Analysis of the Trade-Offs and Benefits of
Using the Publisher-Subscriber Design
Pattern

Technical Paper

Srihitha Y erabaka
Advisor: Prof. lvan Marsic

Abstract

Design patterns describe a proven successful solut problems that occur repeatedly. Using
them promotes reuse of code and can help prograsgetr the right solution faster. In this
paper, we apply cohesion and coupling metrics to wersions of a software application
implemented with and without the Publisher-Subseritlesign pattern to establish the benefits
of using design patterns.

We apply the SCOM cohesion metric, a complexitysarea- Structurel01l and a Coupling
Analyzer to our programs. We find that while using Publisher-Subscriber design pattern does
result in low coupling, it does not produce thetlrshesion.

Table of Contents

O 1Y o o (¥ ot To T o KPP PP PP PPUPUPUPPPTRNE 3
D = T 1o] <=4 0 TV o T S USSR 3
0t O B =Y =4 I =Y o =Y o o 13N 3
2.2, Coupling & CONESION IMEBLIICSceeeiiiiiiiee ettt e et e e e e e e et e e e e e ee et e e e e e e eeeeessaaaneens 5
2.2.1. (07010 o] [T =SSR 5
2.2.2. (601 T=T-Y T o ISP PP PP PTPPPTN 5

2.3) AU ot {0 < 0 PP 9

T B 1T T o /A [T o1 (=T g 1T) 7 1 o L o ISR 9
3.1 Without Design Patternsccoviiiiiie ittt e e e e e e et eee e e e e e e e e e aaaaaeaaaaaees 12
3.2 WIith DESIZN PAtLEINS ..eeiieeeeeeecie e e e ettt r e e e e e e e e e e e e eeseesnnaaeaaaaaees 15
33 REIAY SWILCR ... e e e e e e e e e et e e e e e ettt e eeeeeeesassnnnaaaeaeaeerenes 16

4. EVAlUQLION & RESUILS ...eeeiiieeiiieiieeie ettt e e e e e e s s e e e e e e e s smnrreeeeeeeesannrnees 20
4.1 (@010 o] [T 0= V{11 4 o Tol USSR 20
4.2 CONESION IMIBTIICS .eeeieeeiiiiiieie e ettt e e e ettt e e e e s st e e e e e s s s nbb e e bbbt e e eeeesaaannbreeeaeeessannres 22
4.3 Structural Complexity Measurement Using Structurel01cceeeiiiiiiiiiiiiiine i 22

5. CoNCIUSION & FUTUIE WOTKeeieiiieeeeiiiee ettt ettt e e te e e e e s s eirr e e e e e e s ssnnrrneeeas 27
B. RETEIENCES. ..ot e e e e s e e e e e e et e e e e s e ae e e e e e e e e aanreeees 27

1. Introduction

Design patterns describe a proven successfulieoltd problems that occur repeatedly.
Using them promotes reuse of code and can helprgmogers get the right solution faster. This
paper attempts to prove that programs written vdisign patterns are much more well-
structured and efficient compared to code writtétheut design patterns.

We implement a version of a home access contsiesy described by Dr. Marsic in [2]
with the publisher-subscriber pattern, and anoteesion with out any design patterns but with
the same exact functionality. We then apply coheaiod coupling metrics to these two versions
of the home access control application to analyee enefits and tradeoffs. We also apply
Structure101 [18] to calculate the Structural Caexjpy of our code.

2. Background

2.1.Design Patterns

In their book [1],Gamma et.aldefine a design pattern by four main components, th
name, the problem, the solution and the consegsefite name refers to the name of any given
pattern, the problem describes the situation inctvitine pattern is useful, the solution describes
the design and how the elements in the designacterith each other and the consequences
describe the results and tradeoffs that occur fusimg the pattern.

There are three types of design patterns, CredtiStructural and Behavioral. Creational
design patterns describe object creation mechaniShey try to create objects in a way that is
suitable to the situation and does not result eardased complexity or create more problems.
Structural patterns ease the design by identif@rgimple way to realize relationships between
entities. Behavioral patterns identify common comivation patterns between objects and
realize these patterns. This increases the flatyitail carrying out this communication.

Since we use the publisher-subscriber designrpatieour experiment, this paper will go
more in-depth about this particular pattern. Théligher-subscriber pattern is a behavioral
design pattern. In behavioral patterns, the assgmsnof responsibilities between objects are
defined along with how different objects commurgcawith each other and a chain of
responsibility is established.

With this pattern, individual modules do not néedknow how other modules function or
how they use the information provided by the othmrdules. For example, lets say that one
module in a system gets information which is reegiifor other modules to do their work. So,
once this module acquires the information, it ipeoted to pass it on to the other modules. This
means that the first module must know what thetfanality of the other module is and send the
information according to it. This is not desirablecause changing either module will affect the
other and hampers code reusability.

In order to eliminate this problem, we can useRbelisher-Subscriber pattern. With this
pattern, the original module is coded as the phétisvhich just publishes the information it gets
to its subscribers which in this case would bedtieer modules that need that information to
their work. This way, neither module knows how mdrat the other module does with this info.
The responsibilities of publishers and subscrilaeesdescribed ifig.1 below.

