Software Engineering - Spring 2019

Report 2

GlassHome

Group 12

Harshil Parekh, Adarsh Gogineni, Shivum Mehta, Shaan Parikh, Andy Guo,

Avi Patel, Nathan Silva, Parth Patel, Kyle Abed

March 17, 2019

sites.google.com/scarletmail.rutgers.edu/softwareengineeringspring2019/

14:332:351 Software Engineering Report 1
Department of Electrical and Computer Engineering
The State University of New Jersey,

Rutgers

https://sites.google.com/scarletmail.rutgers.edu/softwareengineeringspring2019/

Contribution Breakdown of Report 2

Responsibility Harshil | Adarsh Shivum | Shaan | Andy Avi Nathan | Parth Kyle
Parekh | Gogineni | Mehta | Parikh [Guo Patel Silva Patel Abed

Project Management 26.11% | 17.78% 15% 26.11 8.33% 6.67%
%

Section 1: Interaction 11.11% | 11.11% 11.11% | 11.11 11.11% [11.11% | 11.11% | 11.11% | 11.11%
Diagrams %

Section 2a: Class Diagram 100

Section 2b: Data Types and 100
Operation Signatures

Section 2¢: Traceability Matrix 100

Section 3a: System 100
Architecture and System
Design

Section 3b: 100

Section 3c: Mapping 100
Subsystems to the Hardware

Section 3d: Persistent Data 100
Storage

Section 3e: Network Protocol 100

Section 3f: Global Control 100
Flow

Section 3g: Hardware 50 50
Requirements

Section 4: Algorithms and Data 50 50
Structures

Section 5: User Interface and 50 50
Implementation

Section 6: Design of Tests 45 45 10

Section 7: Project Management | 50 50
and Plan of Work

Table of Contents

1. Section 1: Interaction DIagramsoeitiiiiitiii i 4
2. Section 2: Class Diagram and Interface Specification....................coooiiiiiiiiniian. 14
2.1, Class DIa@ramooueiiiiii e e 14
2.2. Data Types and Operation SIgNature............coevveenirniniinieeininnineeinineenene 15
2.3, Traceability MatriX.ovuiineiiii i 20
3. Section 3: System Architecture and System Design.............ccoovviiiiiiiiiiiiiiinnn... 21
3.1 Architectural TYPES ...ouviei ittt 21
3.2, Identifying SUDSYSLEMSeiuiintiittitie e 22
3.3. Mapping Subsystems to Hardwarec..cooiiiiiiiiiiiiiiii 23
3.4. Persistent Data StOrageoovviiiiiiiiii e 24
3.5, Network Protocolo 26
3.6. Global Control FIOWouiniiiiii e 27
3.7. Hardware ReqUIr€mentscoueiuuiiuiinimiii i 27
4. Section 4: Algorithms and Data Structurescoooeiiiiiiiiiiiiii e, 28
4.1, AIGOTIRMS ..ot e 28
4.2, Data SIFUCTUIESentettt et et eaeen 28
5. Section 5: User Interface Design and Implementationcooooiiiiii, 29
6. Section 6: Design Of TestSoouiiiiii e
33
7. Section 7: Project Management and Plan of Work ... 39

7.1. Merging the Contributions from Individual Team Members 39

7.2. Project Coordination and Progress Reportoooiiiiiiiiiiiiii . 39
7.3, Plan of Work ... 40
7.4. Breakdown of Responsibilitiescoviuiiiiiiiiiiiiiiiiiiiieieieaee 41
REfETENCES .. .ot 41

Section 1: Interaction Diagrams:

User Case 1- Download:

3 Database
User Android App Store Application Login Ul Ul Controller e Database
Download Application
Dawnload
Application
Start App
Default Screen ol
Create New User
-
functionSelect(createUser)
displayUl{createUser)
Enter User Info U
-
createAcct(userinfa) &
-

validUser{userinfo)

return(False)

A

DisplayError()

return(True)

displayMainMenu() createlUser(userinfo)

**Planning to Remove this Use Case **
User Case 2 - Connect:
**Planning to Remove this Use Case **

User Case 3 - Disarm:

User

select Ul

Sensor U.I

select sensor

select disarm

U.l. Controller

sensorselect(sensor)

\j

display(sensorMenu)

functionselect(disarm)

\

return(TRUE)

\J

In times in which a user does not require the sensor to notify them, they can opt to disarm the

sensor. For this the user will need to go to the sensor user interface in the app where all the

sensors are listed out and are displaying their statuses. Once there the user will select a sensor

and the user interface controller will display a drop down menu. The user will have the option to

disarm or remove the sensor. For our purpose we want to select disarm. This will tell the U.I.

controller to disarm the sensor and return a true value to indicate that the sensor has been

successfully disarmed. While creating the responsibilities I had thought of including another user

interface for the individual sensor’s menu; however, I realized that this could be added to the

existing user interface through a drop down menu. I had also thought of using a display and

touch indicator.

User Case 4 - Signal:

User Ul Controller Server Controller Sensor

Change is
detected

A

Change is notified

Change is
interpreted

A

Change is notified

A

Natification is sent

%

\J Y A/ Y

This user case allows the application to push a notification to the user once the sensor detects a
signal (or a change). A signal is sent to the server of the application, and the user is subsequently
notified. This diagram is designed in a way that allows the user to be identified almost
immediately of any change that occurs with the sensors themselves. In our case, the ‘change’ is
interpreted by the server controller and is then implemented into the UI controller which notifies
the user. An alternate design could be that the User is notified immediately, and the server
controller then interprets the alert and re-notifies the user of the potential hazard. This would
enable to immediately know of a potential hazard and could make a difference in allowing the
user more time in making a decision. The reason this design was chosen was because it was
believed that the inpreted change and appropriate contact listed would be the most user-friendly
option, while also not compromising the user’s time too much. All in all, this design is both
practical and informative for anyone using the service.

