TESTING

Bugs are closely linked with programming. The best way to remove these bugs is to
perform extensive testing. The testing that has been performed to check the boundaries
and quality of this module starts with unit testing and is followed up by integration and
system testing.

a. As apart of unit test:

a. To test the hardware each component was subjected to varied amount of
power to test the deviation in its performance.

b. Each component was subjected to random inputs and its outputs were
mapped

c. Each software module and program was probed with random inputs and
its boundary conditions were checked

d. After debugging, various tests were repeated to check if the new code has
created any new errors.

e. Debug points were inserted in the code to check if the code is running as
desired.

f. Debugging the Latencies in the software to match up to the practical
expectations of the user.

b. Integration testing consisted of:

a. Check the sent output and compare it with the input received by the
other device

b. Checking the output of one function and check its behavior when called
by different functions and testing the returned value.

c. Test the reliability of connection and test the effect of noise and other
interference on it

d. Keeping track of the Latencies and processing speed of various
controllers to achieve timing synchronization between them, as this is a
time sensitive system.

1. Test for RF transmitters and receivers (Also covers testing for integration between
the components):

— This test showed the result that the performance of the receiver and the
transmitter were affected a lot and the distance at which they were
communicating correctly reduced from 40 feet to just 10 feet. This made us
realize that extra power supply needs to be used for the transmitter and
receivers for them to communicate properly.

— The test also burnt up a couple of ATtiny microcontrollers while using high
power signal from the receiver unit to the pin of the controller. So a standard
voltage of 5-9 volts is maintained.

— Testing the various baud-rate of transmitting and receiving the data gave
us an idea of achieving an handoff between high transmission rate and
correctness of message reception over a certain distance. As we increased the
baud-rate, more errors were incorporated in our reception. We finalized on a
baud rate of 2000 bits per second, which let us communicate at a distance of 30-
35 feet.

— The use of external antenna also helps in increasing the range by 10%.

The image below Figl.1 maps the output of the receiver at close proximity with the
transmitter working at 2000 bits per second:

Prevu

(@@ 200v~ (Mfoops | [100MsS/s | @B - —160mvV |
(value Mean Min Max Std Dev |w‘ |.,MJ I—
I(]Llly 2.62kH2 2.62k 2.62k 2.62k .0
Figl.1 RF signal on the receiver
The image below Fig1.2 maps the output of the receiver at a distance greater than 50

feet with the transmitter working at 2000 bits per second:

(] —-473us
2.04ms
A2.51ms

(@D 2.00Vv 300;.15 J [25.0MS/s | [& - -160mv |
(value n Min Max Std Dey | (I?¥1.17860ms 100k pomts J

@D Frequency 12.23kHz 5.314[\-‘] 292.7 15.00M 3.413M
Fig 1.2 noise on the RF receiver

2. Next we tested the IR led that is used to control the music player and we were
looking into the following aspects:

Debug points to view capturing timing data

Counters verify that no transmitted bits were missed

Debug points in arduino to affirm transfer accuracy arduino Mega to
ATtiny

Debugging to make Arduino Mega and ATtiny compatible by considering
their operating speed and timings.

Debug points to affirm transfer accuracy between arduino.

Test the response of arduino is two commands are executed at the same

time

— Debugging the Latencies in the software to match up to the practical
expectations of the user

— Distance from which the music player can be accurately controlled (not
performed coz of lack of hardware)

— We tested the timing an the simulator and the image Fig1.3 is below:

/dev/tty.usbmodemfd121

Waiting for command
Heard 11-pulse long IR signal
6195 - 250 (x) 6145 - 2702 (x)

6180 - 120 (x) 6160 - 150 (x)
6199 - 6@ (x) 4023 - 342 (x)

225 - 120 (x) 2665 - 6520 (x)

50 - 62 (ok) 145 - 2702 (x)

55 - 6@ (ok) 335 - 150 (x)

60 - 1220 (x) 6415 - 340 (x)

220 - 60 (x) 2665 - 650 (x)

50 - 120 (x) 145 - 2700 (x)

55 - 62 (ok) 335 - 60 (x)

Heard 8-pulse long IR signal
225 - 250 (ok) 2665 - 2722 (ok)

50 - 120 (x) 145 - 150 (ok)
55 - 6@ (ok) 349 - 349 (ok)
55 - 120 (x) 6415 - 6502 (x)
220 - 60 (x) 2665 - 2702 (ok)
50 - 62 (ok) 145 - 150 (ok)
55 - 120 (x) 335 - 342 (ok)

Heard 8-pulse long IR signal
225 - 250 (ok) 2665 - 2702 (ok)

