

FINAL REPORT
Software Engineering - S’19 - Group #10

Web App:​ ​https://smart-lock-demo.netlify.com/login.html

Repository:​ ​https://github.com/software-engineering-s19-group10

MEMBERS:

Ted Moseley ​(trm124)​, Michael Truong ​(mt842)​, Daniel Nguyen ​(dnn21)​,
Eric Lin ​(ekl40)​, Mohit Khattar ​(mk1483)​, Mohammad Nadeem ​(mn535)​,

Andrew Sengupta ​(ans165)​, Jasjit Janda ​(jsj87)​, Jeffrey Lu ​(jl2088)​,
Amandip Kaler ​(ak1415)

https://smart-lock-demo.netlify.com/login.html
https://github.com/software-engineering-s19-group10

Table of Contents

1 Customer Statement of Requirements 6

1.1 Problem Statement 6

1.2 Project Overview 9

2 Glossary of Terms 11

3 Systems Requirements 12

3.1 Enumerated Nonfunctional Requirements 13

3.2 On-Screen Appearance Requirements 14

4 Functional Requirements Specifications 15

4.1 Stakeholders 15

4.2 Actors and Goals 16

4.3 Use Cases 17

4.3.a Casual Description 17

4.3.b Use Case Diagram 18

4.3.c Traceability Matrix 23

4.3.d Fully-Dressed Descriptions 25

4.4 Systems Sequence Diagrams 26

4.4.a Illustration and Sequence Diagram for UC-1 26

4.4.b Sequence Diagram for UC-7 29

4.4.c Sequence Diagram for UC-6 30

4.4.d Sequence Diagram for UC-5 31

4.4.e Sequence Diagram for UC-4 32

5 User Interface Specification 33

5.1 Hand Drawn Designs 34

5.2 User Effort Estimation 38

Note that for each user effort estimation is based on the maximum total user effort.
38

5.2.a Desktop 38

5.2.b Mobile 39

5.3 Conceptual UI Mockup (Extremely Basic) 40

6 Domain Analysis 43

6.1 Domain Model 43

6.1.a Concept Definitions 43

6.1.b Association Definitions 45

6.1.c Attribute Definitions 47

6.1.d Traceability Matrix 50

6.1.e Diagrams 51

6.2 System Operation Contracts 54

7 Interaction Diagrams and Alternative Design 55

7.1 Interaction diagrams 55

7.1.a Interaction diagram for UC-1 - Unlock 55

7.1.b Interaction diagram for UC-4 -Temporary Visitor Authentication 56

7.1.c Interaction diagram for UC-5 - Add/Remove Visitors 57

7.1.d Interaction diagram for UC-6 - Data Visualization 58

7.1.e Interaction diagram for UC-7 - Live Video Feed 59

7.2 Alternative Design 60

8. Class Diagram and Interface Specification 61

8.1 Class Diagram 61

8.2 Data Types and Operation Signatures 62

8.3 Traceability Matrix 67

9 System Architecture and System Design 68

9.1 Architectural Styles 68

9.2 Identifying Subsystems 70

9.3 Mapping Subsystems to Hardware 71

Subsystem: Lock 71

Subsystem: REST API 71

Subsystem: Web App 71

9.4 Persistent Data Storage 72

9.4.a Role of Persistent Storage 72

9.4.b Persistent Storage Strategy and Motivations 72

9.4.c Database Schema 73

9.4.c.i Derivation of the Database Schema 73

9.4.c.ii ER Diagram for the Database 74

9.5 Network Protocol 76

9.5.a HTTP 76

9.5.b TCP/IP 77

9.5.c Websockets 77

9.6 Global Control Flow 78

9.6.a Execution Orderliness 78

9.6.b Time dependency 78

9.6.c Concurrency 78

9.7 Hardware Requirements 80

9.7.a Lock Device: (Lock + Local Processor + Camera & Sensor) 80

9.7.b Server 80

10 Algorithms and Data Structures 81

10.1 Algorithms 81

10.2 Data Structures 82

11 User Interface Design and Implementation 84

12 Design of Tests 88

12.1 Test Design Methodology 88

12.2 Unit Tests (by Class) 89

12.2 Integration Tests (by Use Case) 91

13 History of Work, Current Status, and Future Work 93

13.1 History of Work 93

14. References 93

Large Deleted content 96

0.1 Individual Contribution Breakdown
All members contributed equally on the final report.

1 Customer Statement of Requirements

1.1 Problem Statement

Imagine that you are coming home from a long day at work. On the way back you
went to the grocery store. You reach your home and are carrying a multitude of bags in
your hand. As you are heading towards your door, you try to fumble into your pocket to
retrieve your keys. Unfortunately, because of the bags, your keys suddenly fall to the
ground and into a sewer. Now, you have to call the locksmith to open your door or
somehow get your keys out of the sewer.

Unfortunately, the case described is a very common and possible scenario. What if
all of this could be curtailed? A good solution to this is creating an authentication and home
security management system for your front door. Such a system will allow a homeowner to
easily enter and exit their residence easily and even allow friends to enter their home.

A large majority of home security systems today are both expensive and
complicated. Two improvements to home security developed in recent years, namely
keyless locks and home security cameras, are both sold separately, and individually pricey.
These systems attempt to modernize home security by providing a product that allows
homeowners to monitor and control their home remotely while also increasing home
security to allow entrance into the home. We would like a cost-effective system that
integrates the keyless lock and home security camera solutions to home security, and use
them to simultaneously improve upon a consumer’s experience.

In order to rectify the aforementioned problems, homeowners need an easy-to-use
home security system, where a video camera is used to both monitor the house and
authenticate users using facial recognition, condensing the functionality of both the keyless
lock and home security camera systems. Such a system will be an improvement on current
home security systems by allowing homeowners easy entry into their homes while also
allowing many other features.

Conventional locks rely on physical keys. However, these can either be easily lost or
easily replicated which is a cause for concern. Smart locks, on the other hand, are much
more secure because they use other means of authentication. Most current smart locks do
not necessarily have an option for unlocking using facial authentication (see Ring). Rather,
they rely on apps or pass codes which can be broken into relatively easily. Facial
authentication, on the other hand, allows for the user to easily unlock the door.

Then, there exists the need for security for a homeowner. Using the camera, a user
can monitor the home remotely by viewing the video feed from the camera. The system can
also monitor movements and faces using facial and motion detecting. Current home
security systems either require a subscription or charge an exorbitant amount of money for
cloud storage of video. Our proposal is less costly for the user while providing a secure,
user friendly system.

For the purposes of this project, the current plan is to use a computer webcam for
the video camera, and the lock will be assumed to already have been set up such that the
lock defaults to being locked, and unlocks upon the sending of an unlock signal. Residents
of the household will be able to enter their house through facial authentication. Records of
all authentications will be able to be monitored through the use of a web application tied to
the camera, with the option to be notified in the event of suspicious activity. A user will be
notified of events through SMS and/or push notifications through a (mobile) browser
which is the best option to communicate effectively with the user.

Users will be classified into three categories. The first category consists of
homeowners. Users in this category will have the option to add or remove authenticated
users and monitor the camera. Homeowners can monitor the camera through a live video
feed. They will also be able to see a list of all the people that entered the home within a
given timeframe in the past. All of this shall be available to homeowners through a web
app. They can opt in for notifications on their browser or through SMS.

The second category will consists of residents of a home. Note that this category

does not include homeowners. These users will be able to unlock the door for an indefinite
amount of time, but do not have the ability to monitor or control the lock itself. That is,
residents of a home do not have administrative privileges over the lock.

The third category of users consists of visitors. Visitors will be able to temporarily

unlock the door for either a determinate amount of times or until a given date.

When a homeowner wants to allow authentication for temporary visitors, the
homeowner can login to the web app and add the visitor using the web application. The
homeowner can add a picture for facial authentication of the visitor. Or, the homeowner
can create a temporary URL that they can send to the visitor. The homeowner can also set
an expiration date for the authentication of the visitor.

If an unauthorized or unrecognized visitor approaches the door, a notification will
be sent to the homeowner. The homeowner can view a live video and choose to report the

stranger if they perform suspicious activity. The neighbors will be notified about the events
that suspicious visitors show up so everyone will be aware of potential robbers and other
threats in the neighborhood. This smart lock not only keeps the home safe but the
community as well.

For a more secure neighborhood, homeowners need a new network called the
Stranger Reporting Network. This network allows homeowners to report suspicious
activity that they detect in their area. Other users in the neighborhood can then view a
heatmap of suspicious activity in the neighborhood. This feature will be very useful in
getting homeowners to be more vigilant to protect homes.

In order for the user to effectively use this product, the interface will be designed to

be as user friendly as possible. The interface will revolve around a modern and simplistic
design, in order to reduce the clutter that the user may become confused by. Different
menus with categories such as statistics and options will be tucked away in a side menu,
accessible with one click of a button.

This product is a much needed improvement upon existing home security systems

and smart locks. Which provides the user friendly interface with features that are helpful to
the homeowners such as SMS notifications, a live video feed, cloud storage (to a specified
limit), visitor authentication, and the Stranger Reporting Network.

1.2 Project Overview

This project focus on the software behind vital home security aspects concerning
the problem statement. We aim to implement facial recognition lock for better security and
convenience to homeowners, as well as a web-server-based application that will allow
homeowners to manage their lock device.