Publisher

Knowing Responsibilities:
* Knows event source(s)
* Knows interested ob's (subscribers)
Doing Responsibilities: |
* Registers/Unregisters subscribers
* Notifies the subscribers of events ‘

Subseriber

Knowing Responsibilities:
* Knows event types of interest
* Knows publisher(s)

Doing Responsibilities:
* Registers/Unregisters with publishers |
* Processes received event notifications |

Fig. 1: Responsibilities of Publishers and Subsersy2]

Since the publishers and subscribers are not degedaow the functionality or behavior
of each other and they each only care about githielishing the information, or subscribing for
information, they are not hindered if the otheclsnged or not working properly. This makes it
a very loosely coupled system.

The pattern also makes the design easily scalablarger systems, i.e., there is no limit
on how many publishers or subscribers exist. ThadWiantage of this design pattern however
stems from the same feature that makes it desir&bleexample, if the subscriber had crashed
and did not receive the message the publisher gheali there is no way for the publisher to
know this since they are so decoupled.

To summarize, we define the Publisher-Subscrilesigsh pattern in Table 1 below
according to the definition provided in [1] as désed above.

Component Description

——
I
| —

Name: Publisher-Subscriber

Problem: The Publisher-Subscriber design pattern is usedefme a “one - tg
many” dependency between objects, so that whembjeet changes it
state, all of its dependents are notified and tgalahmediately [1].

[

Solution: Instead of allowing different modules in the systEom learning and
depending upon the inner workings of other modules, define
publishers and subscribers.

Consequences: Advantages:
1. Decreases coupling in the software system
2. Easily scalable to bigger systems.

Disadvantages:
1. Publisher just assumes that the subscribestening and has no way
to verify if the subscriber actually received th&érmation published. If
the subscriber crashes, the published message beuldst for ever
since no one receives or acts on it.

Table 1: Defining the four components of the Pub-&esign pattern

2.2. Coupling & Cohesion Metrics

2.2.1. Coupling

Coupling metrics are a measure of how interdepgndéferent modules are on each
other. High coupling occurs when one module moslifie relies on the internal workings of
another module. Low coupling occurs when thereoicmmmunication at all between different
modules in a program. Coupling is contrasted wiahesion. Both cohesion and coupling are
ordinal measurements and are defined as "high'loav"! It is most desirable to achieve low
coupling and high cohesion.

We use a coupling analyzer [19] developed at Ratte calculate the coupling metrics
for our programs. Given the main() class of an igppbn, the analyzer parses through entire
code and builds a class dependency graph.

2.2.2. Cohesion

Cohesion is defined as a measure of relatednessnsistency in the functionality of a
software componenin an object-oriented paradigm, a class can ba@oaent, the data can be
attributes and the methods can be parts. Modulgshigh cohesion are usually robust, reliable,
reusable, and easy to understand while modules eith cohesion are associated with
undesirable traits such as being difficult to maimt test, reuse and understand. Cohesion is an
ordinal type of measurement and is usually exprease'high cohesion™ or "low cohesion".

We can find many formulas to calculate the cohesieetrics in literature. However,
many of them either define the class in questioaitd®r “cohesive” or “not cohesive”, they do
not make a comparative analysis of the degree lbésiveness. This makes it hard to compare
two cohesive, or two non cohesive classes. Sincevard to compare the cohesion of the two
different versions of our home access control sygbeogram, it is necessary for us to select a
metric that can calculate not just whether a modsileohesive or not cohesive but also the
degree of its cohesiveness. Assuming both theomsf our home access control system are
cohesive, this would enable us to fairly judge whiersion is better designed and more
cohesive.

Many of these proposed metrics were comparedfbwaapers. However, as opposed to
most of them, which only looked for weaknesseshm éxisting metrics and tried to improve
them by eliminating their points, Joshi and JogHifpcus on the strengths of these metrics
besides the weaknesses and find metrics that aablsufor different purposes such as detecting
the disparate classes needing refactoring andtdeje¢he degree of cohesiveness.

They compare a total of thirteen cohesion methes they classify into five types based
on the methods of quantification of cohesion. Thénitions of these types of classification are
listed in Table 2.

Classification Name Description

Digoint component-based These metrics count the number of disjoint setsethods of

metrics attributes in a given class.

Pairwise connection-based | These metrics compute cohesion as a function ofbeurof

metrics: connected and disjoint method pairs.

Connection magnitude- This category does not compute direct sharing betwe

based metrics methods, but it instead uses the count of accessetgods per
attribute and indirectly finds a sharing index @rms of the
count.

Decomposition-based These metrics compute cohesion in terms of reocaisiv

metrics: decompositions of a given class. The decompositiarns
generated by removal of pivotal elements that kinepclass
connected.

| nterface-based metrics Metrics that compute class cohesion based on irdbom
gathered from method signatures are grouped unbmsr| t
category.

Table 2: Types of classification of cohesion metas described in [4]

Among the thirteen metrics that the authors lapk@OM1[5], LCOM3[6] andLCOM4
[7] are classified as Disjoint Component-Based etk COM2[8], Relative Lack of Cohesion
(RLCOM) [9], Cohesion Ratio (CR]10], Tight Class Cohesion (TCCand Loose Class
Cohesion (LCC)11] are classified as Pairwise Connection-Basedricse LCOM* [12] and

SCOM[13] fall under Connection Magnitude-Based metridsle Cohesion Based on Member
Connectivity (CBMC)14] and Improved Cohesion Based on Member Connectivity NICB
[15] are classified as Decomposition-Based metkasally, Cohesion Among Methods of Class
(CAMC)[16] andCohesion Metric (CM])17] are classified as Interface-Based metrics.

