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1 The Design of a Simple TCP Simulator 

 

 

Transmission Control Protocol (TCP) is a core Internet 
protocol. Along with the Internet Protocol (IP), TCP/IP are the 
most frequently used protocols in the Internet. This document 
describes a simple implementation of TCP congestion control 
in the Java programming language. 

One may wonder why develop another network simulator when 
there are so many great network simulator already out there, 
such as ns-2 (http://www.isi.edu/nsnam/ns/) and ns-3 
(http://www.nsnam.org/). The reason is that I wanted to have a 
simple TCP simulator for instructional purposes—something 
comprehensible by a student taking a semester-long 
undergraduate course in computer networks. I believe that this 
simulator meets such a requirement. Despite its simplicity and 
many limitations, it supports many interesting scenarios to gain 
deep understanding of the TCP protocol in operation. This 
simulator is not intended for research proposes, as are ns-2 and 
ns-3, which provide power and flexibility. Unfortunately, they 
are also time-consuming to learn and use. And, such power and 
flexibility are not needed for an undergraduate course. 

This document assumes that the reader is knowledgeable about 
the TCP protocol. Details about TCP can be found in my networking book available on the same 
website where this software is found. 

The length of this document should not intimidate you to think that this simulator is not that 
simple. The only reason that this document is relatively long for such a simple program is that I 
wanted to describe in detail how the simulator works, what are its limitations, and what design 
choices were made and why. Describing all the simplifications and design compromises takes 
space, but I believe that the program itself is simple. 
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1.1 Introduction 
 

This software implements a simple TCP simulator in the Java programming language. It does not 
implement all aspects of the TCP protocol, but rather focuses on the key aspects of TCP 
congestion control. A concise description of TCP implementation is available in [McKusick, et 
al., 1996, Chapter 13] and full details are available in [Wright & Stevens, 1995]. Our simulated 
network consists of network elements such as endpoint hosts and routers. The default 
configuration has two endpoints (sender-host and receiver-host) and single router, connected in a 
chain (also see Figure 4): 

SENDER link1 NETWORK/ROUTER link2 RECEIVER 

Our default implementation uses unidirectional transmission: the sender endpoint sends only data 
segments (not acknowledgments) and the receiver endpoint only replies with acknowledgments. 
Configurations that are more complex are possible, as described in Section  1.3.3. 

This document explains the design of the simulator. The reader should check the Java source code 
for implementation details. 

The student will need to know only the simulator main class (Section  1.2) and the network/router 
class (Section  1.3) for the programming assignments described in Section  2. The description of 
the TCP components is provided mainly for reference and I believe they can be used without 
modification. 

Due to the time constraints, I was unable to achieve the best possible design or implement all 
TCP protocol details. Unfortunately, there are some kludges and unfinished features. The 
ambitious reader may wish to search for to-do notes (see //TODO comments) in the code and 
improve upon these deficiencies. I focused on the correct implementation of the TCP protocol 
congestion control and the compromises are mostly made for other network components. 

1.1.1 How to Run the Simulator 

The main class is Simulator.java. The program accepts two arguments on the command line: 

 The first argument is a string specifying the TCP sender type (must be one of these: “Tahoe” 
or “Reno” or “NewReno”). Enter the exact string, starting with the capital letter and the 
remaining letters in lower case. 

 The second argument specifies the number of iterations to run the simulation. 

The application is bulk-data transfer of 1,000,000 bytes (see the field TOTAL_DATA_LENGTH in 
the class Simulator.java). If the sender completes transmitting all the data within the specified 
number of iterations, the simulator will start printing the message “Input bytestream empty -- 
nothing left to send” from the method send() in the class tcp.Sender.java. 

 

Some other parameters, initialized in the method Simulator.main(), that you may consider 
exposing and making configurable from the user interface include: 
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 bufferCapacity_ (currently set at 6 packet slots), which is the size of the router’s memory 
available for queuing packets from the simulated TCP session. In addition, one of our packets can 
be in transmission (see Figure 7) and some small space is allocated for acknowledgments. Note 
that currently we do not take into account packet header size—only packet payload is counted 
towards router buffer occupancy 

 rcvWindow_ (currently set at 65,536 bytes or 64 KBytes), which is the memory space 
allocated the receiver endpoint for buffering packets that arrived out-of-order (we assume that in-
order packets will be immediately delivered to the application) 

These parameters are described in the following sections. The choice of the default values is 
based on Example 2.1 in the book (Section 2.2). 

In addition, the method Simulator.main() we create a dummy input buffer that will be sent 
to the receiver, the variable called inputBuffer. In reality, the data should be read from a file 
or another input stream. 

Finally, all parameters for configuring the network model (Section  1.3.3), such as link 
transmission and propagation delays could be exposed in the user interface. 

1.1.2 User Interface and Reporting 

At this point, the simulator does not have any graphical user interface. As described in Section 
 1.1.1, it is run from a command line or from a development environment, such as Eclipse. If I had 
time, I would build a wizard for building the network model; see 
http://en.wikipedia.org/wiki/Wizard_(software). 

Reporting for debugging and data collection is controlled by the attribute 
currentReportingLevel of Simulator.java. Setting this parameter to zero turns off all 
debugging-related reporting and only the values of the TCP congestion control parameters are 
outputted for every iteration. See the source code for other options. 

 

1.2 Time Simulation 
 

According to the Wikipedia page (http://en.wikipedia.org/wiki/Discrete_event_simulation), this 
simulator would rather qualify as continuous simulation instead of discrete event simulation 
(DES). This simulator is time-driven instead of event-driven. In this simulator, time is broken up 
into small slices (clock ticks) and the system state is updated according to the set of activities 
happening in each time slice. Unlike this, in discrete-event simulation time “jumps” to the start 
time of the next event whenever that may be, instead of regular clock ticks. In addition, events in 
DES are instantaneous—once the simulator starts processing an event, the time does not progress 
forward—the time will simply jump to the start of the next event. 

The key function of a simulator is to simulate the passage of time. In a time-driven simulator, we 
need to decide about the duration of simulated clock ticks. In the default implementation, I chose 
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the tick to correspond to one round-trip time (RTT, from a TCP sender to a TCP receiver and 
back), which also represents one iteration of the simulation. This is the simplest choice, but the 
software components are implemented in a time-agnostic manner, so they could run with no 
program code modification (or perhaps only a little) with any tick duration in either continuous 
simulation or discrete event simulation. Section  1.3.3 discusses how to modify the tick duration. 
Even if we were to implement this simulator as discrete event simulation, then each component 
would need to know how long its activity takes, so that it can arrange the future events. 

There are important advantages of event-driven simulation and most current network simulators 
are implemented as discrete event simulation (DES) [Banks, et al., 2005]. The reason that our 
simulation time marches in fixed intervals (clock ticks) is that I thought it would be simpler to 
implement (and probably easier to understand) a time-driven simulator. As a result, simulating 
different network models and communication protocols is simply not feasible with this simulator, 
but that is the price of simplicity and targeted purpose of learning TCP congestion control. 

1.2.1 Simulation Engine Logic 

The architecture of the simulator is shown Figure 1. The key components are four Java objects 
(Simulator, Sender, Router, and Receiver), of which Simulator.java is the main class that 
orchestrates the work of others as the time marches forward. The action sequence in Figure 2 

TCP 
Sender

TCP 
Receiver

Network
(single router)

Application Application

one simulation iteration = N clock ticks = one round-trip time

START

Simulator infrastructure (time progression)

Network layer protocol (IP)

 

Figure 1: The architecture of our TCP protocol simulator. The bottom part shows that one
simulation round represents one clock tick, which is one RTT long. 
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illustrates the operational logic of the simulator. It repeatedly cycles around visiting in turn 
Sender, Router, and Receiver. Simulator just calls the method process() on each network 
element and the elements themselves exchange data as appropriate. The software interface of our 
network elements is described in Section  1.3.1. 

The simulator operational logic is represented in the class Simulator.java and the pseudo code is 
as follows: 

Listing 1: Pseudo code of the simulation engine’s operational logic. 

Start: // in the method Simulator.main() - 

    Initialize the system parameters 
     (TCP version, number of iterations, communication link parameters, router buffer sizes, and TCP 
receive window sizes) 

    Initialize system state variable s 
     (The Simulator class constructor creates the network model—endpoints, routers, and links—and 

configures them in the initial state) 

    Initialize the clock 
    (the simulation main loop starts at time zero) 

The main loop: // in the method Simulator.run() - 

Pass the reference to the application data bytestream to the sending endpoint. 

For (given number of iterations) do the following: 

1.1.
2.2.

3.3. 4.4. 1.1.

Sender Router Receiver

Simulator

Anything 
to send?

Sender Router Receiver

Simulator

Relay 
packets

Sender Router Receiver

Simulator

Handle 
segments, 

return ACKs

Returning 
ACKs or 

duplic-ACKs

Sender Router Receiver

Simulator

Handle ACKs
& send 

segments

A B

C D

if EW  1
send EW 
segments

relay # packets 
 memory size; 
drop the excess.

Check if pkts
in-order, store 

if gaps

if EW  1
send EW 
segments

EW = EW = EffectiveWindowEffectiveWindow

 

Figure 2: Action sequence illustrating how the Simulator object orchestrates the work of 
other software objects (shown are only first four steps of a simulation). 
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First, activate the communication link adjoining the sending endpoint by calling its method 
process(), which in turn will deliver any ACKs transmitted during the last iteration to the 
sending endpoint: 

The sender receives the ACKs transmitted during the last iteration (or, last RTT) and 
updates its congestion parameters. If  3dupACKs received, the sender performs fast 
retransmit of the oldest unacknowledged segment. 

Second, activate the sending endpoint by calling its method process(), to check if any of 
the currently running timers expired that are associated with the TCP Sender 

If yes, notify the associated sender, which, in turn, will retransmit of the oldest 
unacknowledged segment and restart the slow start procedure. 
If no, the sending endpoint may send some new segments, depending on the current size of 
EffctWin. The segments are delivered to the communication link adjoining the sending 
endpoint. 

Third, activate the communication link adjoining the sending endpoint to transport the 
transmitted segments through the “network” (a single router in the default configuration): 

The network/router receives the packets and starts transmitting the first on the outgoing link 
while buffering the subsequent packets. The router will drop the packets that exceed its 
buffering capacity. 

Fourth, activate the router to finish transmitting the packets on the corresponding outgoing 
links (the link connecting the router and the receiving endpoint): 

The router will deliver all the packets that could pass through it during the current RTT, 
minus the packets that it dropped. 

Fifth activate the communication link adjoining the receiving endpoint to deliver the data 
packets arriving from the router: 

The TCP Receiver in the receiving point delivers in-order segments immediately to the 
application and buffers out-of-order segments. By default, it prepares only a single 
cumulative ACK for all in-order segments received within one RTT, but the receiver does 
not send the ACK; instead, it just starts the delayed-ACKs timer. 

Sixth, activate the receiving endpoint to check if any timer associated with a TCP Receiver 
expired: 

The TCP Receiver currently may run only delayed-ACKs timer, so at this time the receiver 
transmits any cumulative ACKs on the link connecting it to the router. 

Seventh, activate the link connecting the receiving endpoint and the router: 

The link delivers the ACKs from the receiver to the router. 

Eighth, activate the router to finish transmitting the packets on the corresponding outgoing 
links (the link connecting the router and the sending endpoint): 

The ACKs travelling from the receiving endpoint will be now travelling towards the 
sending endpoints and will be delivered at the start of the next iteration. 

Ninth, increment the clock to the next time step (make it “tick”): 
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Recall that one iteration corresponds to one round-trip time. 

End of simulation: 

    Generate statistical report, such as the average sender utilization, etc. 
 

The steps in the main loop seem very generic and could have been configured in a configuration 
file instead of hard coding them. I just did not have time to do so. 

Network components know about the passage of time only through the process() operation 
call, which also check if their associated timers expired. The simulator controls the passage of 
time by choosing when to call process(). However, the reader should keep in mind that 
network elements are chained by their send() and handle() methods, so an element may 
cause a connected element to do some processing as well. The reader should know the operational 
logic of the send() and handle() methods for each network element. 

If left unchecked, our network components would work forever. The number of transported 
packets is limited by limitations on network resources: 

 Transmission and propagation times, which are represented as attributes of communication 
links (Section  1.3.1) 

 Routers’ memory space may be insufficient to hold all arriving packets and excess packets will 
be dropped. This in turn causes the TCP congestion control to limit the number of outstanding 
packets. TCP sender has an internal limitation of being allowed to have no more than a window 
size of data unacknowledged. 