The “lock device” in this project is an abstraction, we use this term to refer to
anything installed at the site (anything relating to the “smart lock” physically present in the
house), it integrates the physical lock, the camera/sensor, and the local processor. Local
Processor is where some of the most important aspect of the lock will take place: it will
handle computer vision related processes and control the physical lock; for this project, we
will use a raspberry pi for the local processor, which also handles implementation of the
physical lock-and-door control. For the purpose of this project, we will not design a new
lock mechanism, but use a DC motor to simulate the lock. Due to budgeting, we will choose
from either web camera or raspberry pi camera, and the indicator light will be LED on
breadboard:

Hand sketch of the “Lock Device”

The lock device connects to the server via home wifi, so homeowner can access their
lock anytime and anywhere via a web application by logging in to their unique account.
From the web app, homeowners can regulate authorized personnel, view data visualization

and event log, and live stream camera footage. The web app is the primary user interface of
the project where the most user intensive interactions will take place, the UI design of this
report outlines important aspects of this web app. The server stores data of individual lock
device and the information of the web app, it serves as a bridge of communication between
the homeowner and the lock device when homeowner is away:

An Early Concept of the System

“Electricity is the blood of this system, power outage spells the end of the world” is

true to a limited extent. Although this system is key-less, we can still implement a
traditional lock system in case of power outage. Also, since the processor is a raspberry pi,
although the primary power source is the utility, it still have an external battery for
emergency (like power outage). As a result, we should be able to do local facial recognition
using a backup power source to unlock the door. However, in events of power outage, there
will be no connection to the internet thus limit the web app.

2 Glossary of Terms

❖ Smart Lock: ​The name of our project which focuses upon an intelligent locking
system. The primary key for this lock is facial recognition, which will determine
whether or not the individual can acquire access to the house.

❖ Lock Device: The physical locking mechanism implemented into the primary

entrance to the house. This may be abstracted to fit different types of locks. The
“device” integrates a lock, camera, sensor, and embedded computer.

❖ Local Processor: ​The Raspberry Pi will be the embedded computer that has

primary control of the locking mechanism. It communicates with the server to
update the event log and other useful data.

❖ Web Application: A client application presented over the web. This is primary

platform on which the Smart Lock user interface is accessed by the Homeowner. Can
be accessed easily on desktop and mobile web browsers. Sometimes referred to as
“web app” for short.

❖ Component: A portion of the web app which handles a specific use case and
exposes a set of functionality to the user.

❖ Component View:​ The frontend provided to the user by each component. The
interface will include all details related to the components current state as well as a
method for modifying settings.

❖ Server: ​The web app data, user information, event log etc. will be stored in the

server, communicates with local processor, and serve the web app to clients.

❖ Resident​: A person authorized to open the Lock via facial recognition.

❖ Homeowner​: The primary user and owner of the house with the ability to log into
the Web Application, and thus has the ability to add/remove authorized personnel
to the system, change settings regarding the lock, and perform any other task
allowed via the Web Application.

❖ Temporary Visitor​: A person who is provided temporary access to the Lock via a

Visitor URL linked to a Visitor Key

❖ Visitor Key: A string containing letters, numbers and hyphens which is typically
accessed as a QR code for gaining temporary access to the home.

❖ Visitor URL: A hyperlink which when accessed presents the visitor with a QR code
containing the associated Visitor Key. Sometimes called a “temporary URL”

❖ Computer Vision​: The field relating to computers acquiring, processing and

analyzing digital images in order to solve problems.

❖ Computer Vision Module: ​Essential role of the local processor that handles
Computer Vision related processes, including but not limited to facial recognition,
object detection.

❖ Facial Recognition​: A segment of Computer Vision which uses biometric data to
analyzes the face of the person.

❖ Motion Detection: ​A set of monitoring algorithms which detects when there is

movement in front of the camera.

❖ Object Sensor:​ Hardware trigger of local facial recognition system.

❖ Stranger Reporting Network: An integrated network of strangers reported by the
users and saved in the server’s database. Frequently abbreviated as “SRN”.

❖ Event: ​Something that happens around a lock. Examples of events can be: successful
unlocks, detected movement, unrecognized visitors, temporary URL accesses, etc.

3 Systems Requirements

(note: 5 is the highest priority)

Req. Identifier Priority Requirement

REQ-1 5
Residents shall be able to unlock the door through facial

recognition.

REQ-2 3
Residents shall be able to unlock the door using a
physical keypad on the lock in the event that face

recognition fails.

REQ-3 4
Owners shall be able to register other household

members (Residents) to be able to unlock the door via
facial recognition.

REQ-4 2
Owners should be able to create a temporary URL to

allow a temporary visitor to unlock the door.

REQ-5 4
Owners shall be able to temporarily add people that can

unlock the door.

REQ-6 4
Homeowners shall be able to subscribe for and receive

notifications when events occur.

REQ-7 2
Owners should be able to report suspicious activity to

the SRN.

3.1 Enumerated Nonfunctional Requirements

Req. Identifier Priority Requirement

REQ-8 4
The system should provide a desktop and

mobile-friendly web application to view and manage
aspects of the lock.

REQ-9 4 The web interface should be intuitive and user-friendly.

REQ-10 5
The web application should be quick and easy to access

and log into.

REQ-11 3
Owners should be able to view an organized list of all

events regarding the lock.

REQ-12 3
The system should be able to log all events related to the

Lock, and be able to present this to the homeowner.

REQ-13 2
Residents may receive notifications via push notifications

on a desktop.

REQ-14 1
Owners may receive notifications via push notifications

on mobile.

REQ-15 5

The system should have security features to prevent
unauthorized access into the Web Application and into

the homeowner’s house.
The web application should have an authentication page.

3.2 On-Screen Appearance Requirements

Req. Identifier Priority Requirement

REQ-16 5
The web app shall have a login page for homeowners to

access and configure their Smart Lock.

REQ-17 4
The web app shall have the main page with a sidebar that

links to other features of the web application.

REQ-18 2

The ‘Stranger Reporting Network’ page should provide
homeowners with a map of suspicious activity in their
area and provide a field to manually report suspicious

activity.

REQ-19 3
The Live Feed view should allow users to see a live feed

of the camera.

REQ-20 3
The Data Visualization view should contain clickable tabs
that each provide a different graphic visualizing statistics

generated by the lock.

REQ-21 4
The Visitors view should provide the Homeowner with
an interface to generate a temporary URL to send to a

visitor that gives one-time access into the home.

REQ-22 4
The Residents view should provide selections for

uploading photos of Residents to access the home via
facial recognition.

4 Functional Requirements Specifications

4.1 Stakeholders

● Owners
○ Each Owner should be able to efficiently and easily safeguard,

monitor, and grant accessibility to their home. The homeowner
should be able to achieve such tasks with minimal human
intervention. Additionally, the homeowner should be able to report
and convey the presence of potentially malicious actors without
needing to be present at home.

● Residents
○ Other residents of the home should be able to easily unlock the lock

device an unlimited amount of time through facial recognition.
Residents should not be able to receive notification, watch live video
feeds, and allow guests in the house; they have essentially the same
goals as Owners, except they cannot view/change attributes of the
lock.

● Visitors
○ Visitors are allowed temporary access to the house. This can be over a

certain period of time or a limited amount of access. Visitors can be
authorized through a temporary URL. The temporary URL will
provide them with a QR code to scan on the lock device.

4.2 Actors and Goals

Actors Goals

Owner (Initiating) To safeguard and monitor their home against home
intrusion in addition to having a secure and simple method
of entering their own home.

Resident (Initiating) To easily enter their own home without needing a key or
other physical object.

Visitor (Initiating) To easily enter the home of a homeowner using the smart
lock if authorized.

Stranger (Initiating) To perform suspicious activity or break into the home of
the homeowner.

Camera (Participating) Capturing and delivering video footage of the home
entrance to the server.
Used for motion detection and facial recognition as well.

Database (Participating) SQL database storing information associated with
households including but not limited to faces,
authentication URLs, and logs of events.

Lock Device (Participating) To keep the home secured by unlocking for only authorized
individuals.

Server (Participating) To manage the network between the devices, software, and
database.

Scanner (Participating) To temporarily unlock the door by scanning the QR code
from the temporary URL.

Neighbors (Participating) To have access to reported suspicious activity by the
homeowner.

4.3 Use Cases

4.3.a Casual Description

UC-1: Unlock -​ Gives the homeowner and residents ability to unlock the door through
facial recognition.
Derived from requirements REQ-1, REQ-2, REQ-3, REQ-5, REQ-6.

UC-2: Notifications -​ Allow homeowners to receive notifications about Events.
Derived from requirements REQ-6, REQ-11, REQ-12, REQ-13, REQ-14, REQ-16, REQ-17.

UC-3: Stranger Reporting -​ Allow homeowners to report suspicious activity in the
neighborhood.
Derived from requirement REQ-7, REQ-11, REQ-12, REQ-16, REQ-18.

UC-4: Temporary Visitor Authentication -​ To allow visitors to the home in one(or more)
time(s) using a URL or temporarily adding them to trusted faces.
Derived from requirement REQ-4, REQ-5, REQ-11, REQ-12, REQ-16, REQ-17, REQ-21,
REQ-22.

UC-5: Add/Remove Visitors -​ To add or remove residents as visitors with permission to
enter the house with facial recognition.
Derived from requirements REQ-1, REQ-2, REQ-3, REQ-4, REQ-21, REQ-22.

UC-6: Data Visualization -​ To allow homeowners to view data pertaining to who enters
the house and when then enter.
Derived from requirement REQ-11, REQ-12, REQ-20.

