
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #3: Addition, Subtraction, Multiplication, and Division

2 of 15

2’s-Complement Representation

n-bit 2’s-complement representation of D:

How to compute it?

[D]2 = 2n – D2

1. Complement the bits
2. Add 1 to the Least Significant Bit
3. Discard carry out from Most Significant Bit

[D]2 = (2n – 1 – D2) + 1

2n – 1:
– D:

1 1 1 n bits
– dn–1dn–2 d0

dn–1dn–2 d0
+ 1

[D]2

1 – di = di
1 – 0 = 1

1 – 1 = 0

RECALL FROM THE LAST LECTURE:

2

3 of 15

Addition with 2’s Complement
 Added by ordinary binary addition, ignoring any carries beyond the MSB

 The result must be inside the range of the numbers
represented by n-bits.

Otherwise overflow occurs, and the result is not correct.

Example, number of bits limited to n = 5

Then, the range is –25–1 = –16 25–1 – 1 = +15 ~ 32 numbers

negative number resulted from adding
2 positive numbers overflow

+510 00101
+ +710 00111

+1210 01100

+9 01001
+ –8 11000

+1 1|00001

2’s complement of +8:

810 = 01000 10111
1

11000 = –810

ignore carries
beyond MSB

+12 01100
+ +7 00111

+19 10011

4 of 15

Carries and Overflow
• We ignore carries beyond MSB because

we are adding two’s complement numbers
as if they were unsigned numbers

• A carry beyond MSB is an artifact of
adding the sign bits
and does not indicate overflow

• For example, every time we add two negative
numbers, a carry beyond MSB occurs, but not
necessarily an overflow

• On the other hand, in a previous-slide example,
overflow occurred without a carry beyond MSB

3

5 of 15

Overflow Detection Rule (1)
Overflow: If the sign of the addends is the same

but different from the sign of the result.

If n = 6 bits, no overflow, range of numbers –32 +31 :

1410 = 01110 10001 ; –710 = 11001
1

10010 = –1410

–14
–7

–21 < –16
(2’s complement)

Detect overflow because
signs of addends and
sum are different!

 10010
11001

1|01011

n = 5 bits

110010
+ 111001

1|101011 verify result: 010100
+ 1

010101 = 2110 magnitude

(2’s complement)

ignore carries
beyond MSB

6 of 15

Overflow Detection Rule (2)
• Overflow occurs when the value affects the sign bit:

– adding two positives yields a negative
– adding two negatives gives a positive
– subtract a negative from a positive and get a negative
– subtract a positive from a negative and get a positive

• No overflow when adding a positive and a negative
number

• No overflow when subtracting two numbers of same sign

• Consider the operations A + B, and A – B
– Can overflow occur if B is 0 ?
– Can overflow occur if A is 0 ?

cannot occur !

can occur !
(for A – B if B = –2n–1)
[e.g., for n=5: 0 – (–16) = +16]

4

7 of 15

Subtraction with 2’s Complement
 A – B = A + (–B) = A + [B]2
 Subtraction identical to addition, the sign absorbed by the representation

 Again, the result must be inside the range of the numbers
represented by n-bits.

Otherwise overflow occurs, and the result is not correct.

Example, n = 5, the range is –25–1 = –16 25–1 – 1 = 15

positive number overflow

+5 00101
– +8 11000

–3 11101

+9 01001
– +9 10111

0 1|00000 = 010

2’s complement of +9:

910 = 01001 10110
1

10111 = –910

ignore carries
beyond MSB

–8 11000
– +9 10111

–17 1|01111
810 = 01000 10111

1

11000 = –810

8 of 15

Multiplication in Decimal
 An example in decimal:

 We do 214 × 5 = 1070 and then add to it the result of
214 × 4 = 856 right-shifted by one column.

214
× 45

1070
+ 8560

= 9630

zzz
× aaaa

bbbb
+ cccc0

+ dddd00
+ eeee000 etc. …

multiplicand
× multiplier

= product

(1) For each digit of Multiplier, multiply Multiplicand by it.
(2) Multiply the product by the order of the digit (×10i),

i.e., shift it by one to the left:

214
× 45

5 × 214 ×100

+ 4 × 214 ×101

21410

× 4510

5

9 of 15

Multiplication in Binary
 Multiplying in binary follows the same form as in decimal:

 Product P is composed purely of selecting, shifting and
adding multiplicand A. The ith bit of multiplier B indicates
whether a shifted version of A is to be selected in the ith row of
the sum.