The two components that use the knowledge of clock granularity are: 

 Receiver, in method tcp.Receiver.handle() when setting the delayed-ACK timer. 
RFC-2581 states that a (cumulative) ACK must be generated within 500 ms of the arrival of the 
first unacknowledged packet. Because our time is measured in unspecified clock ticks and it is of 
a coarse granularity, the Receiver sets the delayed-ACK timer to the current time; see details in 
Section  1.4.4. 

 RTO Estimator currently uses the simulated clock ticks, which are highly granular, and would 
need to be modified if finer-granularity simulation of time is implemented. See details in 
Section  1.4.3. 

The router that has a high-speed incoming link and a low-speed outgoing link also needs to keep 
track of departing packets that vacate memory space for incoming packets (see Section  1.3.2). All 
other components are agnostic of clock granularity and should work properly if time simulation is 
implemented differently or if the simulator becomes event-driven instead of time-driven. 

TCP sender and receiver set various timers, so they need to estimate time constants to set the 
timers. For example, the sender continually estimates the round-trip time for transmitting 
segments and getting them acknowledged. This estimation is performed by the object 
tcp.RTOEstimator.java (Section  1.4.3). 

As is always the case with time simulation, there are significant problems with synchronization 
between concurrent events. 
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Given our design of the simulator clock and its coarse granularity, an important choice is when to 
check for expired timers. As seen in Listing 1 above, we decided that: 

 The sender-related timers are checked at the start of each iteration, but after the sender 
handled the ACKs from the previous round (the sender’s method tcp.Sender.handle() 
is called from Link.process()). What matters is that the sender’s retransmission timeout 
(RTO) timer is checked after the sender is called to process the ACKs received in the 
previous RTT iteration. Otherwise, due to such a coarse clock granularity, the RTO timer 
would frequently fire although the ACK may have arrived on time. 

 The receiver-related timers are checked at the end of each iteration, right after the receiver 
handled the received data packets. This happened when the method 
tcp.Receiver.handle() is called from Link.process(). What matters here is that 
the timers are checked before the sender will be called to process the ACKs received in this 
RTT iteration. Otherwise, the receiver will not send the cumulative ACK (which is waiting 
for the delayed-ACK timer to expire) and the sender’s RTO timer may unnecessarily fire. 

Assignment #2 (Section  2.2 of this document) explores a bit further the aspect of time progression 
in the network (which in our case consists of a single router). 

1.2.2 Simulated Timers 

TCP implementations use two timer granularities: 

(i) The fast timer, called every 200ms — implemented by tcp_fasttimo() in UNIX 

(ii) The slow timer, called every 500ms — implemented by tcp_slowtimo() in UNIX 

All TCP timers are expressed in terms of the number of ticks of these two timers [Stevens, 1994: 
TCP/IP Illustrated: Vol. 1, page 267; Tsai, “TCP Timers”]. A good discussion of TCP timers is 
available in [Mansley, 2004: Tweaking TCP's Timers]. 

According to [Wright & Stevens, 1995: TCP/IP Illustrated: Vol. 2] (see Chapter 25, summarized 
in Section 25.13 on page 848), TCP maintains the following seven timers for each connection: 

 A connection-establishment timer 
 A retransmission timer (RTO) 
 A delayed ACK timer 
 A persist timer 
 A keepalive timer 
 A FIN_WAIT_2 timer 
 A 2MSL (twice the maximum segment lifetime) timer 

In fact, another timer needs to be set to watch for inactive connections. Both RFC-2581 and RFC-
5681 in Section 4.1: “Restarting Idle Connections”, state that the TCP sender should begin in 
slow start if it has not sent data in an interval exceeding the retransmission timeout (RTO timer). 

Our simulator implements only three of the above timers: a retransmission timer (see Section 
 1.4.3), a delayed ACK timer (Section  1.4.4), and idle-connection timer. A delayed ACK timer is 
different from the other six, because when it is set the protocol standard requires that a delayed 
ACK must be sent the next time TCP’s 200-ms timer (“fast timer”) expires. The other six timers 
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«interface»
TimedComponent

+  timerExpired() 

«interface»
TimedComponent

+  timerExpired() 

tcp.Receivertcp.Sender

1

rtoTimer
TimerSimulated TimerSimulated

1

delayedACKtimer

1

idleConnectionTimer
TimerSimulated

Figure 3: Class diagram for the timer-related components. Both TCP sender and receiver 
modules implement the TimedComponent interface and use timer objects. 

are counters that are decremented by 1 every time TCP’s 500-ms timer (“slow timer”) expires. 
When any one of the counters reaches 0, the appropriate action is taken: drop the connection, 
retransmit a segment, send a “keepalive probe,” and so on. 

Unfortunately, because of coarse granularity of our time simulation, currently we do not 
implement the TCP timers as recommended. All of our timers currently are expressed in terms of 
simulator clock ticks, which are not specified in time units. In the default implementation one tick 
is one RTT long, but this can be changed (Section  1.3.3). 

The class diagram for timer-related components is shown in Figure 3. Software objects of that 
implement the interface TimedComponent.java provide the representation of system state 
variables and the operational logic of what happens when a timer expires. Our system timer is 
simulated by the class TimerSimulated.java. The time units of time for setting up the timer are the 
simulator clock ticks, instead of actual time units, such as seconds. 

The constructor accepts three parameters: 

 “callback” is the callback object on which the method timerExpired() will be called when 
this timer expires. 

 “type” is the type of the timer, if a component is running multiple timers, to help it distinguish 
between them. 

 “time” is the future time when this timer will expire (expressed in simulator clock ticks); the 
time should be specified as the absolute time, rather than relative to the present moment. 

When a timer expires. The method timerExpired(type) will be called on the callback 
object, with the timer’s type as the argument. For example, tcp.Sender distinguishes between the 
RTO timer and idle-connection timer by the type argument. 
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10 Mbps

1 Mbps

6+1 packets

Sender Receiver

Router

Link 1
Link 2

10 Mbps

1 Mbps

6+1 packets

Sender Receiver

Router

Link 1
Link 2

 
Figure 4: Default network configuration for the simulator. See Example 2.1 in the book. 

 

1.3 Network Modeling 
 

A model of a system is a representation for the purpose of studying the system. For most studies, 
it is only necessary to consider those aspects of the system that affect the problem under 
investigation—the model, by definition, is a simplification of the system. Our default “network” 
consists of a single router (Figure 4). This model is based on certain assumptions about TCP 
operation. Our focus is on studying TCP congestion control and not other aspects of data 
networks. For this purpose, it suffices to abstract the whole network as a single “bottleneck” 
router. 

TCP does not know and does not care how many routers are in the network. Its operation does not 
depend on the number of routers. Our default implementation has hard-coded specific 
assumptions about the data rates of communication links (the first link in Figure 4 is 10 times 
faster) and the router memory capacity (6 packets of a fixed size, plus one packet currently in 
transmission). The assumption about fixed amount of router memory that is available for our 
connection is an oversimplification because in reality routers are on the path of many 
connections, and the available memory changes dynamically. One of programming assignments 
(Section  2.3) tackles this issue. In addition, other network configurations and different scenarios 
(see Example 2.2 in the book) are possible. For other network configurations and scenarios, the 
program code would need to be modified (Section  1.3.3). 

Our network elements do not know about the progression of time. When called to process() 
packets, their work is not constrained by any time limits. Instead, other limitations, such as TCP 
sender’s congestion window size, limit the number of processed packets. This behavior is mainly 
due to our simulator being time-driven (Section  1.2). The main simulator class controls all aspects 
of time progressing and orchestrates the work of each network element, as shown in Listing 1. 

There is only one type of network traffic in the current implementation and that is the TCP sender 
(Section  1.4.1). The sender is deterministic and generates packets of exactly the same size, one 
maximum-segment-size (MSS) long. The only other packet type is TCP acknowledgment 
generated by the TCP receiver (Section  1.4.4) to confirm the receipt of a packet. The ACK 
consists of the TCP header only and carries no data payload. Some programming assignments 
introduce additional traffic sources, such as UDP (Section  2.4), which could be modified to 
generate randomly distributed packet sizes. 



 1  The Design of a Simple TCP Simulator 

11 

11

NetworkElement

#  name
#  lastTimeProcessCalled

+  process()
+  send()
+  handle()

Link EndpointRouter

Base class (abstract):

Derived classes:

NetworkElement

#  name
#  lastTimeProcessCalled

+  process()
+  send()
+  handle()

NetworkElement

#  name
#  lastTimeProcessCalled

+  process()
+  send()
+  handle()

Link EndpointRouter

Base class (abstract):

Derived classes:

 
Figure 5: Network element interface and derived classes. 

1.3.1 Network Elements 

Our network elements play several roles, including the link-layer protocol and network-layer 
protocol. The reason for such oversimplification is that the focus of this simulator is on TCP 
congestion control, so I tried to avoid any unnecessary work. The result is some kludges, but from 
the viewpoint of the main components (TCP senders and TCP receivers), we achieved a clean 
design. Figure 5 shows the interface. 

Because of such multiple purpose, our network elements include 
the protocol module interface with methods send() and 
handle(). These methods allow the elements to exchange data 
between one another. However, these data exchanges do not 
pertain to any notion of time progression. (There is a small 
exception for the Router, as described in Section  1.3.2.) 

To allow for signaling the passage of time, network elements also have the interface method 
process().The element then does the work appropriate for the amount of time elapsed since 
the previous call to this method (represented by the attribute lastTimeProcessCalled). 
Note that the method process() on one network element may invoke send() or handle() 
on another network element. 

There are three types of network components (Figure 5): 

 Link simulates a bidirectional communication link that carries data packets between its two 
endpoints. 

 Endpoint node simulates a host that sends or receives data packets, which means that it can act 
both as a sender and as a receiver. 

 Router node simulates a router that relays packets on their way from the sender to the receiver 
(described in Section  1.3.2). 

Communication Links 

Communication links are implemented by the class Link.java, which extends 
NetworkElement.java. In principle, a Link should be used only to represent a physical point-to-

Layer i

Layer i  1

send() handle()
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point communication link. However, in this simple implementation, we sometimes use it to 
represent a “link layer protocol module.” Note that our links are point-to-point, which means that 
each link can connect only two network nodes at a time. 

The Link has two attributes: 

 transmissionTime — the transmission time for this communication link (per packet, 
assuming all packets are of the same size!). The time is measured in ticks of the simulator clock 
and can be fractional. A proper implementation would have the link parameter data rate, and the 
transmission time would be calculated as: 

)secondper  bits(

)bits(

bandwidth

lengthpacket 

R

L
tx     (Eq. 1) 

 propagationTime — the propagation time for this communication link.  

The Link represents a full-duplex link and maintains two lists of packets, each heading in a 
different direction. Assuming that all packets are of the same size and packet transmission time 
equals tx, then the link should not at any time contain more than tp/tx packets, because that is when 
the “pipe is full.” (tp is the link propagation time.) We are not checking for this constraint, 
because in our current implementation Link is also used as a “link layer protocol module,” so it 
may be expected to buffer packets more than a physical link would be able to carry at once. 

Only two methods are implemented: send() and process(). The method send() simply 
enqueues the new packet behind any existing packets. These packets in transit/flight will be 
delivered on the other end of the link after appropriate delays, when the method process() is 
called. 

The method process() is called to signal the passage of time. The link calculates the time 
elapsed since the last call to process() and delivers the appropriate number of packets, if any, 
at the opposite end from where each packet was received. Because our links are full-duplex, in 
principle when process() is called the link should deliver packets in both directions, if any are 
currently in flight. However, because of the coarse granularity of our simulation clock, such 
behavior would present a problem. The reason is that we need to call process() several times 
within the same clock tick (see Listing 1). The link knows about progression of time by 
comparing the attribute lastTimeProcessCalled to the current time. Therefore, all 
subsequent calls to process() would accomplish nothing because zero time has passed since 
the last call. To avoid such situation, I introduced a parameter type for the method 
process(). In case of the Link, the type value symbolizes the direction of packet propagation 
that should be processed during the current call. Two cases are possible: 

 if the type indicates processing packets in both directions, then process() should not be 
called more than once within a single clock tick. 

 if the type indicates processing packets in a single direction, then process() should not be 
called more than twice within a single clock tick. 