UC-7: Live Video Feed -​ To obtain a live feed of the home entrance through the camera.
Derived from requirement REQ-19.

4.3.b Use Case Diagram

The following diagrams display and elaborate on the requirements, actors, conditions, and
flow of events for each use case that will be implemented by the time of the final demo.

Use Case UC-1: Unlock (through face ID)

Related Requirements REQ-1, REQ-2, REQ-3, REQ-4, REQ-5, REQ-6

Initiating Actor Any of: Homeowner, Residents, or
authorized visitor

Actor’s Goal Homeowners and residents unlock the
door through facial recognition.

Participating Actors Camera, lock device, database, server

Preconditions Facial Recognition
Camera video upload to server
Residents data stored in database

Postconditions Door locks again after entering

Flow of Events:
1. Initiating actor approaches the door.
2. Camera sensor detects person approaching and signals the local processor to

begin Object Detection and Facial Recognition.
3. The indicator light tells the person status of lock, and direct the person to look

directly at the camera.
4. The facial recognition algorithm identifies the face as an authorized person.
5. System signals the lock device to unlock. Signals the timer to star auto-lock

countdown
6. Person enters the door and shuts the door, door sensor signals the system when

door is closed
7. System locks the door automatically

Use Case UC-2: Notifications

Related Requirements REQ-6, REQ-11, REQ-12, REQ-13, REQ-14,
REQ-16, REQ-17

Initiating Actor Visitors, strangers, or other events

Actor’s Goal Allow homeowners to receive notifications
about events.

Participating Actors Camera, server, and homeowners receiving
the notification

Preconditions An event occurs.

Postconditions The owner is informed of the event.

Flow of Events
1. An event occurs such as someone coming up to the door which will be detected by

motion detection.
2. This information is sent to the server. The server processes this information and

checks if the user is signed up for notifications.
3. If so, the server then sends a notification (SMS or push, depending on user

preference which they specify) to the user’s device.
4. The user sees the notification and is informed of the event.

Use Case UC-3: Stranger Reporting

Related Requirements REQ-7, REQ-11, REQ-12, REQ-16, REQ-18

Initiating Actor Stranger

Actor’s Goal Allow homeowners to report suspicious
activity in the neighborhood.

Participating Actors Homeowner, server, and neighbors

Preconditions Suspicious Activity occurs

Postconditions Suspicious activity is now viewable by
others in the neighborhood.

Flow of Events
1. A moving object arrives in view of the camera.
2. The system attempts to authenticate the moving object using facial detection and

recognition but fails. The camera takes a picture and sends it to the homeowner.
3. Homeowner notified of unknown object in front of door through a picture..
4. Homeowner looks at picture taken and feels like there is suspicious activity.
5. Homeowner reports it to the network.
6. A snapshot of the individual is saved by camera.
7. Now, anyone in the neighborhood can view this on the map.–

Use Case UC-4: Temporary Visitor Authentication

Related Requirements REQ-4, REQ-5, REQ-11, REQ-12, REQ-16,
REQ-17, REQ-21, REQ-22

Initiating Actor Homeowner

Actor’s Goal To allow visitors to the home in for one
time using a URL

Participating Actors Temporary visitor; Lock Device; Database

Preconditions Temporary visitor must be a member of the
allowed temporary visitor database.

Postconditions Temporary visitor authenticated.

Flow of Events
1. Homeowner accesses the visitor authentication tab in Web App
2. Web App sends a “GET” request for all open Visitor Keys
3. Server records the name, creates a Visitor ID, Visitor Key and expiration time
4. Homeowner clicks “Copy”; Visitor URL is copied to clipboard; Homeowner sends

the URL to the desired Visitor
5. Temporary visitor accesses URL via a web browser on a mobile device; Visitor is

presented their Visitor Key encoded as a QR code
6. Temporary visitor shows QR code to the Lock’s integrated camera
7. Lock’s Embedded Computer sends a “GET” request to the Server to verify the

Visitor Key
8. Use of the Visitor Key is recorded by the server; Visitor is authenticated and Lock

unlocks

Use Case UC-5: Add/Remove Residents

Related Requirements REQ-1, REQ-2, REQ-3, REQ-4, REQ-21,
REQ-22

Initiating Actor Homeowner

Actor’s Goal Add/Remove residents with permission to
enter the house with facial recognition.

Participating Actors Residents

Preconditions The ability to store a user with their own
facial ID tied to them.

Postconditions Resident is able to use facial recognition if
they are authorized.

Flow of Events (Homeowner adds Resident):
1. A Resident wants to be registered for facial recognition.
2. Homeowner accesses the Authorized Residents tab in Web App
3. Homeowner enters a name for the Resident; Selects “Add Residents”
4. Web App sends a “POST” request containing the requested name
5. Server records the name and creates a Resident ID.
6. Server responds with the new Resident ID; Web App updates list of Residents.

Alt. Flow of Events: (Homeowner removes Residents)

1. The Homeowner wants to remove a Resident.
2. Homeowner accesses the Authorized Resident tab in Web App
3. Homeowner enters a clicks delete button next to Resident name.
4. Web App sends a “DELETE” request containing the requested Resident ID
5. Server removes the Resident and related data from the database
6. Server responds with the status of the removal (“success” or “invalid id”)

Use Case UC-6: Data Visualization

Related Requirements REQ-11, REQ-12, REQ-20

Initiating Actor Homeowner

Actor’s Goal Allow homeowners to view data pertaining
to who enters the house.

Participating Actors Residents, Visitors

Preconditions Homeowner, Resident, or Visitor unlocks
the door.

Postconditions Name of Visitor, time entered, and data is
viewable by the Homeowner.

Flow of Events:
1. Homeowner opens web app and signs in if not already signed in.
2. Homeowner navigates to the tab for looking at events.
3. Homeowner selects the time, date, or visitors.
4. App displays the desired data and homeowner can view easy-to-read logs, graphs,

and charts on who entered the house and when.

Use Case UC-7: Live Video Feed

Related Requirements REQ-19

Initiating Actor Homeowner

Actor’s Goal To obtain a live feed of the home entrance
through the camera.

Participating Actors Camera

Preconditions Homeowner is logged into the website and
camera is functioning.

Postconditions None

Flow of Events:
1. Homeowner selects the live streaming tab on the web app.
2. Camera sends current video feed to the server.
3. Homeowners can view the video on web app.

4.3.c Traceability Matrix

This matrix displays how the use cases are related to the system requirements. An “X”
indicates that the requirement on the left is related to the corresponding use case.

REQ-# PW UC1 UC2 UC3 UC4 UC5 UC6 UC7

REQ-1 5 X X

REQ-2 3 X X

REQ-3 4 X X

REQ-4 2 X X X

REQ-5 4 X X

REQ-6 4 X X

REQ-7 2 X

REQ-8 4

REQ-9 4

REQ-10 5

REQ-11 3 X X X X

REQ-12 3 X X X X

REQ-13 2 X

REQ-14 1 X

REQ-15 5

REQ-16 5 X X X

REQ-17 4 X X

REQ-18 3 X

REQ-19 2 X

REQ-20 3 X

REQ-21 4 X X

REQ-22 4 X X

4.3.d Fully-Dressed Descriptions

The following diagram shows every action that the initiating actor can take while running the
use cases in the Use Case Diagram.

4.4 Systems Sequence Diagrams

The following diagrams display the sequence of events for use cases 1, 4, 6, 7, and 8, which are
the most important use cases.

4.4.a Illustration and Sequence Diagram for UC-1

The following diagram displays the flow of events for UC - 1 (Unlock Through Face ID).

4.4.b Sequence Diagram for UC-7

4.4.c Sequence Diagram for UC-6

4.4.d Sequence Diagram for UC-5

4.4.e Sequence Diagram for UC-4

5 User Interface Specification

While our goal with this project is to minimize user intervention as much as possible
through automated intelligence, there will still be times when the user must interact with
the system. To make this experience as painless as possible, we have deeply considered the
user’s needs for this aspect..

A major concern when designing mobile interfaces is reducing unintended input. For
example, if the user happens to misclick a button they may get disoriented and have a
“what just happened?”​ moment. These types of moments lead to a poor user experience and
should be avoided at all costs.

To combat this problem, we have decided on a proactive approach. Each state of the
interface will include large buttons typically spanning most of the screen’s width for ease of
access with either hand. However, we must balance the size of buttons with the amount of
information provided on any one screen.

Figure 4 -- A simple web application view displayed on a smartphone. Notice the
inclusion of wide buttons for ease of access on a mobile device.

Traversing different component views and their respective settings should be unified for all
components and efficient. With this in mind, a collapsible sidebar will be implemented for
the user to be able to navigate to the desired view with a maximum of two button presses.

5.1 Hand Drawn Designs

Figure 5.a.i -- Login & registration interfaces

In order to authenticate the owner must first enter their username and password. The
layout consists of username and password fields followed by a login button. Although not
depicted, the UI will also have a register button next to the login button that will allow for
the user to register for an account by entering their username, password, street address,
and Product ID. This will allow for the customer to link their smart lock with their account.

Figure 5.a.ii -- Main view that users will be presented upon logging in

Upon authentication as a homeowner, said user will be presented with the “Main” view.
This view will attempt to present the homeowner with a summary of important
information.

The main menu will consist of a sidebar displaying links to other important screens such as
the log, settings, visitors / authentication, and statistics (data visualization). The home
page will be very minimalistic. It will contain live feed of the lock (camera), an unlock
button which will allow for the owner to manually unlock their door without having to use
the facial authentication or URL authentication. Under the unlock button the user can
preview some recent history (only the first few entries; the rest of the history will only be
shown when the user clicks on “logs” [in the sidebar]).

