Computer Networks
Project 4

By
Eric Wasserman and Ji Hoon Baik

Modifications to the Code,
and the Flowcharts

10 Mbps

1 Mbps
a) H
\ACK /’ TCPreceiver
.
10 Mbps U \
m 1 Mbps
E— a) (i —
6+1 packets UDPreceiver

UDPsender

UDP transmission is different from TCP transmission in that:

1. UDP transmission is unidirectional; information is sent only from the source to
the destination, and the absence of feedback from the receiver prevents the
sender from knowing whether the transmitted segments arrived successfully
in order. In other words, retransmission is not supported.

2. UDP does not provide any means of reliability or congestion control. There’s
no concept of acknowledgement and retransmission timer. What arrives is
simply what the receiver gets.

Simulator.run()

@

o

Loop i = [0, numliteration)

r

Initialize Arrays:
TCPsegments[k] = null
Acks[k] = null

Yes

UDPsegments[k] = null

lterationi= 0

: TCPsender. send(TCPsegments[], revWindow, outcome) =

: UDPsender.send{UDPsegments]], i}

| Call: :
| TCPsender processAcks(acks[]) |
I Determine the “outcome” :

R}

]
| TCPreceiver.receive(TCPsegments(], acks[])|
I UDPreceiver.receive(UDPsegments[])
: Obtain “revWindow” X

Explanation for Simulator.run()

The only thing changed in the simulator.run() function is the
addition of the UDP sender and receiver functions.

e An additional array is created to store the UDP segments.

e When the TCP Sender is called, the UDP sender is called next.

e When the router is called, the UDP segments along with the
TCP segments are sent to the function.

e Lastly, when the TCP Receiver is called, the UDP receiver is
called next.

UDPSender.send()

RTT=0
sendMode = 1

No

sendMode ==

Initialize Array:

F

UDPsegments(i] = null
Loop i & [0, UDPsegments.length)

h 4

RTT++

RTTime % 8 <4

Yes—

¥ ¥

sendMode =0 sendMode = 1

X

Explanation for UDPSender.send()

The UDPSender class has two variables, RTT and sendMode.

e RTT keeps track of the number of iterations.

e sendMode is 1 when the UDP Sender is sending packets
and is 0 when the UDP Sender is not sending packets (off
mode).

The UDP Sender has two options:

e IfsendMode is 1 then it initializes the array of UDP
segments to the number of packets selected by the user.

e If sendMode is O then it increases the RTT by 1.

In order to identify whether or not sendMode is 1 or O, we
use a modulus of two times sendMode duration.

Routing Algorith
TCPcounter
TCPsegments[] il
UDPsegments]]
T
UDPcounter

Conditions for a UDP or TCP segment to be successfully

relayed in a given transmission round:

1. The segment is one of the first 7 segments being
transmitted.

2. When the packet arrives in the router, either a UDP or
TCP packet in the front head of the router buffer has
just been completely relayed, so that an extra buffer
space becomes available.

If one of these conditions is satisfied, no action is taken on
the segment, and its respective array’s counter is

incremented by 1.

If not, a segment loss occurs; the segment is nulled.

m

+10RTTs
TCP Packet at k=
has been relaye
successfully.

+10RTTs

UDP Packetat k=2
has been relayed

successfully.

size = 2 x Max. . Win
randArrayl]

indexed by k

[

+10RTTs <
TCP Packet atk
has been relaye
successfully.

Ll
=

1
1
0

= | o | oo o | =

X

ol o | O =

o |l ol =2l=alalalo]l =

—

+

10 RTTs

Router.relay() part 1

Initialize Array:
Routersegments[i] = null

Random number generator
creates randArray[] that
contains a sequence of 0
and 1 of length 2*Max_Win
0 ==UDP,1=>TCP

Initialize
UDPcounter =0
TCPcounter =0

Use Original jm—————————————
Router.relay() Lobp k = [0, 8]

+TCPsegments.length < 8

UDPsegments.length

|UDPoounter++|

| TCPcounter++ |

randArra

Yes

y[k] == Loop k = [7, 10]

MNo

h
UDPsegment[UDPcounter] = null

h 4
TCPsegment[TCPcounter] = null

UDPcounter++

TCPcounter++

Router.relay() part 2

(k-1)%10 1= 0

Yes

randArray[k] == (

Yes

¥

randArray[k] == 0

DPsegment[UDPcounter] == nu

CPsegment[TCPcounter] == nu

Yes

DPsegment[UDPcounter] == nu

CPsegment[TCPcounter] == nu

Loop k = [11, max(TCPsegments.length, UDPsegments.length)]