Endpoints 

The Endpoint.java is meant to model an endpoint host computer that sends or receives data 
packets. Our Endpoint is simplified to include only the modules of the TCP protocol. It does not 
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Figure 7: Simplified router architecture: our router can hold  bufferCapacity packets 
in memory plus one in transmission. (Detail from Figure 4.) 

include any other protocols, such as link-layer or 
network-layer protocols. Because Endpoint can act both 
as a sender and as a receiver, it implements (Figure 6): 

   - TCP Sender protocol, for reliable transmission of 
the application data, which includes processing 
acknowledgments from the receiver end 

   - TCP Receiver protocol, for reception of data and in-
order delivery to the application layer 

The Endpoint just dispatches the work to either one of 
these components, which are described in Sections  1.4.1 
and  1.4.4, respectively. 

One programming assignment (Section  2.4) includes 
developing a UDP-based endpoint. 

1.3.2 Router Design 

The default configuration has a single “bottleneck router (Figure 4), which is presented with more 
traffic than it can handle. It will buffer some packets, but eventually its memory will fill and it 
must begin dropping packets. Our router drops all packets that arrive in excess of the memory 
capacity, which is known as drop-tail policy. More sophisticated queue management policies are 
possible that monitor the average queue size. See Section 5.3 in the book that describes Active 
Queue Management (AQM). One of the programming assignments also includes different packet 
drop policy (see Section  2.6). 

For simplicity, we assume that this router drops only the data segments, if they arrive in excess of 
the memory capacity. To avoid discarding acknowledgment segments, we ignore the packet 
header when calculating the router memory occupancy. Because ACK packets carry zero data, 
they contribute nothing to the router memory occupancy. Of course, this is only for simplicity and 
in the real world all packets are subjected to the same treatment at the network level. Note that 
this deficiency is easy to address, simply by accounting for the packet header size, as well. 
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Figure 8: Router class diagram. Note that Router implements NetworkElement (Figure 5). 

Our Router is one type of a network element and it implements the NetworkElement interface 
(Figure 5). Conceptually, the router architecture is shown in Figure 7. The reader should consult 
Chapter 4 of the book for more details about router architectures. The router can have arbitrary 
number of adjoining communication links. New links are added by calling the router’s method 
addForwardingTableEntry(), which adds a new item to the router’s forwarding table. 
The forwarding table associates network destination nodes with outgoing links. This method also 
creates an associated outgoing port. Because all links are bidirectional (Section  1.3.1), all network 
ports are also bidirectional, and each has an incoming and outgoing port. Only outgoing ports are 
explicitly represented, because they play a more complex role in our router. 

Figure 8 shows the router class diagram; note that some less important methods are not shown. 
The key methods of a Router.java object are handle() and process(). The method 
handle() accepts a packet on an incoming Link and processes it as described below. The 
router may buffer packets from previous invocations of its method handle(). The packets are 
relayed in a first-come-first-served manner. Therefore, if any packets remained from a previous 
invocation of this method, the oldest packets will be the first (“head-of-the-line”) in the 
associated array packetBuffer. The method process(), when called, is a signal to the 
router to transmit packets on their corresponding outgoing links, if there are any packets buffered 
in the router memory. Only the caller (Simulator.java) knows when sufficient amount of time has 
elapsed and when it should call this method. Note that the method send() currently does 
nothing. The input parameters are simply ignored. In the future, this method will need to be 
implemented if the router will send route advertisement packets. 

Implementing the Drop-Tail Queue Management Policy 

The implementation of the drop-tail queue management policy is the most complex part of our 
router. The reason is that we cannot simply drop all the packets that arrived in excess of the 
router’s memory capacity. We must keep track of how many packets arrived on incoming port(s) 
and if meanwhile any packets departed on outgoing port(s) and vacated some memory space. 
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Figure 9: Illustration of how the method handleIncomingPacket() of an output port 
processes packets received from an incoming link. 

Because of the way our simulator works (time-driven continuous simulation), the Router collects 
the packets received from incoming links and passes them to their outgoing links only when its 
method process() is called. Therefore, the router cannot count on help from outgoing links to 
remove the packets they would transmit within a given time. The router must “simulate” the work 
of its outgoing links to determine how fast the memory slots are vacated so that new packets can 
be buffered. This is the role for the inner class OutputPort of the class Router.java (Figure 8). 

An output port object knows how much its outgoing link is slower (or faster) relative to all 
incoming links on the same router. This ratio is maintained in the attribute 
maxMismatchRatio, the value of which is  1. If this outgoing link is equally fast or faster 
than any other link, then maxMismatchRatio = 1. In this case, packets are not buffered in 
router’s memory, but are immediately transmitted on their outgoing ports. For the scenario in 
Figure 4, the incoming link in is 10 times faster than the outgoing link, so 
maxMismatchRatio = 10. This means that up to 10 packets can arrive on the incoming port 
before a single packet can be transmitted on the outgoing port. 

An output port also maintains another attribute called mismatchCount. This attribute counts 
how many packets to receive before one can be sent if the outgoing link is slower than incoming 
links. The attribute mismatchCount is initialized to equal maxMismatchRatio. Then, for 
every arrived packet, mismatchCount is decremented until it is less than 1. When this 
happens, it means that enough packets arrived on the incoming port so it is time to transmit one 
packet on the outgoing port. In the scenario in Figure 4, initially mismatchCount = 10 and for 
every arrived packet the count is reduced by one. When 10 packets arrive on an idle router, the 
router will be able to handle the first seven (six in the memory and one in transmission). The 
remaining three will be dropped. 
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This behavior is implemented by the method handleIncomingPacket() on the output port, 
which is called by the router’s method handle(). Figure 9 illustrates how the method 
handleIncomingPacket() processes the received packets. Assume that during one 
transmission round 15 packets will arrive on the incoming link of an idle router. When the first 
packet arrives, it is immediately moved to the output port for transmission (Figure 9(a)). Then, 
the first bufferCapacity packets will be queued in the router’s memory and the last three 
packets of the first ten will be discarded (because of the drop-tail policy), as seen in (Figure 9(b)). 
At this time (10 packets arrived on the incoming link), the outgoing link succeeded in 
transmitting the first packet. The router moves the next-in-the-line packet to transmission and 
because this packet vacated one memory slot, the eleventh incoming packet will be buffered 
(Figure 9(c)). The variable mismatchCount again starts at maxMismatchRatio and counts 
down. Finally, the last four packets will be discarded because they arrived on a full queue (Figure 
9(d)). 

 

An outgoing port may be receiving packets from different incoming links, and these links can 
have different relative data rates. This fact complicates the calculation of the vacated memory 
space. Assume now that in Figure 4 there was another incoming link (“Link 3”) that was, say, two 
times faster than Link 2 and was sending packets to the same outgoing port. Different increments 
for mismatchCount should be associated with different incoming links. In addition to 
maxMismatchRatio, which is the ratio of data rate to the fastest link (Link 1), we calculate 
mismatchRatio_ of Link 2 to Link 3. The variable mismatchCount again starts 
maxMismatchRatio but now it is decremented by (maxMismatchRatio / 
mismatchRatio_) for a packet that arrived on Link 2 (and again by 1 for a packet that arrived 
on Link 1). 

The buffered packets will be transmitted when the method transmitPackets() on the 
output port is called by the router’s method process(). This method check that it transmits not 
all packets queued for this outgoing port, but only the number that is allowed by the transmit time 
budget. The variable transmitTimeBudget is the time that elapsed since the last call to 
process() and is decremented for each packet by its transmission time. Recall from Section 
 1.3.1 that we are assuming that all packets are of equal length. 

1.3.3 Configuring and Running the Network 

The network in our default implementation is configured in the constructor of the class 
Simulator.java. First, the network nodes (sending and receiving endpoint and the router) are 
created and linked by two links, as illustrated in Figure 4. 

The first type of configuring is to keep the same network structure, but use different values for the 
parameters listed in Section  1.1.1, such as link data rates and the router memory capacity. The 
reader may notice that we are cheating a bit for the default link parameters. The input parameters 
used for constructing the links are: 

 for Link 1, transmissionTime = 0.001 and propagationTime = 0.001 (both measured 
as fraction of a clock tick) 
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 for Link 2, transmissionTime = 0.01 and propagationTime = 0.001 (both measured 
as fraction of a clock tick) 

Assuming that router processing and queuing times are negligible (because our router succeeds to 
transmit all non-dropped packets generated in the current iteration within that same iteration), and 
then the round-trip time should equal: 

RTT = 2[ tx(Link1) + tp(Link1) + tx(Link2) + tp(Link2) ] = 2(0.001 + 0.001 + 0.01 + 0.001) 

However, the calculated RTT = 0.026 of a clock tick but we know that one clock tick corresponds 
to one RTT! The reason for this discrepancy is that I simply assume that the sender will always be 
able to send a full-window of segments in one iteration, and the ACKs will arrive back at the end 
of the same iteration. In fact, using Eq. (1) from Section  1.3.1 and given that our TCP segments 
are all 1 KBytes long, we obtain the transmission time for Link 1: 

s 0.0008192
)secondper  bits(10000000

)bits(81024

bandwidth

lengthpacket 



xt  

The problem is that currently our clock ticks are not expressed in units of time. In addition, I did 
not want to be bothered with calculating the maximum window size (which in our default 
scenario turns out to be 15 segments) and doing other precise calculations, because there would 
be no qualitative difference in simulation results for our basic scenario. There may be qualitative 
difference for other simulation scenarios, and you should know whether the results confirm to 
your expectations and whether they can be causally explained. The assignment in Section  2.1 
performs a more careful calculation of different time constants. 

 

he second type of configuring involves building different network topologies. Several 
assignments in Section  2 require building parallel TCP or UDP connections. Adding more 

links and routers requires careful planning of timetables for firing the process() methods on 
network elements. 

The timetable for the default implementation is shown Figure 1 and detailed in Listing 1 (Section 
 1.2.1). Unlike discrete event simulation (DES), which is event-driven so that the simulator just 
examines the event queue and finds out which event should be executed next, this simulator is 
time-driven. That means that there must a “master plan,” a timetable for step-by-step firing of 
individual components to perform their work. This timetable is currently hard-coded in the 
method Simulator.run(). Although this implementation is a bit clumsy and inelegant, at 
least it is confined to a single method, so it should not be too difficult to understand and modify. 
When making any modifications, there are three issues to keep in mind: 

 First, bidirectional links must fired separately in both directions if the method process() is 
called on Link more than once during a single clock tick, as discussed in Section  1.3.1. 

 Second, the clock should tick more than once per transmission round, such as in Example 2.2 in 
the book. 

 Third, relative proportions of round-trip times for different TCP sessions must be correctly 
handled. 

T 
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Simulation iterations

call process() for every iteration
on components of the first connection and shared components

call process() for every other iteration
on components of the second connection that are not shared

Simulation iterations

call process() for every iteration
on components of the first connection and shared components

call process() for every other iteration
on components of the second connection that are not shared  

Figure 10: The timetable for calling the method process() on components of connections 
with different round-trip times. 

The first issue is relatively simple, so we consider the second issue. As Figure 1 shows, one 
round-trip time (RTT) is simulated over the course of a single iteration. In the scenario of 
Example 2.2 in the book, we need to call process() several times per transmission round or 
per RTT. Because the network elements will perform work only if the time elapsed since the last 
call to process() is greater than zero, the clock should tick more than once per RTT. I believe 
that all components are agnostic of the clock resolution and the required code modification would 
be confined to the class Simulator.java. 

For the third issue, consider a scenario with two TCP connections, where the RTT for one 
connection is twice the RTT of the other connection. Obviously, we cannot use the same strategy 
from Figure 1 for both connections. One option is to have clock tick correspond to the shorter 
RTT and run iterations at the speed of clock ticks. Single iteration would correspond to the short 
RTT of the first connection and two iterations would correspond to the long RTT of the second 
connection. The network components that are part of the first connection would be called to 
process() data every iteration, while the components in the second connection would be 
called to process() data other iteration (Figure 10). If a router is shared by two connections, it 
should not be a problem to call it as many times as desired per iteration. I believe that Router.java 
is properly implemented to move the correct number of packets within the time that elapsed since 
the last call to its process(). Again, the required code modification would be confined to the 
class Simulator.java. I have not tried this, though. 

Of course, the above approach would not work for the scenarios where connections RTTs are not 
integer multiples of the smallest RTT. I leave it to the reader’s inventiveness to design the 
timetables for such scenarios. 