Figure 5.a.iii -- Data visualization interface with tabs and relevant graphics types under
the “Stats” menu option

Data Visualization can be accessed using the menu item labeled “Stats.” This page will
contain graphics centered relative to the viewport. These graphics will include
corresponding legends and other information along the bottom. Along the top, there will
be tabs to other statistical information that would be important to visualize. The statistics
displayed will include total number of visitors for each time of day, time of day visitors are
most active, organized chronological history of when visitors are most active, etc.

Figure 5.a.iv -- Various Automatic Visitor Authentication menus allowing the homeowner
to view the status of visitors they have granted access to

Automatic Visitor Authentication can be accessed by the user by navigating to the
“Permissions” tab on the sidebar. This page will host two tabs, URLs and Faces. URLs
contains active visitors that were permitted by the URL system. Faces contains visitors that
were permitted by inputting images. The user may also create new visitors using the
button below the entries or delete entries as well. When creating new visitors using the
visitor for with URLs the user needs to specify a name as well as duration (the duration can
be specified in different ways including dates and number of uses). When creating a visitor
by inputting faces, the user may specify name and then upload multiple images which the
system may catalog for facial recognition. The user may also specify duration for facial
recognition as well if so desired (not shown).

5.2 User Effort Estimation

Note that for each user effort estimation is based on the ​maximum​ total user effort.
For all variable text entries, assume ‘λ​’ as a number of characters in the desired string. It is
possible that ​λ are different lengths and will be differentiated by a subscript.

5.2.a Desktop

LOGIN: ​total 3 mouse clicks and λ​1​+λ​2​ keystrokes (or 1 mouse click and 2+λ​1​+λ​2
keystrokes), as follows

1. Click​ “Username” box
a. Press​ λ​1​ keys.

2. Click​ “Password” box | Press​ “TAB”
a. Press​ ​λ​2​ keys.

3. Click​ “Sign-In” button | Press​ “ENTER”

NAVIGATION​: total 2 mouse clicks, as follows

1. Click​ "Menu" button (top left)
2. Click​ on desired component view labeled by name

UNLOCK:​ total 3 mouse clicks​, as follows

1. NAVIGATE​ to “Main Menu” (2 mouse clicks)
2. Click​ “Unlock” button

VISITOR AUTHENTICATION:​ total 6 mouse clicks and ​λ keystrokes, as follows

1. NAVIGATE​ to “Permissions” (2 mouse clicks)
2. Click​ “Create New” button
3. Click​ “Name” box

a. Press​ ​λ keys.
4. Click​ “Image” button

a. Upload Image ​(Undefined keystrokes. Dependent on external directories)
5. Click​ “Save”

5.2.b Mobile

LOGIN: ​total 3+λ​1​+λ​2​ gestures, as follows
1. Touch​ “Username” box

a. Touch​ ​λ​1​ keys.
2. Touch​ “Password” box

a. Touch​ λ​2​ keys.
3. Touch​ “Sign-In” button

NAVIGATION​: total 2 gestures, as follows

1. Swipe​ from left edge of screen towards middle.
2. Touch​ on desired component view labeled by name.

UNLOCK:​ total 3 gestures​, as follows

1. NAVIGATE​ to “Main Menu” (2 mouse clicks)
2. Touch​ “Unlock” button

VISITOR AUTHENTICATION:​ total 6+​λ​ gestures​, as follows

1. NAVIGATE​ to “Permissions” (2 mouse clicks)
2. Touch​ “Create New” button
3. Touch​ “Name” box

a. Touch​ ​λ keys.
4. Touch​ “Image” button

a. Upload Image ​(Undefined keystrokes. Dependent on external directories)
5. Touch​ “Save”

5.3 Conceptual UI Mockup (Extremely Basic)

6 Domain Analysis

6.1 Domain Model

6.1.a Concept Definitions
Note: The “Type” column denotes the category of responsibility.
D = “doing”, K = “knowing”, N = “none”

Responsibility Description
Typ

e
Concept Name

Related Use
Cases

To route requests from the user
interface to the appropriate
handler to service the request.

D Controller ALL

To log information needed for use
cases in persistent storage, and
retrieve information as needed by
the handlers for use cases.

K CentralDatabase ALL

To detect if an object has passed in
front of a camera.

D ObjectDetector
UC-1, UC-3,
UC-4, UC-7

To detect if a face is being shown in
front of the camera.

D FaceDetector UC-1, UC-3

To analyze the face that has been
detected and see if the face is
associated with any existing users
who have access to the lock.

D FaceRecognizer UC-1, UC-3

To unlock the door upon successful
authentication.

D DoorUnlocker UC-1, UC-4

To log events for a lock in the
database.

D EventLogger UC-2

To send an SMS notification to a
user’s phone number upon an
event occurring.

D SMSNotifier UC-2

To send a push notification to a
user’s device upon an event
occurring.

D PushNotifier UC-2

To report an unidentified person
trying to gain access to the house
associated with a lock.

D StrangerReporter UC-3

To display the reportings of
strangers within an area.

K StrangerMap UC-3

To assign a temporary URL
containing a QR code that can
unlock the lock exactly once per QR
code.

D TempAuthAssigner UC-4

To detect if a temporary
authentication code is being
displayed in front of the camera.

D TempAuthDetector UC-4

To verify that the temporary
authentication code being
presented is in fact valid for
one-time unlocking.

D TempAuthVerifier UC-4

To register allowed residents along
with access permissions for a
certain lock.

D ResidentAdder UC-5

To log images of a newly added
resident’s face for future use in
facial recognition unlocking.

D FaceScanner UC-5

To display lock data to the user. D DataGenerator UC-6

To fetch specific lock data based on
specified fields.

D DataFetcher UC-6

To mirror the video feed from the
camera wherever the user is
viewing his/her lock information
from.

D LiveFeedViewer UC-7

To delete a given resident from the
list of allowed visitors for a
particular lock.

D ResidentDeletor UC-5

To show relevant information
about the specific use case to the
user and allow for user input

K WebInterface
UC-2, UC-4,
UC-6, UC-7

related to the use case.

6.1.b Association Definitions

Concept Pair Association Description Association Name

Controller ←→
CentralDatabase

Controller sends an
arbitrary request for data to
the database and receives
the data it requests.

Database request

ObjectDetector ←→
FaceDetector

If an object is detected,
determine if the object is a
face.

Detect face

FaceDetector ←→
FaceRecognizer

If a face is detected,
determine if it is recognized
in the list of visitors.

Recognize face

FaceRecognizer ←→
CentralDatabase

Verify the facial detection
with the permissions in the
central database for the
particular lock.

Verify face ID

FaceRecognizer ←→
DoorUnlocker

If the face is recognized,
unlock the door.

Face ID unlock

EventLogger ←→
SMSNotifier

Upon an event being logged,
notify the user via SMS.

SMS notify

EventLogger ←→
PushNotifier

Upon an event being logged,
notify the use via push
notification.

Push notify

FaceRecognizer ←→
StrangerReporter

If a face is not recognized,
report the unrecognized
face to the Stranger
Detection Network (SRN)

Report stranger

StrangerReporter ←→
StrangerMap

Updates the stranger map
with the location of the
stranger and the time of the
stranger’s visit.

Update stranger map

WebInterface ←→ Access the temporary Access temp auth

TempAuthAssigner authentication interface
through the web app.

ObjectDetector ←→
TempAuthDetector

If an object was detected,
see if it is a temporary
authentication code.

Detect temp auth

TempAuthDetector ←→
TempAuthVerifier

If a temporary
authentication code was
detected, see if it is valid to
unlock the lock.

Verify temp auth

TempAuthVerifier ←→
CentralDatabase

Check the temporary
authentication code with
the database for
permissions and extra
verification

Confirm temp auth

TempAuthVerifier ←→
DoorUnlocker

Unlock the door after
temporary authentication
was confirmed.

Unlock temp auth

WebInterface ←→
ResidentAdder

Access the resident adder
interface through the web
app.

Access resident adder

ResidentAdder ←→
Controller

Adds a resident to the
database with the given
permissions.

Add resident

ResidentAdder ←→
FaceScanner

Registers a newly added
visitor’s face to the
database, for facial
recognition purposes.

Scan resident’s face

FaceScanner ←→
Controller

Preps the database request
to add a face image for a
new resident.

Add a new face

WebInterface ←→
DataFetcher

Access the data
visualization interface from
the web app, in the form of
a data fetcher query.

Access data visualization

DataFetcher ←→ Controller
Prep the data fetcher query
for sending to the database.

Prep data query

DataFetcher ←→
DataGenerator

Update data graphs based
on the results of the query
from the data fetcher

Update data graphs

WebInterface ←→
LiveFeedViewer

Access the live feed
streaming from the camera.

View live feed

WebInterface ←→
VisitorDeletor

Access the control panel
that removes authentication
permissions from select
person.

Access auth control

VisitorDeletor ←→
Controller

Prep visitor delete request
for sending to the database

Prep visitor delete

WebInterface ←→
SettingsUpdater

Access the settings update
interface from the web app.

Access settings

SettingsUpdater ←→
Controller

Prep the updated settings
for update in the database

Prep settings update

Controller ←→
WebInterface

Updates web interface
based on results of a
database query.

Update web app

6.1.c Attribute Definitions

Concept
Relevant Use

Case(s)
Attribute

Attribute
Description

SMSNotifier UC-2 User phone number

Phone number
which SMS
notifications should
be sent to.