TCPsegments|TCPcounter] = null

Yes ++TCPcounter
No UDPsegments[UDPcounter] = null
++UDPcounter
No TCPsegments|[TCPcounter] = null
++TCPcounter
UDPsegments[UDPcounter] = null
Yes ++UDPcounter
Yes—» ++TCPcounter
No—» ++UDPcounter
No—» ++TCPcounter
Yes—» ++UDPcounter

Router.relay() explanation

Most of the router has been changed to accommodate the incoming packets
from the TCP sender and the UDP sender. The routing algorithm on page 7 was
too difficult to implement, so the following simplified algorithm was used.

. When the UDP sender is in OFF mode (sendMode = 0), then the router will
act normally.
. When the UDP sender is in ON mode (sendMode = 1), then the router will
act as follows:
1. Arandom array of 1s and Os is generated to designate the order of
arrival of the TCP and UDP segments.
2. When the first seven packets are accepted based on the random
array, then the next three packets are dropped.
3. Then, both a UDP packet and TCP packet is accepted to
accommodate for the two sent packets from the router.
4. Packets are then dropped until the 20t packet, when another UDP
packet and TCP packet is accepted.
5. This continues until there are no more UDP or TCP packets to drop
or accept.

UDPReceiver.receive()

7

Counter and display # of
segments in UDP segments

UDPReceiver.receive() Explanation

The UDP Receiver’s function is to just accept an array of UDP
segments, count and display how many packets were

successfully transmitted and then clear all of the packets in the
UDP segment array.

Analysis of Simulation Results

1024 Bytes

MSS=
L]

20

18

16

14

—_
]

—_
L]

TCP Tahoe Transmission

without Concurrent UDP Transmission

TiZF Transmission Parameters

I
| | | — Congestion YWindow
e il ViN O
i —Flight Size
e S5 Threshold
) (_\/I I 3 a{ / I / a{ | / | / | | / I
10 20 30 40 a0 G0 10 &0 a0

Round Trip Time (KTT)

M S=1024 Bytes
20
I

TCP Transmission with Concurrent UDP Transmission,
5 UDP Packets/RTT, ON and OFF cycles 4 RTTS

TCP Transmission Parameters
20
| | ['

e (0N SH N VYN
e E i CHE VYINCIOWY
= Flight Size

= 55Threshold

16+ —

18

Effective window at
" the end of the slow-)
start phase is smaller. Frequency of congestion avoidance

phases increases. 6 |

—
P
I

—_
Lo
[
|

4

Short

AARASEIA N

0 10 20 30 40 50 60 80
Round Trip Time (RTT)

Effects of UDP Transmission on TCP Transmission

 Without any concurrent UDP transmission, the TCP sender
inflates the congestion window to a larger value and tries to
transmit more TCP packets per RTT during the initial slow-
start phase. In addition, the sender has a longer fast-
retransmit period, and enters congestion avoidance at a much
later time instant.

 With UDP transmission, the effective window of the TCP
sender at the end of the slow-start phase is reduced by
approximately 50 %. The sender enters congestion avoidance
at a much earlier time. The repeated congestion avoidance
periods that follow the fast-retransmit period have varying
durations and are more irregular than those of the sender
without UDP transmission. This is because the arrival of UDP
and TCP packets in the router buffer was randomized.

Explanation for TCP Transmission with
Concurrent UDP Transmission Graph

If you compare the TCP transmission parameters with and without
concurrent UDP transmission there is one main difference. The graph with
concurrent UDP transmission only reaches a congestion window of 12
compared to a congestion window of 15 for the graph without competing
UDP. Then the graph with competing UDP enters congestion avoidance
phase much quicker than the other graph.

Overall, the graph with competing UDP has a smaller congestion window
throughout the run but it enters congestion avoidance phase much
quicker. This is because the UDP sender floods the router with packets
preventing the TCP sender from inflating its congestion window. This
proves to be more efficient because the TCP sender won’t have to wait to
retransmit as many packets as it would have without the competing UDP
sender.

