensors under that
account.

68

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC - 7

UC - 7 (Check)

-Test passes when user checks a certain area of
the house and sees the real time status of each
sensor in that particular area

--Select Sensor UI

Test Procedure: Expected Result:

Step 1:User selects the sensor UI and
chooses an area of the house

App shows the sensor UI and lists the sensors
in that particular area as well as the real time
status of each sensor.

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC - 8

UC - 8 (Network Error)

-Test passes when app senses a loss in network
connection and sends a notification

-Lack of data from database

Test Procedure: Expected Result:

Step 1: Disconnect sensors from WiFi

Step 2: Disconnect app from WiFi

App recognizes a lack of data being sent from
database of particular sensors and notifies user
that those sensors are offline.

App recognizes no connection to database and
sends user a notification.

69

Test Case Identifier:

Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC - 9

UC - 9 (Log Out)

-Test passes when user selects the log out
button in settings and is brought to the log in
UI

-User Input (Click Logout)

Test Procedure: Expected Result:

Step 1: User clicks Log Out in settings App sends user to the log in UI

Test Coverage:

Acceptance Tests:

● Acceptance tests focus on the “big picture” or the system as a whole. For our system in
specific, acceptance tests show us that the system as a whole is coherently working
together. Each individual part of the system has its own functionality that combines to
make a fully functional system.

○ TC - 3 (Contact) - App must analyze the combination of signals to list out correct
businesses to contact

○ TC - 4 (Notification) - The app relies on information from the sensors as well as
the database for this task

○ TC - 7 (Check) - The app relies on the information from the sensors and the
database for this task

Unit Tests:

● Unit tests test focus on the “individuality” or the details of each component of the system.
For our system in specific, unit tests show us that each component of our system is
working as it should be on its own.

○ TC - 1 (Disarm) - Must check each individual sensor to see if they are being
disarmed when selected

○ TC - 2 (Signal) - Must check each individual sensor to see if they are sending a
signal when an event occurs

○ TC - 5 (New Account) - Adding a new account adds to the overall functionality
○ TC - 6 (Add) - Adding a sensor is a component of the bigger functionality
○ TC - 8 (Network Error) - Checks for WiFi, and adds to the bigger functionality
○ TC - 9 (Log Out) - Logs out of the account and adds to the overall functionality

70

Integration Testing:
Integration testing is a level of software testing where individual units are combined and tested
as a group. The purpose of this level of testing is to expose faults in the interaction between
integrated units. For our system there are 3 key integrations that must be tested.

The first is the integration between all the sensors, the database and the app. This must be
flawless as we want the user to have a real time alert for emergency situations. If the app is not
optimized to be quick and reflexive then our system is failing in providing the user a sense of
safety for their home. In order to test this we must rigorously test each sensor individually and
confirm that the interaction between them and the database is perfect. Then we must test the
interaction between the app and the database and see if the data is being read properly. This
ensures that the reactivity of the whole system is how we want it.

The second is the integration between different types of sensor signals. The app must be able to
make an accurate prediction of what type of situation is occurring and also provide key numbers
to call in case of emergencies or even smaller problems in the home. In order to test this we must
trigger multiple sensors at the same time or in a reasonable span of time. The app must then be
able to read these various signals and predict what type of situation is going on and then
recommend the proper emergency contacts, or in the case of a non-emergency problem a proper
business, to resolve the problem.

The third key integration is the interaction inside of the app and between the settings of the
sensors. The transition from one UI to another UI as well as the interaction between UI’s and the
sensors, should be without as much lag as possible so that the user can have a smoother
experience.

71

Section 13: History of Work

● Application Development
○ We used Android Studio to build a fully functional application that includes

log in functions, log out functions, a real time dashboard, lock mode,
notifications and user settings, as well as a google maps API.

■ The application is linked to a google firebase database, which
allows for storage of user information as well as sensor variables.