A set of four example cases, shown in figure 2remased to capture the degree of
cohesiveness. “ml1”, “m2”, “m3” represent methods2land 3 while “al”, “a2” and “a3”
represent three different attributes.

mi m2 m3 m1 m2 m3
al az al
(1) (1)
m1 m2 m3 m1 mz m3
al a2 a3 al a2 ad

(111) (1v)

Fig. 2: Example cases for capturing Degree of Calreqd4]

The most cohesive class is shown in case (i)ofaills methods use all three attributes.
Case (ii) depicts the second most cohesive cldss.class is still connected, but all methods do
not use all the attributes. In case (iii) the catess even lesser. In this class, the methods are
connected through only one of the three attribu@zse (iv) is the least cohesive. None of its
attributes are used by all three methods.

LCOM2 ELCOM ICBMC SCOM | CBMC
TCC, CR LCOM*
1, 11, 1ii, 1v 111,411 i i i
- v ii i i, 1ii
- - i, iv i v
- - -]1.I -
(1
L 7)

Fig. 3: Case ranks based on the Degree of Cohefipn.

Since Interface-Based metrics [IKAMC andCM require the description of the interface
and not the implementation, they were not testedCiegree of Cohesiveness. The LCOM
metrics were also avoided since they only determihether a class is cohesive or not and do
not calculate the degree of cohesiveness. Amonglitpiele metrics that were tested, the authors
found thatSCOMwas the only one to successfully differentiateMasin all four cases. Figure 3
shows how the cases were ranked on the degredes$izeness by the applied metrics. Based on

the results shown in this paper, we choose the S@@Miic to calculate the cohesiveness of our
programs.

Sensitive Class Cohesion MetacSCOM[13] is defined as,

m— m

SCOM = Z Z

m(m —1) “5 e

where {A1,...,Ag} and {M1...M} are the set of attributes and methods of the sglas
respectively, and i¢is the connection intensity ang is the weight factor . The coefficient of

the summation, 2/(m(m-1)) is the inverse of thaltoiumber of method pairs and is used for
normalization.

The connection intensity formula is defined as,

O’ {f‘ér: rwl‘tr :(ﬁ
C,, = card(I, (11,)
 mun(card(l,),card(1;))

otherwise

wherely is denoted for the subset of attributes used gjven methodM ¢ and ‘card’ is the
cardinality. The cardinality of a set is definedthe measure of the number of elements of the
set. So, the connection intensity is O if thererayecommon attributes between methods “i” and
“I” and the ratio of the total number of commonribtites divided by the total number of
attributes for methods “i” or “J", whichever is sifex.

The weight factor is defined as,
card(1,\J1I))

a

a,, =

Where ‘@” is the total number of instance attributes in the<

The SCOM metric is normalized to the range [Owlljere the two extreme values are 0
and 1. Value zero represents no cohesion at allfendalue one represents full cohesion.

2.3 Structurel101

According to [18] structural complexity is not eoplem, in and of itself. They point out
that while complexity may be inherent in the prabldomain and require a complex solution,
such a solution would have a rational structure iangdnderstandable. A complicated solution,
however is difficult to understand and analyze. &hthors argue that when working with large,
complex code bases, traditional object-orientedringgtsuch as Coupling and Cohesion only
offer a limited snapshot of the system complexithey present Structurel01 measurement
framework which provides a comprehensive view nfctral complexity of a software system.

This measurement framework is based on two aspéetscessive structural complexity,
XS: Tangles and fat. It calculates the XS by muyjing the degree of violation due to tangles
and fat by its size. The degree of violation dugatgles, which are cyclic dependencies between
packages, is calculated by identifying the minifegidback set (MFS) which is the minimum set
of edges that must be removed from a dependenph grea software system to eliminate cyclic
dependencies. Structurel01 divides the number aé-¢avel references in the MFS by the total
number of dependencies to obtain the degree oltamyjation.

The fat metric represents how easy it is to uridadsa given application. It is calculated
as the number of dependencies in higher-level ggeskd@hat contain multiple packages. For
lower level packages, which contain classes, faoisputed by counting the total number of
dependencies between classes. Degree of tang#&ioobhnd the degree of fat violation are then
multiplied by the item’s size.

Structurel01 then calculates the cumulative X$eoursively adding the local XS values
for a particular item’s descendants. This givesthes percentage of the code base that is
excessively complex.

3. Design & Implementation

We designed a Home Access Control System applicatioconduct our experiments.
The system will control all aspects of a typicaht@security system such as lock control, lights,
alarm and key control.

When a user wants to enter a house secured bpdbess control system, he presses a
button which allows him to enter a password witir@mpt. After the user enters a key code, the
“KeyChecker” checks it. If the password is correitte alarm is disabled and the door is
unlocked. Also depending on the time of the dag, lipht turns on automatically. The user can

be given a preset number of tries to enter theecolkey code. If he/she has exhausted all tries
and enters a wrong key code, the alarm stays aamethe alarm bell goes off.

Figure 4 shows the original design of the HomeesscControl System as described in

2].

b

|:_ Ay ,l

g

Light balb

R3-232 /§’
Interface cable = EZ
[E? ﬂﬁ] [] Switch _ Prea

Photosensor
Compuler keypad and
Embedded processor
-
Alarm bell

Fig. 4: The original Home Access Control Systentidesd in [2]

For practical reasons, we use a relay switch btahow the status of the light, alarm
and key controls. Since we cannot implement anagh&hoto Sensor, we instead use the system
time to determine if the light should be turnedwinen the correct alarm key is entered. The
embedded processor with the keypad is actuallywa ggogram run on a computer. We use a
USB connection to the relay switch as a virtual Q@Mort. The Relay switch board will be
discussed further in a subsection.

