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Problem and Procedure  
 

The purpose of these tests was to analyze the effect of a concurrent User Datagram Protocol 

(UDP) flow on Transmission Control Protocol (TCP) throughput. The major TCP congestion control 

variables such as flight size, congestion window, effective window, and SSH threshold were monitored 

to provide an in-depth, graphical analysis of the changes produced by the addition of UDP data packets. 

The TCP sender utilization and total throughput of the TCP data steam were both observed as well to 

provide a broader overview of data throughput and packet loss effects due to the competing UDP.  

The base case for the trials with UDP implemented had the UDP sender operating on 4 

consecutive round trip times (RTTs) ON followed by a 4 RTT OFF period. During every ON period 

there were 5 UDP packets sent to compete with the TCP for router resources. From this base case both 

the ON/OFF interval and packet quantity were altered in two respective experiments to determine the 

effects of a concurrent UDP flow during TCP transmission. Some special cases were also observed in 

relation to the timing of the UDP packets. The implementation of larger bursts of UDP packets sent in 

1 RTT ON with long periods of OFF time provided the data for the aforementioned special cases. 

In order to run these tests an augmented version of the provided JAVA project was used. Many 

and the classes were altered with the DualRouter and UDPSender being the most prominent additions. 

The new router code incorporates both TCP and UDP packets and contains a random shuffling 

algorithm to ensure no preference is given to either flow. The newly added UDP sender contains all of 

the parameters that vary the nature of the UDP flow such as the ON/OFF interval and packet quantities 

for every interval. Additionally, a UDPSegment class was added to differentiate the incoming packets, 

and several simulator operations were modified in order to integrate the classes together. The 

experiments were all run with this newly augmented code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Simulator 

 

Simulator.run() 

 
 

This is the modified simulator based off the reference example found in TCPsimulator from the 

website. For the most part the same algorithm from the reference example was used except for UDP 

sender, Router relay, and UDP receiver. UDP sender and UDP receiver are two new classes that will be 

created to implement the UDP flow, and we will be alternating the router class to implement the flow 

of both UDP and TCP at the same time. The newly developed components are describe in more detail 

in the following flowcharts.   

 

 

 

 

 

 



 
 

UDP Sender 
 

UDPsender.run(i) 

 
 

The UDP sender is responsible for sending five packets over four consecutive iterations, or 

round trip times (RTT), since they are equivalent in this example. This is followed by an off period of 

the same length. The sender initially keeps track of the iteration number through the counter variable ,i, 

that is passed from the Simulator file. The sender recognizes every fourth round trip time by dividing 

the current iteration number by four, and if the remainder is zero sender is switch into the on state if it 

was previously off and vice versa. If the sender is activated it initializes the segments class that creates 

five new UDP packets.  These packets are then passed to the router. In the event that the UDP sender is 

not activated the aforementioned process is skipped.  

 

 

 

 



 

 

 

Router 

 

 The role of the router is to drop segments. TCP and UPD segments compete for non-

dropped slots; hence, the more UDP segments that occur in a simulation, the more TCP segments 

will be dropped. 

The router is stateless. Each simulation step, data flows through the router as follows: 

void Router.relay(Segment[] tcpSegments, Segment[] udpSegments) 

    

In more detail, the steps are: 



Merge 

    

The arrays of TCP and UPD segments are simply concatenated into a single array. 

 

Shuffle 

    

The array of all segments is randomly permuted. 



Filter 

 

 Filtering involves stepping over the array and null-ing elements according to a predefined 

mask. The mask is fixed, but because the order of segments in the array is random, all segments 

have the same (though dependent) chance of being dropped. 

Split 

    

 The segments from the shuffled, filtered array are then copied back into their original 

TCP and UDP arrays, based on their protocol types. The arrays are modified in-place; no data is 

explicitly returned to the caller. 

 

Dropping Segments Fairly 
The router was designed with 3 goals in mind: 

1. When both UDP and TCP are flowing there should be no preference between the priority 

of the two flows, and their placement should be decided randomly. 

2. Segments should not be reordered, even when some are dropped. 



3. When no UDP is flowing, the router will behave the same as the TCP-only router, in 

which packets are dropped entirely deterministically. 

The Router receives an array of TCP segments and an array of UDP segments: 

 

It counts each array and produces an array filled with as many 1s and 2s: 

 

The array is then shuffled: 

 

A preset mask is applied: 

 
 

Then, the remaining number of 1s and 2s are used to decide how many segments from each flow 

get through. The original arrays are truncated to that number. Because only the array of 1s and 2s 

is ever shuffled, and not the original array, the segments are never rearranged. This preserves the 

current router contents for the next iteration.  
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 Figure 4 shows the effect of 
increasing the quantity of UDP 
packets in every round trip time 
(RTT) under a constant ON/OFF 
interval of 4/4. As more unwanted 
UDP packets flood the router the 
sender utilization shows a clear 
decrease in TCP throughput. Once 
the quantity of UDP is greater than 
7 packets the drop in performance 
slows down as it approaches the 
limit of zero.   
 
