14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013

Signal Names and Active Levels

- Signal names are chosen to be descriptive
- Active levels -- HIGH or LOW
- Named condition or action occurs in either the HIGH or the LOW state, according to the active-level designation in the name.

	Active Low	Active High
	READY-	READY+
	ERROR.L	ERROR.H
	ADDR15(L)	ADDR15(H)
	RESET*	RESET
	ENABLE \sim	ENABLE
	\sim GO	GO
	/RECEIVE will use this notation \rightarrow	RECEIVE
	TRANSMIT_L	TRANSMIT

Errors and Active Levels

Flat Schematic Structure

Buffer

- A buffer is a gate with the function $\mathrm{F}=\mathrm{X}$:

- In terms of Boolean function, a buffer is the same as a wire connection!
- So why use it?
- A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

Gate Symbols [recall Lecture \#4]

DeMorgan Equivalent Symbols [ememew]

or $-{ }_{-0} \mathrm{D}_{0}-$

NOR

AND

NAND

"bubble-to-bubble design"

BUFFER

INVERTER

- Which symbol to use?
- Answer depends on signal names and active levels

Example Schematic

HCT = high-speed CMOS
TTL compatible

Circuit Timing

Circuit block diagram:

ENB (enable) is constant
causality and propagation delay:

minimum and maximum delays:

another graph for the ENB input ...

Timing Diagrams for "Data" Signals

Certain and uncertain transitions:

write is on " 0 "

Sequences of values on an 8-bit bus:

count is on " 1 "

Gates w/ Special I/O Characteristics

- Schmitt-trigger inputs (Wakerly, Section 3.7.2, page 130)
- A special circuit that uses feedback internally to shift the switching threshold depending on whether the input is changing LOW-toHIGH or HIGH-to-LOW ("hysteresis")
- Three-state outputs (Wakerly, Section 3.7.3, page 132)
- Output has a third electrical state (not logic state), called highimpedance, Hi-Z, or floating state
- In this state, the output behaves as if it isn't even connected to the circuit-the device output "floats" as if it weren't even there
- Open-drain (open collector) outputs (Wakerly, Section 3.7.4, page 133)
- The output usually comprises an external pull-up resistor, which raises the output voltage when the transistor is turned off
- Can be rated to withstand a higher voltage than the chip supply voltage
- Commonly used to drive devices such as Nixie tubes, vacuum fluorescent displays, relays or motors that require higher operating voltages than the usual 5 -Volt logic supply

Open-drain (open-collector) outputs

- p-channel transistor provides active pull-up of the output voltage on a LOW-to-HIGH transition
- Omitted in gates with open-drain outputs (see NAND gate below) [called "open-collector" in TTL]
- Example use: driving a light-emitting diode (LED)

Open-drain CMOS NAND gate

Driving an LED with an open-drain output

Schmitt-Trigger Inverter

It has a hysteresis (difference between the two thresholds) of 0.8 Volts between the low-to-high and high-to-low inputs.
a regular inverter
input-output transfer characteristic:

Schmitt-trigger inverter logic symbol:

Device Operation w/ Noisy Inputs

Enabling Function

- Enabling permits an input signal to pass through a circuit to an output
- Disabling blocks an input signal from passing through to an output, replacing it with a fixed value
- The value on the output when it is disable can be Hi-Z (as for three-state buffers and transmission gates, described next), " 0 ", or " 1 "
- When disabled, "0" output

- When disabled, "1" output

Three-State Buffers (a.k.a. Drivers)

- For the symbol and truth table, IN is the data input, and EN, the control input.
- For $\mathrm{EN}=0$, regardless of the value on IN (denoted by X), the output value is $\mathrm{Hi}-\mathrm{Z}$.
- For EN = 1, the output value follows the input value.
- Variations:
- Data input, IN, can be inverted
- Control input, EN, can be inverted by addition of "bubbles" to signals.
 -OUT

Symbol:

Truth table:

EN	IN	OUT
L	L	Hi-Z
L	H	Hi-Z
H	L	L
H	H	H
OUT $=\mathbf{I N} \cdot$ EN		

(logic function, but ignores non-logic connectivity control) 17 of 26

Different Flavors of Three-State

OUT_L

EN_L = 1
$\mathrm{IN}=\mathrm{x}$
OUT = Hi-Z
74×126
74×125

Three-State Logic Circuit

- Normally, a logic circuit will not operate correctly if the outputs of two or more gates or other logic devices are directly connected to each other (multiple drivers conflict "fighting")
- Use of three-state logic permits the outputs of two or more gates or other logic devices to be connected together
- Data Selection Function:

If $S=0, O L=I N 0$, else $O L=I N 1$

- Performing data selection with 3-state buffers:
 $\mathrm{OL}=\mathrm{INO} \cdot \mathrm{S}^{\prime}+\mathrm{IN} 1 \cdot \mathrm{~S}$
- Because $\mathrm{EN0}=\mathrm{S}^{\prime}$ and $\mathrm{EN} 1=\mathrm{S}$, one of the two buffer outputs is always $\mathrm{Hi}-\mathrm{Z}$. (Recall: when a device output is $\mathrm{Hi}-\mathrm{Z}$, it "floats" as if it weren't even there)

8 Sources Sharing a 3-state Party Line

We can tie multiple outputs together, if at most one at a time is driven.

Timing Considerations

Timing considerations for the three-state party line

Three-State Drivers

octal three-state buffer
logic symbol

Note that enable inputs G1_L and G2_L simultaneously enable all eight buffers (i.e., all 8 inputs) - used in bus-based
 applications, described next ...

Buses

- Tristate bus connecting multiple chips:

Buses - Example

Three-State Transceivers

Transceiver Application
Example use of bidirectional transceiver 74×245 to control the direction of data transfer on bidirectional buses