1 MB Data Transmission Times of the TCP sender
with/without Concurrent UDP Transmission,

e With UDP Transmission—5 UDP Packets/RTT, and 4
RTTs ON and 4 RTTs OFF—approximately 694

iterations were needed (an average value of results
from 10 trials).

e Without UDP transmission, 451 iterations were
required.

e The performance of the TCP sender was degraded by

53.9 % when it shared the router resources with a
UDP sender.

of terations Required to Send 1 WMB TCP Data

1 MB Data Transmission Time (# of Iterations)
vs. Number of UDP Packets Sent/RT

1000 | | | | | | | |
000 -

800 -

100

600 -

200

400 =

300

200

q | | | | | | | | |

0 1 2 3 4 5 4 7 8 9
Number of Packets Sent in One Round of On Interval

Table of Data Used for the Graph

1 MB TCP Transmission Time (# of Iterations)

of UDP Packets/RTT Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average

1 448 448 448 448 448 448

2 629 641 621 641 654 637.2
3 542 449 571 471 633 533.2
4 711 688 677 611 723 682

5 626 760 730 717 729 712.4
6 728 698 721 787 741 735

7 712 725 732 744 809 744.4
8 749 743 754 758 683 737.4
9 732 739 743 767 705 737.2

10 714 685 705 767 680 710.2

Explanation for the Variations in 1 MB TCP Data
Transmission Time with UDP Packets Sent/RTT

The curve shows an exponential relationship that can be
approximately described according to:

Tivpg(x) =1—¢e7%, where x = # UDP Packets/RTT

The UDP transmission steadily increases the 1 MB TCP data
transmission time until 5 UDP packets per cycle. Beyond this
point, the effect of UDP transmission stabilizes; increasing the

number of UDP packets does not translate to increasing the
transmission time.

of lterations Required to Send 1 WB TCF Data

1000

900

600

700

600

500

400

300

200

1 MB Data Transmission Time (# of Iterations)
vs. UDP ON and OFF Cycles
| | |

ON1
OFF O

ON1
OFF 1

ON 2
OFF 1

ON 2
OFF 2

ON3
OFF 1

ON3
OFF 2

ON3
OFF 3

ON4
OFF 1

ON4
OFF 2

ON4
OFF 3

ON4 ONS5
OFF4 OFF 1

Table of Data Used for the Graph

1 MB TCP Transmission Time (# of Iterations)

UDP ON Cycles UDP OFF Cycles Trial 1 Trial 2 Trial 3 Trial4 Trial 5 Average

1 0 451 451 451 451 451 451
1 1 633 577 597 579 685 614.2
2 1 756 702 738 711 705 722.4
2 2 795 759 747 712 763 755.2
3 1 723 677 708 763 744 723
3 2 734 725 827 750 723 751.8
3 3 773 698 738 734 765 741.6
4 1 725 738 715 688 740 721.2
4 2 758 795 732 760 795 768
4 3 748 768 783 752 730 756.2
4 4 701 696 667 724 720 701.6

5 1 772 740 724 729 704 733.8

Explanation for the Variations in 1 MB TCP Data
Transmission Time with UDP ON and OFF cycles

The graph appears to have a clear pattern.

For a given UDP ON cycle, the transmission time steadily decreases with
the UDP OFF cycle, except when the OFF cycle goes from 1 to 2 RTTs.
For example, for the ON cycle of 3 RTTs, the transmission time
increases as the OFF cycle varies from 1 to 2 RTTs; then, it decreases
from 2 to 3 RTTs. Similarly, for the ON cycle of 4 RTTs, the transmission
time increases as the OFF cycle varies from 1 to 2 RTTs; then, it
decreases from 2 to 4 RTTs. Although not shown on the graph, the
same pattern could be observed for ON cycles higher than 4 RTTs.

However, when the ON cycle is larger than 2, the effect of UDP
transmission stabilizes; the transmission time stops increasing with the
ON cycle, regardless of the OFF cycle. For example, the transmission
time for an ON cycle of 10 RTTs and 20 RTTs (not shown on the graph),
the transmission time remain in the 700 iterations range.