■ The application retrieves and validates these variables from the
database to show on the dashboard.

■ The user settings allow for the user to create new users, and log
out from the account as well as manage accounts

■ The notification settings allow for the user to change the frequency
of the notifications, turn off/on notifications

■ The lock mode allows for the user to set a time period where
notifications are automatically turned on.

■ The dashboard shows the real time status of multiple sensors
around the house

■ The google maps API currently shows the location of the user

Future Developments:
○ We are working on including multiple user accounts that each connect to

separate sensors
○ We are working on the notifications being sent as soon as a sensor

detects a signal
○ We are working on the map tracking the user’s location and automatically

turning the lock mode on when they leave a specific radius of the house
● Sensor Development

○ We used Arduino IDE to build and program our sensors. The main part
that we had used for all our sensor designs was the nodeMCU chip. It
provides WiFi capability and GPIO pins to be used with other Arduino
sensor chips.

■ We were able to use the Magnetic Reed Sensors to signal if the
Front Door or Garage Door are open or close

■ We were able to use an Air Quality sensor to detect if the gas
levels within the home are not safe

■ Our biggest accomplishment with this is the task of uploading this
to our Application in real-time by uploading the change in data to
Google Firebase database

Future Developments:

72

- We are adding Window protection with a motion detector and
frequency sound detector

- We are adding Carbon Monoxide sensors and Fire Sensor
- We are adding a camera with a live feed to check the status of the

house when the notification is sent or detection is noticed by the
camera

Section 14: References:

● Software Engineering Fall 2013 project - Voice Control Based Home Automation System
● Software Engineering Spring 2012 project - autoHome
● https://www.lucidchart.com/
● https://app.productplan.com/CugVKlXI#
● https://www.romanpichler.com/blog/10-tips-creating-agile-product-roadmap/
● https://blog.asana.com/2018/08/product-roadmap-tips-templates/
● https://www.ece.rutgers.edu/~marsic/Teaching/SE/proposal.html
● https://www.ece.rutgers.edu/~marsic/Teaching/SE/report1.html
● http://www.cs.ucc.ie/~adrian/cs560/UML4%20SysSeqDiag%20Contracts.pdf
● https://www.androidcentral.com/sites/androidcentral.com/files/styles/xlarge/public/article_images

/2016/02/fitbit-add-add-device.jpeg?itok=VdWTM11N
● https://lh3.googleusercontent.com/FIC7m61Z9oZFV0w6hO1NzfgrY-ZCF8fx-jpSU28lbKGC8Ax

Cji-_NdySTV_P-TrIxc8=h310
● https://cdn57.androidauthority.net/wp-content/uploads/2015/09/Screenshot_2015-09-14-17-59-06

.png
● https://en.wikipedia.org/wiki/FURPS
● https://app.productplan.com/CugVKlXI#
● https://www.romanpichler.com/blog/10-tips-creating-agile-product-roadmap/
● https://blog.asana.com/2018/08/product-roadmap-tips-templates/
● https://www.ece.rutgers.edu/~marsic/Teaching/SE/report2.html

● https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.