 

1.4 TCP Protocol Components 
 

The Transmission Control Protocol (TCP) establishes a connection between two endpoint 
devices, both of which view the communication as a stream of bytes. TCP ensures error-free, in-
order delivery of that stream. As we have seen (Section  1.3.2), packets might be discarded (in 
response to congestion) somewhere between the sender and receiver. TCP is responsible for 
recognizing when data loss occurs and for retransmitting data that have gone missing. 
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Figure 11: The class diagram of the simulator components related to the TCP protocol. 

The software classes related to the TCP protocol are contained in the sub-package/folder named 
“tcp”. However, note also that an Endpoint node contains components of the TCP protocol 
(Figure 6). The class diagram for the TCP components is shown in Figure 11 and described in the 
following sections. Note that the sender is significantly more complex than the receiver is. 
Therefore, the sender is further decomposed into two objects: retransmission timeout (RTO) 
estimator and sender’s congestion state. This simulator implements three types of senders Tahoe, 
Reno, and NewReno), that are described later in Section  1.5. 

In our reference implementation, the sender only sends data and the receiver only receives data 
and sends acknowledgments. The sender and receiver within the same endpoint (Figure 6) work 
completely independently of each other. However, this implementation does not allow 
piggybacking of ACKs on data packets—ACKs must be carried in zero-payload segments. To 
support piggybacking of ACKs on data packets, the sender and receiver will need to be modified 
to coordinate their work. One option is as follows. Within the same Endpoint node, when a 
segment is received: 

1. If the segment has the ACK flag set, call tcp.Sender.java to handle() the acknowledgment 

1a. Then call tcp.Sender.java to send()new segments, if any, by storing them in a 
buffer shared with tcp.Receiver.java (unlike the current implementation where the 
sender transmits data segments directly on the outgoing link). 

2. If the segment carries non-zero data payload, call tcp.Receiver.java to handle() the data and 
generate an acknowledgment. The receiver will check the buffer it shares with tcp.Sender.java, to 
see if any data segments are lined up for transmission in the reverse direction. If yes, 
tcp.Receiver.java would piggyback its acknowledgment by setting the ACK flag in the existing 
data segment. Finally, tcp.Receiver.java would transmit this segment on the outgoing link. 
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Figure 12: The class diagram of the TCP data sender (detail from Figure 11). 

1.4.1 TCP Sender 

As any other protocol module, TCP data sender supports two key operations: send() and 
handle(). The method send() is used by the user (i.e., upper-layer protocol or application) to 
request sending data to a remote peer. A lower-layer protocol passes a segment to TCP to 
handle(). This segment may contain both data and ACK (both 
received from the remote endpoint) or only ACK. Any data 
payload will be handled by the receiver component within this 
endpoint (Figure 6) as described in Section  1.4.4; the sender 
component handles only ACKs. When an ACK is received, the 
sender distinguishes: 

 New ACK—acknowledges data that have not yet been 
acknowledged 

 Duplicate ACK—acknowledges data that have already been acknowledged 

During ACK processing, the sending parameters will be set, that are used in this send() 
method.The sender watches for these events to detect potential segment loss in the network: 

 Expired RTO timer 

 Three (or more) Duplicate ACKs 

Note that our tcp.Sender.java has the attribute dupACKthreshold that allows setting the 
dupACK threshold to a value different from three. However, because 3 is the commonly used 
value, all related variables and methods are named using 3 dupACKs in their name. 

Layer i

Layer i  1

send() handle()
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When the sender detects one of the above events, it simply delegates the event processing to its 
current state object. TCP sender operates the same send() regardless of its current state. The 
sender state is used in handle() to process the acknowledgment segments from the receiver. 
The state object (described in Section  1.4.2) performs the appropriate processing and returns the 
next state to which the sender should transition. This next state will become the sender’s current 
state. 

 
Table 1: Operations of the class tcp.Sender.java: 

Method Description 

send() Sends segments by passing them to the network layer protocol. 

handle() 
Processes ACKs received from the receiver. Checks for duplicate ACKs 
and dispatches them differently for processing. 

ABSTRACT METHODS (to be implemented by the derived classes): 

onExpiredRTOtimer() 

Helper method, called on the expired retransmission timeout (RTO) 
timer from the sender’s current state object , see 
tcp.SenderState.handleRTOtimeout(). This method works 
slightly differently for different types of TCP senders (Tahoe, Reno, 
etc.). 

onThreeDuplicateACKs() 
Helper method, called on three or more duplicate ACKs. Works 
differently for different types of TCP senders (Tahoe, Reno, etc.). 

Figure 12 shows a detailed class diagram for the TCP sender; also see method description in 
Table 1. Note that the class tcp.Sender.java is an abstract class, which means that we cannot 
instantiate objects of this class. Instead, this class is completed by specific version of TCP sender 
(Tahoe, Reno, or NewReno), as shown in Figure 12. The two methods that are implemented by 
the derived concrete classes, onExpiredRTOtimer() and onThreeDuplicateACKs(), 
are specific to the concrete versions of a sender. We know that different sender versions behave 
differently when they detect segment loss based on three duplicate ACKs or RTO timer timeout. 

The attributes of the sender (Figure 12) are fairly self-explanatory; also see detailed description in 
the book on the same website. The attribute lastByteSentBefore3xDupAcksRecvd is 
the pointer to the last byte sent (attribute lastByteSent) at the time when three duplicate 
acknowledgments were received. Only when all the data outstanding at that moment are 
acknowledged will the sender have fully recovered from the loss. The default value of this 
attribute is 1. This attribute is particularly used in TCP NewReno to distinguish “partial” from 
“full” acknowledgments (Section  1.5.3). 

The class tcp.SenderNewReno.java is derived from the class tcp.SenderReno.java. The NewReno 
class is practically empty and its only purpose is to let the fast recovery state object decide how to 
process a new acknowledgment. For details, see the method calcCongWinAfterNewAck() 
in the class tcp.SenderStateFastRecovery.java. 

1.4.2 Sender States 

The class diagram for TCP sender states is shown Figure 13 and the methods are described in 
Table 2. We implement sender states using the state design pattern 
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Figure 13: The class diagram of the states of TCP data sender (detail from Figure 11). 

(http://en.wikipedia.org/wiki/State_pattern). The class tcp.Sender.java is the “context” object for 
which the state is extracted in the object of class tcp.SenderState.java. This means that the context 
object itself does not process any events, but rather passes the events on to its current state object 
for processing. The current state object processes the event and returns to the context object the 
next state it should transition to after this event. This next state becomes the new current state of 
the context object. 

When the sender transitions to the Slow Start state (implemented by 
tcp.SenderStateSlowStart.java), this object should check that all congestion parameters are reset 
to their initial values. However, ours current implementation assumes that the object which 
initiated the transition has correctly reset the parameters and tcp.SenderStateSlowStart does not 
check that it is indeed so. To avoid multiple locations for resetting the parameters, tcp.Sender 
provides the method resetParametersToSlowStart() to do reset in a single place. 

Note that the class tcp.SenderState.java is an abstract class, which means that we cannot 
instantiate objects of this class. Instead, this class is completed by specific state classes, as shown 
in Figure 13. The two methods that are implemented by the derived concrete classes, 
calcCongWinAfterNewAck() and lookupNextStateAfterNewAck(), are specific to 
the concrete state. We know from the TCP protocol standard that the sender’s congestion window 
size is calculated differently in the slow start state as opposed to the congestion avoidance state. 
The reader should examine the Java source code for the exact details. 



 1  The Design of a Simple TCP Simulator 

23 

23

 
Table 2: Operations of the class tcp.SenderState.java: 

Method Description 

handleNewACK() 

Processes a single new (i.e., not duplicate) acknowledgment 
segment in the slow start transmission mode. Update the running 
estimate of the RTO timer interval. Restart the RTO timer for any 
outstanding segments. Update the congestion window size. Return 
the next state to which the sender will transition. 

handleDupACK() 

Counts a duplicate ACK and checks if the count equals 3. If 
exactly three dupACKs are received, it performs the fast 
retransmit and updates the congestion parameters. Tahoe ignores 
additional dupACKs over and above the first three. Reno does 
not—it processes them within its fast recovery procedure. 

handleRTOtimeout() 

Processes the TCP sender reaction to a retransmission timer (RTO) 
timeout. Method called on the expired RTO timer. After this kind 
of an event, the next state in any type of a TCP sender is always 
reset to slow start. 

ABSTRACT METHODS (to be implemented by the derived classes): 

calcCongWinAfterNewAck() 

Helper method to calculate the new value of the congestion 
window after a "new ACK" is received that acknowledges data 
never acknowledged before. 
This method also resets the RTO timer for any outstanding 
segments. 

lookupNextStateAfterNewAck() 
Helper method to look-up the next state that the sender will 
transition to after it received a "new ACK". 

Note that the class tcp.SenderStateFastRecovery overrides the method handleDupACK() of its 
base class tcp.SenderState. In the fast-recovery state, the TCP Reno sender for each dupACK 
increases the congestion window by one full MSS. This action inflates the congestion window for 
the additional segment that has left the network. The sender remains in the state of fast recovery 
until it receives a new ACK that acknowledges previously unacknowledged data. More 
discussion of TCP Reno is available in Section  1.5.2 of this document, as well as in the book. 

An important note about the method handleNewACK() in SenderState.java:  
For simplicity, our TCP Receiver is allowed to send cumulative acknowledgements for more than 
two segments that arrived in order—the number is unlimited. In reality, the delayed ACK timer 
(Section  1.2.2) will expire relatively soon and a cumulative ACK will acknowledge up to two 
segments. Our simplification can cause a problem in that the retransmission interval (Section 
 1.4.3) may not converge quickly enough to its true value because of the severely reduced number 
of new acknowledgements that trigger the retransmission interval re-estimation. For this reason, 
the method handleNewACK()calls the method updateRTT() of RTOEstimator.java as many 
times as the number of segments cumulatively acknowledged by a new acknowledgement. 

Another issue is counting and handling duplicate acknowledgements in the method 
handleDupACK(). The attribute dupACKcount of tcp.Sender.java (Figure 12) holds the 
current tally of duplicate ACKs. This attribute must be rest when an acknowledgement for new 
data is received (see the definition of “new data” in Section  1.4.3). When three duplicate ACKs 
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are received, the method handleDupACK() calls the sender’s 
onThreeDuplicateACKs(), which is specific to the running version of the sender. Tahoe 
ignores additional dupACKs over and above the first three. Reno does not—it processes them 
within its fast recovery procedure. An important issue is where to reset the attribute 
dupACKcount. We cannot reset it in the method onThreeDuplicateACKs() after three 
dupACKs, because six or more may arrive consecutively and for every modulo three number of 
dupACKs, onThreeDuplicateACKs() would mistakenly adjust the congestion parameters, 
such as reduce SSThresh. The proper approach is to detect an acknowledgement for new data 
and reset it then, which occurs in SenderState.handleNewACK(). Reno and its derivative 
NewReno maintain the attribute lastByteSentBefore3xDupAcksRecvd (Figure 12) to 
detect a “true” new ACK, while for Tahoe we take a simplified approach and reset 
dupACKcount for any ACK that acknowledges previously unacknowledged data. 

1.4.3 Timeout Interval Estimation 

Whenever data are sent on a connection, the retransmission timeout (RTO) timer is started, unless 
it is already running. TCP sender runs a single RTO timer for all outstanding segments. When all 
outstanding data are acknowledged, the timer is stopped. If the timer expires, the oldest 
unacknowledged segment is retransmitted and the timer is restarted with a double value (this 
behavior is known as “exponential backoff”). 

Timeout interval estimation is performed continuously by the object tcp.RTOEstimator.java. TCP 
maintains two smoothed estimators per connection: the round-trip time (RTT) and the mean 
deviation of the RTT. These estimators are represented respectively with the attributes 
estimatedRTT (current estimated RTT value) and devRTT (current estimated RTT 
deviation). These estimators are maintained as scaled integer numbers to provide adequate 
precision without using floating-point code within the operating system kernel. Following this 
approach, our implementation uses shift operations instead of multiplication and division. 

Note that the same estimated value is used for idle-connection timers as well (Section  1.2.2). 

This implementation is based on RFC-6298 and TCP/IP Illustrated, Volume 1 [Stevens, 1994: 
Chapter 21]. TCP sender maintains a single retransmission timeout (RTO) timer, named 
rtoTimer (see Figure 3 and Figure 12). RTO timer value is measured in simulator time ticks 
that are defined by the method Simulator.getTimeIncrement(). The timer is activated 
when a new segment is transmitted. When all outstanding segments are acknowledged, the timer 
is deactivated. 