Figures 5 and 6 depict flowcharts describing whidithappen when the key code entered
is correct and when it is incorrect, respectively.

10

Pt
'

_| The prompt for the
"| key appears.

4

User
Key is incorrect enters

key

v

KeyChecker checks
the key

Key entered is correct

|

Alarm is
disarmed

Time is after 5:00PM

Time is before 5:00PM

,. l

Light is | Dooris
turned on "| unlocked

Fig. 5: Flow of the system when the Key is correct

We preset the Light Control cut off time to SPMaasubstitute for the Photo Sensor. The
figure above shows the control going back to thgarbeng where the user is prompted for a key,
however this only depicts the first wrong key eaterThe figure below, solely concentrates on
the system flow when the alarm key code being edterincorrect.

The flow diagrams are a high level depiction oiviiie system acts and remain the same
for both the version with the design pattern argldhe without.

11

Pt
'

The prompt for the
key appears.

Key is incorrect v
(user has not User
exhausted the enters
number of trials key
alfowed)
h A
KeyChecker checks
the key

Key is incorrect
(user has not managed to
enter the key within
the number of trials
allowed)

|

Alarm stays
armed, the
alarm bell goes
off and access
is locked.

Fig. 6: Flow of the system when the Key is incdrrec

3.1 Without Design Patterns

The Home Access Control System application cost&inclasses, The main class is
HomeAccessControlSystemhis instantiates th€ontroller, KeyCheckerAlarmCitrl, LightCitrl
and LockCtrl. The HomeAccessControlSysteestablishes connection with the relay switch
through the USB virtual COMM port and then calle émterKey()method from theController

to prompt the user for a Key.

TheController is the entry point to the main domain logic. li<thecheckKey(Jmethod
from theKeyCheckerlass which returns a boolean value representimethver the Key entered
is correct or incorrect. If the Key is correct, tbentroller sets thesetArmed() method from
lockCtrl to false to disarm the alarm. It also checks tfstesn time and sets tisetLit() method

12

Pt
'

from lightCitrl to true if it is after 5PM. ThepenDoor()method fromockCtrl is also set to true
to indicate access is permitted.

If the Key entered is incorrect, the controlletsgbesetArmed() method fromockCtrl to
true to keep the alarm armed and also setsabaedAlarm()method fromalarmCitrl to true, to
ring the alarm bell.

Code Snippets

publ i c HomeAccessControl Systen(String key, QutputStream output Stream)
throws | OException
{
LockCirl Ikc = new LockCtrl (out put Strean);
LightCGrl lic = new LightCrl (out put Strean;
AlarnCtrl ac = new AlarmCtr| (out put Strean);
KeyChecker kc = new KeyChecker (key);
contrl_ = new Controller(kc, lkc, lic, ac);

}

public class Controller
{
prot ected KeyChecker checker_;
protected LockCtrl |ockCrl_;
protected LightCrl lightCrl_;
protected AlarmCtrl alarntCtrl_;
public static int maxNumOf Trials_ = 2;
protected |l ong nunOfTrials_ = O;
String userkey;
Scanner in = new Scanner (Systemin);
Cal endar cal endar = new G egorianCal endar ();
String am pm

public Controller(KeyChecker kc, LockCtrl Ikc, LightCrl lic, AlarmCrl

{

ac)

checker _ = kc;

lockCtrl _ = lkc;
alarnCtrl _ = ac;
lightCrl_ =1lic;

}

public void enterKey()

while (nunmOf Trials_ < maxNunOf Trials_)
{

Systemout.println("Enter Al arm Password:");

publ i c cl ass KeyChecker

{

private String validKey;

13

——
| —

private bool ean isvalid = fal se;

publ i ¢ KeyChecker (String Oi gi nal Key)
{ val i dkey = Origi nal Key; }

publ i ¢ bool ean KeyCheck(String userKey)
{

public class AlarnCtrl
{

prot ect ed bool ean al ar nRi ng;
prot ected Qutput Stream sendout ;

public AlarmCtrl (Qut put Stream out put Strean)

{
sendout = out put Stream
alarnRi ng = fal se;
}
public void soundAl ar m(bool ean val)
{

public class LockCtrl

{

prot ect ed bool ean arned_;
prot ect ed bool ean unl ocked_;
prot ect ed Qut put St ream sendout ;

public LockCirl (Qut put Stream out put St ream

{
sendout = out put Stream
armed_ = true; //alarmin armed by default
unl ocked_ = false; //door is |ocked by default
}
public void set Armed (bool ean val)
{

public class LightCirl

{
prot ect ed bool ean Lighted;

prot ected Qutput Stream sendout ;

public LightCrl (QutputStream out put Strean)

{
sendout = out put Stream
Lighted = false; // light is turned off by default
}
public void setLit (bool ean val)
{

14

Pt
'

3.2 With Design Patterns

Since most operations are a based on the resuft the KeyChecker, we design it to
implement the publisher, and Controller, lockCatarmCtrl and lightCtrl implement subscribers.
To use the publisher-subscriber pattern, we fietdnto define two types of class interfaces
called Publisher and Subscriber. Since our subsaiwill either need to subscribe to the event
where the Key is valid or invalid, we define twdosariber interfacesSubscribeKeylsValidnd
SubscribeKeylslInvalidThe Publisher interface has methods to subsc¢abeither of the two
types of events, nameKeylsValidandKeylsinvalid

The Controller and alarmCtrl implement theSubscribeKeylslInvalidsubscriber and
register for th&keylsinvalidevent from the publisher. Theo@troller needs it to prompt the user
again for a key when it is incorrect and giarmCtrl needs it to ring the alarm bell.

lockCtrl andlightCtrl implement theSubscribeKeylsValidubscriber and register for the
KeylsValid event from the publisher to disarm and provideeascand to turn on the lights
respectively.

