14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013
Lecture \#3: Addition, Subtraction, Multiplication, and Division

2's-Complement Representation

n-bit 2's-complement representation of $D: \quad[D]_{2}=2^{n}-D_{2}$
How to compute it?

$$
[D]_{2}=\left(2^{n}-1-D_{2}\right)+1
$$

($2^{n}-1: \quad 1 \quad 1 \quad \cdots 1 \leftarrow n$ bits

1. Complement the bits
2. Add 1 to the Least Significant Bit
3. Discard carry out from Most Significant Bit

Addition with 2's Complement

- Added by ordinary binary addition, ignoring any carries beyond the MSB
- The result must be inside the range of the numbers represented by n-bits.
Otherwise overflow occurs, and the result is not correct.

Example, number of bits limited to $n=5$
Then, the range is $-2^{5-1}=\mathbf{- 1 6} \quad \cdots \quad 2^{5-1}-1=+15 \quad \sim 32$ numbers
$\begin{array}{rrrrrr}+5_{10} & 00101 & +9 & 01001 & +12 & 01100 \\ ++7_{10} & \frac{00111}{+12_{10}} & \frac{+-8}{01100} & \frac{11000}{+1} & ++7 & \frac{00111}{100001}\end{array}$

2's complement of +8 :
$8_{10}=01000 \rightarrow 10111$

Carries and Overflow

- We ignore carries beyond MSB because we are adding two's complement numbers as if they were unsigned numbers
- A carry beyond MSB is an artifact of adding the sign bits and does not indicate overflow
- For example, every time we add two negative numbers, a carry beyond MSB occurs, but not necessarily an overflow
- On the other hand, in a previous-slide example, overflow occurred without a carry beyond MSB

Overflow Detection Rule (1)

Overflow: If the sign of the addends is the same but different from the sign of the result.

If $n=6$ bits, no overflow, range of numbers $-32 \cdots+31$:

Overflow Detection Rule (2)

- Overflow occurs when the value affects the sign bit:
- adding two positives yields a negative
- adding two negatives gives a positive
- subtract a negative from a positive and get a negative
- subtract a positive from a negative and get a positive
- No overflow when adding a positive and a negative number
- No overflow when subtracting two numbers of same sign
- Consider the operations $A+B$, and $A-B$
- Can overflow occur if B is 0 ? cannot occur!
- Can overflow occur if A is 0 ? can occur !
(for $A-B$ if $B=-2^{n-1}$)
[e.g., for $n=5$: $0-(-16)=+16$]

Subtraction with 2's Complement

- $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})=\mathrm{A}+[\mathrm{B}]_{2}$
\rightarrow Subtraction identical to addition, the sign absorbed by the representation
- Again, the result must be inside the range of the numbers represented by n -bits.
Otherwise overflow occurs, and the result is not correct.

$$
\text { Example, } n=5 \text {, the range is }-2^{5-1}=-16 \quad \ldots \quad 2^{5-1}-1=15
$$

Multiplication in Decimal

- An example in decimal:

- We do $214 \times 5=1070$ and then add to it the result of $214 \times 4=856$ right-shifted by one column.
(1) For each digit of Multiplier, multiply Multiplicand by it.
(2) Multiply the product by the order of the digit $\left(\times 10^{i}\right)$, i.e., shift it by one to the left:

$$
\begin{array}{r}
\text { zZZ } \\
\times \frac{\text { aaaa }}{\mathrm{bbbb}} \\
+\operatorname{cccc} 0 \\
+ \text { dddd00 } \\
+ \text { eeee000 } \\
\text { etc. } . .
\end{array}
$$

Multiplication in Binary

- Multiplying in binary follows the same form as in decimal:

- Product P is composed purely of selecting, shifting and adding multiplicand A. The $\mathrm{i}^{\text {th }}$ bit of multiplier B indicates whether a shifted version of A is to be selected in the $i^{\text {th }}$ row of the sum.

Multiplication in Binary

- Because there are only two digits in binary (0 and 1). The multiplication algorithm becomes only:

1. Shift Multiplicand
2. Multiply Shifted Multiplicand by 1 or 0
3. Add the Shifted Multiplicands

- So we can perform multiplication using just full adders and a little logic for selection, in a layout which performs the shifting.

Multiplication with Partial Products

- In digital systems, more convenient to work with partial
products, instead of listing all shifted multiplicands and then adding them

Multiplication with 2's Complement (1)

- Two's complement multiplication works the same as unsigned multiplication:
shifted multiplicand is weighted by the multiplier bit, except for the MSB which, when " 1 " (i.e., negative multiplier), has a negative weight

Multiplication with 2's Complement (2)

- Two's complement multiplication works the same as unsigned multiplication:
when multiplier is positive, its MSB has zero weight:

