14:332:231 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 2013

Lecture #4: Boolean Algebra, Theorems, Standard Representation of Logic Functions

Boolean Algebra

- a.k.a. "switching algebra"
 Deals with Boolean values → 0, 1
- Positive-logic convention

 Analog voltages LOW, HIGH → 0, 1
- Negative logic -- seldom used
- Signal values denoted by variables (X, Y, FRED, etc)

2 of 23

Theorems - One Variable

				(10.011.100)
12) X	+ 1 = 1	(T2')	$X \cdot 0 = 0$	(Null elements)
<mark>T3)</mark> X	+ X = X	(T3′)	$X\cdotX=X$	(Idempotency)
T4) (>	<')' = X			(Involution)
<mark>T5)</mark> X	+ X' = 1	(T5′)	$X\cdot X'=0$	(Complements)

• Axiom (A1) is the key (a variable can take only one of two values: 0 or 1)

9 of 23

Boolean Algebraic Proof – Example				
$X + X \cdot Y = X$	← Covering Theorem (T9)			
Proof Steps:	Justification:			
$X + X \cdot Y$				
$= X \cdot 1 + X \cdot Y$	Identity element: $X \cdot 1 = X$ (T1')			
= X · (1 + Y)	Distributivity (T8)			
= X · 1	Null elements (T2): $1 + Y = 1$			
= X	Identity element (T1')			
	13 of 23			

Consensus Theorem				
$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$	Consensus (T11)			
Proof Steps:	Justification:			
$X \cdot Y + X' \cdot Z + Y \cdot Z$				
$= X \cdot Y + X' \cdot Z + 1 \cdot Y \cdot Z$	Identity (T1')			
$= X \cdot Y + X' \cdot Z + (X + X') \cdot Y \cdot Z$	Complement (T5)			
$= X \cdot Y + X' \cdot Z + X \cdot Y \cdot Z + X' \cdot Y \cdot Z$	Distributive (T8)			
$= X \cdot Y + X \cdot Y \cdot Z + X' \cdot Z + X' \cdot Z \cdot Y$	Commutative (T6)			
$= X \cdot Y \cdot 1 + X \cdot Y \cdot Z + X' \cdot Z \cdot 1 + X' \cdot Z \cdot Y$	Identity (T1')			
$= X \cdot Y \cdot (1 + Z) + X' \cdot Z \cdot (1 + Y)$	Distributive (T8)			
$= X \cdot Y \cdot 1 + X' \cdot Z \cdot 1$	1+X = 1 (T2)			
$= X \cdot Y + X' \cdot Z$	Identity (T1')			
	16 of 23			

Theorems for Expressions

The theorems remain valid if a variable is replaced by an expression.