StrangerReporter UC-3

Time of visit

The time the
stranger
approached the
house.

Stranger image
A captured image of
the stranger from
the camera.

StrangerMap UC-3 User location
Location which the
map should be

centered around.

Map radius
Max radius around
the current location
to show.

Heatmap opacity
Determines the
opacity of the heat

Stranger filter
Filters the heatmap
by specific stranger
sightings.

TempAuthVerifier UC-4 Temp code

Temporary
authentication code
generated for
one-time unlocking.

ResidentAdder UC-5

Resident’s Name
Name of the
resident to be
added.

Is resident allowed

General access
allowance
(boolean). If this is
“false”, the resident
is not deleted from
the list of resident,
but he/she is not
allowed access to
the lock until this
field is set to “true”
again.

Start time

Earliest time on a
given day where a
resident can unlock
the lock.

End time

Latest time on a
given day where a
resident can unlock
the lock.

DataGenerator UC-6 Data sets
Sets of data to
display.

Data formats

List of formats
which the data
should be displayed
in. Each item in the
list corresponds to a
data set.

6.1.d Traceability Matrix

Domain Concepts

Use
Case

1 2 3 4 5 6 7

PW 15 10 10 5 10 15 15

Controller X X X X X X X

CentralDatabase X X X X X X X

ObjectDetector X X X

FaceDetector X X

FaceRecognizer X X

DoorUnlocker X X

EventLogger X

SMSNotifier X

PushNotifier X

StrangerReporter X

StrangerMap X

TempAuthAssigner X

TempAuthDetector X

TempAuthVerifier X X

ResidentAdder X

FaceScanner X

DataGenerator X

DataFetcher X

LiveFeedViewer X

VisitorDeletor

WebInterface X X X X X

6.1.e Diagrams
Due to the the large scope of the project, we have decided to split up a full representation of
the problem domain into separate spaces. Each chart shown below is completely
orthogonal to the others. That is, each chart can be treated as a “subsystem” for the total
Smart Lock product. In general, all subsystems start from the same ​boundary ​of either the
ObjectDetector or WebInterface concepts. From there, paths diverge depending on the goal
of the use case.

Figure 6.1.e.i:

Figure 6.1.e.ii:

Figure 6.1.e.iii:

6.2 System Operation Contracts

Operation Unlock [UC - 1]

Responsibility Automatically authenticate visitor using facial recognition.

Output
Make autonomously make a judgement on whether to unlock

and door or not, and notify user.

Preconditions Visitor approaches entrance. FaceDetector detects face.

Postconditions Notify Homeowner.
If (visitor ∈ authenticated_users) Unlock

Else Reject

Operation Temporary Visitor Authentication [UC - 4]

Responsibility
Visitor is authenticated temporarily using facial recognition or

a URL key.

Output
Make autonomously make a judgement on whether to unlock

and door or not, and notify user.

Preconditions Visitor approaches entrance. User holds up QR code.

Postconditions Notify Homeowner.
If (visitor_qr ∈ authenticated_tokens) Unlock; key_uses--

Else Reject

Operation Add Visitors [UC - 6]

Responsibility
Add visitor’s face to database of faces for facial recognition

authentication.

Output Add user’s faces to database. Ready for CV.

Preconditions Homeowner inputs / uploads approximately 5 images of
visitor.

Postconditions Preprocess images. Communicate images to CentralDatabase’s
repo of images.

7 Interaction Diagrams and Alternative Design

7.1 Interaction diagrams

7.1.a Interaction diagram for UC-1 - Unlock

Figure 7.1.a - Interaction Diagram for Facial Recognition and Unlocking:

The approaching person triggers local processor’s CV module, then the Raspberry Pi will
do the facial recognition authentication and log event to the server database. If the
person is authorized to enter, the local processor will send unlock signal to the lock.
When unlocked, a software timer will begin countdown, timer will notify local processor
when the countdown is complete and local processor will lock the door again if the door
is closed.

7.1.b Interaction diagram for UC-4 -Temporary Visitor Authentication

Figure 7.1.b - Interaction Diagram for a Visitor Unlocking the Door:

Visitor uses temporary URL created by the homeowner to enter a web app interface for
temperor entrance. Web app pulls from server database to ensure the URL is active. The
web app receives authentication and log event while the server notify the lock device to
unlock. The rest of this use case proceed in the same manner as UC-1 after unlocking.

7.1.c Interaction diagram for UC-5 - Add/Remove Visitors

Figure 7.1.c - Interaction Diagram for Adding and Removing Visitors:

Homeowner with access to the web app can add visitor using visitor page. The
Homeowner can upload or take a picture of the intended visitor and add the information
to the server database, which will be pulled by the local processor for facial recognition
authentication.

7.1.d Interaction diagram for UC-6 - Data Visualization

Figure 7.1.d - Interaction Diagram for Event Reporting and Visualization:

Home owner login to the Web App. The Web App request data from server database, and
generate data visualization

7.1.e Interaction diagram for UC-7 - Live Video Feed

Figure 7.1.e - Interaction Diagram for Streaming Video:

The user is logged in to the web app and then chooses to view the live video feed. The
web app requests the video feed from the server and then the server requests and
receives the video from the Pi. The video is then sent to the web app and the homeowner
can view it.

7.2 Alternative Design

During the initial planning phases it was suggested that the frontend be designed
using popular frontend libraries. For starters, it was suggested that we use the React
JavaScript library for a component-based frontend. However, it was decided against by
members experience with frontend design who thought it to be too complicated for an
academic project of this caliber. Plus, modern JavaScript provides us with many helpful
interfaces for creating component-based front ends without the need for external libraries.

For the backend, first both Flask and Django were used. Django was being used for

the main REST API while Flask was used for the SMS notification network and for the
Stranger Reporting Network. Later, we found it to be the better design to merge the two
backend systems together. We can allow the stranger report to be linked with a lock and
the SMS notification system to be linked with a user with this design. Now, for the backend,
we are using Django to implement the REST API.

We are using Flask currently for testing the visitor frontend since the visitor API is

easier to implement in Flask for testing purposes.

While designing the facial recognition unlocking mechanism, we encountered

hardware implementation problem, namely, the capability of computer. We would love to
implement Convolutional Neural Network based face detector, however, Raspberry Pi, the
local control computer is incapable to run CNN method. We ultimately decided to use the
Raspberry Pi for facial detection for three major reasons: 1, it is necessary to have a
computer to control the lock device locally, and Raspberry Pi computer can make
breadboard prototype; 2, to have facial recognition happen on local processor reduces
communication overhead; 3, Raspberry Pi computer, although unable to run more
complicated CV method, is still a reliable facial recognition tool. The alternative to using
local processor to do facial recognition is locating CV module in the server, which is ideally
more powerful and capable to run CNN method. But due to advantages of Raspberry Pi in
term of practicality, this design is abandoned.

8. Class Diagram and Interface Specification

8.1 Class Diagram

Figure 8.1.a: This UML class diagram shows the different subsystems of our product,
their methods and parameters, and how they interact with each other.

8.2 Data Types and Operation Signatures

User:
A user is anyone with permission to enter the home whether it be a visitor or a resident.

Attribute Type

name - Name associated with user char

priority - How many entries allowed int

face - the face of user stored as an image image

LockID - ID associated with face to unlock long

Method Type

addFace() - storing user’s face void

changeName() - changing name if desired void

checkPriority() - checking number of
entries allowed

void

verifyLogin() - verifying if entry allowed void

Visitor:
A visitor derives from user, and is allowed an entry to home by a temporary generated url.

Attribute Type

visitorID - ID associated with visitor int

Method Type

temporaryAccess(URL) - allows acces to
vistor to access home

void

Residents:
A resident derives from user class and is allowed access to home via facial recognition.

Attribute Type

residenceID - ID associated with resident int

Method Type

residenceAccess() - checks if a person is a
resident and has access to home

void

State:
State describes which condition the lock is currently in.

Attribute Type

active - In process of changing states,
unlocked currently

boolean

distance float

lock - lock is locked boolean

Method Type

switchOn() - lock begins to change states void

unlock() - unlocks lock void

activate() - tells lock to perform action void

Database:
Stores information and allows changes to information.

Attribute Type

userinfo - information associated with
users, i.e. names, faces

struct

settings - allows changes to userinfo struct

Method Type

findUser() - searches through user info for
ID associated with name or face

void

Notifications:
Notification system to alert homeowner of an event.

Attribute Type

eventType - event that would trigger a
notification

int

format struct

Method Type

newNotification() - generates notification void

sendNotification() - sends notification void

Camera:
Camera connected to lock.

Attribute Type

fps - frames per second int

image - image being output each frame image

Method Type

imageCapture() - camera takes and stores
image

void

Video Feed:
Video being input by camera.

Attribute Type

video - video taken by camera after motion
detected

video

settings - settings struct

Method Type

getVideo(auth) - outputs clips to database Video

Stranger Reporting Network:
Storing videos of suspicious strangers to a database.

Attribute Type

video - video feed from event with stranger video

settings - settings struct

Method Type

addSRN(float, float) boolean

getSRN(float, float) List

Face Detector:
Searches for human faces.

Attribute Type

fps - frames per second int

image - image of face image

Method Type

detectMotion() - detects motion in front of
camera

void

scanFace() - compares face to stored
images of residents/visitors faces

void

Lock Device:
Device keeping door sealed from intruders.