User Case 5 - Connect:

Application .
Control User Display GPS API
Sends Motification
-
Clicks on Motification
el
GetLotalBusinesses() - gets data
.
Display Businesses ()
-

Y Y Y Y

This user case informs the user of contacts of any of the local businesses that are available in
order to fix the issue that is detected. For example, if the sensor picks up change in water levels
in the basement and detects a flood, a notification will inform the user about the flood and give
details on who to call to fix this issue. For this to happen, the Application Control will first send
the notification to the display of the phone. Through this, the User will be able to interact with
the notification. When clicked, the application control will then use the GPS API to fetch the
data of the local businesses around, which is then displayed onto the phone. The reason this
design was chosen is because the four main objects in all communicate with each other in order
to make for a smooth user interface.

User Case 6 - Notifications:

** Planning to Remove this Use Case **

User Case 7 - New Accounts:

Creating a new account would require for the user to already have installed the application.
Launching the app will bring the user to the default screen where they have the option of logging
into or creating an account. The user would hit the “Create a new account” button and the Login
UI would notify the UI Controller which in turn presents the user with the registration screen.

Database

Database Email
Controller

Ul Controller

User Application Login Ul

Start App

Default Screen

Create New User

functionSelect(createUser)

Enter User Info

displayUl{createUser)

createAcct(userinfo)
: ot

Confirm Email

validUser(userlnfo)

displayError()

return(false)

return(true)

displayMainScreen()

J
A

sendConfirmationEmail()
-
>

createUser(userinfo)

A Y \J

The user enters all the necessary information which the Login Ul relays to the UI Controller. The
information is brought to the Database Controller which makes sure the information provided by
the user 1s valid. If it isn’t, the Database Controller returns a false boolean which will notify the
user that an error has occurred, giving them the option to try again. If it is valid, the Database
Controller will return a true boolean which allows the user to access the app’s features. It will
also store all this user’s information in the Database and send a confirmation email to the user

which can be confirmed at anytime.

User Case 8 - Add:

User

Sensor

Server Controller

Ul Cantroller

Click "Add Sensor"”

Application

AWS Server

.
-

__addSensor(sensorlD)

addSensor(sensorlD)

_functionSelect(addSensor)

A

-

To add a new sensor, a user would first click a button on the application, which is where

sendSignal(SensoriD)

connectSensor(SensorlD)

sendSensarinfo(SensorlD)

Y

A

functionSelect(display)

displaySensorinfo(SensoriD)

-

the user would be able to see all of the sensor information. Because of this, the Application is an

important responsibility. The application will not display anything, however, without a User

Interface Controller to manage the operations needed to display the correct information, which is

why this is another important responsibility. The Sensor is the foundation of our GlassHome
product, which is why it is a major responsibility, and to properly connect to the application, a
Server Controller as well as the AWS Server is needed to send and receive important Sensor
data. All of the operations between the User Interface, Sensor, and AWS Server will be

performed by the UI and Server Controllers, which will then display all of the information to the

Application, allowing the User to connect a new sensor and receive its data.

User Case 9 - Check:

User

Ul Controller

Sensor Ul
select sensor
functionSelect(sensor)
displayUl(sensor)
select status
- functionSelect(status)

Server Controller

updateStatus()

L]

displayUl(status)

return status

A

A

To check the status of the sensor the user will go to the sensor user interface, here all the

sensors are listed out. From there the user can select the status option and the application will

request it from the UI controller. This will send a signal to the server to update the status of the
sensor. The updated status will be sent back to the UI controller which will update the display to

the new screen dashboard U1 for the sensor.

While creating the responsibilities, there could’ve been another UI for the settings.

However, it was more efficient to included it in the sensor Ul via the drop down menu.

10

User Case 10 - Control Alert:

User Notifications Ul

Ul Controller

selects notifcations.

Application

Data
Cont|

base
roller

lg—displays notifications to user;

toggles notification.

l-a—displayUl(notifications)—|

l-a—functionSelect(notifications)

.
-

la—displays notifications to user;

A

Y

l——toggle(notification)——m}

la—displayUl(notifications)

Y y

4

update(notification)

Database

—update(notification)———m

le————isUpdated()

To update notifications setting, the user will first select “notifications” on the application.
The application will this request to the UI Controller in which the UI Controller displays the
current notification settings to the user (through the Notifications UI). Now the the user has the
notification status of all the sensors displayed to them, they can now toggle a notification from

on to off or off to on. The application will then tell the database controller this user action and
the database controller will then send an update to the actual database. After that, the database
will acknowledge to the controller that it has been updated. The database controller makes the Ul
Controller aware of this update and displayed the updated status of the sensor notification to the
user (again, through the Notifications UI).

11

User Case 11 - Network Error:

requestUpdate()

Sensor Controller

User Application Server Controller
B —
Network Error
-
| Send Network Notification
\/ \J y

No Response

In order to have an instant notification the server controller will be constantly requesting

an update from the sensor controller. If the sensor controller doesn’t send back any data then the

server controller will send a network error to the app, which will notify the user that there is a

network error.

12

User Case 12 - Log Out:

User Settings Ul Ul Controller Server Controller

select settings
-
functionSelect(settings)
-
displayUl(settings)
|
select logout
=N functionSelect(logout)
logout()
return True
displayUl(login)
|t
Y \J Y

To log the user out of the application the user will go to the settings user interface and
select the log out option. The user interface controller will then log the user out of the server. To
notify a successful log out the server controller will return a true value and the user interface
controller will then send the user to the login user interface. I thought of adding a display Ul as
another responsibility, however it is more efficient the do it this way because everything is
through the settingsUI and the controllerUI rather than the displayUI. By making it with these
four main responsibilities it will be the most efficient for the application allowing the user to log
out easily.

