14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013
Lecture \#5: Combinational Circuit Analysis

Combinational Circuit Analysis

- Combinational circuit: Output depends only on the current input values (called an input combination)
- Sequential circuit's output depends not only on its current input but also on the past sequence of inputs that have been applied to it.
- I.e., a sequential circuit has memory of past events
- Combinational circuit analysis: we are given a logic diagram and need to find its formal description (truth table, logic expression)

Kinds of Combinational Analysis

- Exhaustive (truth table)
- Algebraic (expressions)
- Simulation / test bench (in the laboratory)

Exhaustive - Truth Table

Find truth table by all input combinations:

Algebraic - Signal Expressions

- Use theorems to transform F into another form
- E.g., "multiplying out":

$$
\begin{aligned}
F & =\left(\left(X+Y^{\prime}\right) \cdot Z\right)+\left(X^{\prime} \cdot Y \cdot Z^{\prime}\right) \\
& =(X \cdot Z)+\left(Y^{\prime} \cdot Z\right)+\left(X^{\prime} \cdot Y \cdot Z^{\prime}\right)
\end{aligned}
$$

Algebraic - Signal Expressions

... and obtain a new circuit but the same function:

Two-level AND-OR circuit

"Add out" Logic Function

"Add out" logic function is OR-AND circuit:
$F=\left(\left(X+Y^{\prime}\right) \cdot Z\right)+\left(X^{\prime} \cdot Y \cdot Z^{\prime}\right)$
\leftarrow two-level AND-OR circuit

$$
=\left(X+Y^{\prime}+Z^{\prime}\right) \cdot\left(X^{\prime}+Z\right) \cdot(Y+Z)
$$

- Two-level OR-AND circuit:

Yet Another Example (2)

different circuit but the same function:

here, majority are AND and OR gates