TCP/UDP Sender Utilization

UDP sender utilization was calculated by taking the ratio of the
number of successfully transmitted UDP packets to the
number of UDP packets that could be transmitted, for a given
UDP packets/RTT and UDP ON and OFF cycles setting, had the

router not caused any congestion.

total UDP packets successfully transmitted

UDP ON cycles
UDP ON cycles + UDP OFF cycles

num_iter_x UDP packets/RTT X

Sender Ltilization %%

Variations in TCP/UDP Sender Utilization with
the Number of UDP Packets Sent/RTT

100 | | | | | | | | |

—TCP
UDP ON =4 RTTs —
UDP OFF =4 RTTs

Over 1000 Iterations

90—

60—

10—

60 —

50+

40 =

0 | | | | | | | | |
0 1 ? 3 4 5 B 7 8 g 11
Number of Packets Sentin One Round of On Interval

Explanation for Variations in TCP/UDP Sender Utilization
with the Number of UDP Packets Sent/RTT Graph

The graph on the previous slide shows how the sender utilization for TCP and
UDP change when more UDP packets are sent in each RTT. The most
important thing to see in the graph is that UDP sender utilization
decreases almost linearly with the number of packets it sends while the
TCP sender utilization stays almost constant. This mainly has to do with
the difference between UDP and TCP. TCP sends packets based on its
effective window and congestion window so it will not send packets when
it know that there are packets that have not reached the receiver. UDP,
however, just sends packets arbitrarily, so the more packets that are sent,
the more packets that will just be dropped when the router buffer fills up.

Sender Utilization %%

Variations in TCP/UDP Sender Utilization with
UDP ON and OFF Cycles

100 |

—TCP
ol UDP Packets Sent/RTT =5 —UDP
1000 lterations

/\

70} -

20— oz
40 = —

0+ —

20~ T —

" | | | | |
0 ON1 ON1 ON 2 ON 2 ON3 ON3 ON3 ON4 ON4 ON4 ON4 ONS

OFF0 OFF1 OFF1 OFF2 OFF1 OFF2 OFF3 OFF1 OFF2 OFF3 OFF4 OFF1

Explanation for Variations in TCP/UDP Sender
Utilization with UDP ON and OFF Cycles Graph

The graph on the previous page shows that when the UDP Sender’s ON
/ OFF cycles change, the sender utilizations for the TCP sender and
UDP sender remain almost constant. This could be due to the fact
that when the UDP senders ON / OFF cycles changes, the total
incoming packets sent to the router in a given RTT do not change
very much. The UDP sender’s utilization remains constant because
it is still sending the same amount of packets when it is in on mode.
The duration of the on or off mode has little to do with how many
packets successfully reach the receiver. The TCP sender has better
utilization when the UDP sender is in off mode, but over the entire
run, the on and off modes average out so that it matters very little
the duration of the on or off modes. Even when there is a longer on
mode than off mode for the UDP sender, the utilization of the TCP
sender still remains about the same, even though we would expect
it to have a lower utilization.

	Computer Networks �Project 4
	Modifications to the Code, �and the Flowcharts
	Slide Number 3
	Simulator.run()
	Explanation for Simulator.run()
	UDPSender.send()
	Explanation for UDPSender.send()
	Slide Number 8
	Router.relay() part 1
	Router.relay() part 2
	Router.relay() explanation
	UDPReceiver.receive()
	UDPReceiver.receive() Explanation
	Analysis of Simulation Results
	TCP Tahoe Transmission �without Concurrent UDP Transmission
	TCP Transmission with Concurrent UDP Transmission, 5 UDP Packets/RTT, ON and OFF cycles 4 RTTS
	Effects of UDP Transmission on TCP Transmission
	Explanation for TCP Transmission with Concurrent UDP Transmission Graph
	1 MB Data Transmission Times of the TCP sender �with/without Concurrent UDP Transmission, �
	1 MB Data Transmission Time (# of Iterations)�vs. Number of UDP Packets Sent/RTT
	Table of Data Used for the Graph
	Explanation for the Variations in 1 MB TCP Data Transmission Time with UDP Packets Sent/RTT
	1 MB Data Transmission Time (# of Iterations) �vs. UDP ON and OFF Cycles
	Table of Data Used for the Graph
	Explanation for the Variations in 1 MB TCP Data Transmission Time with UDP ON and OFF cycles
	TCP/UDP Sender Utilization
	Variations in TCP/UDP Sender Utilization with the Number of UDP Packets Sent/RTT
	Explanation for Variations in TCP/UDP Sender Utilization with the Number of UDP Packets Sent/RTT Graph
	Variations in TCP/UDP Sender Utilization with UDP ON and OFF Cycles
	Explanation for Variations in TCP/UDP Sender Utilization with UDP ON and OFF Cycles Graph

