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Introduction: 

For our project, we explored competition for scarce router resources in a TCP tahoe 
network.  In our network, we had two TCP Tahoe senders transmitting to two different TCP 
receivers.  Both of these connections had to go through a single bottleneck router which had a 
limited buffer size and a slower transmission speed.  This bottleneck causes  losses for the TCP 
senders.  In our project we watched how competition effected the the transmissions.  
Additionally, we studied the effects of TCP senders trying to keep alive their connection by 
sending junk data versus simply stopping communication when they are done. 
 
Algorithm Design:  

Our main algorithmic challenge was altering the TCP simulator router to relay both TCP 
sender messages.  The flow diagram  is shown in Figure 1.  The router is responsible for 
buffering and transmitting as many packets as possible as it receives them.  However, since the 
buffer space is a bottleneck, it must discard some packets.  We implemented this bottleneck by 
iterating through the sender transmission periods.  During each period, the router randomly 
selects which sender’s packet started first and therefore which sender is given priority in that 
transmission period.  For each sender, it checks to see if the buffer has space.  If it can support 
a packet, the packet is added.  Otherwise, the packet is dropped.  Additionally, to model the 
routers transmission of packets in the router’s buffer,  we free space in the buffer as the router 
has enough time to transmit the packets.   
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Figure 1:  TCP Router Relay Flow Chart 
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Implementation: 
 For the project, we used the Java simulator provided as the basis for our simulator and 
used a python program to produce our plots.  Our simulator implementation consists of a 
modified router, sender, and simulator source file.  Each new file and class is designated with 
an additional P5 at the end of its name: the router is routerP5.java, the sender is 
TCPSenderTahoeP5.java, and the simulator is TCPSimulatorP5.java.  The router has been 
modified to have a new two sender relay function (described in figure 1).  The sender has been 
modified so that saves a log file which we use later for graphing.   Finally, the TCP simulator has 
been modified to stitch our competing senders together.  It now contains 2 
TCPTahoeSendersP5 and a RouterP5.  It accepts command line arguments for number of 
simulator iterations, the mismatch ratio between the router and receiver, and the buffer size of 
the router.  To run our sender simulator, simply run TCPSimulatorP5 and give the number of 
iterations as its command line argument.  
 To simulate the cases involving the dropped connection and the connection 
maintenance, the code for the normal contention scenario was modified. The dropped 
connection was implemented simply by preventing all segment transmission and processing for 
the second sender between the specified period. Also during this period, connection values of 
zero for this sender were written to the log. When the connection resumed, the the SSThresh 
was reset to its initial value and the sender was placed into slow start. 

To have the sender maintain its connection while it elected not to send segments, the 
connection values and sender state were saved. This was done by having the sender transmit 
1-byte segments to maintain these values; the values to be saved were written to log each time 
a 1-byte segment was transmitted. Also as these 1-byte segments were transmitted, all 
requests for new packets and retransmissions were ignored by the sender. When the sender 
resumed sending, the saved values allowed it to resume transmission as though it had never 
stopped. 
 Our plotting utility, called tcpgraphy.py, plots the log files generated by our TCP senders.  
It must be run in the same directory and the Sender1 and Sender2 log files.  The program uses 
the opensource library matplotlib to generate the plots. 
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Results and Discussion: 
Case 1: Competing TCP Tahoe Senders  
 

 
Figure 2: Plots for opposing TCP Tahoe senders over a shared router for 300 RTTs where the 

second sender’s tranmission is delayed 3 RTTs. The mismatch ratio is 10:1 and the buffer 
cache can store 6+1MSS. The sender utilizations were measured as follows: Sender1 

utilization: 27 %, Sender2 utilization: 26 % 
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Figure 3: A Magnified View of Figure 2. 