2F_Patterns

● http://www.uml.org/

● http://softwaretestingfundamentals.com/integration-testing/

73

https://www.lucidchart.com/
https://app.productplan.com/CugVKlXI#
https://www.romanpichler.com/blog/10-tips-creating-agile-product-roadmap/
https://blog.asana.com/2018/08/product-roadmap-tips-templates/
https://www.ece.rutgers.edu/~marsic/Teaching/SE/proposal.html
https://www.ece.rutgers.edu/~marsic/Teaching/SE/report1.html
http://www.cs.ucc.ie/~adrian/cs560/UML4%20SysSeqDiag%20Contracts.pdf
https://www.androidcentral.com/sites/androidcentral.com/files/styles/xlarge/public/article_images/2016/02/fitbit-add-add-device.jpeg?itok=VdWTM11N
https://www.androidcentral.com/sites/androidcentral.com/files/styles/xlarge/public/article_images/2016/02/fitbit-add-add-device.jpeg?itok=VdWTM11N
https://lh3.googleusercontent.com/FIC7m61Z9oZFV0w6hO1NzfgrY-ZCF8fx-jpSU28lbKGC8AxCji-_NdySTV_P-TrIxc8=h310
https://lh3.googleusercontent.com/FIC7m61Z9oZFV0w6hO1NzfgrY-ZCF8fx-jpSU28lbKGC8AxCji-_NdySTV_P-TrIxc8=h310
https://cdn57.androidauthority.net/wp-content/uploads/2015/09/Screenshot_2015-09-14-17-59-06.png
https://cdn57.androidauthority.net/wp-content/uploads/2015/09/Screenshot_2015-09-14-17-59-06.png
https://en.wikipedia.org/wiki/FURPS
https://app.productplan.com/CugVKlXI#
https://www.romanpichler.com/blog/10-tips-creating-agile-product-roadmap/
https://blog.asana.com/2018/08/product-roadmap-tips-templates/
https://www.ece.rutgers.edu/~marsic/Teaching/SE/report2.html
https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
http://www.uml.org/
http://softwaretestingfundamentals.com/integration-testing/

Project Management:
Compiling everyone’s work to ensure consistency, uniform formatting, and appearance

for our report brings up many issues. But to avoid these issues and keep up efficiency, we first
started by dividing up the workload early on. We used Google Drive folder shared with all team
members. This way everyone had access to everyone else’s work. And during the final
compilation, all parts were easily accessible by one sole group member to put together and
submit.

During the beginning of the week, we would have a group meeting where we would
discuss the status of our project, what we were working on currently, challenges we faced thus
far, and what we wanted to accomplish next. Afterwards, we would look at the sections and
sub-sections that are apart of the report this week, and divide them up to groups of team
members. If some sections seemed to be more work, we would assign more team members on
it. This way, the work was dispersed evenly. We would also assign a personal deadline, around
mid-week, so we had enough time to account for any issues/ problems that may have arised.
This also made the contribution breakdown easy to know what each team member had done.

Near the end of the week and before the weekend, we would have another meeting and
take a look if everyone had completed the parts that were assigned. If not, they were directed to
do so as soon as possible. On Saturday or Sunday, the final submission document was put
together with the cover sheet, contribution breakdown table, table of contents, project
management, and references. The other group members would be notified that the final
document has been put together and to be revised for any errors or for any incomplete parts.

This organized system our team has been following has not only made our weekly report
accurate, but efficient and timely as well.

Before Demo 1:
We have 9 group members, so we have broken each of us into 2 teams; Hazard

Prevention team and the Home Security team.
- Hazard Prevention: Shaan, Shivum, Andy, Nathan, Kyle
- Home Security: Harshil, Adarsh, Avi, Parth

This is our original plan, currently we have broken up our work based on interest.
Shaan, Nathan, and Kyle have narrowed into App Development using Android Studio.
Harshil, Adarsh, and Avi have narrowed into Sensor Design using NodeMCU.
Parth, Shivum, and Andy have narrowed into Sensor Design using Raspberry Pi to
implement the Raspberry Pi Camera.
We are using the Google Firebase to link all aspects of this project together so we are all
in communication with each other. All groups working on each of these concepts are in
charge of the integration.
Before Demo 1:
We then split up our team once more.
Home Security:

- Window Protection: Harshil, Adarsh

74

- Live Feed/ Camera: Kyle
Hazard Prevention:

- CO, Fire/ Heat: Nathan, Andy
App:

- Multiple Users: Shaan, PJ, Avi
- Notifications: Shivum, Shaan

With these mini group assignments, it was easier to work in pairs and concentrate on a
smaller, more specific, task to be done for the next demo. Our weekly meetings helped
everyone stay motivated and at a timely pace.

75