 The bar graph in Fig. 5 
shows the effect of different UDP 
sender ON/OFF intervals on TCP 
sender utilization.  In these tests 

Fig. 4: TCP Sender Utilization as a function of UDP Packets.      the number of packets sent every 
RTT was kept constant at 5 
packets.  From the bar graph it can 
be seen that variations in ON/OFF 
intervals do not reveal any dramatic 
changes in sender utilization with 
the exception to the 1/1 interval.  
However, there appears to be a 
slight upward trend as the off 
intervals become longer.  There are 
two exceptions to these 
observations; the 1/1 interval and 
the 3/3 interval. This was most 
likely due to the way in which the 
UDP and TCP flows overlap in 
these specific cases. This 
occasional phenomenon is 
explained in more detail later.  
 

Fig. 5: TCP sender utilization at varying on off intervals       

 A comparison of Fig. 4 and Fig. 5 shows that the quantity of UDP packets per RTT 
affects the TCP flow more drastically than the ON/OFF interval of the UDP flow itself.  TCP 
sender utilization is drastically decreased as the UDP flow packet quantity is increased producing 
variations from 25% to 3%, while nearly all of the ON/OFF intervals vary around 17% 
utilization. This leads to the conclusion that it is more important how many packets flood the 
router at one time rather than when the packets are sent; though the timing still matters in special 
cases.  
 
 
 
 



The plot below shows cumulative TCP segments that make it through the router, not 

including the ones that are sent but then dropped, both with and without UDP being sent 

concurrently. This figure gives an idea of how UDP interrupts the TCP flow -- it doesn't always 

interrupt it, but if TCP tries to send the bulk of its burst during a time when UDP is on, CongWin 

gets cut shorter that it would otherwise.  

 

 
Fig. 6: The cumulative number of TCP segments received with a concurrent UDP flow (red) and 

no UDP flow (blue). 
  

One interesting consequence of this is that it is not simply the amount of UDP flow that 

matters, but the periodicity of the flow as well. The plot below shows UDP aggregate throughput 

(total segments during the simulation) on the x-axis, and TCP aggregate throughput on the y-

axis. That is, the x-axis doesn't show the shape of the UDP traffic, it only shows the quantity that 

was passed through the router. 



 
Fig. 7: The number of TCP segments received compared to the amount of UDP packets passed. 

 
Even though Fig. 7 does not show the shape of the UDP traffic, you would expect that 

towards the right of the x-axis, where more UDP packets are passed, the UDP Sender is sending 

segments either more often or at higher amplitudes, both which will interfere with TCP and 

reduce TCP's throughput. 

 

And indeed that does happen, for the rightmost 1/3 of the graph. But in the left 2/3s of the graph, 

it's a much different story: the bottom envelope of the graph does indeed trend downwards, but 

the upper envelope stays right at the top, as if the UDP flow wasn't even there. 

 

It turns out that the way this was generated was by making a UDP flow that was very sparse: it is 

on for only one cycle at a time, and the throughput is changed by changing the gap in between 

active cycles as seen in Fig. 8.  
 



 
Fig. 8: Visual representation of the nature of the UDP flow used for these test cases. 

 
And, since UDP does not always interfere with TCP, if it's spaced just right, 

it does not interfere at all.  Figure 9 provides an example of this phenomenon.  

 
Fig. 9: Cumulative TCP packets received over 400 iterations  

with a UDP ON/OFF interval of 1/16. 
 



The period of the UDP traffic lines up perfectly with the natural oscillations of the TCP traffic, 

so there is no effect. Of course, just because they have the same period doesn't mean they will 

line up in a nice way: they might line up in a bad way. But, you can see from the plot that when 

this does happen (near the beginning), TCP phase-shifts so that it is out of the problem area, and 

the problem never comes back.(Another clue that this is what is going on, is that in the original 

throughput plot, if you look at which points had perfect TCP throughput, those are ones where 

the gap is a multiple of 16.) Just one point over, at a gap of 15, it is not possible for the two 

oscillations to line up so the TCP flow will always be interrupted as seen in Fig. 10. 

 

 

 
Fig. 10: Cumulative TCP packets received over 400 iterations  

with a UDP ON/OFF interval of 1/15. 
 

 