 
Above are the plots for the two opposing senders for the initial 300 RTTs. There is also a 

set of plots with only the first 100 RRTs for a more detailed view. In the beginning, sender 1 
then sender 2 are initialized separately (sender 2 3RTT later) with a large SSThresh (65535 
bytes) and begin to send in slow start until three duplicate acknowledgements are detected. 
Slow start is an exponential process and this is observed in the rapidly increasing slopes of the 
effective windows for both senders during their early stages. 

The presence of two competing senders accelerates the rate at which the router’s buffer 
fills, which causes segments to be dropped. The first segment is dropped from sender 1’s 
transmission in the third RTT but the third duplicate acknowledgement is not received until the 
fourth RTT. This subsequently causes sender 1 to retransmit in the fifth RTT, two RTTs after the 
dropped segment. 

Between 5 and 33 RTT, sender 1 oscillates between two states, retransmission and 
sending 1-byte segments. The 1-byte segments are used to keep the connection alive while the 
sender waits for the congestion to lessen. Both the frequency and necessity to retransmit and to 
send 1-byte segments are lengthened by the presence of two competing senders as opposed to 
one. This is inefficient because being in either one of these states entails that no new packets 
get transmitted. However, while one sender is in one of these states, the other sender has less 
competition for buffer space. 
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At 34 RTT sender 1 enters congestion avoidance, where it remains until three duplicate 
acknowledgements are received at 39 RTT. Sender 2 does not enter congestion avoidance until 
52 RTT. From this point on, the two senders alternate between retransmission and congestion 
avoidance. Take notice that the spikes, excluding that in the initial slow start phase, for sender 
1’s congestion window, effective window, and flightsize do not grow greater than the spikes 
between 38 and 60 RTT. During this period, sender 2 was in an extensive oscillation between 
retransmission and 1-byte transmissions and only utilizes a fraction of the router buffer so there 
is little competition for buffer space. 

Below is a situation in which only one sender transmits over a router of the same buffer 
size. The spikes are uniform and their peaks are determined only by the size of the buffer and 
the mismatch ratio of the connections to and from the router.  
 

 
Figure 4: Plot for Sender without Competition 

 
Comparing this plot against the plots of the opposing senders, it is apparent that peaks 

of the spikes in the competing graphs are not uniform whereas the spikes in figure 4 are. If 
chance may allow, a competing sender will only achieve a spike of magnitude similar to the 
single sender when its opposing sender is transmitting a 1-byte segment. Otherwise, buffer 
overflow occurs prematurely and senders are forced to exit congestion avoidance before the 
potential congestion window, effective window, etc. are reached.  
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Case 2: Competing TCP Tahoe Senders (Sender 2 drops connection between 100-150 RTT) 

 
Figure 5: Plots for competing Tahoe senders where one sender drops and reestablishes 
connection. The sender utilizations were measured as follows: Sender1 utilization: 30 %, 

Sender2 utilization: 13 % 
In the plots above, sender 2 drops its connection at 100 RTT and then reestablishes the 

connection at 150 RTT. During theisperiod where sender 2 ceases to send, the peak congestion 
window, effective window, flightsize, and SSThresh of sender 1 become uniform for all of its 
congestion avoidance cycles. The maximum values for these measurements are also greater 
than the maximum values of the spikes that exist outside of the span in which sender 2 ceases 
to transmit. This is expected because sender 1 has no competition for the router’s cache, 
therefore its connection values are only dependent on the the size of the router buffer. 

When sender 2 reestablishes its connection at 150 RTT, it must enter slow start with a 
large reinitialized SSThresh because its connection values were lost when the session was 
dropped 50 RTTs earlier. In slow start, sender 2 quickly transmits too many packets. 
Consequently, it must reduce its SSThresh and spend the next 20+ RTTs retransmitting and 
sending 1-byte segments. Anytime a sender has to go through slow start, its flightsize becomes 
excessively high and the sender and must spend the next span of RTTs retransmitting and 
sending 1-byte segments while it waits for the flightsize to fall; this is inefficient. Concurrently, 
the effects of the new competition with sender 1 are seen in the subdued spikes in sender 1’s 
graph. 
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Case 3: Competing TCP Tahoe Senders (Sender 2 sends 1-byte sized segments to maintain its 
connection) 
 