13

Section 2: Class Diagram and Interface Specification

a) Class Diagram

User Preferences Control
Login
Set Motifications T :

— st - Read Data
Lsemame: g - Send Motifications
CRSWOIC; alfing | + setMotificationinterval()

Authenticate: boolean ; .
i + tumMotificationsOff()
+ username() + tumNotificationsOn() ‘rea‘:liat‘_afﬂ)
4
+ password() sendNotifications()

+ authenticate ()

Main Interface

Mew Account #| . Check Door Status
- Check Window Status v
Username: string - Check Basement Flood Status =
- Password: string - Check Carbon Monoxide Status Server
Email Address: string - Check Gas Status
»| - Receive Notifications - Receive Data
+ newAccount() - Store Data
+ newlsername() +checkDoor()
+ newPassword() +checkWindow() + recieveData)
+ storefccount() +checkFlood() + storeData)
+checkCarbon()
scheckGas()
+receneNotifications()
Sensor Interface
- Sensor Location
- Data
- Deactivate
-Add Sensor
i Maotifications Interface
+ getLocation()
+ showDatal(} »-| - Display Notifications |-s
+ deactivateSensor()
+ addSensor() +showMNotifications()

In this figure, we can break the classes down into three main User Interfaces: New

User/Account, Sensor Interface, and Notification Interface. The class diagram shown illustrates
these interfaces and highlights the necessary usage functions needed in order to get the home
security system running. The application starts off by prompting a login/new account mode.

This then logs the user in and they are presented with a new interface where they can view sensor
statuses (Main Interface) or change their preferences (User Preferences Interface). The sensors
also communicate to the main interface as shown in the diagram by updating their status
periodically for the user to view. This is done in a two-step process: the wifi module first
receives the data from the hardware component in the arduino template, where it then pushes an
alert to the AWS server. Then, the AWS server interprets this message and decides a notification
to push to the application relevant to the user account. This then leads to the notification

14

interface, or the control, where users will receive alerts or notifications that allow the statuses to
be pushed to them with a vibration or sound. The control is also connected directly to the AWS
server, which is useful for storing the data and receiving new sensor status data. The entire setup
can be summarized in these three GUI’s and are necessary for the working condition of this
system.

b) Data Types and Operation Signatures
1)

Login

- Usemame: string
- Password: string -
- Authenticate: boolean

+ username()
+ password() -
+ authenticate()

Username: string
Password: string
Authenticate: boolean
username(): string
password(): string
authenticate(): boolean

Class determines if the user can successfully authenticate and login to the application
given a username and password as input. Login data is sent from the New Account class (shown
next). The supplied credentials from the user will be matched with the stored data to determine if
a match is made. If so, authenticate() will be value True, and it will be value False if the login
does not match. If the login is successful, the user will be able to see their main interface and/or
preferences. If not, the user must try again or create a new account.

2)

15

New Account

- Llsername: string
- Password: siring
- Email Address: string

+ newaAccount()
+ newlUsername()
+ newPassword()
+ stoneAccount()

Username: string
Password: string
Email Address: string
newAccount: void
newUsername(): void
newPassword(): void
storeAccount(): void

Class is used for creating new accounts. A user will enter their desired username,
password, and email address so that the data can be forwarded to Login. newAccount() is
executed when the user initiates creating the new account and storeAccount() is executed was the
account is created and pointing toward a Login class. The other 2 methods/functions are used to
actually adjust the attributes of the class. After creating a new account, the user can try to login
to their account, which was shown in the Login class.

3)

User Preferences

- Sel Mothcations e

+ setMNotificatoninterval()
+ turmMotificationsOff()
+ tumMotficationsOn()

Set Notifications: string
setNotificationInterval: int
turnNotificationsOff(): boolean
turnNotificationsOn(): boolean

16

Class is used when one wants to adjust their notification settings for the various sensors.
As there as multiple sensors and scenarios a user may or may not want to have a sensor activate,
this screen allows them to toggle between on/off. turnNotificationsOff() will turn off all
notifications for a specific sensor. turnNotificationsOn() will turn on all notifications for a
specific sensor. Additionally, the user has the option to set a notification interval. The set interval
is a period of time in which it checks if a sensor is returning an issue and will send a notification
to the user.

4)

Main Interface

= . Check Door Status

- Check Window Status

= Check Basement Flood Status
- Check Carbon Monoxde Status
- Check Gas Status

| - Receive Notifications

+checkDoor()
+Check\Windowy()
+CheckFood()
+checkCarbon()
+CheckGas()
+receiveMNotifications()

Check Door Status: boolean

Check Window Status: boolean

Check Basement Flood Status: boolean
Check Carbon Monoxide Status: boolean
Check Gas Status: boolean

Receive Notifications: string
checkDoor(): boolean
checkWindow():boolean

checkFlood(): boolean

checkCarbon(): boolean

checkGas(): boolean
receieveNotfications(): string

The Main Interface is arguably the most important class. This is the class that is
constantly checking if one of the sensors are being “activated.” The Main Interface will know
who is currently logged in, check to see if the sensors are detecting any issues, and be able to
send notifications to the user when there is a problem (based on their preferences from the
previous class). This class will check for open/closed doors, broken windows, basement

17

flooding, and traces of carbon monoxide and gas. All of these checks are of boolean type since
they are either “True” which means the issue was detected or “False” which means everything is
how it should be. The “True” values will cause potential notifications to be sent to the user.

)

Sensor Interface

- Sensor Locaton
- Data

- Deactivate ST
-Add Sensor

+ getLocation()

+ showData()

+ geactivate Sensor()
+ addSensor()

Sensor Location: string
Data: string

Deactive: boolean

Add Sensor: boolean
getLocation(): string
showData(): string
deactivateSensor(): void
addSensor(): void

Class act as the interface for the various sensors a user may want to have associated with
their account. The attributes list here is the sensor location, the corresponding sensor data, and
the boolean values for Deactivate and Add Sensor. The user will be able to call the
method/functions getLocation() and showData() to show those respective attributes, but they will
also be able to add and deactivate sensors. A user will addSensor() to begin tracking a new
sensor and potentially receive notifications. However, they also have the option to deactivate a
currently active sensor if they wish to longer monitor that specific situation.