The sending time of each TCP segment is recorded as tcp.Segment.timestamp in the TCP 
header (similar to the timestamp option in the Options field of an actual TCP header) and returned 
by the corresponding acknowledgment packet. tcp.Segment.timestamp is set to 1 if the 
segment is a retransmitted segment, and no RTT estimation is performed for retransmitted 
segments. 

 SampleRTT = current_time  timestamp; 

 EstimatedRTT[new] = (1  )EstimatedRTT[old] + SampleRTT; 

 Delta = |SampleRTT  EstimatedRTT[old]|; 



 1  The Design of a Simple TCP Simulator 

25 

25

 DeviationRTT[new] = (1  )DeviationRTT[old] + Delta; 

The above computation should be performed using =1/8 and =1/4. An exception occurs when 
the first RTT measurement is made, where the host must set:  

 SampleRTT = current_time  timestamp; 

 EstimatedRTT[new] = SampleRTT; 

 DeviationRTT[new] = SampleRTT / 2; 

The retransmission timer base is always computed as:  

 TimeoutInterval[new] = EstimatedRTT[new] + max{ G, KDeviationRTT[new] }. 

where G is the system clock granularity (in seconds), and K is usually set to 4. (Check RFC-6298 
for discussion about the need for the clock granularity parameter G.) 

The “exponential backoff” behavior may lead to very large values for RTO timeouts. RFC-6298 
(Section 5) states that a maximum value may be used to provide an upper bound to this doubling 
operation. This website says that the retransmission timer should not exceed 240 seconds: 
https://support.microsoft.com/kb/170359/en-us.  

Restarting the RTO Timer 

According to RFC-2988, Step 5.1, [Paxson & Allman, 2000], every time a packet containing data 
is sent (including a retransmission), if the timer is not running, start it running so that it will 
expire after RTO seconds (for the current value of RTO). 

An interesting issue is about re-starting the retransmit timer. TCP sender re-starts the RTO timer 
when a new acknowledgment (acknowledges data never before acknowledged) is received and 
there are still outstanding, non-acknowledged segments. There are three cases of new ACKs: 

1. The sender has received a non-duplicate ACK and is currently sending new data (either in 
slow start or congestion avoidance) and is not aware of any data loss. When the sender 
transmits the EffectiveWindow amount of data, it re-starts the rtoTimer. 

2. The sender has received a non-duplicate ACK after receiving three or more duplicate 
ACKs and retransmitting one or more unacknowledged segments. Different sender 
versions react differently. Tahoe and Reno will re-set the retransmit timer if there are still 
outstanding segments. NewReno distinguishes “old data” as any data that has been 
unacknowledged at the time when a segment loss was detected, and “new data” as the 
data that is sent after the loss was detected. A non-duplicate ACK for “old data” may 
acknowledge the old data only partially or completely (see Section  1.5.3). Different 
approaches for reacting to a “partial ACK” in NewReno were considered by Floyd et al. 
(2004). The so-called Impatient variant resets the retransmit timer only after the first 
partial ACK. Our simulator implementation adopted the so-called Slow-but-Steady 
variant in which the retransmit timer is reset after each partial acknowledgement, because 
it performs better in our simulation scenarios. Therefore, although the class 
SenderStateFastRecovery.java has the attribute firstPartialACK (Figure 13), we are 
currently not using it. See the implementation details in the method 
calcCongWinAfterNewAck(). 
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3. The sender has received a non-duplicate ACK after the retransmit timer expired and the 
sender retransmitted the oldest unacknowledged segment. Assuming that there are still 
outstanding segments, it is not clear if the RTO timer should be re-started again, because 
it was restarted just after it expired. 

I could not find a definite answer to the last/third case, so the sender will re-start the RTO timer 
twice in a row (after it expired and when the new ACK is received for the retransmitted segment). 
Because this may introduce an unnecessary inefficiency, I feel that this issue is unresolved and 
needs to be revisited. Any modifications should be made in the method 
calcCongWinAfterNewAck() of the classes SenderStateSlowStart,java and 
SenderStateCongestionAvoidance.java. 

Additional information about retransmission timers and approaches for providing faster loss 
recovery is available in [Hurtig et al., 2014]. 

1.4.4 TCP Receiver 

TCP Receiver is implemented by the class tcp.Receiver.java. 

If a segment arrives with an invalid checksum, TCP silently discards it and does not acknowledge 
receiving it. There is no means for negatively acknowledging a segment. The receiver expects the 
sender to time out and retransmit. The receiver does not know what to do with a corrupted 
packet—it does not even know if this packet was intended for this receiver, because corrupted 
bits might have caused a delivery to a wrong destination. In our implementation, the class 
Packet.java has the Boolean attribute inError, which serves in lieu of error checksum. 

An out-of-order packet must be acknowledged immediately by a duplicate ACK. However, for in-
order packets a cumulative ACK will be maintained, indicating the TCP receiver has received all 
of the data up to the indicated byte. A cumulative ACK will be sent only when a timer expires. 
The timer for delayed (cumulative) acknowledgments is called delayedACKtimer (Figure 3). 

There are two standard methods that can be used by TCP receivers to generate acknowledgments. 
The method outlined in RFC-793 generates an ACK for each incoming data segment (including 
in-order segments). RFC-1122 states that hosts should use “delayed acknowledgments” for in-
order segments. Using this approach, an ACK is generated for at least every second in-order, full-
sized segment, or if a second full-sized segment does not arrive within a given timeout (which 
must not exceed 500 ms [RFC-1122], and is typically less than 200 ms). Such approach is also 
adopted in RFC-2581. RFC-2581 states that an ACK should be generated for at least every 
second full-sized segment, and must be generated within 500 ms of the arrival of the first 
unacknowledged packet. Therefore, the receiver can send an ACK for no more than two data 
packets arriving in-order. 

RFC-2760 also allows for generating “Stretch ACKs” that acknowledge more than two in-order 
full-sized segments. This approach provides a possible mitigation, which reduces the rate at 
which ACKs are returned by the receiver. Interested readers should check for discussion of 
modified delayed ACKs in Section 4.1 of RFC-3449. The way cumulative ACKs are 
implemented by our tcp.Receiver.java they should probably be called “Stretch ACKs,” because 
we generate a single cumulative ACK for all in-order segments received during a single 
transmission round. 
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// if pkt arrived in-sequence:

process()

handle(pkt)

: Simulator receiverEndpt : Endpoint : Receiver

run()

link2 : Link

process()

deliverArrivedPackets()

handle(pkt)

set cumulative ACK

start delayed ACK timer

setTimeoutAt( current iteration )

checkExpiredTimers()
sendCumulative
Acknowledgement()timerExpired()

Figure 14: Sequence diagram for generation and sending of cumulative ACKs. 

Because our time is measured in unspecified clock ticks and it is of very coarse granularity (one 
tick corresponds to one RTT), the Receiver sets the delayed-ACK timer to the current time. Here 
we use the knowledge of how the simulator works. We know that ACKs will be generated during 
the call to the Receiver’s method handle(), which is called by the incoming Link (Figure 14). 
In effect, we are starting the delayed-ACK timer to expire during the same simulation round, 
which in our case corresponds to one RTT, at the time when process() on the receiving 
endpoint will be called. 

There is also a TCP standard that supports selective acknowledgment (SACK). A selective 
acknowledgment option allows receivers to additionally report non-sequential data they have 
received. SACK is not implemented in our reference implementation. For details, see RFC-2018 
[Mathis, et al., 1996]. 

 

1.5 Supported Versions of TCP 
 

A number of TCP variants have been proposed and studies. The current code implements these 
versions of the TCP sender: Tahoe, Reno, and NewReno. TCP receiver is universal and does not 
depend on the TCP sender version. This code does not implement TCP Selective 
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Acknowledgment Options (SACK), described in RFC-2018. Different RFCs can be found here 
http://tools.ietf.org/rfc/index. 

Early TCP implementations in early 1980s followed a Go-back-N model using cumulative 
positive acknowledgment and requiring a retransmit timer expiration to resend data lost during 
transport. These TCPs did little to minimize network congestion. The Tahoe TCP implementation 
[Jacobson, 1988] added a number of new algorithms and refinements to earlier implementations. 
These algorithms are present in most modern TCP versions, along with additional refinements 
and algorithms. Therefore, it is a good strategy to start with studying TCP Tahoe and progress 
incrementally towards more modern TCP versions. 

1.5.1 TCP Tahoe 

TCP Tahoe was developed in the late 1980s. Our simulator implementation is based on RFC-
1122 (http://www.apps.ietf.org/rfc/rfc1122.html): “Requirements for Internet Hosts -- Communication 
Layers,” published in 1989, which I believe specified TCP Tahoe. See Section 4.2 of RFC-1122. 

TCP Tahoe includes the algorithms for Slow Start, Congestion Avoidance, and Fast Retransmit. 
In our implementation, Slow Start and Congestion Avoidance are implemented as sender states 
(Section  1.4.2), and Fast Retransmit is implemented as an action when the sender suspects a 
segment loss. With Fast Retransmit, after receiving a small number (usually  3) of duplicate 
acknowledgments for the same TCP segment (dup ACKs), the sender infers that a segment has 
been lost and retransmits the segment without waiting for a retransmission timer to expire. This 
behavior leads to higher channel utilization and connection throughput. The Fast Retransmit 
algorithm is slightly modified in subsequent versions of TCP, as described in Section  1.5.2. 

As shown in Figure 12, the Tahoe sender is implemented by the class tcp.SenderTahoe.java 
derived from the base class tcp.Sender.java. The method onExpiredRTOtimer() resets the 
sender’s congestion-control parameters when the RTO timer times out. The sender begins again 
ramping up its congestion window in the slow start state. 

The method onThreeDuplicateACKs() performs the Fast Retransmit action to retransmit 
the oldest outstanding segment because after three dupACKs, it is presumably lost. In the class 
tcp.Sender.java, the threshold for the number of duplicate ACKs is called dupACKthreshold, 
and is by default set to three, but this value can be modified. The Tahoe sender does not care 
about the number of dup ACKs as long as it is at least three (or whatever value 
dupACKthreshold is set to). This means that any dupACKs received after the first three are 
ignored. Also, after this kinds of an event, the sending mode in TCP Tahoe is always reset to slow 
start. The method leaves the RTO timer running for the outstanding segments. 

All other operational logic of the sender is delegated to the sender states (Section  1.4.2), and 
Tahoe has only two states: Slow Start and Congestion Avoidance. 

TCP Tahoe was superseded by TCP Reno, which is described next. 

1.5.2 TCP Reno 

TCP Reno is designed to address a common case of single segment loss, when after the Fast 
Retransmit, the communication path (“pipe”) becomes empty and the Tahoe sender labors to re-
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fill the pipe in the Slow Start state. The TCP Reno retained the basic features of TCP Tahoe 
(Section  1.5.1), but the key difference is that the Fast Retransmit is modified to include Fast 
Recovery [Jacobson, 1990]. Reno implementation of a sender that appeared first in early 1990s. 
TCP Reno was specified in RFC-2001 (http://www.apps.ietf.org/rfc/rfc2001.html) and RFC-2581 
(http://www.apps.ietf.org/rfc/rfc2581.html). 

Fast Recovery is entered by a TCP sender after receiving an initial threshold of duplicate ACKs, 
generally set as dupACKthreshold = 3. Once three dup ACKs are received, the sender 
retransmits the oldest unacknowledged segment and reduces its congestion window by one half. 
Instead of repeating slow starting, as done by a Tahoe sender, the Reno sender uses additional 
incoming dup ACKs to clock subsequent outgoing segments. 

In Reno, the sender’s usable window is calculated as follows. 

For dupACKcount  dupACKthreshold: 

EffectiveWindow = min(RcvWindow, CongWindow) 

For dupACKcount  dupACKthreshold: 

EffectiveWindow = min(RcvWindow, CongWindow+ dupACKcount) 

where RcvWindow is the receiver’s advertised window, CongWindow is the sender’s congestion 
window, and dupACKcount counts the number of duplicate ACKs. Thus, during Fast Recovery 
the sender “inflates” its window by the number of dup ACKs it has received, based on the 
observation that each duplicate ACK indicates a packet has left the network and is now cached at 
the receiver. After entering Fast Recovery and retransmitting the oldest unacknowledged 
segment, the sender effectively waits until half a window of dup ACKs have been received, and 
then sends a new segment for each additional dup ACK that is received. Upon receipt of an ACK 
for new data (called a “recovery ACK”), the sender exits Fast Recovery, sets dupACKcount to 
0, and enters Congestion Avoidance. 

