14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013
Lecture \#4: Boolean Algebra, Theorems,

Boolean Algebra

- a.k.a. "switching algebra"
- Deals with Boolean values $\rightarrow 0,1$
- Positive-logic convention
- Analog voltages LOW, HIGH $\rightarrow 0,1$
- Negative logic -- seldom used
- Signal values denoted by variables (X, Y, FRED, etc)

Boolean Algebra is Just Like Boolean Logic ...

- NOT is a prime ('):
- $0^{\prime}=1$
$-\quad 1^{\prime}=0$
- OR is a plus (+):
- $0+0=0$
$-\quad 0+1=1$
$-1+0=1$
$-\quad 1+1=1$
- AND is multiplication dot (.):
$-0 \cdot 0=0$
$-\quad 0 \cdot 1=0$
$-1 \cdot 0=0$
$-1 \cdot 1=1$

Axioms (will lead to Theorems)

- Variable X can take only one of two values:
(A1) $X=0$ if $X \neq 1$
(A1') $X=1$ if $X \neq 0$
- Complement:
(A2) if $X=0$, then $X^{\prime}=1$
$\left(A 2^{\prime}\right)$ if $X=1$ if $X^{\prime}=0$
- Three axioms to define the AND and the OR operations:
(A3) $0 \cdot 0=0$
$\left(\mathrm{A}^{\prime}\right) 1+1=1$
(A4) $1 \cdot 1=1$
$\left(A 4^{\prime}\right) 0+0=0$
(A5) $0 \cdot 1=1 \cdot 0=0$
$\left(A 5^{\prime}\right) 1+0=0+1=1$

Boolean Operators

- Complement: $\quad X^{\prime}$ (opposite of X)
- AND:
X.Y
- OR:
$X+Y$

\mathbf{X}	\mathbf{Y}	\mathbf{X} AND \mathbf{Y}
0	0	0
0	1	0
1	0	0
1	1	1

\mathbf{X}	\mathbf{Y}	\mathbf{X} or \mathbf{Y}
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{X}	пот \mathbf{X}
0	1
1	0

- Axiomatic definition: $\mathrm{A} 1-\mathrm{A} 5, \mathrm{~A} 1^{\prime}$ - A5'
binary operators, described functionally by truth table

Logic Symbols

X
$\mathrm{Y}=\mathrm{X}$ OR Y
$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$

NOT
(complement)

AND

OR

Duality

- Swap 0 \& 1, AND \& OR
- Result: Theorems still true
- Why?
- Each axiom (A1 - A5) has a dual (A1' - A5')

Some Definitions

- Literal: a variable or its complement
- X, X', FRED', CS_L
- Expression: literals combined by AND, OR, parentheses, complementation
- $X+Y$
- $P \cdot Q \cdot R$
- A+B.C
- ((FRED $\left.\left.\cdot \mathrm{Z}^{\prime}\right)+\mathrm{CS} \mathrm{L} \cdot \mathrm{A} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}+\mathrm{Q} 5\right) \cdot$ RESET'
- Equation: Variable = Expression
- $\mathrm{P}=\left(\left(\right.\right.$ (FRED $\left.\left.\cdot \mathrm{Z}^{\prime}\right)+\mathrm{CS} \mathrm{L} \cdot \mathrm{A} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}+\mathrm{Q} 5\right) \cdot \mathrm{RESET}^{\prime}$

Theorems - One Variable

$\left.\begin{array}{llll}\hline \text { (T1) } \quad X+0=X & \left(T 1^{\prime}\right) & X \cdot 1=X & \text { (Identities) } \\ \text { (T2) } & X+1=1 & \left(T 2^{\prime}\right) & X \cdot 0=0\end{array}\right)$ (Null elements)

- Proofs by perfect induction
- Axiom (A1) is the key (a variable can take only one of two values: 0 or 1)

Proofs of One-Variable Theorems

(perfect induction)
(T3) idempotency:

$\mathrm{X}+\mathrm{X}=\mathrm{X}$	$[\mathrm{X}=0]$	$0+0=0$	true, according to $\left(\mathrm{A} 4^{\prime}\right)$
	$[\mathrm{X}=1]$	$1+1=1$	true, according to $\left(\mathrm{A}^{\prime}\right)$

(T4) involution:
$\begin{array}{rlll}\left(\mathrm{X}^{\prime}\right)^{\prime}=\mathrm{X} & {[\mathrm{X}=0]} & \left(0^{\prime}\right)^{\prime}=1^{\prime}=0 & \text { true, according to }(\mathrm{A} 2) \\ {[\mathrm{X}=1]} & \left(1^{\prime}\right)^{\prime}=0^{\prime}=1 & \&\left(\mathrm{~A} 2^{\prime}\right)\end{array}$

Etc.