Code Snippets (Implementation with Publisher-Subscriber)

publ i c HomeAccessControl Systen(String key, QutputStream output Stream)
t hrows | CExcepti on

{
KeyChecker kc = new KeyChecker (key);
LockCirl Ikc = new LockCirl (kc, outputStrean;
LightCGrl lic = new LightCGrl (kc, outputStrean;
AlarnCtrl ac = new AlarmCtrl (kc, outputStrean);
contrl _ = new Control | er(kc);
}
public interface LockPublisher
{
public void subscribeKeyl sl nvalid(KeylslnvalidSubscriber subscriber);
public voi d subscribeKeylsVal i d(Keyl sVal i dSubscri ber subscri ber);
}
public interface KeylsValidSubscri ber
{
voi d KeylsValid (int boolval);
}
public interface KeylslnvalidSubscriber
{
voi d Keylslnvalid (int boolval);
}

public class Controller inplenments KeylslnvalidSubscriber

{

15

Pt
'

prot ect ed KeyChecker checker_;
String userkey;
Scanner in = new Scanner (Systemin);

public Controller(KeyChecker kc)

{
kc. subscri beKeyl sl nval i d(t hi s);
checker = kc;
}
public void Keylslnvalid(int boolval)
{
ent er Key() ;
}
public void enterKey()
{

public class LightCirl inplenents KeylsValidSubscriber
{
prot ect ed bool ean Lighted;
protected QutputStream sendout ;
Cal endar cal endar = new G egori anCal endar () ;
String am pm

public LightCQrl (KeyChecker keyChecker, Qutput Stream output Stream

{
sendout = out put St ream
keyChecker . subscri beKeyl sVal i d(this);
Lighted = false; // light is turned off by default
}
public void KeylsValid(int boolval)
{

i f ((cal endar. get(Cal endar. HOUR) >= 5) &&

(cal endar. get (Cal endar. AM PM = 0))
setLit(true); //if tine is after 5PM

el se
setLit(false); //if tinme is before 5PM
}
public void setLit (bool ean val)
{

3.3 Relay Switch

We use a USB relay switch board from National Ganbevices to function as the Home
Access Control Hardware. We only use four of thailable eight switches. The first switch
represents if the alarm is armed. The second swigphifies the ringing of the alarm bell. The
third switch represents the lights, and the fogwtitch shows if access has been granted.

Scenario Relay 1 Relay 2 Relay 3 Relay 4
(Alarm system) (Alarm bell) (Lights) (Access to home)
[5]

Initial state On Off Off Off

(alarm system armed) (Bell not ringing) | (Lights off) | (No access granted)
Correct Key Off Off Off On
-before 5PM| (system disarmed) | (Bell not ringing)| (Lights off) (Access granted)
Correct Key Off Off On On
-after 5PM (system disarmed) | (Bell not ringing)| (Lights on) (Access granted)
Wrong Key On On Off Off

(alarm system armed) (Bellringing) | (Lights off) | (No access granted)

Table 3: State of the Relay Switches for possitdearios.

The following figures show the status of the redayitches through a sample flow. The
system is in the initial state and changes to se@2avhen a correct key is entered before 5PM.
The last few will show scenario 4, where the ineotikey is entered.

Fig. 7: Picture of the Relay Switch Board. The bahkwitches can be seen in red on the left
hand side. The LED on the right bottom corner iatks that it is a USB connection.

17

Pt
'

Fig. 8: In the Initial State. The red light on theft most side represents Relay 1, i.e. “Alarm is
armed.” A total of 10 LEDs can be seen, The firs¢@esent the 8 Relay Switches. Tﬁéi@hts
up when the board is receiving information and 168 LED indicates whether this bank of
Relays is operating correctly.

Fig. 9: State for scenario 2. The correct Key iteead before 5PM. The'telay turns off to
indicate that the alarm has been turned off andyel turns on to indicate access is granted.

18

Pt
'

[OR el ay.cor A

PHRNDHD B H W

Fig. 10: State for scenario 4. The incorrect kegmséered more than the allowed number of times
while the system was in the initial state. Relayays on to indicate Alarm is still armed, Relay 2
turns on to indicate that the alarm bell has goffe o

The following code snippets show how the consgtassed via the USB Virtual COMM
port to the Relay Switch Board. The ASCII code “254s to be sent first to setup the Relay
board into Command mode when it will accept commsa&ince there are eight relay switches,
the ASCII codes 1 to 8 are used to turn off thénteiglay switches and the ASCII codes 9 to 16
are used to turn on the eight relay switches [20].