6)

Notifications Interface

—p| - Display Motifications —

+showNotifications()

18

Display Notifications: string
showNotifications: string

The Notification Interface class is fairly simple; it displays the notification that the Main

Interface sends due to a “True” sensor picking up an issue. A string value will be stored here as

an attribute that will be shown when showNotifications() is called upon.

7)

Senver

- Receive Data
- Store Data

+ recieveData()
+ storeDatal)

Receive Data: string
Store Data: string
receiveData(): string
storeData(): string

The Server class is where all of the data associated with the application is stored.
Whether it be the user’s login information, preferences, or current sensor statuses, the Main
Interface will have to speak to the Server to both send AND receive data. All data will be of
string type and the two methods/functions that will be called is receieveData() and storeData().
Having a reliable and efficient server is essential to the entire operation of the application.

8)

Control

| . Read Data
- 3end Notifications

+readDatal)
+sendMotifications()

i

Read Data: string
Send Notifications: string

19

readData(): string
sendNotifications(): string

This class is responsible for sending the notifications to the user within the AWS server.
The control interprets the new data from the user or the sensors and is responsible for populating
the notifications interface, allowing a clean and efficient method of pushing notifications based
on not only the specific sensor (home hazard or home security) but also the user’s notification
preferences set up in the preferences interface of the application.

¢) Traceability Matrix (explanation)

As seen in the Class Diagram above, the different classes all interact with each other in
different ways. The Main Interface acts as this sort of “main hub” for the application. Users
create and login to accounts to reach the Main Interface to adjust sensors, change preferences,
and send/receive notifications. While we have already provided specific details regarding each
specific class above, the purpose of this section is to provide a written explanation from a
high-level view on how all of the class work together and “trace” to each other. Since this
application requires sensors to be associated with specific users, consumers must create and login
to an account that is unique to them - this is where the New Account and Login class come into
play. Once there user logins, they will redirected to the aforementioned Main Interface.
Additionally, the user will be able to adjust their preferences (User Preferences) in terms of what
sensors are on/off and notification intervals. The purpose of the Control Class is just to
send/receive data between the Main Interface and the Server. Control acts as a “middleman”
between the two. Finally, Control will also send notifications (Notification Class) based on the
status of the different sensors in Main Interface.

20

Section 3: System Architecture and System Design

a) Architectural Styles

Our product GlassHome is structured to have multiple tasks and functions simultaneously
running in parallel. Each part of our system works independently on its unique functions, and
then sends the data collected to our server. To make this development manageable, we have
multiple people working on the different parts of this system so that everyone is able to work on
a crucial step. Our GlassHome system can be divided into three main parts: the Sensor, the AWS
Server, and the Mobile Application. The architectural styles needed to ensure smooth functioning
of our product are:

a) Event Driven architecture

b) Database architecture

c) Client and Server Architecture

Our system interacts with itself through its Event Driven architecture. The output that a

user receives on his/her mobile application is based on what information is detected, produced,
collected, and sent by the Sensor, AWS Server, as well as Mobile Application. The sensors can
detect a change in movement or a door opening/closing. This will trigger the sensor and will
cause it to send a signal to our AWS Server, which will then send the data to the Mobile
Application. The user will receive a notification when an event occurs due to each part of the
system working together based on the specific event that occured.

Since there are many unique functions which must operate in parallel with one another
and process the same information, each component of the system must be able to communicate
with the other subsystems. Data must also be stored for and sent to the correct user. This is where
we need a Database architecture. A user will first register his/her account on GlassHome, and

this information will be stored in our AWS Server and Database. The Sensors that the user adds
to his/her device will also be sent to the Server and Database in order to collect the information
as well as store it for both safety and management reasons. Private home information as well as
account information will be stored in the database, which is why it is a crucial architecture that

needs to be implemented in order to have a successful and user friendly product.

The Client and Server Architecture is what will allow proper communication between the

user and the Sensor information as well as Application notifications. In our system, we want
different users to be able to access similar information and feel connected to the sensors, which
are connected to the AWS Server. We want to create a Client and Server Architecture to allow

21

the user to have access to all of the features included in GlassHome. After the user inputs their

relevant information, it is the server’s job to process all of the information given in order to

display what the user needs.

b) Identifying Subsystems

Users with interact with our GlassHome system from the mobile application.

There are many subsystems, however, that allow GlassHome to provide the

proper information to every user.

The first subsystem is the User - Sensor subsystem. The user first interacts
with when buying the product in order to set up the monitoring and
security system. It includes functions such as sensor setup, detection, and
sharing data with the Server subsystem.

The second subsystem is the AWS Server, which will directly interact
with the Sensors and Mobile Application, and with the user indirectly.
This will hold all of the data sent by the Sensors as well as user
information. The server will also be the middle child in our subsystems,
sending data to and from both the Sensors as well as the Mobile
Application.

The third subsystem is the User - Mobile Application subsystem. This is
what the user will use to view all of his/her information, as well as
perform functions such as view sensor information, add/disable sensors,
turn on/off notifications, view emergency contact information, and much
more. This is one of the most important subsystems because it will allow

GlassHome to work directly with the user. The network protocol would be
HTTP.

UML Package Diagram:

22

AWS SERVER | DATABASE

SENSORS Sensor Functions: Application Functions:
Functions: Send Sensor Data | - SendSignal() - Store User Data
- sendSignal() .ol = Col\ecF Sensor Data - SendAlerts()
- collectData() - Add/Disable Sensor) - SendFootage()
- WIEI Connector Module - Send Sensor Data {.Detecmm) -StoreUser(User)
- Detection (Heat, Water, Gas) - - Store sensor history -DeleteUser(User)
- Security Detection (Door, Window status) Modify Sensor - Monitor for Sensor Detection = S;’;?eHI'DS;?;Y

¢)

A

Sensor Setup

User

Interacts With

MOBILE APPLICATION

Funtions:
- Display User Info
- Display Sensor Info
- Add Sensor
- Send User Info
- Disable Sensor
- Display Contact Information
- Notify/Send Alerts
- Settings Receive Data
- Connect to Sensor
- Server Communication

Store/Send Data

4

Mapping Subsystems to Hardware

Our system will require running on multiple computers to work successfully. As
mentioned previously, our key subsystems include a user running our application, sensors
set up wherever our client desires (home, workplace, etc.), and some sort of a
server/database that will connect everything together.