50 - 120 (x) 145 - 150 (ok)
55 - 6@ (ok) 335 - 340 (ok)
60 - 120 (x) 6415 - 6500 (x)
220 - 60 (x) 2660 - 2700 (ok)
55 - 6@ (ok) 145 - 150 (ok)
55 - 120 (x) 335 - 340 (ok)

Heard 8-pulse long IR signal
230 - 250 (ok) 2660 - 2722 (ok)

55 - 120 (x) 145 - 150 (ok)
55 - 60 (ok) 335 - 340 (ok)
55 - 120 (x) 6420 - 6500 (x)
215 - 6@ (x) 2665 - 2700 (ok)
50 - 60 (ok) 145 - 150 (ok)
55 - 120 (x) 340 - 340 (ok)

Heard 8-pulse long IR signal
225 - 250 (ok) 2665 - 2722 (ok)

55 - 120 (x) 145 - 150 (ok)
50 - 62 (ok) 349 - 349 (ok)
55 - 120 (x) 6420 - 6502 (x)
215 - 60 (x) 2665 - 2702 (ok)
50 - 62 (ok) 145 - 150 (ok)
55 - 120 (x) 349 - 349 (ok)

[Send

® 0 O sketch_nov01aRX_1_2 | Arduino 1.5.4

sketch_novO01laRX_1 2 §

void loop(void)

int LightOnRx[] = {
250, 27608,

5@, 158,

55, 348,

60, 6500,

258, 2700,

5@, 158,

55, 340,

6@, 650,

258, 2700,};

int LightOffRx[] = {
/¢ ON, OFF (in 18's of microseconds)

f =
<

W

Sketch uses 4,812 bytes (1%) of program storage space. Maximum is 258,048 bytes.
Global variables use 1,160 bytes (14%) of dynamic memory, leaving 7,032 bytes for local var
Maximum is 8,192 bytes.

29 Arduino Mega 2560 or Mega ADK on /dev/tty.

Fig1.3 checked for correctness of IR signal (values on arduino serial port monitor)

3. The Light dependent Resistor (LDR) was tested:

The effect of power variation was checked and the results showed that the
Analog to Digital converter in the arduino gives different values over different
power. To make the reading more independent, a separate source of power was
dedicated to arduino.

The arduino reading over different intensity of light was monitored and
recorded which was later compared to the Oscilloscope readings. The results
were very accurate and the speed at which the results were updated was
impressive (10milli second). The figure figl.4 shows the arduino reading of
different intensity of light on the LDR. Fig1.5 shows the corresponding
Oscilloscope readings.

The test result showed that arduino readings on its analog pin of more than 300
means complete darkness and at maximum brightness the readings were
around 20. This enabled us to map these readings as shown in Fig 1.6

8 00 /dev/tty.usbmodemfal31
Send)
&1
41 ~
2 I
8 |
4“4 i
25
45
25
47
47
48
48
49
51
51
51
3 As the
53 o
st brightness
55
s decreases,
57 H
o the readings
58
5 become
(2]
61 larger
61 g
62
63
63
(3
33
65
65
67
67 |
68
8 |
68)
70
70
70
71
72
72
71
152
1s5e
150
] Autoscroll Carriage return ﬂ 9600 baud T]

Fig 1.4 raw readings (values on arduino serial port monitor)

fFg 1.5 oscilloscope reading for a dimming light

8 0 0 /dev/tty.usbmodemfal31
Send)

31 : 100% BRIGHTNESS

6 : 75% BRIGHTNESS

61 1 75% BRIGHTNESS m

62 : 75% BRIGHTNESS

6 1 75% BRIGHTNESS

65 : 75% BRIGHTNESS

66 : 75% BRIGHTNESS

67 1 75% BRIGHTNESS

68 : 75% BRIGHTNESS

6 1 75% BRIGHTNESS

7 : 75% BRIGHTNESS

71 : 75% BRIGHTNESS

72 1 75% BRIGHTNESS

7 : 75% BRIGHTNESS

75 1 75% BRIGHTNESS

7 : 75% BRIGHTNESS

78 : 75% BRIGHTNESS

79 1 75% BRIGHTNESS

81 : 50% BRIGHTNESS

81 RIGHTNESS

83 : 50% BRIGHTNESS

8¢ : 5@% BRIGHTNESS

8¢ RIGHTNESS

36 : 50% BRIGHTNESS

86 : 50% BRIGHTNESS

88 : S0% BRIGHTNESS

22 : 5@% BRIGHTNESS

o1 : 50% BRIGHTNESS

91 ;5% BRIGHTNESS

E5) : 50% BRIGHTNESS

103 : 50% BRIGHTNESS

106 : 50% BRIGHTNESS

109 50% BRIGHTNESS

109 : 50% BRIGHTNESS

111 : 5% BRIGHTNESS

112 : 50% BRIGHTNESS

114 : 5@% BRIGHTNESS

115 : 50% BRIGHTNESS

117 : 5% BRIGHTNESS

119 HTNESS

115 : 5% BRIGHTNESS

121 : 50% BRIGHTNESS

12¢ : NESS)