Reno significantly improved upon the behavior of Tahoe when a single segment is dropped from 
a window of data. However, even Reno can suffer from performance problems in case of a 
“catastrophic loss” when multiple segments are dropped from a window of data. This is 
illustrated in the simulations for our default configuration, when several segments are dropped for 
a Reno connection with a large congestion window after slow-starting in a network with drop-tail 
routers (Section  1.3.2). As a result, the sender needs to await a retransmission timer expiration 
before reinitiating data flow. To address such cases, TCP NewReno modification was introduced. 

1.5.3 TCP NewReno 

The current version of TCP is called “NewReno” and specified in RFC-5681 
(http://tools.ietf.org/html/rfc5681). This is a modified version of TCP Reno that avoids some of the 
performance problems when multiple segments are dropped from a window of data (see Section 
 1.5.2). Our NewReno implementation includes a small change to the Reno algorithm that 
eliminates Reno’s wait for a retransmit timer when multiple segments are lost from a window. 
The change affects the sender’s behavior during Fast Recovery when a “partial ACK” is received 
that acknowledges some but not all of the segments that were outstanding at the start of that Fast 
Recovery period (represented by the attribute lastByteSentBefore3xDupAcksRecvd, 
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see Section  1.4.1). In the ordinary Reno, a partial ACK will take TCP out of Fast Recovery into 
the Congestion Avoidance state. In NewReno, partial ACKs received during Fast Recovery are 
treated as an indication that the segment immediately following the acknowledged segment in the 
sequence space has been lost, and should be retransmitted. Thus, when multiple segments are lost 
from a single window of data, NewReno can recover without a retransmission timeout, 
retransmitting one lost segment per round-trip time until all of the lost segments from that 
window have been retransmitted. NewReno remains in Fast Recovery until all of the data 
outstanding when Fast Recovery was initiated have been acknowledged. This is known as a “full 
ACK” received, and at this time, lastByteAcked becomes equal to 
lastByteSentBefore3xDupAcksRecvd. 

Our class tcp.SenderNewReno.java derived from the base class tcp.SenderReno.java (Figure 12), 
but the class does nothing. It only serves as a type indicator for tcp.SenderStateFastRecovery.java 
to know in which context it is running (old Reno or NewReno) and to behave accordingly. See 
the method calcCongWinAfterNewAck() of tcp.SenderStateFastRecovery.java for details. 

RFC 5681 (in Section 3.2) states that the retransmit timer should be reset only for the first partial 
ACK that arrives during fast recovery. Timer management is discussed in more detail in Section 4 
of RFC 5681. Our simplified implementation resets the RTO timer for every partial ACK. See the 
method handleNewACK() of the class SenderState.java. 
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2 Programming Assignments 

 

 

The programming assignments described in this section are 
intended to explore a wide variety of “what if” questions about 
the real-world systems using TCP protocol. The students will 
simulate potential changes to the default network configuration 
and predict their impact on system performance. These 
assignments are based on Example 2.1 in the book (Section 
2.2). They are mainly asking the student to modify the network 
properties (represented by the classes Simulator.java and 
Router.java) and observe the effect on TCP performance. 

 

The following assignments are designed to illustrate how a 
simple model can allow studying individual aspects of a 
complex system. In this case, we study the congestion control 
in TCP. The students are asked to modify the program code, 
run the experiments, and interpret the simulation results. All of 
these projects require only relatively simple extra coding 
because most of the code is already written. The main focus is 
on running thoughtful experiments and performing extensive 
analysis and explanation of the observed results. 

The assignments are based on the reference software 
implementation available at this book’s web site; follow the 
link “Team Projects.” 

All assignments are structured as follows: 

1. Problem Formulation states the problem to be studied and questions to be answered by 
simulation. The overall project plan is also summarized. 

2. Model Conceptualization and Software Modification describes a model of the system to 
study. As noted, the assignments mostly ask the student to modify the network properties 
(represented by the classes Simulator.java and Router.java). 

3. Experimental Design, Data Collection and Interpretation describes the experiments to 
perform and the kind of data to be collected, mostly samples of TCP congestion parameter values. 
The student must know what kind of data to expect, so to verify that the input parameters and 
logical structure of then model are correctly represented in their software implementation. 
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4. Documentation and Reporting included the documentation of the program modifications in 
Step 2 above, as well as experiments and results interpretation in Step 3 above. When 
documenting your program modifications, describe only what modifications you introduced 
relative to the reference implementation described in Section  1 of this document. In the 
discussion of the results, plot the relevant charts similar to those provided for Example 2.1. 
Calculate the sender utilization, where applicable, and provide explanations and comments on the 
system performance. Also, calculate the latency for transmitting a very large file. The result of all 
the analysis should be reported clearly and concisely. Good documentation will add to the 
credibility of your modified model and your experimental results. 

Each chart/table should have a caption and the results should be discussed. Explain any results 
that you find non-obvious or surprising. Use manually drawn diagrams (using a graphics program 
such as PowerPoint), similar to figures in Section 2.2.1 of the book, where necessary to support 
your arguments and explain the detailed behavior. 

Important Notes: 

● The data size for bulk transport is set in the parameter TOTAL_DATA_LENGTH, in the class 
Simulator.java, which is by default set to 1,000,000 bytes. When experimenting with bulk data 
transfer and large number of iterations (order of thousands), ensure that the sender has unlimited 
data ready to send. If the sender runs out of data, you will receive this message: 
 tcp.Sender.send():  Insufficient data to send  

● Run the simulations for short and long sessions. Short sessions of about 100 iterations will 
illustrate the transient behavior (sporadic and short bursts of data). Long sessions with large 
number of iterations (at least 1000 iterations), will illustrate the steady-state behavior. 

● Sender utilization is defined as the fraction of time the sender is busy transmitting packets 
relative to the duration of the entire session. It is desirable that the sender is more utilized rather 
than sitting idle (of course, this is assuming that it has packets ready for transmission; otherwise it 
has no choice but to sit idle and wait for new packets). 

● When comparing different sender versions (Tahoe, Reno, NewReno) on their transient 
behavior, use a relatively small TOTAL_DATA_LENGTH (order of KBytes to tens or hundreds or 
KBytes) and determine the number of iterations each sender needs successfully to complete the 
transmission. 

● When comparing different sender versions on their steady-state behavior, use a very large 
TOTAL_DATA_LENGTH (order of hundreds of MBytes or GBytes) and determine the sender 
utilization for each version over a large number of iterations (order of thousands). Here we want 
to know how much data each sender version is able to push into the network for a fixed number of 
iterations, given unlimited data to send. 
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2.1 Assignment 1: 
Unlimited Queue and Bandwidth 
Bottleneck 

 

This assignment considers the TCP behavior when the network configuration remains the same as 
in Figure 4, but the router has practically unlimited memory capacity, say 10,000 packets. Due to 
the large router buffer size there will be no packet loss, but the bandwidth mismatch between the 
router’s input and output links still remains. Therefore, packets may experience large delays. Our 
goal is to study the router queue length over time and the delays experienced by the packets. We 
would like also to see whether these delays affect the sender utilization. Finally, we are interested 
to see if the sender may mistake a large queuing delay for packet loss. 

2.1.1 Software Modification Description 

We assume that, as in the reference implementation, the sender receives a cumulative ACK for all 
segments transmitted in one transmission round. After sending the number of segments limited by 
its effective window size, the sender must wait for at least one round-trip time for an 
acknowledgment to arrive. To calculate the maximum number of segments that the sender can 
send before an ACK arrives, we need to know how long is the RTT. The network configuration in 
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ACKACK
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per RTT
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Figure 15: The time diagram for Assignment 1 that illustrates how the number of packets 
transmitted in one round is limited by the bandwidth of Link-2. 
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Figure 4 provides the link data rates, but not lengths. Therefore, let us assume that RTT = 
0.5 seconds. We also set RcvWindow = 1 MByte instead of the default value of 65535 bytes, to 
avoid having the receive window limit the number of segments to be sent in one round. 

Because of the 10 : 1 bandwidth mismatch between the router’s input and output links, the router 
may not manage to relay all the packets from the current round before the arrival of the packets 
from the subsequent round. This behavior is illustrated in Figure 15 (and also in the inset figure 
on the right, which illustrates how the pattern repeats for each RTT). As shown in Figure 15, 
because the first link is much faster, the sender transmits the effective window of packets quickly 
and then waits idle for an acknowledgment. The packets that the router is not able to transmit in 
the current round are carried over to the next round and they accumulate in the 
router’s queue. As the sender’s congestion window size grows, there will be a queue 
buildup at the router. There will be no loss because of the large buffer size, but 
packets may experience delays. Because of the first-come-first-served policy, the 
packets carried over from a previous round will be sent first, ahead of the newly 
arrived packets. The queuing delays may trigger the sender’s RTO timer before the 
packets propagate to the receiver and their ACKs arrive to the sender. 

The key code modifications are to the router code (see Figure 8 in this document). For example, 
we need to increase the capacity (attribute bufferCapacity) of the router memory, 
represented by the array packetBuffer[]. The experimental data (described next) can be 
captured in the method Router.process(). 

The TCP sender utilization that is reported at the end of method run() in Simulator.java may 
not be appropriate for this experimental scenario. Because the router buffer is large, the maximum 
possible number of transmitted packets may be limited by the datarate of the first link (Figure 4). 
Given that in our case R1 = 10 Mbps and sender’s maximum segment size (MSS) is 1024 bytes, 
this sender will not be able to send more than 107 / (1024  8) = 1,220 segments per second. 

2.1.2 Experiment Description 

Run the experiment for all three TCP versions (Tahoe, Reno, and NewReno). Determine the 
following: 

1. Determine whether the system stabilizes, i.e., whether the congestion window size saturates 
and plateaus or it keeps growing. Run the simulations for large number of iterations, say at 
least 1000 iterations, to reach a steady state. 

2. Determine whether the router buffer occupancy will ever reach its total capacity. 

3. Calculate the average queuing delay per packet, i.e., the average number of rounds that a 
packet will be waiting for transmission on Link 2. 

4. Are there any packet retransmissions (quantify, how many) due to large delays (although 
packets are never lost)? Explain your answer using manually drawn diagrams to support your 
arguments. 

In addition to the regular charts for congestion parameters, plot the charts shown in Figure 16. 
The chart on the left should show the number of the packets that remain buffered in the router at 
the end of each transmission round. (This number should not include the packets that the router 
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Figure 16: Results charts for Assignment 1. 

transmitted on the outgoing link during this round.) Note that the time axis is shown in RTT units. 
The chart on the right shows the average delay for packets transmitted in a given round. The 
delay includes the transit time and queuing time. The transit time comprises transmission and 
propagation times and in case of no queuing at the router, the transit delay is ½RTT. When 
packets remain queued in the router and are forwarded in a future round, we add one RTT to the 
packet’s delay for each round that it spends in the router memory. Provide explanation for any 
surprising observations or anomalies. 

In addition to the above charts, you should investigate the following problem. While a long queue 
is less likely to overflow during a traffic burst (thus reducing packet loss probability), it 
potentially increases the queuing delay for non-dropped packets. A short queue reduces this 
delay, but conversely increases the probability of packet loss for bursty traffic. Experiment by 
adjusting the router buffer size and determine what values minimize both packet loss and queuing 
delays. Plot a chart to illustrate your results. 

 

2.2 Assignment 2: 
Packet Reordering During Transit 

 

In the reference example implementation, the packet transit times are clocked to the integer 
multiples of RTT. For example, packets #2 and 3 travel together during the round = 2  RTT; 
packets #4, 5, 6, and 7 travel together during the round = 3  RTT; and so on. In addition, 
duplicate ACKs are generated only because of packets dropped in the router, never because of 
reordered packets. This idealization may not reflect the reality. This assignment explores what 
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happens when packets are reordered during transit (rather than only dropped). The router will 
hold packets for several RTT units to simulate packet-reordering delays when different packets 
travel along different routes. An in-depth analysis of effects of packet reordering on TCP is 
available in [Leung, et al., 2007]. 

