14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013
Lecture \#7: Combinational Circuit Synthesis II

What if we have 5 input variables?

$\mathrm{V}=0$

$\mathrm{V}=1$

Example with 5 variables

$F=\sum_{V, W, X, Y, Z}(0,1,2,3,4,7,15,16,20,23,29,31)$

$\mathrm{V}=0$

$\mathrm{V}=1$
$F=V^{\prime} \cdot W^{\prime} \cdot X^{\prime}+W^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}+X \cdot Y \cdot Z+V \cdot W \cdot X \cdot Z$

What if we have 6 input variables?

Two most-significant bits (UV) are used to select which of the 4 -variable maps is being used and the WXYZ bits are used to select the entry in the 4 -variable Karnaugh map

Six input variables - another view

Row	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
0	0	0	0	0	0	0	
1	0	0	0	0	0	1	
2	0	0	0	0	1	0	
3	0	0	0	0	1	1	
4	0	0	0	1	0	0	
5	0	0	0	1	0	1	
6	0	0	0	1	1	0	
7	0	0	0	1	1	1	
\cdots							\cdots

Two most-significant bits (UV) are used to select which of the 4 -variable maps is being used and the WXYZ bits are used to select the entry in the 4 -variable Karnaugh map

Definitions

- Minimal sum of F - a sum-of-products such that
- No sum-of-products for F has fewer product terms
- Any sum-of-products with the same \# of product terms has \geq literals
- Prime Implicant of F - a normal product term P that implies F, s.t. if any variable removed from P then P^{*} doesn't imply F
- Complete sum - the sum of all prime implicants of F
- Distinguished 1-cell - an input combination covered by only one prime implicant
- Essential prime implicant - a prime implicant that covers ≥ 1 distinguished 1 -cells
\rightarrow it must be included in the minimal sum!

Example of Prime Implicants

$F=\sum_{W, X, Y, Z}(5,7,12,13,14,15)$

$F=X \cdot Z+W \cdot X$

As seen, both prime implicants must be included in the minimal sum to cover all of the 1-cells

Another example

distinguished 1-cells

$F=\sum_{w, X, Y, Z}(1,3,4,5,9,11,12,13,14,15)$

Minimal sum

Algorithm for minimum sum-of-product from K-maps SoP

1. Circle all prime implicants.
2. Identify and select the essential prime implicants for cover.
3. Cover the 1-cells not covered by essential prime implicants.

Minimum product-of-sum PoS

1. Represent the ones of F^{\prime} in the K-map.
2. Find the minimum SoP of F^{\prime}.
3. Complement the obtained expression by applying DeMorgan theorem.

Example: All Prime Implicants Essential

$F=\sum_{w_{, X, Y, Z}}(2,3,4,5,6,7,11,13,15)$

$F=W^{\prime} \cdot X+W^{\prime} \cdot Y+X \cdot Z+Y \cdot Z$
\rightarrow all prime implicants are included in the minimal sum

Few or None Essential Prime Implicants

- IF there are no essential prime implicants, or essential prime implicants do not cover all 1-cells,
- THEN select nonessential prime implicants to form a complete minimum-cost cover
- Selection Heuristics explained next ...

Too Few Essential Prime Implicants

(1)

Select nonessential prime implicant $W^{\prime} \cdot Z$ over $X \cdot Y \cdot Z$ because it has fewer inputs \rightarrow lower cost

More Definitions

(for more complex cases of too few essential prime implicants)

- Eclipse: Given two prime implicants P,Q P eclipses Q if P covers ≥ 1-cells covered by Q
- Secondary essential prime implicant: eclipses other prime implicants

Too Few Essential Prime Implicants

(2)

$F=\sum_{W, X, Y, Z}(2,6,7,9,13,15)$

$$
F=W \cdot Y^{\prime} \cdot Z+W^{\prime} \cdot Y \cdot Z^{\prime}+X \cdot Y \cdot Z
$$

$X \cdot Y \cdot Z$ eclipses the other two prime implicants, therefore it is a secondary essential prime implicant
\rightarrow must be included in the minimal sum

No Essential Prime Implicants

No distinguished 1-cells \rightarrow No essential prime implicants!