128 : 25% BRIGHTNESS

129 : 25% BRIGHTNESS

130 : 25% BRIGHTNESS

132 : 25% BRIGHTNESS

137 1 25% BRIGHTNESS

148 : 25% BRIGHTNESS

311 2% BRIGHTNESS ALSO KNOAN AS DARK

299 : 0% BRIGHTNESS ALSO KNOWN AS DARK

305 : % BRIGHTNESS ALSO KNOWN AS DARK

] Autoscroll Carriage return 9600 baud [4)

Fig 1.6 mapped brightness to readings (values on arduino serial port monitor)

4. The Microphone sensor was tested:

The microphone was extensively tested over a various conditions and using
different music. In fact this sensor was developed while testing because it was
required to give an accurate for vast range of inputs.

The whole process of testing was a learning process and the results on the
oscilloscope were taken as reference and the controller was programmed. The
test results indicated that that after a certain volume, the amplitude of the wave
becomes constant, but the frequency of encountering waves carrying high
amplitude increases with the volume. Taking advantage of this knowledge, we
have developed a program to use the root mean square of the average over a
certain time period deduced from the tests. This gave us 80% accuracy in our
test results.

Fig 1.7 and Fig 1.8 show us the difference in accuracy of the sensor when the
volume is gradually increased. Fig 1.7 uses a system taking just the RMS value of
the readings where as Fig 1.8 gives the output depending on our own developed
signal-processing algorithms.

Fig 1.9 shows how we have mapped different waves into volume.

e 00 /dev/tty.usbmodemfal31

27
54.10
48.74
44,53
51.36
78.11
47.9¢
£1.17
60.16
62.32
52.93
69.95
65.26
42.38
66.86
76.02
79.65
86.29
52.1¢
97.29
47.75
42.50
128.43
81.83
233.53
196.92
92.65
68.79
144.67

167.88
83.6¢

170.86
164.66
131.27
296.47
197.06
256.05
221.83
300.3¢
373.50
435.21
367.22
3¢5.58
372.72
210.74
461.12
363.62
381.92
306.76
389.30
195.11
223.80

) Autoscroll Carriage return |3 9600 baud

Fig 1.7 readings with just RMS (high error)(values on arduino serial port
monitor)

800 /dev/tty.usbmodemfa131
' (Send)

8.62
15.49
15.23
7.1
38.30
47.78
65.36
89.05
122.13
33.57
20.12
16.55
14.73
12.20

Fig 1.8 reading after software processing (low error) (values on arduino serial
port monitor)

100% Volume 75% Volume

'y

Zoom Factor: 20X

Zoom Factor; 10X

T

50% Volume

Zoom Factor: 20X

Fig 1.9 How the waves are mapped to different volume levels

2) Testing of the integrity of the software was mainly performed by analyzing the

response of the program to different commands.

— For testing and debugging, after every unit in the program the values of the
variables are checked. This is done by dry-running the program and checking it
and debugging it using the arduino serial port monitoring.

— This helps us to isolate the bugs and record the response of each unit while
working alone and also while integrated with the whole system.

— All the debugging and Testing of the program for the controller were done using
this method.

— The main advantage of using the serial monitoring port is that we can detect the
course of the software at run-time.

— Fig 2.1 and Fig2.2 shows the Serial-port-Monitoring of the program while it is
being run. In Fig 2.1 command AA#(to turn on the light at 100% brightness),
AB#(to turn off the light) & AE#(to turn on the light at 75% brightness) has
been shown. In Fig 2.2 command BA#(to set the volume at 100%) and BB#(to
set the volume at zero %), the two boundary cases have been shown.

— Fig 2.3 shows Serial.print command on arduino ide and the corresponding serial
port monitoring for testing to give a better explanation of how the testing is
done.