The mobile application subsystem will run on a smartphone. Right now, we’re
developing exclusively for android devices. These devices are built to connect to the
internet and so connecting to the server/database and sensor subsystems should be
possible.

The sensors subsystems will run on sensors we build for our customers. They will
be built on arduino boards and will have wifi modules installed. This will allow for
successful communication with the other subsystems.

The server/database subsystem will run on AWS. AWS offers services that will
allow us to store the data of our customers as well as relay this data along with data from
the sensors between the other subsystems.

23

d) Persistent Data Storage

Glass Home requires a very simple storage of database. One case is the constant
storage using the login and logout features. When a user requests for an account log in or
logout the system will send this information to the server and compares it to the data that
was saved in the database. The database that will store all this information is very simple
and can be stored in a table such as the one below:

ID# Name Username Password Login Attempts
1234 John Smith Smith123 12345 0
2345 Michael Brown | MBrown245 12345 0
3456 Sarah Miller Miller!182 12345 0

In the table above the database stores the login username and password that the
user was able to successfully create. When the user creates an account, the system will
create an ID number for the user and store the information within that ID number. Things
such as the user’s full name, password, username, and the number of failed login attempts
are saved.

We have other important datas that will need saved into the database. Such
keeping a history of all the actions and a live feed recording from the cameras installed.
Under each ID number, the user will be able to see the full history of the sensors. One
such is if the motion sensor picks up that there was movement, the camera will pick up
and start a recording. This data is then send to the database and saved there. The time and
the date of the event will also be recorded as well. An example of this database can be
shown in the table below:

ID# Sensor ID Status Report Status
1234 1111 online Viewed

1234 1112 online Not Viewed
1234 1113 online Viewed

This table shows the database of all the sensors and shows if the sensor is on or off.

Essentially this shows the status of all the sensors.

24

ID# Sensor ID | Time Message Footage

1234 1111 1/10/19 @ 12:40 AM Movement detected Not Viewed

1234 1112 2/11/19 @ 1:30 PM Water hazard detected | Not available

1234 1113 2/21/19 @ 3:45 PM Sensor successfully Not available
installed

This table shows the history alert history of all the sensor. If a motion sensor detects
movement it will be recorded and the time as well as a footage of the event will also be recorded.

As we can see, the three databases are all related to each other, we can conclude that this
is a relational database to organize all three of the tables together. The logic relationship of the
three database table can be shown below:

Account Link

Table of Sensors

Table of History

25

e) Network Protocol

Our system, GlassHome, runs on multiple machines working together coherently.
This includes the sensors, the AWS server, and the mobile application. The sensors
receive various signals from around the house (water leaks, gas leaks, doors open, etc.).
Once they pick up a specific signal, they send this data through the WiFi module to the
AWS server which then sends the notification to the mobile application. Since the system
works simultaneously with multiple parts, communication between the three is very
important. To understand this we can look at what network protocols are in use.

Our system uses the ESP8266 WiFi Module for Arduino coupled with the
sensors, in order to create a line of communication from the sensors to the AWS Server
over the internet. There are multiple protocols within this connectivity, called the stack of
protocols. This stack has multiple layers that are important in order to connect and
communicate with the other objects in the system:

e The Link Layer : This layer contains the physical link between two devices. In
our system, this is done using a WiFi connection. Once the WiFi link is
established the ESP8266 is part of the local area network (LAN) and can
communicate with all devices on the LAN.

e The Internet Layer : Every device on the network has a personal Internet Protocol

(IP) address. This allows each sensor to send a message to a specific address. The
ESP uses these IP addresses to know where it should send the data. With this
layer, it is possible that the device can send packets over the internet.

e The Transport Layer : The transport layer in the ESP8266 uses a protocol called

Transmission Control Protocol (TCP). This protocol makes sure that all packets
are received, and that the packets are in order, and that the corrupted packets are
re-sent. It solves the issue of any corrupt packages sent and checks that everything
is in order.

e The Application Layer : The application layer is mainly for understanding the

language that the data is sent through. We use the HyperText Transfer Protocol
(HTTP) in this layer in order to communicate. It uses text to perform requests and
interpret responses from the client to the server and back.

Representation of the TCP/IP Stack in the ESP9266 WiFi Module:

26

Layer Protocols

Application HTTP, FTP. mDMS, WebSocket, O5C ..
Transport TCP, UDP

Internet |P

Link Ethernet, Wi-Fi ...

f) Global Control Flow
Event driven system: An event can be described as a significant change in state. Our
system GlassHome monitors the house continuously and is always checking to see
whether there is a case of an event through the sensors, which are laid out throughout the
home, building, restaurant, etc. When combinations of sensors are triggered GlassHome
sends a notification to the user and also depending on the situation notifies any
emergency hotline. Considering that our system is an event driven system our system is
of an event response type.

g) Hardware Requirements
Our system relies on several different sensors, an arduino board to connect them to, a wifi
module to connect to the WiFi, and a stable internet connection.
Sensor Requirements:
e Hazard Prevention : Carbon Monoxide Sensor, Water Sensor, Smoke Sensor, Gas Sensor
e Home Security: Motion Sensors coupled with Sound Sensors, Magnetic Read Sensors

The sensors included will detect various signals around the house and send these signals to the
real time firebase database using the Arduino and the NodeMCU WiFi module. The signals
include, open/closing doors, gas leaks, floods, window breaks, as well as carbon monoxide leaks.

Hardware Requirements:
e Arduino UNO
e NodeMCU WiFi Module

The NodeMCU will connect the sensors to the firebase and send real time updates when turned
on. This is paired with the arduino and connected to the sensors to pick up the signals. The
NodeMCU will be connected over a stable WiFi connection supplied by an access point or
router.