11010110
× 00101101

0000000011010110
0000000000000000
0000001101011000
0000011010110000
0000000000000000
0001101011000000
0000000000000000

+ 0000000000000000

= 0010010110011110

 A7 … A0

 B7 … B0

 P15 … P0

11010110
× 00101101

1 × 11010110 × 20

0 × 11010110 × 21

1 × 11010110 × 22

1 × 11010110 × 23

0 × 11010110 × 24

1 × 11010110 × 25

0 × 11010110 × 26

+ 0 × 11010110 × 27

multiplicand
× multiplier

shifted
multiplicands

= product

214
× 45

= 9630

multiplier’s LSB:

multiplier’s MSB:

10 of 15

Multiplication in Binary
• Because there are only two digits in

binary (0 and 1). The multiplication
algorithm becomes only:

1. Shift Multiplicand

2. Multiply Shifted Multiplicand by 1 or 0

3. Add the Shifted Multiplicands

• So we can perform multiplication using
just full adders and a little logic for
selection, in a layout which performs the
shifting.

6

11 of 15

Multiplication with Partial Products

 In digital systems, more convenient to work with partial
products, instead of listing all shifted multiplicands and then adding them

1010
× 1011

00000000
+ 1010

00001010
+ 10100

00011110
+ 000000

00011110
+ 1010000

= 01101110

1

1

0

1

1010

× 1110

= 11010

multiplicand
multiplier

partial product
shifted multiplicand

partial product
shifted multiplicand

partial product
shifted multiplicand

partial product
shifted multiplicand

product

multiplier’s LSB:

multiplier’s MSB:

12 of 15

Multiplication with 2’s Complement (1)
 Two’s complement multiplication works the same as unsigned
multiplication:
shifted multiplicand is weighted by the multiplier bit, except for the MSB which,
when “1” (i.e., negative multiplier), has a negative weight

1010
× 1011

00000
+ 11010

111010
+ 110100

1101110
+ 0000000

11101110
+ 00110000

= 00011110

1

1

0

1

–6
× –5

= 30

multiplicand
multiplier

partial product
shifted multiplicand

partial product
shifted multiplicand

partial product
shifted multiplicand

partial product
shifted and negated multiplicand

product
[1010]2 = 0101

1
0110

7

13 of 15

Multiplication with 2’s Complement (2)
 Two’s complement multiplication works the same as unsigned
multiplication:
when multiplier is positive, its MSB has zero weight:

1010
× 0101

00000
+ 11010

111010
+ 000000

1111010
+ 1101000

11100010
+ 00000000

= 11100010

1

0

1

0

–6
× +5

= –30

multiplicand
multiplier

partial product
shifted multiplicand

partial product
shifted multiplicand

partial product
shifted multiplicand

partial product
shifted multiplicand, zero weighted

product

[11100010]2 = 00011101
1

00011110 = 3010
verify the result:

14 of 15

Decimal Division

827 21

8 < 21

82 > 21
82 > 21×1 = 21
82 > 21×2 = 42
82 > 21×3 = 63
82 < 21× 4 = 84
 use 3 = (4–1)

1. Select most-significant digit
from Dividend to compare to Divisor

2. It’s smaller than Divisor;
so, consider two digits

827 21

3. Find greatest d (from 1 to 9)
that satisfies:

82 ≥ 21 × d

827
–63

19

197
–189

8

21

4. Determine d using:
 Intuition (guessing) when done by human
 Algorithm that increases d until

- either d × 21 > 82; use (d–1)
- or d = 9

39

197 > 21×1
…

197 > 21×8
197 > 21×9 = 189
 use 9

 quotient

 remainder

82710

 2110

= 3910

810

dividend
divisor

quotient
remainder

8

15 of 15

Binary Division

001100111011 000000010101

Many steps before finding a number > Divisor.
Presence of leading 0s disturbs the conventional
algorithm.

000000011001 Extract digits from Dividend and shift them to
align them with Divisor.

Every step the Extracted Digits are compared to the Divisor:
If Divisor × 1 > Extracted Digits Shift in 0 in the Quotient
If Divisor × 1 ≤ Extracted Digits Shift in 1 in the Quotient

– 000000010101

000000000100
000000100110

000001000111

– 000000010101

000000010001
000000100011

– 000000010101

000000001110
000000011101

– 000000010101

000000001000

In binary, d can only take the value 0 or 1.
Means:
Divisor × d ≤ Extracted Digits from Dividend
 d = 1

Quotient: Shift left serial input from LSB.

82710

 2110

= 3910

810

dividend
divisor

quotient
remainder

0011001110112

 0000000101012

= 0000010001112

0000000010002

