
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #24: Verilog Time Dimension and Test Benches

2 of 10

Verilog Functions and Tasks
 Verilog function accepts several inputs and returns a

single result
function result-type function-name ;

input declarations
variable declarations
parameter declarations

procedural-statement
endfunction

 Verilog task is similar to a function, except it does not
return a result

 Built-in system tasks and functions:
– $display = prints formatted signal values to “standard output”

(similar to C printf function)
– $write = similar to $display, but no newline char at end
– $monitor = similar to $display, but remain active continuously

and prints the listed signals whenever any one changes
– $time = returns current simulated time

[behavioral style]

module VrSillierXOR (...);
port-declarations

function Inhibit ;
input In, invIn;

Inhibit = In & ~invIn;
endfunction

always @ (in1 or in2)
begin

inh1 = Inhibit (in1, in2);
...

end

module VrSillierXOR (...);
port-declarations

function Inhibit ;
input In, invIn;

Inhibit = In & ~invIn;
endfunction

always @ (in1 or in2)
begin

inh1 = Inhibit (in1, in2);
...

end

2

3 of 10

Abstract Model Functionality
 Abstract functionality is

represented using
procedures

 Begin with the keywords
initial or always
– An initial procedure

will execute once,
beginning at simulated
time zero

– always procedures
model the continuous
operation of hardware

 Procedures contain
programming
statements

 Multiple statements are
grouped with begin
and end

module FullAdder(input wire a,
input wire b,
input wire ci,
output reg sum, co);

initial
begin

sum = 0;
co = 0;

end

always @(a or b or ci)
begin

{co, sum} = a + b + ci;
end

endmodule

[behavioral style]

4 of 10

Procedural Block Activation
 All concurrent statements (procedures) automatically

become active at time zero

 Note: Verilog procedures are not like software
subroutines, which must be called in order to be activated

initial
begin

a = 0;
b = 0;
#10 a = 1;
...

end

initial
begin

a = 0;
b = 0;
#10 a = 1;
...

end

initial
begin

sum = 0;
end

initial
begin

sum = 0;
end

always @(a or b)
begin

sum = a + b;
end

always @(a or b)
begin

sum = a + b;
end

always @(posedge clk)
begin

q <= sum;
end

always @(posedge clk)
begin

q <= sum;
end

Time 0

3

5 of 10

Verilog Time Scale
 Default time scale is 1 ps (picoseconds), but can

be changed using the `timescale compiler
directive

`timescale time-unit / time-precision
– Example:

`timescale 1 ns / 100 ps

module Vrprimedly (N, F);

... // Wakerly, Table 5-97, page 330

assign #2 N3L_No = ~N[3];

 In procedural blocks of code, delays specified by
writing # symbol and a delay number:
– At the start of an always block (seen in the next slide)
– After the = or <= symbol in a procedural assignment

[[VerilogVerilog time dimension]time dimension]

2 ns delay for the assign statement’s operation

6 of 10

Controlling Verilog Procedures
 initial and always procedures may contain 3 types of timing:

1. Time based delays — the # token
– Delays execution of the next statement for a specific amount of time

always // delayed for 2 simulation time units
#2 sum = a + b;

2. Edge sensitive delays — the @ token
– Delays execution of the next statement until a change occurs on a signal

always // delayed until positive edge of clock
@(posedge clock) sum <= a + b;

3. Level sensitive delays — the wait keyword
– Delays execution of the next statement until a logic test evaluates as TRUE

always // delayed until 'enable' becomes '1'
wait (enable == 1) sum = a + b;

 Each time control delays execution of the next statement or statement
group

[[VerilogVerilog time dimension]time dimension]

4

7 of 10

Verilog Test Benches
 Unit under test (UUT) = the entity/module being tested

– Also called Device under test (DUT)
 Verilog Test Bench consists of:

– UUT
– UUT stimulus, to provide inputs to the UUT
– UUT monitor, to capture and analyze the UUT output

Verilog
UUT

UUT
Stimulus

UUT
Monitor

Verilog Test Bench

inputs outputs

8 of 10

Example Verilog Test Bench (1)
 Unit under test: mux2

(described in Lecture #23)

/* 2-input multiplexor test bench #1 */
`timescale 1 ns / 100 ps
module mux2_tb1 ();

wire m_out;
reg m_sel, m_in0, m_in1;

mux2 m2_uut (m_in0, m_in1, m_sel, m_out);

initial begin
m_in0 = 1'b0;
m_in1 = 1'b0;
m_sel = 1'b0;
$display ("time: %d, output: %d", $time, m_out);
#5 // wait 5 ns before continuing
m_in0 = 1'b1;
m_sel = 1'b1;
$display ("time: %d, output: %d", $time, m_out);
$finish; // task call ends simulation

end
endmodule // mux2_tb1

/* 2-input multiplexor in gates */
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
wire s0,w0,w1;
not (s0, select);
and (w0, s0, in0),

(w1, select, in1);
or (out, w0, w1);

endmodule // mux2

Two concurrent statements:

 Instance statement

 initial procedure

Both automatically become
active at time zero

The initial procedure
changes the input
values for UUT as it
runs continuously

Note blocking assignments

out
in1

in0

select

0

1

5

9 of 10

 Now, all the data is
stored in “test_vectors.”

 The most significant
bit, is assigned to “in0”,
the next to “in1” and
the last to “select”.

 In the second
initial block, we
generate all the test
vectors, 000 through
111, in a for loop.

 Note that the #5 waits
5 ns before going to
the next test vector.

Example Verilog Test Bench (2)
 Generating Test Vectors

/* 2-input multiplexor test bench #2 */
`timescale 1 ns / 100 ps
module mux2_tb2 ();

wire m_out;
reg [2:0] test_vectors; // 3-bit wide test vector
integer i;

mux2 m2_uut (.in0(test_vectors[2]), .in1(test_vectors[1]),
.select(test_vectors[0]), .out(m_out));

initial begin // initialize all variables
test_vectors = 3'b000;

end

initial begin
for (i=0; i<7; i=i+1) begin

#5 // wait 5 ns before continuing
test_vectors = test_vectors + 1;
$display ("time: %d, output: %d", $time, m_out);

end
end

endmodule // mux2_tb2

out
in1

in0

select

0

1

/* 2-input multiplexor in gates */
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
wire s0,w0,w1;
not (s0, select);
and (w0, s0, in0),

(w1, select, in1);
or (out, w0, w1);

endmodule // mux2

10 of 10

Self-Checking Test Bench
 SystemVerilog assert statement checks if specified condition is true;

if not, it executes the else statement
 The $error system task prints and error message describing the assertion failure

/* 2-input multiplexor test bench #3 */
`timescale 1 ns / 100 ps
module mux2_tb3 ();

wire m_out;
reg m_sel, m_in0, m_in1;

mux2 m2_uut (m_in0, m_in1, m_sel, m_out);

initial begin
m_in0 = 1'b0;
m_in1 = 1'b0;
m_sel = 1'b0;
assert (m_out === 0) else $error("000 failed");
#5 // wait 5 ns
m_in0 = 1'b1;
m_sel = 1'b1; // selects m_in1, which is 1'b0
assert (m_out === 0) else $error("101 failed");
$finish;

end
endmodule // mux2_tb3