Attribute Type

lockID - ID associated with lock long

numLock int

Method Type

newDevice() void

addUser() - adds users as residents or
visitors with permission to enter home

void

8.3 Traceability Matrix

UC-1: Unlock -​ Gives the homeowner and residents ability to unlock the door through
facial recognition.
UC-2: Notifications -​ Allow homeowners to receive notifications about events.
UC-3: Stranger Reporting -​ Allow homeowners to report suspicious activity in the
neighborhood.
UC-4: Temporary Visitor Authentication -​ To allow visitors to the home in one(or more)
time(s) using a URL or temporarily adding them to trusted faces.
UC-5: Add/Remove Visitors -​ To add residents as visitors with permission to enter the
house with facial recognition or remove these visitors.
UC-6: Data Visualization -​ To allow homeowners to view data pertaining to who enters
the house and when then enter.
UC-7: Live Video Feed -​ To obtain a live feed of the home entrance through the camera.

 UC - 1 UC - 2 UC - 3 UC - 4 UC - 5 UC - 6 UC - 7

User X X

Log X X

Notifications X X

Video X X X

Lock Device X X X

Stranger
Reporting
Network

 X X

QR Code
Reader

 X

FaceDetector X X

9 System Architecture and System Design

9.1 Architectural Styles

In general, we will use a ​Model-View-Controller framework​. The frontend of the web
application will be the view which is what the user interacts with. The frontend is
responsible for sending HTTP requests to the backend. The model is our database which
stores all of the data. The controller will be our backend which is the interface between our
database and the frontend. Each of these will also incorporate other architectural and
design styles as well.

The frontend will utilize a ​Component-based​ architecture for each of its features. These
features will be separated into distinct sections/components so that each section addresses
a different concern. Although they are separated, all the features will utilize a common
interface.

Serving the web app will use a ​Client-Server​ architectural style. When the user’s browser
requests the web page, the HTML/CSS/JavaScript related to the page will be transmitted to
the user’s browser from the web server. This is how traditional web servers work, and we
will be following the same model. This process will be greatly simplified provided the web
app will be contained within a single page. Consequently, the web server will be able to
cache the necessary files, allowing for very quick handling of requests.

All backend data will be contained within a ​Central Repository​. The associated relational
database will contain all data relevant to user accounts (names, owned locks) and locks
(allowed visitors, user/visitor data, etc).

To access backend data, the frontend will use ​Representational State Transfer (REST)​ to
communicate data. For example, when the visitors component is selected by the user, by
default it will request a list of active temporary keys from the backend via an HTTP ​GET
request. The backend will look up all temporary keys associated with the user’s lock and
transfer the data back to the client. All other frontend components will use a similar style to
access data over the RESTful API.

The Lock device software uses an ​Event-driven​ architecture. As the name suggests, this
system detects and reacts to events, specifically realizing an object approaching. In this
structure, we have ​event emitters (agents)​ and ​event consumers (sinks)​. Event emitters are
responsible for detecting a person is nearby, collect visual information via a camera, and
send the data.

Peer-to-peer​ communication will be used to transfer video streams of the camera directly
to the homeowner’s web app client. Peers make a portion of their resources, such as
processing power, disk storage or network bandwidth, directly available to other network
participants, without the need for central coordination by servers or stable hosts.

9.2 Identifying Subsystems

Figure 3.2.a: For our lock subsystem, we have the Raspberry Pi. The Raspberry Pi
interfaces with the camera and sensor. These components make the lock. The lock
interfaces with the web server only. Then, we have the API server which handles the API
requests. The API server interfaces with the website and the web server. The website
consists of the front-end user interface. The website interfaces with the API server and
the web server. Finally, we have the web server. The web server interfaces with all other
interfaces and can be thought of as a middleman.

9.3 Mapping Subsystems to Hardware

Subsystem: Lock

Lock will be the implemented as the lock Device, which consists of a local processor, a
physical lock, and a camera (& sensor).

Subsystem: REST API

The REST API will run on the server. The API will interface between the database and the
web app.

Subsystem: Web App

The Web App is hosted on the server, which we will host on a personal computer.

9.4 Persistent Data Storage

9.4.a Role of Persistent Storage

The need for persistent storage in our application is paramount to the success of the
application as a whole. In our case, persistent data storage will be used to ensure that user
experience is consistent on a user-by-user basis, which is a key part of our application. In
addition to the fairly simple problem of storing user data, the persistent data storage
system must also be able to store images and videos of visitors who approach the lock. This
requires the storage system to interface directly with the lock subsystem to create new
entries for visitors approaching the lock.

Aside from typical persistent storage applications, it is necessary from a security
standpoint for our storage system to make sure individual user settings are separate from
others to ensure the security of the lock. If a given user could access the information of
other users, it would be detrimental as it would present a huge security vulnerability in our
application. Therefore, we have the need to build an additional layer of authentication on
top of our data storage system. This authentication system will restrict certain data
requests to certain users to ensure that data physically cannot be accessed without
breaking into a user’s account

9.4.b Persistent Storage Strategy and Motivations

There are numerous types of persistent data storage systems. An abbreviated list of most
commonly used types of persistent storage, along with an evaluation of their usefulness for
our application, is shown below:

● File based storage ​is one of the most simple types of persistent storage. A file is
opened and written to, and data is read from the file whenever requested. This
system is useful for logging applications where a file needs to be appended to on an
event. However, a file based system has the major drawback of only allowing
“sequential” reading and writing access, which means that it is easier to read from
the beginning of the file than from a random place in the file. This makes file based
storage systems unsuitable for our application, as we would need to access data
from users at seemingly random orders, which goes against the primary advantages
of a file based system.

● Relational databases ​are one of the most popular types of persistent data storage
today. They use SQL (Structured Query Language) to interface with a distributed
network of files, in order to provide quick reads and writes to the database. One
advantage of relational design is its following of ACID principles. ACID guarantees
quick database operations that can be isolated from one another (“atomicity”), a

clean way to maintain database state while guarding from corruption
(“consistency”), handling of concurrent database operations (“isolation”), and
guarantees of future database state after changes (“durability”). These principles
make relational databases a very reliable choice for our application. One drawback
of relational databases is their need for highly structured data in the form of
database tables, with clearly defined, unalterable field categories for each entry of
the table.

● Non-relational databases ​act much in the same way as relational databases, with the
primary difference being their ability to handle unstructured, flexible data. They
also can guarantee even faster lookup speeds than relational databases due to their
flexible nature. Unfortunately, their advantages in that category also lead to their
main drawback: they do not guarantee the same level of reliability that relational
databases do with their ACID principles.

Looking at these choices, it becomes clear that the storage system should be designed with
a relational database. Because of our needs for reliability, relational databases cannot be
beat. The drawback of being forced into structured data is not an issue for our application.
However, this is not a concern for our application because all users will have essentially the
same types of data associated with them, and it is easy to work around the limitations of
relational databases to create more flexible designs.

9.4.c Database Schema

9.4.c.i Derivation of the Database Schema

The structure of the database was derived by considering the needs of each subsystem as
seen in the domain model and architecture analysis.

A User table is surely needed to keep track of user attributes such as name,
username/password, and phone number.

A Lock table is needed to manage the locking systems. Each lock will be owned by exactly
one user, but a user can own multiple locks. Also associated with each lock will be the
address of the home/building the lock is installed at.

In order to maintain permissions for users and locks, a separate table must be created to
store access permissions for registered users as they relate to locks. Such permissions can
include general unlock abilities and time ranges where users are allowed to unlock the

lock. Note that even though permissions may be set, the unlocking ability is ultimately
dependent on the ability of the lock and camera system to identify the user.

For the Stranger Reporting Network (SRN), a separate table is required to log stranger
visits as they relate to locations on a map. The time of stranger visits must also be logged in
this table, along with an image of the stranger. This forms a complete log of an unidentified
user’s approach to the lock system so that it can be used by the SRN to take appropriate
action.

Along with all of these fields, separate tables for user images and videos are also required.
The images and videos themselves can be encoded as binary data in the databases, and
they will be associated with users. Each image or video can only have one user.

9.4.c.ii ER Diagram for the Database

Using the derivation presented above, it is simple to construct an ER diagram that will
guide the organization of data for our application. The complete ER diagram is shown
below:

Figure 3.4.c.ii

Reading an ER Diagram:

● Rounded rectangles ​represent the “entities” of the system: essentially key
components of the storage system.

● Ovals​ represent “attributes” of an entity or relation. These attributes are what the
database will store in relation to the entities.

● Diamonds​ represent relations between two entities.
● N or 1 ​on a line represents the degree of the relationship. If the mark is N, there can

be more than one of the entity that is being connected in the relation. If the mark is
1, there can only be one entity in the relation for each entity on the other side of the
relation.

9.5 Network Protocol

In order to orchestrate the communication between the lock, central server, and the web
app, the project will use REST HTTP calls and use JSON for all communication. HTTP
protocol will also be used for live streaming and the transmission of video between the
lock, server & web app.

9.5.a HTTP

HTTP is an application-level protocol (meaning it connects parts of a large internet
application together). HTTP is very reliable, using many areas of redundancy to achieve
good error resilience. The basis of the HTTP framework is the use of URLs to identify
resources (any data that is of interest to the application).

On the client side of an application, HTTP supports a series of “methods”, which define how
the data sent in an HTTP request should be acted on. The major types of methods are
summarized below:

● GET - gets the resource at a URL that is passed in with the request.
● POST - creates a new resource at the URL passed in with the request, corresponding

to the data that was also passed in.
● PATCH/PUT - alters the already existing resource at a passed in URL according to

the data fields passed in.
● DELETE - deletes the resource at the URL passed in.