27

The application interface is downloadable on an Android Smartphone, updated to the current
version of Android OS. There are no restrictions on screen resolution and it will require minimal
space to install, (<15 Mb).

Section 4: Algorithms and Data Structures
a. Algorithms

The current plan for our project will not make use of any specific algorithms. The
only algorithms that may come into play later on in the project is searching (for logins

and hash keys). In those situations, the complexity will be O(n).

b. Data Structures

Our project will make use of a few data structures to store information. First, the
database is essentially a collection of tables that can be accessed to obtain a various
information. Information includes attributes such as username/login, password (would
have to encrypt), email address, phone number, etc). The other idea is to use Hash Tables
to store user objects in. A user object will have many off the above attributes all stored
and accessible via unique hash key. Hash Table will be used within the application itself
while the database will always be up and running regardless if the application is or not.
Our final report will have more in-depth details regarding the data structures that were
used in the process. We must fully expose ourselves to building the application to know
what other data structures may be needed along the way.

Our decision to work with Firebase was made because of the platform’s
compatibility with our ideas and flexibility. It made sense to use Firebase as it is a
Google product and we are developing for Android devices; the two go hand in hand.
Beyond this, Firebase provides us with not only the data structures we needed but the
server we wanted to use to bridge together the application and the sensors. The
alternative would be to use two platforms that each do one of these things, but in an effort
to work smarter, not harder, using only Firebase should make our application and sensor

integration a much smoother process.

28

Section S: User Interface Design and Implementation

-

GlassHome

Enter your Email

Enter your Password

Use Case: New Accounts.
To create a new account, a user can open the application once it is downloaded and click
“Not Registered? Click Here”. This will direct the user to the same page, but instead of the Sign
In option, the user will be able to register an account. After this is done, the user can log in with
an Email and Password as shown above. We have modified this from our previous version by
adding a feature to create accounts, and sign in all on the same page.

29

Dashboard

SECURITY CAMERA

Use Cases: Check (Status), Log Out.

This is the dashboard where the user can check the status of the different home
appliances by clicking on the specific button. Once clicked, the user will be directed to a page
showing all of the information for that specific sensor and area of the home. We have modified
this by adding specific areas of the home that the user can click to see more information for.
Once the user installs sensors, he/she will also be able to customize this page to view different
information.

The user will also be able to log out by clicking on a tab on top of the application which
is not visible, until clicked. This will give them an option to go to a different page or log out.

30

Settings

Add Sensor

Disable Sensor DISABLE

Notifications

Use Cases: Add, Disarm

This use case allows the user to quickly add a new sensor to their set of existing sensors,
or to add their first sensor to the list. Once logged into the application, a list (empty at first) will
be presented to the user, and the user can click on the “three dot” drop down menu to be
presented with a list of pages. The user can then click on “Settings” and subsequently press
“ADD SENSOR”. The user will then be presented with a new screen that scans the existing
server and lists all possible sensors that the application can connect to. In order for this to work,
the user must be in range of the sensor and both the application and the arduino module must be
connected to the same WiFi network. Once the user clicks the appropriate sensor they want
connected, the screen will present the user with a “Connect” or “Not Connected” status. Users
can then repeat this process for multiple sensors or keep any amount of sensors they already
registered.

In order to disable a sensor, the User could go through a similar set of steps in order to
get to the settings screen but instead of clicking “ADD”, they can click “DISABLE”. This would
present the user with a list of already connected sensors to the application, and they can click on
one of them in order to disarm a sensor from their dashboard. The user can repeat this process
for any number of sensors they had connected.

31

Use Case: Contact

In this User Interface, the user can view a map of nearby businesses as well as the contact
information for these locations. In order to access this section, the user can go to the “3 dot
menu” and select “Map”. From there, a color-coded pinpointed location of certain particularly
useful selection of businesses and help information will be presented to the user. More
specifically, based on the user’s home location, nearby businesses based on a certain radius are
going to be listed. If the user clicks on one of the pinpoints, a popup explaining the name, contact
info, and services of the particular business will be displayed. The user then has the option of
moving on to another business or writing down the contact info of this particular business in
order to call them.

32

Section 6: Design of Tests

Note that for this report you are just designing your tests; you will program and run those tests

as part of work for your first demo, see the list here.

A. List and describe the test cases that will be programmed and used for unit testing
of your software.
B. Discuss the test coverage of your tests.
C. Describe your Integration Testing strategy and plans on how you will conduct it.
Describe also your plans for testing any algorithms, non-functional requirements, or user
interface requirements that you might have stated in your Report #1.

A) This test we will attempt to connect our sensors with a server for our own app. The
sensor we plan on testing is the gas testing or door alarm.

B) The gas testing we will see if the sensor will be triggered by a gas leak and then send an
alert to the user. Similarly with the door alarm, once the door is open or triggered, there
should be a signal that travels to the server and then to the application which will send an
alert notification.

C) For the tests we will attempt to break the sensor and see if there will be connectivity with
the server and application to send an alert notification.

Unit Testing:

Test Case Identifier: TC-1

Use Case Tested: UC - 1 (Disarm)

Pass/Fail Criteria: -Test passes if disarm option is clicked and
notifications stop

Input Data:
-Disarm option (in sensor settings)

Test Procedure: Expected Result:

Step 1: Select sensor to disarm Application shows the sensor options and
status

Step 2: Select disarm setting Application stops sending the notifications to
the phone

Step 3: Trigger sensor to see if notification is | No notification is sent to the user’s phone

sent through

33

https://www.ece.rutgers.edu/~marsic/Teaching/SE/demo1.html#GRADING

Test Case Identifier:
Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC-2

UC - 2 (Signal)

-Test passes if a sensor sends a signal through
WiFi to the database and the database records

this change when an event occurs

-Sensor Signal

Test Procedure:

Expected Result:

