14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical & Computer Engineering
Fall 2013

Lecture #3: Addition, Subtraction, Multiplication, and Division

2's-Complement Representation

= RECALL FROM THE LAST LECTURE:

n-bit 2’s-complement representation of D: [D], = 2" - D,

How to compute it?

[D], = (2"~ 1-D,) + 1
o ,,,,,,,,,,// ,

‘ 2n-1://1 1 =1 <« nbits ya
-D: —d4d,5 - dg Ve 1-0=1
1—di=d,
d,n—1d’n—2 drO / MM1-1=0
+ 1 <«
[Dl,

1. Complement the bits
2. Add 1 to the Least Significant Bit
3. Discard carry out from Most Significant Bit

Addition with 2's Complement

e Added by ordinary binary addition, ignoring any carries beyond the MSB

e The result must be inside the range of the numbers
represented by n-bits.
Otherwise overflow occurs, and the result is not correct.

Example, number of bits limited to n=5

Then, the range is —25-'=-16 .- 251'—-1=+15 ~ 32 numbers
+5,, 00101 +9 01001 +12 01100
+ +7, 00111 +-8 11000 + +7 00111
+12,, 01100 / +1 1]00001 +19 10011
” (
| ~ N
2's complement of +8:) / —
8,,= 01000 > 10111 ignore carries |)
1 beyond MSB negative number resulted from adding
11000 = -8, 2 positive numbers - overflow

Carries and Overflow

« We ignore carries beyond MSB because
we are adding two’s complement numbers
as if they were unsigned numbers

A carry beyond MSB is an artifact of
adding the sign bits
and does not indicate overflow

» For example, every time we add two negative
numbers, a carry beyond MSB occurs, but not
necessarily an overflow

* On the other hand, in a previous-slide example,
overflow occurred without a carry beyond MSB

4 of 15

Overflow Detection Rule (1)

Overflow: If the sign of the addends is the same
but different from the sign of the result.

n = 5 bits
—14 14,,= 01110 -> 10001 ; =T7,,= 11001 > :]1?01(1)
-7
T (2’s com| plement)f—1 OO
e 10010 =-14, 1101011

Detect overflow because
signs of addends and
sum are different!

If n = 6 bits, no overflow, range of numbers —-32 --- +31 :

110010
+ 111001
1/101011 - verify result: 010100
/ (2's complement) + 1
)
igno/re carries 010101 =21 10 magnitude
beyond MSB 50f 15

Overflow Detection Rule (2)

» Overflow occurs when the value affects the sign bit:
adding two positives yields a negative

adding two negatives gives a positive

subtract a negative from a positive and get a negative
subtract a positive from a negative and get a positive

* No overflow when adding a positive and a negative
number

* No overflow when subtracting two numbers of same sign

» Consider the operations A + B, and A-B
— Can overflow occur if Bis 0 ? cannot occur !
— Can overflow occurif Ais0? can occur!
(forA-B if B=-21)
[e.g., forn=5: 0-(-16) =+16]
6 of 15

Subtraction with 2's Complement

e A—-B=A+(-B)=A+[B],

=>» Subtraction identical to addition, the sign absorbed by the representation

e Again, the result must be inside the range of the numbers
represented by n-bits.

Otherwise overflow occurs, and the result is not correct.

Example, n =5, therange is —25'=-16 ... 25>'-1=15

+5 00101 +9 01001 -8 11000
— +8 11000 —-+9 10111 - +9 10111
3 \11101 / 0 1/00000 = 0,, 217 1]01111
. 01000_)2 = 25comp\er‘nento +9: "\\‘ - \/‘
1o = e 9,,= 01001 -)f101>1o ignére carries “/ —
ﬁ ., | eyond MSB positive number > overflow
10 7 of 15

Multiplication in Decimal

e An example in decimal:

214,, @14 214
450 g @ B <45
5 x 214 x100 1070

+4 x 214 x101 + 8560

=9630

e We do 214 x 5 = 1070 and then add to it the result of
214 x 4 = 856 right-shifted by one column.