Data in HTML is typically represented in JSON form. JSON is a Javascript-like format for
storing data that all web browsers support. JSON is easy to encode into the proper HTTP
format, which makes it an attractive option for attaching data to HTTP requests.

HTTP responses are sent back when a server receives an HTTP request. The server tries to
fulfill the request, and depending on the result, sends back a response code that gives the
request sender an idea of the results of the request. The server can also attach JSON data to
the response just as the client can to a request. This enables the client to receive results of
operations (such as a GET request) from the server. Some common response codes are
described below:

● 404 - resource was not found at the URL.
● 200 - operation succeeded with no errors.
● 401 - sender of the request is not authorized to access the URL.
● 503 - the resource at the URL exists but is unavailable for some reason.

By carefully managing HTTP requests and responses, it is possible to design a system in
completely separate components, using HTTP requests to one another to communicate
instead of traditional object-oriented programming communication (which is done through
method calls and parameter passing). We design our application with this approach in
mind. Because we are operating with essentially three different computers (the camera
system, the web application, and the central repository), there needs to be a clearly defined
way for communication between machines, which HTTP services perfectly.

9.5.b TCP/IP

TCP and IP operate at a lower level than HTTP, dictating how messages should be sent over
a network. Specifically TCP deals with how to package and interpret data for transport
between applications, and IP deals with where to send the data and how to direct it to its
intended location. The details of TCP/IP are not relevant to the scope of our application, so
we will not discuss them here. Instead, we will note that TCP and IP form the basis of the
Internet, offering very high reliability and being very error resilient.

9.5.c Websockets

Websockets are an extension of the ​socket API ​used in many programming languages to
Javascript, the language of the Web. To introduce websockets, it is first necessary to
describe how sockets work in general. These same concepts are slightly modified when
considering websockets, but the general ideas are the same.

Sockets provide a low level interface into the TCP/IP protocol. They allow direct transfer of
data between two WiFi-connected computers. By creating sockets on two computers and
linking them together, a line of communication is established, and each of the computers
can send or receive messages from the other.

Websockets are built on top of regular sockets, and they allow websites to communicate
over a single TCP connection. Websockets are typically used because of their low
communication overhead and little setup resources, compared to HTTP. The most common
uses of websockets are to stream video, which is exactly what we will be using them for.
Websockets will form the core of our live streaming system.

9.6 Global Control Flow

9.6.a Execution Orderliness

Our lock exhibits an event driven system. Specifically, the CV module waits until it
receives a notice form supersonic motion detector. After this, it goes into the state in which
it will conduct facial recognition and authenticate. If a face was authenticated, the door
unlocks; otherwise, the door stay locked. After the recognition is done, it exits facial
recognition and waits until it receives another notice form supersonic motion detector.

For our server, we will receive HTTP requests for either adding data to the database
or sending data. First, we will receive an HTTP request at a certain route for the server. If
the request is a GET request, we will return the corresponding data from the database
based on authentication of the user. If the request is a POST request, we will conduct a
specific action. Examples of actions are adding data to a database or sending a SMS
notification or push notification.

Our web app can be described as an event driven system. In the beginning, the
homeowner (admin) has to login. In this sense, the app may be considered linear.
Afterwards, the app behaves as event driven. The user can choose which page to view
which will bring the user to a different page. The user can then perform certain actions on
the respective page. These actions might be done in a linear fashion. For example, adding a
visitor requires first choosing the option to add a visitor and then uploading a picture.

9.6.b Time dependency

A software timer is used during countdown when door is unlocked. If the door is
unlocked but not opened for a certain time period (for example, 10 seconds), the door will
be locked again.

9.6.c Concurrency

For our server, we are using Django as a framework. Django will handle all
concurrency related issues so we do not have to account for multiple connections to our
server. For our lock, we will use multithreading to send the video to the user and to the
server. There are no major concurrency issues here since we are not modifying data.
Rather, we are just reading data from the camera. Our web app is not multithreaded as well
so there are no concurrency issues here.

For our main lock device, we used concurrency. We were running three separate
processes in the background. We were running facial recognition/detection, QR code

detection and the streaming server. Thus, we had to create a shared queue that was shared
among the processes. The queue held the newest frames from the camera. As a result, we
did not waste processing power just getting the same frames for all three processes.

9.7 Hardware Requirements

9.7.a Lock Device: (Lock + Local Processor + Camera & Sensor)

● Local processor: is a Raspberry Pi 3 computer, capable of facial recognition.
● Camera: must be compatible with Raspberry Pi 3.
● Electric Lock: the physical lock is implemented by a DC motor, which is controlled

by the Raspberry Pi processor.

9.7.b Server

● Will run on a hosting service.
● Storage : > 5 GiB. This will give room for storage of frames. However, required size

heavily depends on the amount of clips, and the amount of households currently
registered.

● Bandwidth : 25 mbps upload and download. Very rough estimates.

10 Algorithms and Data Structures

10.1 Algorithms

In order to effectively stream the video from the lock to the user and the server, we will
need to incorporate usage of algorithms. First, we will need to compress the video.
Compression will reduce network bandwidth usage when streaming and will also allow
less storage to be needed in order to store videos. For compression, we will use H.264
compression which is used for most video compression. After compression, we can send
the video using sockets.

We will also incorporate algorithms for our Stranger Reporting Network. Specifically, when
we send the data to the frontend for the frontend to display local reports, we do not want
send all reports in our database. Rather, we would like to send only those reports which are
in close proximity to the user in question. To do this, we make use of a mathematical
formula known as the Haversine formula which will allow us to calculate the distance
between two coordinate positions on the Earth. Using this, we can filter the data to only
return reports within a certain radius of the user, effectively decreasing the load on the
frontend.

For facial recognition on Raspberry Pi, we will use the Histogram of Oriented Gradient
(HoG) based face detector method due to the fact Raspberry Pi computers are incapable of
running convolutional neural network (CNN) based face detector.

HoG​ is a feature descriptor in image processing, the essential thought behind the histogram
of oriented gradients descriptor is that local object appearance and shape within an image
can be described by the distribution of intensity gradients or edge directions (wikipedia).
We will extract these descriptors and train the machine with deep learning.

Deep Learning is a machine learning method that is constructed based on a greedy
layer-by-layer architecture, it will disentangle each layer of network and improve
performance . We employed the ​general purpose library in python -- Dlib toolkit to
implement machine learning algorithms.

10.2 Data Structures

The different components of our Web App frontend will utilize a number of simple data
structures. Provided that JavaScript allows for simple creation JSON objects (key-value
pairs) we will be sure to take advantage of them. A major example being REST
requests/responses.

Provided that our Web App frontend is designed around a RESTful backend framework, we
must have a standard data structure for communicating between the frontend and
backend. For this we have chosen to use JSON-encoded strings as our main data structure.
These are simple string-encoded key-value pairs which are native to JavaScript.

When the frontend sends a request to the server, it will need to include a JSON payload
with specifically named keys. In the figure below, the key ​auth_code​ is required for this type
of request. If this key is not present or is not of the correct type, the server will return an
error.

{

 auth_code: "8092acfb-ae28-4027-87c6-3f9a1dee5d72"

}

Figure 10.: Example of a request payload sent the frontend

Every message sent back from the server will contain at least two keys: a numerical ​status
code and a ​message​ encoded as a string.

{

 status: 200,

 auth_code: "8092acfb-ae28-4027-87c6-3f9a1dee5d72",

 message: ""

}

Figure 10.: Example response following a successful request

However, an unsuccessful response will just include ​status​ and ​message​ values. This error
message can then be shown to the user via the frontend.

{

 status: 404,

 message: "Invalid visitor ID requested"

}

Figure 10.: Example response following an unsuccessful request

11 User Interface Design and Implementation

One major improvement over the previous ​mobile​ interface design is that the menu
allowing access between component views will no longer be a square menu button. We
decided that having a grey bar along the side of the display spanning the entire height
would be enough of an indicator. The user will swipe from the side of the screen where the
bar is hidden to the opposite side, causing the menu to be displayed. This not only reduces
screen clutter but also provides access to the menu at a similar or better speed. A swiping
gesture can be much faster and more intuitive than pushing.​[4]​ This change will affect
navigation throughout the entire app.

Figure 11.a -- The differently colored bar on the left side of the screen indicates that a
menu is available for swiping.

Another improvement was the overhaul of the ​desktop​ main menu as well as the addition
of a live stream component accessible via the side menu. Having the live camera feed play
when the user opens the app could be problematic due to the amount of bandwidth
needed. Therefore, we moved the live feed into its own component and redesigned the
main page to only include important summary information and key controls.

Figure 11.b -- Main menu without live feed

Figure 11.c -- Live feed view accessible through the side menu.

Final Implemented Frontend:

Figure 11.d -- Login Screen

Figure 11.e -- Temporary Visitor Authentication Screen. Note the side menu.

Figure 11.f -- Mobile view. Note the collapsed side menu.

Figure 11.g -- Side menu pulled open.

12 Design of Tests

12.1 Test Design Methodology

Our application testing methodology consists of both unit tests (which test singular
components to ensure basic functionality) and integration tests (which ensure components
communicate properly and that large scale functions work).
Unit tests for the application are divided up by class. Detailed overviews of classes can be
found in Section 2 of this report. Each class contains unit tests to evaluate the basic
functionality of the component.
Integration tests for the application are divided up by use case. We feel that because use
cases represent the normal flows and uses of our application, we should design our tests
around the use cases to evaluate how our application will function in production.

