
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #23: Verilog Structural and Behavioral Design

2 of 29

Hardware Description Languages
 Basic idea:

– Language constructs
describe circuits with two
basic forms:

– Structural descriptions:
connections of components
(gates & flip-flops). Nearly
one-to-one correspondence
with schematic diagram
(circuit structure).

– Behavioral descriptions:
use statements (assignments
and tests of logical conditions)
to describe the relationships
between inputs and outputs
(circuit function).

“Structural” example:

Decoder(output x0,x1,x2,x3; inputs a,b)
{

wire a_L, b_L;
inv(b_L, b);
inv(a_L, a);
and(x0, a_L, b_L);
and(x1, a_L, b);
and(x2, a, b_L);
and(x3, a, b);

}

“Behavioral” example:

Decoder(output x0,x1,x2,x3; inputs a,b)
{

case [a b]
00: [x0 x1 x2 x3] = 0x1;
01: [x0 x1 x2 x3] = 0x2;
10: [x0 x1 x2 x3] = 0x4;
11: [x0 x1 x2 x3] = 0x8;

endcase;
}

a_
L

b
_L

x0

x1

x2

x3

a b

[Recall from Lecture #22]

2

3 of 29

Verilog Concurrent Statements
 Concurrent statements specify digital logic operation,

from which a realization is synthesized; 3 common types:

1. Instance statement
– Instantiates a module, used in structural descriptions
– Similar to a constructor call in OO languages (C++, Java, …)

2. Continuous assignment statement
– For behavioral descriptions of combinational circuits

3. always blocks (non-continuous assignments)
– For behavioral descriptions of synchronous sequential circuits

 Concurrent statements “execute” simultaneously and
continuously

– Modeling the continuous operation of hardware where connected
elements affect each other continuously, not just at particular,
ordered time steps

4 of 29

Verilog Built-in Gates
 Built-in gate names are reserved words

and, nand, or, nor ~ any number of inputs per gate

xor, xnor

buf = 1-input noninverting buffer

not = inverter

bufif0, bufif1 = 1-input buffer w/ tri-state out

notif0, notif1 = inverter w/ tri-state outputs

 Other predefined components include
AND-OR-INVERT (sum-of-products) gates
flip-flops, decoders, multiplexers, …

[structural style]

3

5 of 29

Verilog Instance Statement
 Two formats of instance statement:

component-name instance-identifier (expr, expr, …, expr);

component-name instance-identifier (.port-name(expr),
.port-name(expr),
…,

.port-name(expr));

– Multiple instances of the same component/module distinguished by
unique names (“instance-identifier”)

 The 1st format depends on the order in which port names
appear in the original component/module definition
– Expressions listed in the same order as ports to which they connect
– For built-in gates, the defined port order is (output, input, input, …)

• The order among the multiple inputs doesn’t matter
• For built-in three-state buffers and inverters, the defined order is

(output, data-input, enable-input)

 The 2nd format explicitly names the ports
– Recommended because it helps avoid mistakes in coding

1. defined port order

2. named ports

[structural style]

6 of 29

Structural Model - XOR example

 Notes:
– The instantiated gates are not “executed”. They are always active.
– XOR gate already exists as a built-in (only an example – no need to define it)
– Undeclared variables are assumed to be wires. Don’t let this happen to you!

module xor_gate (out, a, b);

input a, b;
output out;
wire a_L, b_L, t1, t2;

not invA (a_L, a);
not invB (b_L, b);
and and1 (t1, a, b_L);
and and2 (t2, b, a_L);
or or1 (out, t1, t2);

endmodule

module name
port list

port declarations

internal signal declarations

built-in gates

instance name/identifier (each must be unique w/in the module)

interconnections (note that output is first)

instance statements:

[structural style]

a

b

out = a  bb_L

a_L

invB
and1

and2

or1
invA

t1

t2

4

7 of 29

Structural Example: 2-to-1 Mux

out
in1

in0

select

0

1

/* 2-input multiplexor in gates */
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
wire s0,w0,w1;

not (s0, select);
and (w0, s0, in0),

(w1, select, in1);
or (out, w0, w1);

endmodule // mux2

C/C++ style comments

built-ins don’t need
instance names

multiple instances can
share the same
“master” name

and (w0, a, b, c, d);

built-in gates can have > 2 inputs
Example:

out

select

in0

in1

s0
w0

w1

[structural style]