(1) For each digit of Multiplier, multiply Multiplicand by it.
(2) Multiply the product by the order of the digit (><10)
i.e., shift it by one to the left: Y

bbbb

+cccc0

+dddd00
+eeee000 ©IC. - 8 of 15

Multiplication in Binary

e Multiplying in binary follows the same form as in decimal:

=9630

11010110 “A LA
x 00101101 x 00101101 «B;..B,
multiplier's LSB: 1[x 11010110 x 20 11010110
000000000
1/x 11010110 x 22 1101011000
1/x 11010110 x 28 » 11010110000
000000000000
1/x 11010110 x 25 1101011000000
00000000000000
multiplier's MSB: + | 0] + 000000000000000

= 0010010110011110 « Py ... P,

e Product P is composed purely of selecting, shifting and
adding multiplicand A. The ith bit of multiplier B indicates
whether a shifted version of A is to be selected in the it" row of
the sum.

90of 15

Multiplication in Binary

Because there are only two digits in
binary (0 and 1). The multiplication
algorithm becomes only:

1. Shift Multiplicand

2. Multiply Shifted Multiplicand by 1 or 0

3. Add the Shifted Multiplicands

So we can perform multiplication using
just full adders and a little logic for
selection, in a layout which performs the
shifting.

10 of 15

Multiplication with Partial Products

e In digital systems, more convenient to work with partial

products, instead of listing all shifted multiplicands and then adding them

00 gy S 1010

<t (

multiplier's LSB: |1

-

multiplier's MSB: |4

=110,, B®

T x_10M1

0000
+ 1010

1010
+ 10100

11110
+ 000000

011110
+ 1010000

= 01101110

110f 15

Multiplication with 2's Complement (1)

e Two's complement multiplication works the same as unsigned

multiplication:

shifted multiplicand is weighted by the multiplier bit, except for the MSB which,
when “1” (i.e., negative multiplier), has a negative weight

1010

. x 101

00000
+ 11010

111010
+ 110100

1101110
+ 0000000

11101110
+ 00110000

("= 00011110

-6
X __5 » P
[
\
\
o
0
1
=30 P
[1010], = 0101 ‘
1 |
o1 —

12 of 15

Multiplication with 2's Complement (2)

multiplication:

when multiplier is positive, its MSB has zero weight:

e Two’s complement multiplication works the same as unsigned

6 1010
x +5 BP __x 0101
// 00000
/ 1 + 11010
\ 111010
\\\\ 0 + 000000
~ 1111010
1 + 1101000
11100010
0]+ 00000000
=30 P» ~ =11100010
v —
[11100010], = 00011101
) 1
verify the result: 00011110 = 30,4 13 0f 15

Decimal Division

&
1. Select most-significant digit
from Dividend to compare to Divisor
8<21
2. It's smaller than Divisor; .-~
so, consider two digits

82> 21

3. Find greatest d (from 1 to 9)
that satisfies:

82221xd

4. Determine d using: L,
o Algorithm that increases d until
- either d x 21 > 82; use (d-1)
-ord=9

« Intuition (guessing) when done by human

- Tg2r | 21
——",—‘—’ _—
-7 827 21
82 >21x1 =21 —
82 >21%x2 =42 827 | 21
2 > 21 = —63
> 22 < 21:34 :6834 E 39 < quotient
A
= use 3 = (4-1) \\?
~ M- ~~ ! |
197 > 21x1 < -pac--197 W
\ -189 ‘1".
- . 189 |
ks 197 >21x8 \\ 8 (_,/,," remainder
197 > 21x9 = 189 ‘\\,/;/
—use9 —— [T -

14 of 15

Binary

Division

Many steps before finding a number > Divisor.
Presence of leading Os disturbs the conventional
algorithm.

Extract digits from Dividend and shift them to
align them with Divisor.

In binary, d can only take the value 0 or 1.

Means:
Divisor x d < Extracted Digits from Dividend

=>d=1

Quotient: Shift left serial input from LSB. |

~. | Every step the Extracted Digits are compared to the Divisor:
If Divisor x 1 > Extracted Digits = Shift in 0 in the Quotient
If Divisor x 1 < Extracted Digits = Shift in 1 in the Quotient

— 827,, 001100111011,
+ 21, + 000000010101,
39,, =000001000111,
8., 000000001000,
001100111011 | 000000010101
-t
000000011001 “"‘ﬂ
— 000000010101/ | |y 000001000111
——————————— \\ v
000000000100 . .
000000100110 N ~
- 000000010101 N "
000000010001 R .
000000100011 s hN
— 000000010101 "
000000001110 :
000000011101
— 000000010101
000000001000

15 0f 15