Step 1: Create a triggering event for any
sensor

Step 2: Check to see if the database receives
and records this change

Sensor sends the signal to the database

The database updates in real time to show the
current signal

Test Case Identifier:
Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC -3

UC - 3 (Contact)

-Test passes when the user is notified and
recommended a list of correct local businesses

to resolve the issue detected by the sensor

-Sensor Signal

Test Procedure:

Expected Result:

Step 1: Create an emergency situation by
triggering sensors

Step 2: Click on recommended businesses

User is sent a notification to alert about the
situation

App analyzes the change in the database and
lists possible local businesses to resolve the
situation

Test Case Identifier:

Use Case Tested:

TC-4

UC - 4 (Notifications)

34

Pass/Fail Criteria:

Input Data:

-Test passes when an event is recorded by the
sensor and a notification is sent to the user’s
phone

Sensor Signal, Database Change

Test Procedure:

Expected Result:

Step 1: Create a triggering event

Step 2: Check phone

Sensor will send a signal to the database to
record a change

The change in the database will trigger the
application to send a notification to the user

Test Case Identifier:
Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC-5
UC - 5 (New Account)

-Test passes if user can create a new account
and 1s able to log in with that account.

-Username, Password

Test Procedure:

Expected Result:

Step 1: Type in a username and and a
password

Step 2: Log into new account

System saves account information into
database.

System checks to see if the username and
password are correct; if correct, user is logged
into the account.

Test Case Identifier:
Use Case Tested:
Pass/Fail Criteria:

Input Data:

TC-6
UC - 6 (Add)

-Test passes if a new sensor is added and
shows up on the dashboard of the application

-Sensor signal

Test Procedure:

Expected Result:

35

Step 1: Add a new sensor to the account

Step 2: Check sensor list to see if the sensor
has been added

System saves the new sensor to the accounts
database.

Sensor is shown in the list of sensors under that
account.

Test Case Identifier:
Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC-7

UC - 7 (Check)

-Test passes when user checks a certain area of
the house and sees the real time status of each

sensor in that particular area

--Select Sensor Ul

Test Procedure:

Expected Result:

Step 1:User selects the sensor Ul and
chooses an area of the house

App shows the sensor Ul and lists the sensors
in that particular area as well as the real time
status of each sensor.

Test Case Identifier:
Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC-8
UC - 8 (Network Error)

-Test passes when app senses a loss in network
connection and sends a notification

-Lack of data from database

Test Procedure:

Expected Result:

Step 1: Disconnect sensors from WiFi

Step 2: Disconnect app from WiFi

App recognizes a lack of data being sent from
database of particular sensors and notifies user
that those sensors are offline.

App recognizes no connection to database and
sends user a notification.

36

Test Case Identifier: TC-9

Use Case Tested: UC - 9 (Log Out)

Pass/Fail Criteria: -Test passes when user selects the log out
button in settings and is brought to the log in
Ul

Input Data: -User Input (Click Logout)

Test Procedure: Expected Result:

Step 1: User clicks Log Out in settings App sends user to the log in Ul

Test Coverage:

Acceptance Tests:

e Acceptance tests focus on the “big picture” or the system as a whole. For our system in
specific, acceptance tests show us that the system as a whole is coherently working
together. Each individual part of the system has its own functionality that combines to
make a fully functional system.

o

Unit Tests:

TC - 3 (Contact) - App must analyze the combination of signals to list out correct
businesses to contact

TC - 4 (Notification) - The app relies on information from the sensors as well as
the database for this task

TC - 7 (Check) - The app relies on the information from the sensors and the
database for this task

e Unit tests test focus on the “individuality” or the details of each component of the system.
For our system in specific, unit tests show us that each component of our system is
working as it should be on its own.

o

TC - 1 (Disarm) - Must check each individual sensor to see if they are being
disarmed when selected

TC - 2 (Signal) - Must check each individual sensor to see if they are sending a
signal when an event occurs

TC - 5 (New Account) - Adding a new account adds to the overall functionality

37

o TC -6 (Add) - Adding a sensor is a component of the bigger functionality
o TC - 8 (Network Error) - Checks for WiFi, and adds to the bigger functionality
o TC -9 (Log Out) - Logs out of the account and adds to the overall functionality

Integration Testing:

Integration testing is a level of software testing where individual units are combined and tested
as a group. The purpose of this level of testing is to expose faults in the interaction between
integrated units. For our system there are 3 key integrations that must be tested.

The first is the integration between all the sensors, the database and the app. This must be
flawless as we want the user to have a real time alert for emergency situations. If the app is not
optimized to be quick and reflexive then our system is failing in providing the user a sense of
safety for their home. In order to test this we must rigorously test each sensor individually and
confirm that the interaction between them and the database is perfect. Then we must test the
interaction between the app and the database and see if the data is being read properly. This
ensures that the reactivity of the whole system is how we want it.

The second is the integration between different types of sensor signals. The app must be able to
make an accurate prediction of what type of situation is occurring and also provide key numbers
to call in case of emergencies or even smaller problems in the home. In order to test this we must
trigger multiple sensors at the same time or in a reasonable span of time. The app must then be
able to read these various signals and predict what type of situation is going on and then
recommend the proper emergency contacts, or in the case of a non-emergency problem a proper
business, to resolve the problem.

The third key integration is the interaction inside of the app and between the settings of the
sensors. The transition from one Ul to another UI as well as the interaction between UI’s and the
sensors, should be without as much lag as possible so that the user can have a smoother
experience.

38

Section 7: Project Management and Plan of Work

(a) Merging the Contributions from Individual Team Members

Compiling everyone’s work to ensure consistency, uniform formatting, and appearance
for our report brings up many issues. But to avoid these issues and keep up efficiency, we first
started by dividing up the workload early on. We used Google Drive folder shared with all team
members. This way everyone had access to everyone else’s work. And during the final
compilation, all parts were easily accessible by one sole group member to put together and
submit.