Boolean Operator Precedence

- The order of evaluation is:
- Parentheses
- NOT
- AND
- OR
- Consequence: Parentheses appear around OR expressions
- Example:

$$
F=A \cdot(B+C) \cdot(C+D)
$$

Theorems - Two or Three Variables

$(\mathrm{T} 6)$	$\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$	$\left(\mathrm{T} 6^{\prime}\right)$	$\mathrm{X} \cdot \mathrm{Y}=\mathrm{Y} \cdot \mathrm{X}$	(Commutativity)
$(\mathrm{T} 7)$	$(\mathrm{X}+\mathrm{Y})+\mathrm{Z}=\mathrm{X}+(\mathrm{Y}+\mathrm{Z})$	$\left(\mathrm{T} 7^{\prime}\right)$	$(\mathrm{X} \cdot \mathrm{Y}) \cdot \mathrm{Z}=\mathrm{X} \cdot(\mathrm{Y} \cdot \mathrm{Z})$	(Associativity)
$(\mathrm{T} 8)$	$\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Z}=\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})$	$\left(\mathrm{T} 8^{\prime}\right)$	$(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})=\mathrm{X}+\mathrm{Y} \cdot \mathrm{Z}$	(Distributivity)
$(\mathrm{T} 9)$	$\mathrm{X}+\mathrm{X} \cdot \mathrm{Y}=\mathrm{X}$	$\left(\mathrm{T} 9^{\prime}\right)$	$\mathrm{X} \cdot(\mathrm{X}+\mathrm{Y})=\mathrm{X}$	(Covering)
$(\mathrm{T} 10)$	$\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Y}^{\prime}=\mathrm{X}$	$(\mathrm{T10})$	$(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)=\mathrm{X}$	(Combining)
$(\mathrm{T} 11)$	$\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Z}+\mathrm{Y} \cdot \mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Z}$	(Consensus)		
$\left(\mathrm{T} 11^{\prime}\right)$	$(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Z}\right) \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)$			

Boolean Algebraic Proof - Example

$X+X \cdot Y=X \quad \leftarrow$ Covering Theorem (T9)
Proof Steps:
Justification:
$X+X \cdot Y$
$=X \cdot 1+X \cdot Y \quad$ Identity element: $\mathrm{X} \cdot 1=\mathrm{X}\left(\mathrm{T} 1^{\prime}\right)$
$=X \cdot(1+Y) \quad$ Distributivity (T8)
$=X \cdot 1 \quad$ Null elements (T2): $\quad 1+Y=1$
$=X$
Identity element (T1')

Why Theorems and Proofs?

- These theorems are useful rules of substitution for logic expressions
- Why substitution? -Because we may want to:
- Design a simpler circuit (faster, easier to implement, cheaper, more reliable)
- Use different gates for implementation (same reasons)
- Our primary reason for doing proofs is to learn:
- Careful and efficient use of the identities and theorems of Boolean algebra, and
- How to choose the appropriate substitution ("theorem") to apply to make forward progress, irrespective of the application

Distributivity (dual)

(T8')

$$
\begin{aligned}
(X+Y) \cdot(X+Z) & =X \cdot X+X \cdot Z+Y \cdot X+Y \cdot Z \\
& =X+X \cdot Z+X \cdot Y+Y \cdot Z=X+X \cdot Y+Y \cdot Z \\
& =X+Y \cdot Z
\end{aligned}
$$

$$
(X+Y) \cdot(X+Z)=X+Y \cdot Z \quad \text { (Distributivity) }
$$

$$
(3+5) \cdot(3+7) \neq 3+5 \cdot 7!!!
$$

parentheses, operator precedence!

Consensus Theorem

$X \cdot Y+X^{\prime} \cdot Z+Y \cdot Z=X \cdot Y+X^{\prime} \cdot Z \quad$ Consensus (T11)
Proof Steps:
Justification:
$X \cdot Y+X^{\prime} \cdot Z+Y \cdot Z$
$=X \cdot Y+X^{\prime} \cdot Z+1 \cdot Y \cdot Z \quad$ Identity $\left(T 1^{\prime}\right)$
$=X \cdot Y+X^{\prime} \cdot Z+\left(X+X^{\prime}\right) \cdot Y \cdot Z$
Complement (T5)
$=X \cdot Y+X^{\prime} \cdot Z+X \cdot Y \cdot Z+X^{\prime} \cdot Y \cdot Z$
Distributive (T8)
$=X \cdot Y+X \cdot \widetilde{Y \cdot Z+X^{\prime}} \cdot Z+X^{\prime} \cdot Z \cdot Y$
Commutative (T6)
$=X \cdot Y \cdot 1+X \cdot Y \cdot Z+X^{\prime} \cdot Z \cdot 1+X^{\prime} \cdot Z \cdot Y$
Identity (T1')
$=X \cdot Y \cdot(1+Z)+X^{\prime} \cdot Z \cdot(1+Y) \quad$ Distributive $(T 8)$
$=X \cdot Y \cdot 1^{2}+X^{\prime} \cdot Z \cdot 1 \quad 1+X=1$ (T2)
$=X \cdot Y+X^{\prime} \cdot Z$
Identity (T1')