Code Snippets

prot ect ed Qut put St ream sendout ;

))éystem out.println("Turning on Relay 2.");
Systemout.println("Alarmbell is ringing.");
sendout . wite(254); sendout. wite(9);

))éystem out.println("Turning off Relay 2.");
Systemout.println("Alarmbell is not ringing.");
sendout . wri te(254); sendout.wite(1);

/1 Systemout.println("Turning on Relay 3.");
Systemout.println("Lights are on.");
sendout . wite(254); sendout.wite(10);

))éystem out.println("Turning off Relay 3.");

19

Pt
'

Systemout.println("Lights are off.");
sendout . wite(254); sendout.wite(2);

/1 Systemout.println("Turning on Relay 1.");
Systemout.println("Alarmis arned.");
sendout . wite(254); sendout.wite(8);

))éystem out.println("Turning off Relay 1.");
Systemout.println("Alarmis disarnmed.");
sendout . wite(254); sendout.wite(0);

/1 Systemout.println("Turning on Relay 4.");
System out. println("Door is unlocked. Access permtted.");
sendout . wri t e(254); sendout. wite(11);

/1 Systemout.println("Turning off Relay 4.");
Systemout. println("Door is |ocked. Access not permtted.");
sendout . wite(254); sendout. wite(3);

4. Evaluation & Results

4.1 Coupling Metrics

We can easily determine from observing the code tine version with the Publisher-
Subscriber pattern has lower coupling comparedheo driginal. In the original version, the
Controller instantiates all the other classes and invokeg tmethods. This increases the
dependency between these modules and thus increageing. With the Publisher-Subscriber,
this dependency is avoided since the modules bigibe to th&eyCheckerTheController no
longer needs or has access to the internal metifdde other modules. This reduces coupling.

The Coupling Analyzer [19] validates our claimgufe 11 below shows the degree of
connectivity for the classes in the Original co@me class has a degree of 4, another has a
degree of 5 and the remaining four classes hawgeed of 0. Comparing this with Figure 12, we
see that the version with the Publisher-Subscriagtern only has a degree of 1, another has a
degree of 5 and the remaining are all 0. Figurecbh®&pares the class dependency trees for both
versions. Because of the Publisher-Subscriberfatey TheController is only connected to one
other class, th&eyChecker

20

Pt
'

Bar Chart - Class Category Plot

W
h

I

Mumber of Classes

P

0 4 5
Degree of Connectivity

[m]

Bar Chart - Class Cat:gory Plot

1 =i

Number of Classes

=

0 1 5
Degree of Connectivity
Fig. 12: Degree of Connectivity plot for the Puhks-Subscriber version.

| Coupling Analy.. M %] Coupling Anal.. . _
HomeAccessControlSystem (5) @ HomehccessControlSystem {5} I
-‘Hﬁ Conirolfer (4) ¢ 3 Controlier (1) |
[KeyChecker (0) - [KeyChecker (0)
| [LockCtrl (0) — [y KeyChecker (0)
[Lightctr (0) ' - [Locketr (0)
| [} miarmctr (0} — [y Lightctr (0)
|| - [Locketr 0) — [msarmctr (0)
- [y Lightctr (0)
-~ [Alarmetrl (o)
D 'Key@h ecxér'm}

4.2 Cohesion Metrics

We calculate the cohesion metrics using the foasdibr SCOM listed in section 2.2.2.
According to [13], Abstract and Interface methodsstronly be considered in the classes they
are implemented. Also, constructors and destruatwthods and attributes must be included.

Keeping these rules in mind, we list the resultshefse calculations for all the classes in our
system in Table 4.

HomeAccessControlSystem 0.43 0.43 Equal
Controller 1 1 Equal
KeyChecker 0.5 0.38 Original
AlarmCitrl 0.667 0.238 Original
LockCitrl 0.462 0.325 Original
LightCtrl 0.667 0.296 Original

Table 4: Cohesion Metrics

Based on the Cohesion Metric numbers listed ifetdb we can conclude that for the

most part, since the original design was alreadyliii cohesive, there wasn’'t much scope to
increase it further.

The reduced cohesion in Publisher-Subscriber wersif ‘KeyCheckeris a result of
including the implemented publisher interface md&adSince methods of this type in general
only have attributes that do not interact at alhot much with the other local methods and the
methods themselves use only very few of the othteibates in the class, it is understandable
that the cohesion was slightly lower than the oadgi ‘AlarmCtrl’, ‘LockCtrf, ‘LightCtrl’ are
also affected in a similar way.

However, this scenario is not always true for Buitr methods. In our case, we do not
need to pass any required parameters in the peblisbbscriber interface methods which need
to be used by other methods in the class which@mphts these interfaces. If a required
parameter were to be passed from the publishehaosubscriber, which was used by other
methods in the class, the cohesion could possilyyave when using the SCOM metric because
that would create a stronger bond in the clas$y mitre methods using the same attributes.

The reason this interface meth&@ylsinvalid does not affect th€ontroller is because
it does not use any attributes at all when impleteetin thecontroller. SCOM requires that such
methods and attributes not be counted in Cohesgasurements. IiKeyCheckeér * AlarmCtrl,
‘LockCtrf and ‘LightCtrl’, the publisher-subscriber interface methods use or two of the
other attributes, but when implemented in the ailetr, the interface method only calls another
method and does not use any attributes at all.

4.3 Structural Complexity Measurement Using Structure101

22

Pt
'

We also ran our code through the StructurelOl déveank to measure the structural
complexity of our code. The results are shown belbigures 14 and 15 show the dependency
graphs generated by Structure101.