During the beginning of the week, we would have a group meeting where we would
discuss the status of our project, what we were working on currently, challenges we faced thus
far, and what we wanted to accomplish next. Afterwards, we would look at the sections and
sub-sections that are apart of the report this week, and divide them up to groups of team
members. If some sections seemed to be more work, we would assign more team members on
it. This way, the work was dispersed evenly. We would also assign a personal deadline, around
mid-week, so we had enough time to account for any issues/ problems that may have arised.
This also made the contribution breakdown easy to know what each team member had done.

Near the end of the week and before the weekend, we would have another meeting and
take a look if everyone had completed the parts that were assigned. If not, they were directed to
do so as soon as possible. On Saturday or Sunday, the final submission document was put
together with the cover sheet, contribution breakdown table, table of contents, project
management, and references. The other group members would be notified that the final
document has been put together and to be revised for any errors or for any incomplete parts.

This organized system our team has been following has not only made our weekly report
accurate, but efficient and timely as well.

(b) Project Coordination and Progress Report

Our project consists of 12 main use cases. In case 1 we focus on downloading and
setting up the app onto one’s smartphone device. In case 2 we are implementing a way to
access the app through WiFi. Case 3 allows the user to to safely turn off the sensor in their
household. Case 4 focuses on the signal. The main focus is to when a sensor picks up a
change in the environment there will be a signal that will be picked up. Case 5 will give the user
a list of companies to contact in case an emergency is found. Case 6 focuses on notification
aspect of the app development. This is where the signal will be send from the sensor to the app
to notify the user. Case 7 focuses on the app, where we plan to have to ability of the user to
make an account on. Case 8 is the ability for the user to add new sensors in their home and the
ability for them to register the new sensor into the app. Case 9 allows the user to check the
status of the sensors to make sure that all the sensors are on or off. Case 10 allows the user to
change their notification settings. They are able to turn off receiving messages. Use case 11,
warns the user If there is a network error in the system, like wifi outage, a signal will be sent to
the application to notify the user. The last user case enables the user to log out of the system in
the application.

39

For our first demo we will focus on use cases: 2, 4, 6,7, 9, 10, 11, and 12. Our main
focus for the first demo is to have a working sensor that can connect to the app and send a
notification to the app when the sensor detects a change in the environment. On the app
development side we focus on being able to successfully create an account, and the ability to
logout of the account. Our final task is to connect the sensor and the app all together into one
system. Once this is complete we will be able to send information through the sensor and store
them into a database. This will allow the sensor information to be send to the user and notify the
user as well as to check the status of the sensors.

For our first demo we plan to work on most of these use cases. For our app development
we have implemented and successfully made a login and logout feature. The enables the user
to create and account and logout of their account, use cases 7 and 12. We are currently in
progress to include more functions in our app. Currently the main objective is to have a working
notification setting working for our app. In order to have that to work we need to focus on our
sensor development as well. Our plan is to have use case 4 done. This is where the sensor is
able to pick up a signal. Once that is done we can work on the ability to send a natification to the
user through the app. Now we will focus on connecting the two together to have a functioning
system. The next plan is to add extra features/functions to the app, such as the ability to add
new sensors, change notification settings, and networking error notification. This way we will
have a functioning sensor and app developed to showcase for our first demo.

(c) Plan of Work

For our successful project completion, we have been using a Product Roadmap.

Q2
Sensor Design AWS Connectivity App Dev DEMO 1
s Mar 1, 2019 Mar 9, 2019 Mar 16, 2019 Mar 25, 2019 z

+ Product Design

Grouping of Sensors Added More App Functionalil Final Demo Ready
Apr 6, 2019 Apr 17,2019 Apr 22,2019

g::is;nr WS Conneohiy 4 Qgﬂj;mpﬁ;nm S gﬁn Linked/Demo ~ © AM:dr:dAppncaﬁonFuncﬁunmrty = ;i::ld?amo

Our first major deadline is March 26, this is Demo 1. Our system we are developing
incorporates 2 Groups, Hazard Prevention and Home Security. For the first Demo, we want
each group to have 1 working sensor, be connected to the database through WiFi, and have a
simple app created to have the status of the sensors shown on the main page. This status
description will be real-time and the status will be instantaneously updated.

We also want to be able to send an app notification to the User. Our main idea is hazard
prevention, so in case of an issue that has arised, we would like a notification to be sent.

Afterwards, we would like to include the remaining sensors, including a live camera, and
added functionality to the app, including using Google API to map out nearby assist from a
reported hazard. This is what we would like to show at our Demo 2.

(d)Breakdown of Responsibilities

We have 9 group members, so we have broken each of us into 2 teams; Hazard
Prevention team and the Home Security team.

- Hazard Prevention: Shaan, Shivum, Andy, Nathan, Kyle

- Home Security: Harshil, Adarsh, Avi, Parth
This is our original plan, currently we have broken up our work based on interest.
Shaan, Nathan, and Kyle have narrowed into App Development using Android Studio.
Harshil, Adarsh, and Avi have narrowed into Sensor Design using NodeMCU.
Parth, Shivum, and Andy have narrowed into Sensor Design using Raspberry Pi to
implement the Raspberry Pi Camera.
We are using the Google Firebase to link all aspects of this project together so we are all
in communication with each other. All groups working on each of these concepts are in
charge of the integration.

Section 8: References

Software Engineering Fall 2013 project - Voice Control Based Home Automation System
Software Engineering Spring 2012 project - autoHome

Lecture 9 - Object Oriented Design Basics

https://www.lucidchart.com/

https://www.ece.rutgers.edu/~marsic/Teaching/SE/report2.html

https://en.wikipedia.org/wiki/Software architecture#Examples of Architectural Styles .

2F Patterns

http://www.uml.org/

http://softwaretestingfundamentals.com/integration-testing/

41

https://www.lucidchart.com/
https://www.ece.rutgers.edu/~marsic/Teaching/SE/report2.html
https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
https://en.wikipedia.org/wiki/Software_architecture#Examples_of_Architectural_Styles_.2F_Patterns
http://www.uml.org/
http://softwaretestingfundamentals.com/integration-testing/