12.2 Unit Tests (by Class)

User

- Test if user can set and modify all of its attributes (result is True or False). Each
attribute will be tested separately.

- Test if the user can be successfully authenticated with certain credentials (result is
True or False).

Visitor

- Test if the visitor can unlock door with temporary URL
- Test if the visitor can unlock door with their face
- Test if a removed visitor can still access the temporary URL and unlock the door

with the URL
- Test if a removed visitor can still unlock the door with their face

Residence

- Test if residence ID can be set (result is True or False).
- Test if an already created Residence does not allow modification of the residence ID

(result is True or False).

State

- Test if attributes can be created and modified (result is True or False). There will be
one test case for each attribute.

Notifications

- Test if notification can be added (result is True or False).
- Test if notification is delivered to user’s device (result is True or False). Note that

the device can be either mobile or desktop, since the notification will be sent as a
web notification.

- Test if the SMS notification sends when the user settings is set to receive them
- Test if the SMS notification doesn’t send when the user doesn’t want to receive

them.

Camera

- Test if camera can detect an object with an object detection algorithm using various
test images, compared to the actual presence of an object that we will manually
input (result is True or False).

Video Feed

- Test if a clip from the video feed matches a video clip from the camera, within a
certain level of quality (result must be within a certain quality threshold).

- Test if the video feed is live by setting a clock in front of the camera and testing the
live video feed.

Stranger Reporting Network

- Test if a stranger can be added to the SRN (result is True or False).
- Test if the stranger map updates when a stranger is added.

Face Detector

- Test if a face can be detected on an image using the facial detection algorithm, and
compare to the actual presence of a face in the image (result is True or False). We
will need to test this on numerous images, while manually inputting data for
whether a face is contained in the image.

Lock Device

- Test if a new device can be created (result is True or False).
- Test if an already created user can be assigned to a created lock device (result is

True or False).

12.2 Integration Tests (by Use Case)

Use Case I: Unlock
Homeowner, Resident or authorized visitor approaches the door and the facial recognition
algorithm identifies the face and opens the door. Testing can be done by sending an
authorized Homeowner to the lock device camera and verifying that the system has been
unlocked.

Use Case 2: Notifications
A face or QR code is detected, which sends an SMS or push notification to the Homeowner’s
device. Testing can be done by triggering one of these events and verifying that a
notification has been sent to the Homeowner.

Use Case 3: Stranger Reporting
Unauthorized visitor or object approaches the door and facial authentication fails. The
homeowner receives a notification and receives a picture of the face or object. Testing can
be done by sending an unauthorized visitor or object to the testing device and verifying
that the Homeowner receives a picture and notification.

UC-4: Temporary Visitor Authentication:
Homeowner creates a URL, which can be used by a temporary visitor to unlock the door.
Testing for the generation of this URL can be done by querying the database for the URL.
Additional testing includes sending a temporary visitor whose URL has been generated to
the lock device camera and verifying that the system has been unlocked.

UC-5: Add/Remove Residents:
The homeowner can add and remove residents. We test if the resident’s face has been
added to the trusted database of users and if the resident can unlock the door with their
face. We also test unlocking the door with the temporary URL. For removal, we test if the
resident can still unlock the door with their face or with the URL.

UC-6: Data Visualization:
The Homeowner opens the web app and navigates to the tab for looking at events, where
the Homeowner selects the time, date, or visitors, and can then view logs, graphs, and
charts on who entered the house and when. Testing can be done via query of database and
validating that the data is consistent with who unlocked the door and when.

UC-7: Live Video Feed:
A user logs in to the web app and navigates to the live video feed view. The web app starts
to receive live video data and the user can view it. For testing, we want to verify that the
video feed is in real time and is not showing previous frames.

13 History of Work, Current Status, and Future Work

13.1 History of Work

Implementation of separate components/features of the system.
- Temporary User Authentication
- SRN
- Facial Recognition
- QR Code Detection
- Data Visualization
- Event Feed
- SMS Notifications
- Live Video Feed

14. References

1. Histogram of the oriented gradient for face recognition - TUP Journals & Magazine​.

[Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6077989;https://en.wikipedia.org/

wiki/Histogram_of_oriented_gradients#Object_recognition. [Accessed: 2019].

2. Google​. [Online]. Available:

https://developers.google.com/maps/documentation/javascript/. [Accessed: 2019].

3. “ACID (computer science),” ​Wikipedia​, 11-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/ACID_(computer_science). [Accessed: 2019].

4. “App Design & Development Company | NYC,” ​App Partner​. [Online]. Available:

https://www.apppartner.com/the-psychology-of-swiping-in-apps/. [Accessed: 2019].

5. “Cascading Style Sheets,” ​Wikipedia​, 07-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Cascading_Style_Sheets. [Accessed: 2019].

6. T. Christie, “Django REST Framework,” ​Home - Django REST framework​. [Online].

Available: https://www.django-rest-framework.org/. [Accessed: 2019].

7. “Client–server model,” ​Wikipedia​, 09-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Client–server_model. [Accessed: 2019].

8. “Communication APIs for SMS, Voice, Video and Authentication,” ​Twilio​. [Online].

Available: http://twilio.com/. [Accessed: 2019].

9. “Component-based software engineering,” ​Wikipedia​, 09-Mar-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Component-based_software_engineering. [Accessed: 2019].

10. “Deep learning,” ​Wikipedia​, 10-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Deep_learning. [Accessed: 2019].

11. “Django,” ​Django​. [Online]. Available: https://www.djangoproject.com/. [Accessed:

2019].

12. “Event-driven architecture,” ​Wikipedia​, 26-Mar-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Event-driven_architecture. [Accessed: 2019].

13. “Haversine formula,” ​Wikipedia​, 07-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Haversine_formula. [Accessed: 2019].

14. “HTML,” ​Wikipedia​, 13-Mar-2019. [Online]. Available:

https://en.wikipedia.org/wiki/HTML. [Accessed: 2019].

15. “JavaScript,” ​Wikipedia​, 13-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/JavaScript. [Accessed: 2019].

16. “MPEG-4 AVC,” ​Wikipedia​, 31-Mar-2006. [Online]. Available:

https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC. [Accessed: 2019].

17. “OpenCV library,” ​OpenCV library​. [Online]. Available: https://opencv.org/. [Accessed:

2019].

18. “Peer-to-peer,” ​Wikipedia​, 25-Mar-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Peer-to-peer. [Accessed: 2019].

19. “Representational state transfer,” ​Wikipedia​, 10-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Representational_state_transfer. [Accessed: 2019].

20. “Representational state transfer,” ​Wikipedia​, 10-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Representational_state_transfer. [Accessed: 2019].

21. M. Sajjad, M. Nasir, F. U. M. Ullah, K. Muhammad, A. Kumar, and S. W. Baik,

“Raspberry Pi Assisted Facial Expression Recognition Framework for Smart Security in

Law-Enforcement Services,”​Information Sciences​, Jul. 2018.

22. S. O. N. Silva and S. Luciano, “A LINUX MICROKERNEL BASED ARCHITECTURE

FOR OPENCV IN THE RASPBERRY PI DEVICE,” ​International Journal of Scientific

Knowledge​, vol. 5, no. 2, Jun. 2014.

23. “The World's Most Advanced Open Source Relational Database,” ​PostgreSQL​. [Online].

Available: https://www.postgresql.org/. [Accessed: 2019].

24. “WebSocket,” ​Wikipedia​, 15-Mar-2019. [Online]. Available:

https://en.wikipedia.org/wiki/WebSocket. [Accessed: 2019].

25. “Welcome,” ​Welcome | Flask (A Python Microframework)​. [Online]. Available:

http://flask.pocoo.org/. [Accessed: 2019].

26. “Welcome to Python.org,” ​Python.org​. [Online]. Available: https://www.python.org/.

[Accessed: 2019].

Large Deleted content

Use Case UC-5: Add Resident for Facial Recognition

Related Requirements REQ-1, REQ-3

Initiating Actor Homeowner

Actor’s Goal To grant a resident access (using facial
recognition)

Participating Actors Lock Device; Database

Preconditions A set of (mugshot-like) images of the
resident are available.

Postconditions Lock device / system is equipped with
latest images of the resident and the lock
device is able to authenticate resident.

Flow of Events
1. Homeowner accessing authentication tab in web app UI; selects facial recognition

authentication selection. Clicks on Create New Facial Recognition Authentication.
2. Homeowner adjusts duration (or amount of uses) parameters.
3. Homeowner uploads pictures (headshots) of the person. (Minimum of 8 or 9)
4. Database stores this information.
5. Resident is authenticated upon facial recognition.

Note: ​We combined Use Case 5 so that it covers both Add and Delete residents (page 21).

Project Evolution

● We have decided to remove all use cases involving the packaging and courier system
because we cannot expect all mail couriers to know how to use our lock device or
attempt to use it. As a result, it can be a potential safety hazard if a stranger picks up
a package left on the front door and gains access to the house by using the barcode
on the package.

● We removed the settings and options menu because we felt that we should focus
more on novel and interesting features that improve the product rather than
creating a settings menu which is pretty standard.

● We changed the diagram on 4.3.d so that it is in UML format (page 25).

● We removed start time and end time for ResidentAdder because all residents should
have 24/7 access to the lock, unless they are removed by the homeowner (page 48).

● We added frontend screenshots in order to see the differences and similarities
between the conceptual design and the final implemented product. (page 86-87).