Branching Heuristic

1. Starting w/ any 1-cell, arbitrarily select one prime implicant covering it
2. Include this p.i. as if it were essential and find a tentative minimal sum-of-products
3. Repeat the process, for all other prime implicants covering the starting 1-cell

- Generates a different tentative minimal sum for each starting point

4. Finally, compare all tentative minimal sums and select the truly minimal

Branching Heuristic Example

Two minimal sums:

$F=X \cdot Y \cdot Z+W \cdot X^{\prime} \cdot Z+W^{\prime} \cdot Y^{\prime} \cdot Z$

Incompletely Specified Functions

("Don't-Care" Input Combinations)
Don't-cares: output doesn't matter for such input combinations (never occur in normal operation).
Example: Detect the prime numbers to ten, input is always a BCD digit.

$F=\sum_{N_{3}, N_{2}, N_{1}, N_{0}}(1,2,3,5,7)+d(10,11,12,13,14,15)$
(don't cares, a.k.a. d-set)

Modified procedure for circling sets of 1's

 (prime implicants)- Allow d's to be included when circling sets of 1's, to make the sets as large as possible.
- This reduces the number of variables in the corresponding prime implicants.
- Two such prime implicants $\left(\mathrm{N}_{2} \cdot \mathrm{~N}_{0}\right.$ and $\left.\mathrm{N}_{2}{ }^{\prime} \cdot \mathrm{N}_{1}\right)$ appear in the example.
- Do not circle any sets that contain only d's.
- Including the corresponding product term in the function would unnecessarily increase its cost.
- Two such product terms $\left(\mathrm{N}_{3} \cdot \mathrm{~N}_{2}\right.$ and $\left.\mathrm{N}_{3} \cdot \mathrm{~N}_{1}\right)$ are circled in the example.
- Reminder: As usual, do not circle any 0's

Incompletely Specified Functions
 ("Don't-Care" Input Combinations)

Don't-cares: output doesn't matter for such input combinations (never occur in normal operation). Example: Detect the prime numbers to ten, input is always a BCD digit.

$F=\sum_{N_{3}, N_{2}, N_{1}, N_{0}}(1,2,3,5,7)+d(10,11,12,13,14,15)$
(don't cares, a.k.a. d-set)

$\mathrm{F}=\mathrm{N}_{3}{ }^{\prime} \cdot \mathrm{N}_{0}+\mathrm{N}_{2}{ }^{\prime} \cdot \mathrm{N}_{1}$

Don't Cares and Product-of-Sums Minimization

For Product-of-Sums (PoS) minimization,
apply the same technique as for Sum-of-Products (SoP) and the principle of duality

$F=\sum_{W, X, Y, Z}(4,5,13,15)+d(2,3,7,9,14)$

RCALL
Minimum product-of-sum (PoS)
Represent the ones of F^{\prime} in the K-map.
Find the minimum SoP of F^{\prime}.
Complement the obtained expression by applying DeMorgan theorem

SoP Minimization and Inverting the Result

$$
F^{\prime}=\sum_{W, X, Y, Z}(0,1,6,8,10,11,12)+d(2,3,7,9,14)
$$

$$
F^{\prime}=X^{\prime}+W \cdot Z^{\prime}+Y \cdot Z^{\prime}
$$

$$
\mathrm{F}=\left(\mathrm{X}^{\prime}\right)^{\prime} \cdot\left(\mathrm{W} \cdot \mathrm{Z}^{\prime}\right)^{\prime} \cdot\left(\mathrm{Y} \cdot \mathrm{Z}^{\prime}\right)^{\prime}=\mathrm{X} \cdot\left(\mathrm{~W}^{\prime}+\mathrm{Z}\right) \cdot\left(\mathrm{W}+\mathrm{Y}^{\prime}\right)
$$

Lots of Possibilities

- Can follow a "dual" procedure to find minimal products-of-sums (OR-AND realization)
- Can modify procedure to handle don't-care input combinations.
- Can draw Karnaugh maps with up to six variables.

Real-World Logic Design

- Lots more than 6 inputs --can't use Karnaugh maps
- Design correctness more important than gate minimization
- Use "higher-level language" to specify logic operations
- Use programs to manipulate logic expressions and minimize logic
- ABEL — developed for PLDs
- VHDL, Verilog — developed for ASICs