8 of 29

Instantiation, Signal Array, Named Ports

out

selct

in0 0

in2

in1 1

2

in3 3

2

module mux4 (in0, in1, in2, in3, selct, out);
input in0,in1,in2,in3;
input [1:0] selct;
output out;
wire w0,w1;

mux2
m_lo (.select(selct[0]), .in0(in0), .in1(in1), .out(w0)),
m_hi (.select(selct[0]), .in0(in2), .in1(in3), .out(w1)),
m_fin (.select(selct[1]), .in0(w0), .in1(w1), .out(out));

endmodule // mux4

/* 2-input multiplexor in gates */
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
wire s0,w0,w1;
not (s0, select);
and (w0, s0, in0),

(w1, select, in1);
or (out, w0, w1);

endmodule // mux2

Signal array. Declares selct[1], selct[0]

Named ports. Highly recommended.

[structural style]

multiple instances
of same module

in1

in0

select[0]

in3

in2 0

1

out

select[1]

0

1

0

1

m_lo

m_hi

m_fin
w0

w1

5

9 of 29

Parameterized Module
 Parameterize structural modules to handle inputs and

outputs of any width
 Example: 3-input majority function

– Outputs “1” if at least two inputs are “1”
OUT = I0·I1 + I1·I2 + I2·I0

module Maj(OUT, I0, I1, I2);
parameter WID = 1;
input [WID–1:0] I0, I1, I2;
output [WID–1:0] OUT;

assign OUT = I0 & I1 | I1 & I2 | I2 & I0;
endmodule;

 When Maj module instantiated using regular syntax, the
parameter WID takes on default value 1

 Instance statement allows parameter substitution using #
– Example: X, Y, Z are 8-bit input vectors, the 8-bit majority function:

Maj #(8) U1 (.OUT(W), .I0(X), .I1(Y), .I2(Z));

 .

[structural style]

10 of 29

Simple Behavioral Model

 Shorthand for explicit instantiation of AND gate (in this case).

 The assignment happens continuously (modeling the continuous
operation of hardware);
therefore, any change on the right-hand-side (RHS) signals is
reflected immediately on the output port (except for the small delay
associated with the implementation of the “&” operation).

 Different from assignment in C that takes place when the program
counter reaches that place in the program.

module and_gate (out, in1, in2);
input in1, in2;
output out;

assign out = in1 & in2;

endmodule connects out to be the AND of in1 and in2

“continuous assignment”

& = AND
| = OR
^ = XOR

[behavioral style]

6

11 of 29

Example: Ripple Adder
module FullAdder(a, b, ci, r, co);

input a, b, ci;
output r, co;

assign r = a ^ b ^ ci;
assign co = a&ci | a&b | b&cin;

endmodule

module Adder(A, B, R);
input [3:0] A;
input [3:0] B;
output [4:0] R;

wire c1, c2, c3;
FullAdder

add0(.a(A[0]), .b(B[0]), .ci(1'b0), .co(c1), .r(R[0])),
add1(.a(A[1]), .b(B[1]), .ci(c1), .co(c2), .r(R[1])),
add2(.a(A[2]), .b(B[2]), .ci(c2), .co(c3), .r(R[2])),
add3(.a(A[3]), .b(B[3]), .ci(c3), .co(R[4]), .r(R[3]));

endmodule

[behavioral style]

a
c
ci

r

co

full adder

[Recall from Lecture #14]
OutputsInputs

11111

10011

10101

01001

10110

01010

01100

00000

corciba

[behavioral]

[structural]

cout

A3B3

R3

A2B2

R2

A1B1

R1

A0B0

R0

0

FA FA FA FA

c1c2c3

12 of 29

Continuous Assignment Statements
 assign net-name = expression;
 assign net-name[bit-indx] = expression;
 assign net-name[msb:lsb] = expression;
 assign net-concatenation = expression;

 Continuous-assignment statements are evaluated
continuously (because hardware elements affect each other continuously, not

just at particular, ordered time steps)
 The order of continuous assignment statements in

a module doesn’t matter
 Continuous-assignment statement is

unconditional, but different values can be
assigned using the conditional operator (? :)