 
Plot 6: Plots for competing Tahoe senders where one sender stops sending meaningful data but 

maintains to connection. Sender1 utilization: 30 %, Sender2 utilization: 22 % 
 

Similar to the previous example, sender 2 stops sending meaningful packets between 
100 and 150 RTT. The difference is that in this case, sender 2 retains its session with its 
receiver by sending 1-byte segments. Keeping the connection alive even though it does not 
have meaningful data to transmit allows sender 2 to skip slow start on resumption because the 
values for congestion window, flightsize, etc. are kept alive. Therefore, on resumption, sender 2 
can start congestion avoidance as if a lull in packet transmission never occurred. 
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Case 4: Competing TCP Tahoe Senders (Sender 2 has 150 RTT delay) 
 

 
Figure 7: Plots for competing Tahoe senders where one sender’s transmission is delayed 150 

RTTs. Sender1 utilization: 31 %, Sender2 utilization: 21 % 
 

Because sender 1 has no competition until 150 RTT, the congestion avoidance spikes 
until 150 RTT are very high and uniform. Once sender 2 begins to transmit, the effects can be 
seen immediately in sender 1’s next cycle. Notice that sender 1’s spike peaks after 150 RTT 
have lower magnitudes than those before sender 2 began transmission. This is due to the new 
competition for buffer space. 

The four congestion avoidance cycles after 150 RTT for sender 1 have similar slope and 
maximum values. This is because sender 2 transmits a near constant amount of segments 
during this span of cycles. Once sender 2’s flightsize falls from its large slow start value, sender 
2 enters congestion avoidance. From this point on, both senders cyclically transition in and out 
of congestion avoidance and retransmission, and their spikes are no longer evenly spaced or 
uniform. 
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Case 5: Buffer sized increased from 7 segments to 9 segments 
 

 
Figure 8: Plots for Contending Senders with 9MSS router cache. Sender1 utilization: 33 %, 

Sender2 utilization: 22 % 
 

The increased router cache raises the maximum connection values for the congestion 
avoidance cycles. 
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Case 6:  Router Buffer Size’s Effect on Sender Utilization 
 

 
Figure 9:  Buffer Size versus Sender Utilization 

 
 As a final test, we examined how the router’s bottleneck, the buffer size, effected the 
sender utilization. The router to sender mismatch ratio was fixed twenty and the router’s buffer 
size was varied from six to eighteen. This test yielded inconclusive and confusing data.  While 
the increased buffer size should have produced a marked increase in sender utilization, the 
amount sent by each sender did not increase by much.  As can be seen in Figure 9, the bytes 
sent stayed relatively flat relative to the potential transmission size. This causes the sender 
utilization to decrease as the buffer size increases. This same effect was seen in the provided, 
single TCPTahoe sender simulation. We believe this is a deeper error  in the simulator but did 
not get  a chance to investigate this effect further.  
 
Conclusion 
 In conclusion, competing TCP senders cause both senders to transmit less data.  In our 
tests, we have shown a drop in utilization from 30% for a single TCP sender to 26% over a 
thousand iterations.  However, the competition increases the overall transmission rate of the 
router.  The collective senders have a larger minimum transmission rate.  Instead of the 
multiplicative decrease reducing the total transmission to 1 packet, it reduces it to 2 packets.  
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Then, as the fast retransmit occurs, the senders increase their total flow faster than a single 
sender could.  This puts a higher lower bound on total data transmitted and increases the 
frequency of the multiplicative decrease/ slow start frequency.   Additionally, we investigated 
techniques used by TCP senders to improve throughput in a competitive, bottle-necked 
network.  We examined the difference between a sender pausing between transmissions versus 
sending junk data to keep the connection alive.  Sending junk data significantly improves the 
second senders throughput.  If the second sender pauses it only has a 13% utilization while the 
junk transmission allows a 22% utilization.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