StructurelOl Results for Original Code (No Design Patterns)

Size
Jars (and/or classpath directories):
Packages (that contain classes):
Classes [outer):
Claszes (2l1}:

NI (Mumber of bytecode Instructions): E77
LOC (Non Comment Mor Blank Lines Of Code): 240

o mom e

Classes (exterral):

Flat Tangles

Level #Items #Tangles #Tangled items Biggest Deqgree
Leaf package 1 n/a n/a n/a n/a
Jar 1 n/a n/a n/a n/a
Outer class =] 0 0 0%
Architecture

#Diagrams: 1

#\Violations: 0

Violation frequency: NaM

Excessive Structural Complexity (XS)

Cumulative ®s: 10
Average XS: 2%

XS breakout by metric (and scope)

Metric (and scope) Threshold #Offenders Offenses (%) XS contribution
Tangled (design) 0 Oof 1 0% 0%
Fat (design) 120 Oof 1 0% 0%
Fat (leaf package) 120 Oof 1 0% 0%
Fat (class) 120 Oof & 0% 0%
Fat (method) 15 10of 15 7% 100%:
Total 100%

Tangled (design)

No items exceed the threshold for Tangled at the design level.

Fat (design)

Mo items exceed the threshold for Fat at the design level.

23

——
| —

Fat (leaf package)

Mo 1It2ms exceed the threshold for Fat at the leaf package level,

lat (class)

Mo it2ms exceed the threshold for Fat at the dass level.
Fat (method): 1

Item Value
HomeAccessControlSystem. main(String[1) :void 16

Items with highest XS: 1

Item Type Tangled Fat Size XS
HomeAccessControlsystem. main(string[]):void method 16 1s1 10

G HomeAccessControlSystem
e e \\\\2 ~ 5
X

4 !

b ' {3 Controller | -E
| 4 7 M\T\'\) :
1 L} ! 1
v / 3 W ¥
& KeyChecker 3 LockCtrl & LightCtrl 3 alarmctrl

@ e e

T | E e |

= (2|22 8|z

e lE|d|a 2|2

B | (2 R |

| a

B d

1|

a

Ef

LN

=

(& HomeAccessControlSy...

& Controller 5

& Alarmcirl | 4
& Lightctrl 2| 4
3 KeyChecker 2 | 4|
& Locketrl 2 | 5|

5]

Fig. 14: Dependency graph for code without Desigiténs.

According to the Structurel01 framework resultsviled above for the original code,
there are nd@anglesor Fat except for thenain() method in thdHomeAccessControlSystefirhis
class only exists to setup the USB virtual COMMtpmmmnection with the Relay Switch Board.
The code for this also does not change in the eensnplemented with the Publisher-Subscriber
Design Pattern. The results for that code proviskddw are the same. Theain() method in the
HomeAccessControlSystesthe only one with fat.

24

Pt
'

Structurel0l1 Results for Publisher-Subscriber Pattern

Size
Jars (and/or classpath cirectories): 1 NI (Wumber of bytecoce Instructions): 630
Pac<ages (that contaln classes): 1 LOC (hon Cecmment Non 3ank Ures Of Code): ~271
Classes (outer): |
Classcs (all): a
Classes (exle nall: 0
Flat Tangles
Level #Items #Tangles #Tangled items Biggest Degree
Leaf package 1 n/a n/a n/a n/a
Jar 1 n/a n'a n/a n/a
Outer class 9 0 0 0 0%

Excessive Structural Complexity (XS)
Cumulative ¥Ss: 10
Average XS: 2%

XS breakout by metric (and scope)

Metric (and scope) Threshold #Offenders Offenses (%)

Tangled (design) 0 Oofl 0%
Fat (design) 120 Oofl 0%
Fat (leaf package) 120 Oof1 0%
Fat (class) 120 0of 9 0%
Fat (method) 15 1of 25 494
Total

XS contribution
0%

0%

0%

0%

100%

100%0

Tangled (design)

Mo items exceed the threshold for Tangled at the design level.
Fat (design)

No items exceed the threshold for Fat at the design level.

Fat (leaf package)

Mo items exceed the threshold for Fat at the leaf package level.

25

——
| —

Fat (class)

Mo items exceed the threshold for Fat at the dass level,

Fat (method): 1
Item Value
HomeAccessControlSystem. main(String[1) : void 16

Items with highest XS: 1
Item Type Tangled Fat Size XS

HomeAccessControlSystem. main(String[1) : void method 16 161 10

& HomeAccessControlSystem 5 |

2 1 o &
.- { v 2 il
5 54 i g =
P ! . ~
#_ 1

“) T
@ controler @ Alzrmctr : @ Lightcyl @ Lockctrl
i x : b S |
i e oW K e 2N i
! ! {3 KeyChecker : !
[! " 1 M & | !
i i - 1s 5 ! i
; : & : " ! :
iz | ¥ i |
L ! €9 LodkPublisher | !
; ! i % : :
A v W K1 & v i3
@ KeyIsInvalidsubscriber) KeyIsvalidsubscriber
@@ eeee e e
T | e || e | [| s | |
g5 |8 |52 |& 82 2
il ==) el Sl Bl ol B
T | e || e | B e | T |
e[e | e | 2 | s | S| | f o)
@ e T ol = ol B
& = a |2 E
Is] il =l Fre
g A | &
= ol
o [} =
e ©l1E
{# HomehccessControlSy...
& controller 5
& alarmCtr] 2
& Lightctrl 2
& LockCtl 2
& KeyChedker | e |3 |
€3 LodePublisher i
3 Keylsvalidsubscriber e B
€8 KeylsInvalidsubscriber) |7 31

Fig. 15: Dependency graph for code with Publishabsriber Pattern.