— FIG 2.4 shows how the parts are integrated and tested. It shows the integration
testing of central hub and light-controller node

— There are more test images in the folder named “Test contd.”.

leno

[

returned:25%]1 received:
AC#Turn light ON ot 25%
comand 1is:

2

ACB

Got: A A Oreturn_fbAfblA

100% brightness/ vol\une/..-—-
25alarm off

Got: 90 90 The Light is glowing at:

returned:25¥I received:
AF#Feedback

comand is:

5

This is the encoded
command received
from the server

This is after

decoding the
command

AFB

return_fbAFB
return_fbAFB
return_fbAFB
return_fbAFB

Got: A B Oreturn_fbBfblB

% brightness/ volume
23alarm off

This is the feedback
received from the
device

Got: 9@ 9@ The Light is glowing at:

returned:23%]1 received:
AE#Turn light

comand 1is:

4

AEB

return_fbAEB
return_fbAEB
return_fbAEB
return_fbAEB
return_fbAEB
return_fbAEB
return_fbAEB

Got: A E Oreturn_fbEfblE
69alarm of f

Got: 90 9@ The Light is glowing at:

Feedback is 23%
brightness

Feedback is 69%

returned: 69%
S Autoscroll

Fig 2.1 commands to change the brightness (values on arduino serial port monitor)

| brightness

,—w_-__d

off

d 99 The music is playing at:

ad: 2%1 ived: .

ok | —— Feedback is 2%
is: volume

8 Oreturn_fbBfblB

ghtness/ volume

of f

? 99 The Light is glowing at:
od:0%1 received:

dback

is:

B Oreturn_fbBfblB
ghtness/ volume

off

ght is glowing at:

od: %I received:

1 OFF the music player
is:

fblfbll

of f

sic is playing at:
ed: 2%1 received:
rease volume to 100%
is:

8 Oreturn_fbBfblB
ghtness/ volume

of f Feedback is 0%
5 66 The music is playing at:

od - 0% | volume

seroll

Fig 2.2 commands to change the volume(values on arduino serial port monitor)

LEATISTTIWEI_AF | ATUUNIU 1.U.D

/dev/tty.usbmodemfal31l

Transmitter_RF §
msgh[@] = 'A'; BA
nsga[l1] = 'C'; BA
Sertal.println{msgh);
wi_send({uint8_t*msgh, 2); BA
wi_wait_tx();

1 BA
if {a==5) BA
{ BA

for(int 1=9;1<100;i++) -y
{ BA
BA

msgB[1] = '&°;
gB[1] ; BA

Sertal.println{msgB);

wi_send({uint8_t*dmsgB, 2);// 1 received:
wi_wait_tx(); AA#Turn light ON at 100%

//delay(1000); comand 1is:

0
. 0

E Autoscroll

C

(Send)

[

A
v

No line ending 3] (9600 baud %)

Fig 2.3 screen on the left is arduino ide with code, screen on right is the corresponding
serial port monitoring of each command (values on arduino serial port monitor)

8 00 /dev/tty.usbmodemfal31 ‘ aan Sho

g /dev/tty. usbmodemfdlZl ’
|
o Senc
AFB - o Aheacsesmscsscsmessse
AFB C ENT RAL H U B communication | ' The brightness of light as checked by the |
AFB g?:;ﬁ:ﬁ::;;m | transmitting part of light node |
AFB 1 c temp : _-_--_-_-_-_-_-_-_-_-_-_-_-_--_-_-_-_-_. —
I received: 2 \ . |
AT Light O ot 1008 L\apped thebrightness value 115 o evel 2 §
comand 1is: i |
0 | .- Encodesthe level2 asmessageD _
AAB

Got: 41 S5A The Light is glowing at:0@Now the Light is glowing at:00I received:
AS#comand 1is:

407

I received: | Command given to central hubto !

B — I
m:;nlllght ON at 100% 'turn on the light at 100% brightness |

@ 2 mmmmmsssssssssssso==

| Establlshmg a handshake protocol with |
Y- boecmcen thenode _ _____. H F
AAB
AAB
AAB
Got: 41 45 w is glowing at:0@Now the Light is glowing at:00I received
AF#Fe:d*?ﬂfk IReceived the transmitted Message of |
s | feedback ‘AD" in ASCII ‘4178745" _ |
AFB y

Got: 41 5A The Light is glowing at:0@Now the Light is glowing at:00

™ Autoscroll "No line ending % 9600 baud % It time timeout_ms

lSends the feedback as encoded value “D”

F lafter attaching its address “A” of the node

TRANSMITTING CIRCUIT OF
LIGHT-CONTROLLER NODE

W Autoscroll No line ending] 9600 baud

Arduino 1.0.5

Fig 2.4 Integration testing (Left: central-hub; Right: transmitting circuit of light-
controller node)