Theorems for Expressions

The theorems remain valid if a variable is replaced by an expression.
$\mathrm{X} \rightarrow \mathrm{U} \cdot \mathrm{W}$
$U \cdot W+Y \cdot Z=(U \cdot W+Y) \cdot(U \cdot W+Z)=$
$=(\mathrm{U}+\mathrm{Y}) \cdot(\mathrm{W}+\mathrm{Y}) \cdot(\mathrm{U}+\mathrm{Z}) \cdot(\mathrm{W}+\mathrm{Z}) \quad \leftarrow$ distributivity (dual)
$Z \rightarrow X^{\prime}$
$(X+Y) \cdot\left(X+X^{\prime}\right)=X+Y \cdot X^{\prime}=X+Y$
distributivity (dual)

N -variable Theorems

(T12) $\mathrm{X}+\mathrm{X}+\ldots+\mathrm{X}=\mathrm{x}$
(Generalized idempotency)
(T12') $\mathrm{X} \cdot \mathrm{X} \cdot \ldots \cdot \mathrm{X}=\mathrm{X}$
(T13) $\left(\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \ldots \cdot \mathrm{X}_{\mathrm{n}}\right)^{\prime}=\mathrm{X}_{1}{ }^{\prime}+\mathrm{X}_{2}{ }^{\prime}+\ldots+\mathrm{X}_{\mathrm{n}}{ }^{\prime} \quad$ (DeMorgan's theorems)
(T13') $\quad\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{\prime}=X_{1}{ }^{\prime} \cdot X_{2}{ }^{\prime} \cdot \ldots \cdot X_{n}{ }^{\prime}$
(T14) $\quad\left[F\left(X_{1}, X_{2}, \ldots, X_{n},+, \cdot\right)\right]^{\prime}=F\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}, \cdot,+\right)$
\qquad (Generalized DeMorgan's theorem)
\downarrow (Shannon's expansion theorems)

$$
\begin{equation*}
F\left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{1} \cdot F\left(1, X_{2}, \ldots, X_{n}\right)+X_{1}^{\prime} \cdot F\left(0, X_{2}, \ldots, X_{n}\right) \tag{T15}
\end{equation*}
$$

(T15') $\quad F\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left[X_{1}+F\left(0, X_{2}, \ldots, X_{n}\right)\right] \cdot\left[X_{1}{ }^{\prime}+F\left(0, X_{2}, \ldots, X_{n}\right)\right]$

- Prove using finite induction
- Most important: DeMorgan's theorems

DeMorgan's Theorems

Proof by finite induction: (basis step, $n=2$; induction step, $n=i \rightarrow n=i+1$)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{X}_{1}+\mathrm{X}_{2} \quad \mathrm{~B}=\mathrm{X}_{1}{ }^{\prime} \cdot \mathrm{X}_{2}{ }^{\prime} \\
& \text { If } A \cdot B=0 \text { and } A+B=1 \text { then } A^{\prime}=B \\
& A \cdot B=\left(X_{1}+X_{2}\right) \cdot\left(X_{1}{ }^{\prime} \cdot X_{2}{ }^{\prime}\right)=0 \\
& A+B=X_{1}+X_{2}+X_{1}{ }^{\prime} \cdot X_{2}^{\prime} \\
& =X_{1}+X_{2} \cdot X_{1}+X_{2} \cdot X_{1}{ }^{\prime}+X_{1}{ }^{\prime} \cdot X_{2}{ }^{\prime} \\
& =X_{1}+X_{1}{ }^{\prime}+X_{1} \cdot X_{2}=1
\end{aligned}
$$

induction $\{$ assume $n=\mathrm{i}$ true , then for $n=\mathrm{i}+1$
step

$$
\left(A_{i}+X_{i+1}\right)^{\prime}=B_{i} \cdot X_{i+1}^{\prime}
$$

DeMorgan Symbols

DeMorgan Symbol Equivalence for NOR NOR

is the equivalent to

$\mathrm{Y}-\mathrm{O} \square Z^{\prime}=X^{\prime} \cdot Y^{\prime}$

DeMorgan Symbol Equivalence for NAND

is the equivalent to

Sum-of-Products Form

NAND-NAND preferred in TTL technology.

Product-of-Sums Form

Product-of-sums preferred in CMOS technology.