Based on the dependency graphs and the TanglesFandnetrics calculated by
Structurel01, we can conclude that introducingRbblisher-Subscriber design pattern does not
introduce any unnecessary complexity into the cdtie. Tangles and Fat metrics are exactly the

26

Pt
'

same for both versions. However, since this waaréy fsmall application compared to most real
world applications, we cannot be entirely sure heiwicture 101 would rate a much bigger
application. Looking at the current results thougjhgce the Publisher-Subscriber pattern in itself
did not result in any increased complexity, we doassume that the results will be similar
regardless of the complexity of the original cotidéroducing the Publisher-Subscriber pattern
into the code will not be the reason for increasmahplexity.

Even though it is not evident in our case, sieedriginal code did not have structural
complexity, introducing the Publisher-Subscribeteiface into an application could possibly
reduce structural complexity if it was originallyesent. According to [18], for lower level
packages, which contain classes, fat is computecbbpting the total number of dependencies
between classes. In a bigger real world applicaii@noducing the publisher-subscriber interface
would have more of an impact in improving cohesmmd reducing fat according to the
Structure101 framework by reducing dependenciesd®t classes.

5. Conclusion & Future Work

From the results obtained, we can conclude thatgutie Publisher-Subscriber design
pattern does result in low coupling and ease ofabddy, making it a desirable choice.
However, the cohesion metric results are not vegoaraging since the classes implementing
the publisher and the subscriber interfaces haaedount for the interface methods. This brings
the cohesion down, since they rarely interact witer methods or attributes in the class. The
results from Structure101 however are more encangad here were no Tangles at all and the
only fat present in both versions was in themeAccessControlSystémain()’ method. This
shows us that the code is not unnecessarily comglex with the introduction of the Design
Pattern.

In conclusion, we feel that the overhead and taftie created by implementing a
Publisher-Subscriber interface are outweighed ey bbnefits it provides. According to the
Structurel01 results, there are no major trade+nfterms of code complexity and the coupling
and dependency go down. In future, more patternddcbe tested to make a more thorough
analysis and to see if this result is universakfibdesign patterns.

6. References

[1] E. Gamma, R. Helm, R. Johnson and J. VlissiBesign Patterns: Elements of Reusable
Object - Oriented Softwar@&ddison Wesley, 1995.

[2] I. Marsic, Software Engineering Rutgers University, Electrical and Computer
Engineering Department Course Textbook, 2008.

[3] Wikipedia, http://en.wikipedia.org/

27

Pt
'

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Joshi, R. K. Joshi, “Quality Analysis of @bt Oriented Cohesion MetricsQuality of
Information and Communications Technology (QUATIZ)10 Seventh International
Conference on thep. 319 - 324, 2010.

S. R. Chidamber and C. F. Kemerer, “Towarasedrics suite for object oriented design,”
OOPLSA pp. 197-211, 1991.

W. Liand S. Henry, “Maintenance metrics fdaject oriented paradigm,” iRroceedings
of International software metrics symposjuvtay 1993, pp. 52-60.

M. Hitz and B. Montazeri, “Chidamber and kemes metric suite: A measurement
theory perspective [EEE transactions on Software Engineeringl. 22, no. 4, pp. 267—
271, April 1996.

S. R. Chidamber and C. F. Kemerer, “A metutes for object oriented designlEEE
Transactions on Software Engineerivgl. 20, pp. 476-493, Jun 1994.

L. Xlinke, L. Zongtian, P. Biao, and X. Dahong, fAeasurement tool for object oriented
software and measurement experiments with it,Pioceedings of 10th International
Workshop on New Approaches in Software Measurer2e00, pp. 44-54.

N. Balasubramanian, “Object-oriented metfids, International Proceedings of Asia-
Pacific Conference on Software Engineerih§96, pp. 30—34.

J. M. Bieman and B.-K. Kang, “Cohesion andige in an object-oriented system,” in
Proceedings of ACM symposium for software reusgpil95, pp. 259-262.

B.Henderson-Seller§bject-Oriented Metrics Measures of Complexiyentice Hall
PTR, 1996.

L. Ferndndez and R. Pena, “A sensitive meificlass cohesion [nternational Journal
Information Theories and Applicationgol. 13, pp. 82 — 91, 2006.

H. S. Chae, Y. R. Kwon, and D. H. Bae, “A eslon measure for object-oriented
classes,” 8ftware- Practice and Experienceol. 30, pp. 1405-1431, 2000.

Y. Zhou, B. Xu, J. Zhao, and H. Yang, “lcbm&n improved cohesion measure for
classes,” inProceedings of 21st IEEE Conference on Softwarentdaance (ICSM)
Montreal, Canada, October 2002, pp. 44-53.

J. Bansiya, L. Etzkorn, C. Davis, and W. A class cohesion metric for object oriented
designs,’Journal of Object Oriented Programmingpl. 11, no. 8, pp. 47-52, Jan 1999.

J. Y. Chen and J. F. Lu, “A new metric for jedi-oriented design,’Journal of
Information and Software technolqgsol. 35, pp. 232-240, April 1993.

28

Pt
'

[18] R. S. Sangwan, P. Vercellone-Smith, P. A. laape, “Structural Epochs in the
Complexity of Software over TimeJEEE softwareyvol. 25(4), pp. 66-73July-August

2008.

[19] P. Sreekumar and I. Marsic, “A Study of Sture of Java Programs Using Coupling
Analyzer,” Rutgers University, Electrical and Camgr Engineering Department
Technical Paper, 20009.

[20] National Control Devicesittp://www.controlanything.com/manuals/ProXR.pdf

29

Pt
'

