14:332:231
DIGITAL LOGIC DESIGN

lvan Marsic, Rutgers University
Electrical & Computer Engineering
Fall 2013

Lecture #24: Verilog Time Dimension and Test Benches

Verilog Functions and Tasks

[behavioral style]

= Verilog function accepts several inputs and returns a

Single result module VrSillierXoR (...)3
function result-type function-name ; poredeclaratons
)) 1function Inhibit ; i
input declarations L P ehibie = In e ~dnvin:]
variable declarations "1 endfunction i
parameter declarations | always 6 Ginior ind)
{ begin
procedural-statement t---»inhl = Inhibit (inl. n2):
endfunction end

= Verilog task is similar to a function, except it does not
return a result

® Built-in system tasks and functions:

— $display = prints formatted signal values to “standard output”
(similar to C printf function)

— $write =similar to $display, but no newline char at end

— $monitor = similar to $display, but remain active continuously
and prints the listed signals whenever any one changes

— $time = returns current simulated time
2 of 10

Abstract Model Functionality

Abstract functionality is
represented using
procedures

Begin with the keywords

inittial or always

— An initial procedure
will execute once,
beginning at simulated
time zero

— always procedures
model the continuous
operation of hardware

Procedures contain
programming
statements

Multiple statements are
grouped with begin
and end

[behavioral style]

module FullAdder(input wire a,
input wire b,
input wire ci,
output reg sum, co);

initial
begin
sum = 0;
co = 0;
end

always @(a or b or ci)
begin
{co, sum} = a + b + ci;

(i) end

endmodule

30f10

Procedural Block Activation

= All concurrent statements (procedures) automatically
become active at time zero

Time 0

A

Y A

initial

begin
0; sum = 03
0; end
a

always @(a or b)
begin
sum = a + b;
end

always @(posedge clk)
begin
q <= sum;
end

® Note: Verilog procedures are not like software
subroutines, which must be called in order to be activated

4 of 10

- Verilog Time Scale

= Default time scale is 1 ps (picoseconds), but can
be changed using the ‘timescale compiler
directive
“timescale time-unit/time-precision

— Example:
“timescale 1 ns / 100 ps
module Vrprimedly (N, F);
// Wakerly, Table 5-97, page 330
assign| #2 IN3L_No = ~N[3];

,,,,, R

“7--- 2 ns delay for the assign statement’s operation

® |n procedural blocks of code, delays specified by
writing # symbol and a delay number:
— At the start of an always block (seen in the next slide)
— After the = or <= symbol in a procedural assignment

5 of 10

Controlling Verilog Procedures

p==[.Veniloggime dimension.Jy
= initial and always procedures may contain 3 types of timing:

1. Time based delays — the # token
— Delays execution of the next statement for a specific amount of time
always // delayed for 2 simulation time units
#2 sum = a + b;

2. Edge sensitive delays — the @ token
— Delays execution of the next statement until a change occurs on a signal
always // delayed until positive edge of clock
@(posedge clock) sum <= a + b;

3. Level sensitive delays — the wa it keyword
— Delays execution of the next statement until a logic test evaluates as TRUE
always // delayed until "enable® becomes "1*
wait (enable == 1) sum = a + b;

= Each time control delays execution of the next statement or statement
group

6 of 10

Verilog Test Benches

= Unit under test (UUT) = the entity/module being tested
— Also called Device under test (DUT)

= Verilog Test Bench consists of:

- UuUT

— UUT stimulus, to provide inputs to the UUT
— UUT monitor, to capture and analyze the UUT output

uuT
Stimulus

Verilog Test Bench

—
—
—

inputs

Verilog
uuT

—
—>
—>

outputs

uuT
Monitor

7 of 10

Example Verilog Test Bench (1)

® Unit under test: mux2
(described in Lecture #23)

/* 2-input multiplexor test bench #1 */

“timescale 1 ns / 100 ps
module mux2_tbl ();
wire m_out;

reg m_sel, m_in0O, m_inl;

mux2 m2_uut (m_in0O, m_inl, m_sel, m_out);

al be
_in0
_inl
m_sel

init

S

3
i Qe

n
1°b0;
17b0;
17b0;

$display ("time: %d, output: %d"”, $time,
#5 // wait 5 ns before continuing

m_in0 = 1%b1;
m_sel = 1"b1;

$aisplay ("time: %d, output: %d", $time,
$finish; // task call ends simulation

end
endmodule // mux2_tbl

select

in0
inl

0
1

out

1
/* 2-input multiplexor in gates */
module mux2 (in0, inl, select, out);

input in0,inl,select;

output out;

wire sO,w0,wl;

not (sO, select);

and (w0, sO, in0),

(w1, select, inl);

or (out, w0, wl);
endmodulle // mux2

m_out);

m_out);

Two concurrent statements:

"= |nstance statement
"= initial procedure

Both automatically become
active at time zero

The initial procedure
changes the input
values for UUT as it
runs continuously

Note blocking assignments

8 of 10

Example Verilog Test Bench (2)

= Generating Test Vectors

in0
in1

/* 2-input multiplexor test bench #2 */

“timescale 1 ns / 100 ps

modulle mux2_tb2 ();
wire m_out;
reg [2:0] test_vectors; // 3-bit wide test vector
integer i;

select

0
1

out

1
/* 2-input multiplexor in gates */
module mux2 (in0, inl, select, out);

input in0,inl,select;

output out;

wire sO,w0,wl;

not (sO, select);

and (w0, sO, in0),

(w1, select, inl);

or (out, w0, wl);

endmodulle // mux2

mux2 m2_uut (-inO(test_vectors[2]), .inl(test_vectors[1]),|

.select(test_vectors[0]), .out(m_out));

initial begin // initialize all variables
test_vectors = 3"b000;
end

initial begin
for (i=0; i<7; i=i+1) begin
#5 // wait 5 ns before continuing
test_vectors = test_vectors + 1;

$display ('time: %d, output: %d", $time, m_out);

end
end
endmodule // mux2_tb2

Now, all the data is
stored in “test_vectors.”
The most significant
bit, is assigned to “in0”,
the next to “in1” and
the last to “select”.

In the second
initial block, we
generate all the test
vectors, 000 through
111, in a for loop.
Note that the #5 waits
5 ns before going to
the next test vector.

Self-Checking Test Bench

= SystemVerilog assert statement checks if specified condition is true;

if not, it executes the else statement

" The $error system task prints and error message describing the assertion failure

/* 2-input multiplexor test bench #3 */
“timescale 1 ns / 100 ps
module mux2_tb3 ();

wire m_out;

reg m_sel, m_in0O, m_inl;

mux2 m2_uut (m_in0O, m_inl, m_sel, m_out);

initial begin
m_in0 = 1"b0;
m_inl = 1"b0;
m_sel = 1"b0;
assert (m_out === 0) else $error('000 failed™);
#5 // wait 5 ns

m_in0 = 1"b1;

m_sel = 1"b1; // selects m_inl, which is 1°b0

assert (m_out === 0) else $error (101 failed™);

$Finish;

end
endmodule // mux2_tbh3

10 of 10