2.2.1 Software Modification Description 

One way to implement this modification is explained next; the reader is encouraged to search for 
better or alternative implementations. The key change in the code will in the class 
Router.java. First, we increase the router’s memory size to avoid dropping new packets 
because delayed packets are occupying the memory. Try with a relatively small increase, say to 
bufferCapacity = 15 packets, so that some new packets still may be dropped. 

Second, to maintain the record of delays for individual packets, we add a new attribute to 
tcp.Segment.java ( public double delay = 0.0; ). This field will be used only 
by Router.java and will be ignored by all other classes. 

Third, modify the method Router.handle() so that for every newly received packet, the 
router assigns an exponentially distributed random amount of delay (measured in integer number 
of round-trip times 0). For a new packet first check whether it will be dropped or queued in the 
array packetBuffer[]. If latter, generate an exponentially-distributed integer random number 
with and a small mean value, say 1 or 2, and a small variance. Set the delay attribute 
(introduced in the second step above) to the generated delay value. (The delay value must be an 
integer 0.) 

To generate exponentially distributed random numbers, generate a uniformly distributed random 
number u on the unit interval [0, 1]. In Java, there is a method random() in the Math class, 
which returns a uniformly-distributed double value between 0.0 and 1.0. Then apply the 
following function to obtain an exponentially distributed random number rx: 

 


u
urx

ln
)(


     (Eq. 2) 

where ln() is the natural logarithm (using basis e), 1/ is the mean value, and the variance is 
given by 1/2. 

Fourth, modify the method Router.process() so that for every invocation, the router 
decrements all delays and transmits on the outgoing link only the packets for which the delay 
became to zero. Specifically, we iterate through the array packetBuffer[] and for each 
packet packetBuffer[i] reduce the delay value by the amount of time elapsed since the 
previous call to this method (represented by the attribute lastTimeProcessCalled). If the 
delay becomes zero after decremented, transmit the packet to the outgoing link. 

Expose the relevant parameters (e.g., buffer capacity, and exponential distribution’s mean and 
variance) in the user interface, so to allow entering different values from the command line, 
similarly to entering other parameters for simulation (see Section  1.1.1 of this document). 

Visit http://en.wikipedia.org/wiki/Exponential_distribution for information about exponential probability distributionVisit http://en.wikipedia.org/wiki/Exponential_distribution for information about exponential probability distribution
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2.2.2 Experiment Description 

Note that if you run your simulation say for 100 iterations, there may at the end still remain some 
packets in the router in packetBuffer[], because their delay still has not reached zero. You 
will need to flush the router buffer by invoking Router.process() for several subsequent 
ticks of the simulation clock, until no packets remain in packetBuffer[]. 

Note that, unlike Example 2.1 in the book, where a TCP segment can arrive at the receiver out-of-
sequence only because a previous segment was dropped at the router, in your assignment an 
additional reason for out-of-sequence segments is that different segments may experience 
different amounts of delay. Each packet is assigned the delay value individually, as generated by 
the random number generator. So if, say, three packets arrive at the router, then it is possible that 
packet #1 is delayed by 4, so it will have to sit inside the router buffer through four invocations of 
method Router.process(). On the other hand, packet #2 that arrived in the same iteration 
could get assigned delay 0 and leave at the end of this method invocation, and packet #3 could get 
assigned the delay value 1 and leave in the next invocation, but still before packet #1. Recall that 
for every out-of-order packet, the receiver reacts immediately and sends a duplicate 
acknowledgment (Section  1.4.4 of this document). Your simulation will show what happens 
when packets are reordered. By controlling the capacity of the packetBuffer[] array, you 
may also cause packets dropped because of the router buffer overflow when the buffer is holding 
the delayed packets. 

Run the experiment for all three TCP versions (Tahoe, Reno, and NewReno). Run the simulations 
for large number of iterations (at least 1000), to ensure that the senders reach a steady state. 

Print and visualize the relevant statistics from your new router code for every iteration, such as: 

 the number of packets over time that are currently delayed in packetBuffer[] after the 
method Router.process() is exited; show either the average delay per packet during each 
RTT, or cumulative delays for all packets transmitted during each RTT; 

 the histogram of delay values for packets currently left in packetBuffer[]; and, 

 how many packets are dropped because of the router buffer overflow. 

Plot the congestion parameters, packet delays, and the number of dropped packets on the same 
timeline or two aligned timelines. Analyze whether there is any correlation (positive or negative) 
between the congestion parameters and packet delays and losses. 

Based on experiments, answer what causes greater drop in the sender utilization: few packets 
significantly delayed, or large number of packets slightly delayed? Experiment with different 
percentages of delayed packets, starting with only 1% packets subject to random delays, and go in 
steps of 5% to 100% packets subject to random delays. Plot the sender utilization chart with 
different values of parameter   for the exponential distribution in Eq. (2) and explain your 
experimental observations. Because of the randomness aspect of the experiment, average the 
results over multiple runs to obtain average sender utilization. 

Note: Two effects may be confounded in this experiment: random delay and packet loss because 
of router buffer overflow. Our router simulates transit delays by holding packets in the buffer for 
a random time. However, this holding also interferes with new packets which may arrive to an 
full buffer. Keep in mind that this experiment is a simulation of reality—normally routers do not 
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deliberately hold packets to cause delays.  
To separate the effects of random delay and buffer overflow, you should consider implementing a 
separate memory for holding the delayed packets. Only the packets that are ready for 
transmission (assigned zero delay) should be placed in the regular buffer. Packets that are 
assigned a non-zero delay should be placed in the new buffer, and moved to the regular buffer 
only when they are ready for transmission. In this way, the deliberately delayed packets will 
avoid causing packet loss due to buffer overflow. 

 

2.3 Assignment 3: 
Variable Occupancy of the Router Buffer 

 

In our reference implementation, the available router buffer capacity is constant (e.g., 6 packets 
plus 1 in transmission, Figure 4). This assignment explores a more realistic scenario of variable 
buffer occupancy because of parallel flows (not necessarily TCP flows) that cross paths with our 
flow. The experimental scenario will still have a single TCP connection as in the reference 
implementation. The router will be modified to simulate random arrivals of packets on other 
intersecting flows. In each transmission  round, the router will reduce the available memory 
capacity by a random amount generated according to an exponential distribution. We assume that 
all packets external to our TCP flow are of the same size as our packets (i.e., one packet fills one 
router buffer slot). All packets from other flows that “arrived” in one round are assumed to depart 
the router in the same round and a new random occupancy number will be generated in the next 
round. Our goal is to study TCP sender utilization under variable occupancy of the router buffer. 

A more realistic simulation should consider introducing a “memory” property for router buffer 
occupancy. That is, packets from other flows that “arrived” in one round may not all depart the 
router in the same round—if a large number “arrived,” some may stay of one or more rounds. 
Some kind of dependency between router occupancy over time may be introduced. 

2.3.1 Software Modification Description 

The router will be modified to dynamically change its buffer size. We will keep the attribute 
bufferCapacity constant, and currentBufferOccupancy still represents the number 
of packets from our TCP connection that are currently buffered in the router. We also introduce 
an additional attribute called otherFlowsOccupancy, which is an integer number that 
represent how many packets from other flows occupy memory slots. This attribute is an 
exponentially-distributed random variable that takes the values from the range 
[0, bufferCapacity  currentBufferOccupancy]. When a new packet arrives on the 
TCP flow, the router generates from this range a random value for otherFlowsOccupancy. 
Generating exponentially distributed numbers is described in Section  2.2.1 for Assignment 2. The 
router then applies the following rule: 
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Figure 17: Results chart for Assignment 3. The shown curves are not meant to represent 
the actual shape of the curves that will be found by experimentation. 

IF currentBufferOccupancy  otherFlowsOccupancy  bufferCapacity, then 
              queue the new packet in router’s memory and 
              increment currentBufferOccupancy by one; 
ELSE discard the new packet; 

If time permits, you should also implement sending sporadic bursts of data, as described in 
Section  2.4.1 for Assignment 4. 

2.3.2 Experiment Description 

Run the experiment for all three TCP versions (Tahoe, Reno, and NewReno) and for large 
number of iterations, say at least 1000 iterations. 

(a) Determine the sender utilization under a fixed buffer size, by setting different values for 
the attribute bufferCapacity. In addition to the default value of 6, try values ranging 
from 3 to 10, or greater. 

(b) Determine the sender utilization under a variable buffer size, by setting different values 
for the  parameter of exponential distribution, such that the mean value 1/ ranges 
between [1, bufferCapacity  1]. If the generated random number exceeds 
bufferCapacity, it must be truncated to bufferCapacity. Note that you should 
not use large values of 1/ because this would result in many truncations, thus 
significantly distorting the exponential distribution. 

Compare the sender utilization for case (b) with that for case (a). Note that in case (b) when the 
mean value 1/ equals 1, then the router memory capacity is, on average, reduced by one packet. 
Compare this scenario to the scenario under case (a) where the router capacity is set fixed to 
bufferCapacity  1. Explain any observed difference in sender utilization under 
deterministic reduction of buffer capacity (case (a)) versus stochastic reduction of buffer capacity 
(case (b)). Compare also other corresponding scenarios for cases (a) and (b). 

Perform the experiments for both transient behaviors (sending sporadic bursts of data), and 
steady-state behaviors (unlimited bulk-data transfer) Recall from the notes on page 32 that for 
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bulk transfers we want to know how much data each sender version is able to push into the 
network for a fixed number of iterations, given unlimited data to send. Run the simulations for 
large number of iterations (order of thousands), to ensure that the sender reaches a steady state. 

Keep in mind that, because of the randomness involved, you cannot derive meaningful 
conclusions based on individual runs. Instead, repeat each experiment for tens of runs and take 
the average values of observed parameters. 

Analyze whether there is any correlation (positive or negative) between the congestion 
parameters and buffer occupancy by concurrent flows (see Figure 17). It may be difficult to infer 
the dependencies by mere eye examination and a better approach is to calculate the correlation 
between different time series, such as between the effective window and the number of packets 
from other flows, or between the congestion window and the other packets. Note that it may not 
make sense to calculate the correlation of the time series when the Effective Window is shut, 
because then the router would not be handling any incoming packets from our flow (because in 
our experimental scenario, Figure 4, all packets are transmitted on a single RTT). Therefore, in 
each time series remove the data points for which the Effective Window equals zero, and 
calculate the correlation for the remaining points. 

Introducing a “memory” property for router buffer occupancy as discussed in the description of 
this assignment may be important, particularly given that exterior buffer occupancy is randomly 
generated anew for each new incoming packet from our flow. 

When interpreting the observations, note that larger buffer sizes do not necessarily lead to greater 
sender utilization. Larger buffers may lead to large number of segments lost in a single 
transmission window. Some TCP versions are better than others in recovering from a loss of large 
number of segments. In our experimental scenario (Figure 4), some TCP versions may need very 
large number of iterations (2000 or more) to recover from a massive data loss. See related 
discussion in [Allman et al., 2001]. 

 

2.4 Assignment 4: 
Concurrent TCP and UDP Flows 

 

In the reference example implementation, there is a single TCP flow of packets, from the sender, 
via the router, to the receiver. This assignment is to add a User Datagram Protocol (UDP) flow 
of packets that competes with the TCP flow for the router resources (i.e., the queuing memory 
space). The UDP sender will send packets in an ON-OFF manner. First, the UDP sender enters an 
ON period for the first nRTT intervals and it sends P packets at every RTT interval. Then the 
UDP sender enters an OFF period and becomes silent for mRTT intervals. This ON-OFF pattern 
of activity is repeated for the duration of the simulation. At the same time, the TCP sender is 
doing bulk-data transfer of a very large file via the same router. We will also try with TCP sender 
transmitting sporadic bursts of data. The goal is to explore how different values of the parameters 
n, m, and P affect the TCP performance (i.e., sender utilization). 
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2.4.1 Software Modification Description 

We need to program an Endpoint component based on UDP protocol, instead of the TCP-based 
Endpoint included in the reference simulator implementation (see Section  1.3.1 of this 
document). UDP is a very simple protocol that does not implement reliable transmission, so its 
receiver does not need to ensure in-order delivery nor send acknowledgments. The UDP sender 
should send packets of the type Packet.java instead of tcp.Segment.java. 

The router class already can support multiple connections, so it is easy to add a UDP flow in 
addition to the TCP flow, simply by calling the Router’s method 
addForwardingTableEntry() for the UDP flow. However, your implementation will have 
to replace the drop-tail queue management policy described in Section  1.3.2 of this document to 
support multiple flows. If the total number of packets that arrived on both TCP and UDP flows in 
one round is less than the router memory capacity, then no packets will be dropped. In case the 
total number of packets arriving from both senders exceeds the router’s buffering capacity, the 
router should discard the excess packets. We cannot just discard packets from the TCP flow or 
from the UDP flow only. In reality, packets from both flows will be arriving randomly and will 
be discarded accordingly. To better simulate reality, we mix the packets from both flows and 
discard the packets that are the tail of a mixed group of arrived packets. In addition, the number 
of packets discarded from each flow should be (approximately) proportional to the total number 
of packets that arrived from the respective flow. That is, if more packets arrive from one sender 
then proportionally more of its packets will be discarded, and vice versa. 

The reference implementation is programmed for TCP bulk-data transfer. To program the option 
with sporadic bursts of data, we need to modify the code of the method main() of 
Simulator.java as follows. In the reference implementation, we extract the number of iterations 
from the command line input and pass a large buffer (1,000,000 bytes) to the method run() for 
transfer: 

java.nio.ByteBuffer inputBuffer_ = 
ByteBuffer.allocate(TOTAL_DATA_LENGTH); 

 simulator.run(inputBuffer_, numIter_.intValue()); 

To simulate sporadic bursts of data, we set a relatively small value: 
 public static final int TOTAL_DATA_LENGTH = 20480; 

and modify Simulator.main() to include a loop: 
for (repeat = 0; repeat < 5; repeat++) { // repeat 5 times 
 inputBuffer_ = ByteBuffer.allocate(TOTAL_DATA_LENGTH); 
 simulator.run(inputBuffer_, 10); // run only for 10 iterations 
} 

This loop repeats five times calling Simulator.main() for only ten iterations within each 
repetition. Because the input buffer is relatively small (20,480 bytes equals 20 MSS segments, 
where the maximum segment size MSS = 1,024 bytes). The sender will succeed in transmitting 
all 20 segments within the first 5RTT and then will run idle for the remaining 5RTT. The 
process will be repeated five times. Of course, the reader could try different number of iterations 
and repetitions. 
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Figure 18: Results charts for Assignment 4. Note: The shown curves are not meant to 
represent the actual shape of the curves that will be found by experimentation. 

2.4.2 Experiment Description 

Run the experiment for all three TCP versions (Tahoe, Reno, and NewReno). 

Plot the charts shown in Figure 18 for the TCP sender utilization. In the diagram on the left, the 
UDP sender keeps the ON/OFF period duration unchanged and varies the number of packets sent 
per transmission round. In the diagram on the right in Figure 18, the UDP sender sends at a 
constant rate of 5 packets per transmission round, but varies the length of ON/OFF intervals. In 
the same timeline showing TCP congestion-related parameters, plot also the ON/OFF intervals 
for the UDP flow, to make it easier to observe mutual influences between the TCP and UDP 
flows. For the UDP flow, plot also the histogram showing the frequency of different fractions of 
lost packets that were sent during each ON interval. 

How many iterations the TCP sender needs to complete the transmission of a 1 MByte file? 
(Because randomness is involved in dropping the packets at the router, you will need to average 
over multiple runs.) Explain your answer. 

Set the average data rate of the UDP sender to equal one-half of the average data rate achieved by 
the TCP sender when working alone, as in the reference implementation. Does the TCP sender in 
this scenario achieve one-half of the average data rate achieved when working alone? 

Based on the experiments with bulk-data transfer and sporadic data transfer, discuss how 
increasing the load of the competing UDP flow affects the TCP performance. Is the effect linear 
or non-linear? Explain your observations and answers. 
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2.5 Assignment 5: 
Competing TCP Flows and Fairness 

 

Consider a scenario where two TCP senders send data segments via the same router to their 
corresponding receivers. We will consider two scenarios. In the first scenario, the senders and 
receivers are all running on four different computers connected by a single router. We will 
assume that the first link to the router has the same datarate (10 Mbps) for both senders. 
Similarly, the second link from the router has the same datarate (1 Mbps) for both receivers. 

In the second scenario, the first sender and the second receiver are collocated in the same 
Endpoint (Figure 6 of this document). Similarly, the first receiver and the second sender are 
collocated in the same Endpoint. Therefore, the flow from the second sender will have ACKs for 
the first flow piggybacked on the data packets. Note that in this scenario, the router does not 
represent a bottleneck for the second connection, because the outgoing link in this case is faster 
than the incoming link. 

We will experiment with different scenarios: 

 Each sender sends segments of different size, say MSS(sender2) = nMSS(sender1), where 
n = 1, 2, 3, ... 

 In the first scenario where the senders and receivers are all running on different computers, 

each connection has different round-trip time, say RTT(conn2) = mRTT(conn1), where 
m = 1, 2, 3, ... 

 Both senders will be performing a bulk data transfer, or one will be sending bulk data and the 
other will be sending sporadic bursts of data (see the notes on page 32 about bulk and burst 
transfers). 

We are interested in how sporadic burst transfers are affected by a background bulk transfer, and 
vice versa: to what extent a bulk transfer becomes disturbed by sporadic burst transfers. 

2.5.1 Software Modification Description 

As in Assignment 4 (Section  2.4.1) it is easy to add another TCP flow, simply by calling the 
Router’s method addForwardingTableEntry() for the link that belongs to the new flow. 

The router modification to replace the drop-tail queue management policy will be the same as 
described in Section  2.4.1 for Assignment 4. It does not matter that in Assignment 4 we had a 
UDP and a TCP flow and here we have two TCP flows—routers do not distinguish between TCP 
and UDP flows. 

Similarly, to implement TCP senders sending sporadic bursts of data, see the description in 
Section  2.4.1 for Assignment 4. 

For the second scenario where the sender and receiver of each connection are collocated in the 
same Endpoint, see Section  1.4 of this document for instructions on how to implement 
piggybacking of ACKs on data packets. 
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Figure 19: Results chart for Assignment 5. The shown curves are not meant to represent 
the actual shape of the curves that will be found by experimentation. Note the logarithmic
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2.5.2 Experiment Description 

Run the experiment for all three TCP versions (Tahoe, Reno, and NewReno) for all 
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scenarios establish a baseline sender utilization when each sender is working alone and all other 
connections are idle. The sender utilization should be observed for both bulk-data transfer and for 
sending sporadic bursts of data for varying lengths of data and idle periods between the bursts. 
The length of the idle period must be sufficiently long to trigger the sender’s idle-connection 
timer (see Section  1.2.2 of this document). When this timer expires, the sender resets its 
congestion parameters and begins in the slow start state with the congestion window equal to one 
segment size. 

Start by running two concurrent bulk senders, but such that they start their transmission at 
different times. For example, the first sender starts at time = 1RTT and the second sender starts 
at time = kRTT (k = 2, 3, 4, ...). Do you observe synchronization of the senders? Although this 
behavior ensures fairness, it may lead to inefficiency, as described in Section 5.3 in the book. 

Next, perform the experiment with one sender transferring bulk data and the other sender 
transmitting sporadic bursts of data. Plot the utilization chart for the two senders as shown in 
Figure 19. Note that Figure 19 shows a single curve for Sender 2, which assumes varying length 
of data bursts, but constant length of the idle period between the bursts. Run your experiment 
with several different lengths of the idle period and show the performance curves as well. 

Compare the utilization curves for the two senders when each is run alone versus when both run 
concurrently and explain any observed differences. Discuss how sporadic burst transfers are 
affected by a background bulk transfer, and vice versa: to what extent a bulk transfer becomes 
disturbed by sporadic burst transfers. Is the utilization of a bulk sender more affected when it is 
competing against a concurrent bulk sender, or by a bursty sender? Explain your observations. 
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Note: Run the simulations for large number of iterations, say at least 1000 iterations, to ensure 
that the bulk senders reach a steady state. Note also that the bursty sender essentially becomes a 
bulk sender when the length of each data burst grows very large, so the utilization curves for bulk 
and burst senders should eventually converge (Figure 19). 

 

2.6 Assignment 6: 
Active Queue Management Policy 

 

This assignment mimics Random Early Detection (RED), described in Section 5.3.1 in the book. 
The network configuration is the same as in Example 2.1 with the only difference being in the 
router’s behavior. Unlike the default router (Section  1.3.2 of this document) that implements the 
drop-tail queue management policy, the router now implements a different queue management 
policy. Under the drop-tail policy, when a new packet arrives, the router will discard it only if its 
memory is already full (see Figure 7 in this document). Under the new policy, the router will 
consider discarding then new packet even if there are empty slots available for queuing it. Our 
goal is to explore whether this new policy will improve the TCP sender utilization. One 
interesting issue to consider is that we are dealing with a very small buffer size (i.e., 6 packets), 
so the granularity of TCP bursts is relatively high compared to the buffer size. We would like to 
know whether RED will still improve the TCP sender utilization. 

2.6.1 Software Modification Description 

Start by modifying the router to randomly damage up to one packet during every transmission 
round, as follows. This simulates packets randomly corrupted by noise.1 The router should draw a 
random number from a uniform distribution between 0 and bufferCapacity, which in our 
case equals to 7. Use this number as the index of the packet to set its flag inError to true. 
(Note that the given index may point to a null element if the array is not filled up with packets, in 
which case do nothing.) The purpose of this part of the experiment is to see whether any random 
packet loss would improve sender utilization. 

In the second part, implement the RED algorithm. We consider the sequence of indices of the 
packets, starting with 0 and growing to the memory capacity (attribute bufferCapacity). 
This is the index of the Java ArrayList<Packet> packetBuffer. In addition to the 
instantaneous queue length, which is the number of packets currently stored in the router’s 
memory waiting for transmission (attribute currentBufferOccupancy in Figure 8), we 
need to introduce another attribute for the average queue length, which is the average queue 
length calculated since the simulation started. We define two thresholds (ThreshMIN and 

                                                      
1 Note a slight difference between corrupted and dropped packets. A randomly dropped packet will vacate 

space in the router queue for another packet, while a corrupted packet will keep occupying the queue 
space. 
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ThreshMAX). The RED algorithm is briefly summarized here and the student should read Section 
5.3.1 in the book for details: 

(a) When a new packet arrives, if the 
queue packetBuffer is currently 
full, the packet is always dropped. The 
remaining steps consider the case 
when there is a slot in the queue 
available for the newly arrived packet. 
(The packet currently in transmission 
is never considered for being dropped.)  

(b) We calculate the average queue length. If the average queue length is smaller than 
ThreshMIN, then the newly arrived packet is queued. If the average queue length is greater 
than ThreshMAX, then the newly arrived packet is discarded. 

(c) If the average queue length is within the random-drop zone, i.e., greater than ThreshMIN 
but smaller than ThreshMAX, then the router decides randomly whether the newly arrived 
packet will be queued or discarded. The exact procedure for making the decision is 
described in the book in Section 5.3.1. 

For example, in our default scenario the first packet that will be dropped in segment #15 in the 
fourth transmission round. Under the new policy, depending on how you set the values of 
ThreshMIN and ThreshMAX, the router may drop a packet even in earlier rounds. 

Your program should allow entering different values of parameters for running the simulation, 
such as the thresholds delimiting the random-dropping zone (ThreshMIN and ThreshMAX). 

2.6.2 Experiment Description 

Modify the code as described in Section  2.6.1 and run the simulation with different input 
parameters. Because of the random component, run each scenario repeatedly and record the 
average value of sender utilization. Run the simulations for large number of iterations (at least 
1000), to ensure that the sender reaches a steady state. 

In addition to showing the regular charts of congestion parameters over time, do: 

1. Plot the three-dimensional chart shown in Figure 20. (Use MatLab functions dlmread and 
mesh(x, y, z), or a similar tool to draw the 3D graphics.) Alternatively, you may show the 
results using a “heat map” (http://en.wikipedia.org/wiki/Heat_map).  
Because the router drops packets randomly, you should repeat each experiment several times 
(minimum 10) and plot the average utilization of the TCP sender. 

123456 0
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Figure 20: Results chart for Assignment 6. 

2. Find the regions of maximum and minimum utilization and indicate the corresponding 
points/regions on the chart. Explain your findings: why the system exhibits higher/ lower 
utilization with certain parameters? 

3. You should also present different two-dimensional cross-sections of the 3D graph, if this can 
help illuminate your discussion. 

Run the experiment for all three TCP versions (Tahoe, Reno, and NewReno). 
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