[behavioral style]

7

13 of 29

Continuous Assignment Examples

 assign R = X | (Y & ~Z);

 assign r = &X;

 assign R = (a == 1'b0) ? X : Y;

 assign P = 8'hff;

 assign P = X * Y;

 assign P[7:0] = {4{X[3]}, X[3:0]};

 assign {cout, R} = X + Y + cin;

 assign Y = A << 2;

 assign Y = {A[1], A[0], 1'b0, 1'b0};

example constants

arithmetic operators (use with care!)

example: sign-extension

bit field concatenation

example reduction operator

use of bit-wise Boolean operators

bit shift operator

equivalent bit shift

conditional assignment (= multiplexor)

[behavioral style]

wire [3:0] A, X,Y,R,Z;
wire [7:0] P;
wire r, a, cout, cin;

14 of 29

Non-continuous Assignments
always blocks and procedural code
 Syntax of Verilog always blocks

– always @ (signal-name or … or signal-name)
procedural-statement

– always procedural-statement

 Procedural statements in an always block
execute sequentially, as in software program
– However, always blocks execute concurrently with other

concurrent statements in the module
 Note: assign statements must be used outside
always statements; both are evaluated
concurrently

begin
procedural-statement
...
procedural-statement

end

optional
sensitivity list

[behavioral style]

8

15 of 29

Procedural Sensitivity Lists
 The execution of a statements within a procedure

can be controlled using an event-control sensitivity
list
– An always procedure must re-evaluate the outputs

whenever an “input” changes value
• An “input” is any signal used to determine the value of assignments

 Procedures automatically become active at time zero
 Execution of statements is delayed until a change

occurs on a signal in the “sensitivity list”

always @ (<edge> <signal> or <edge> <signal>)

– <edge> may be posedge (positive) or negedge (negative)
• If no edge is specified, then any transition is used

– Sensitivity to multiple signals is specified using an “or”
separated list

[behavioral style]

16 of 29

always Block Example (1)
 Sensitivity list signals @(...) determine when the always block

executes
– The block is initially suspended and starts executing when any signal in

the sensitivity list changes its value
– This continues until the block executes without any sensitivity-list signal

changing its value

[behavioral style]

module and_or_gate (out, in1, in2, in3);

input in1, in2, in3;

output out;

reg out;

always @ (in1 or in3)

begin

out = (in1 & in2) | in3;

end

endmodule “begin-end block” brackets multiple procedural
statements (not necessary in this example)

keyword

“sensitivity” list, controls when the
following statement is executed.
Note that change in in2 will NOT
trigger the statement!

9

17 of 29

A Combinational Logic Sensitivity
 Verilog features a “wildcard” token to indicate a

combinational logic sensitivity list
– The @* token is a time control which indicates that the control is

automatically sensitive to any change on any “input” to the
statement or group-of-statements that follows

• An “input” is any signal whose value is read by the statement or
statement group

 SystemVerilog introduced always_comb for modeling
combinational logic
– The simulator infers the sensitivity list to be all variables from the

contained statements

always @(sel or a or b or c or d)
case (sel)

2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
2'b11: y = d;

endcase

always @(sel or a or b or c or d)
case (sel)

2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
2'b11: y = d;

endcase

always @*
case (sel)

2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
2'b11: y = d;

endcase

always @*
case (sel)

2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
2'b11: y = d;

endcase

equivalent

Note: case statement is defined later.

always_comb
case (sel)

2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
2'b11: y = d;

endcase

always_comb
case (sel)

2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
2'b11: y = d;

endcase

equivalent

[behavioral style]

18 of 29

Verilog Procedural Statements
 Blocking assignment: variable-name = expression;

– Evaluates the expression immediately and assigns to variable

 Nonblocking assignment: variable-name <= expression;
– Evaluates the expression immediately but does NOT assign to variable until

an infinitesimal delay after the always block has completed execution

 begin-end block
– Encloses a list of procedural statements that execute sequentially

 if statement
– A condition (logical expression) is tested; if true the enclosed statement is

executed

 case statement
– A “selection expression” followed by a list of “choices” and corresponding

procedural statements

 Looping statements: for, while, repeat
– Execute the enclosed procedural statements for a given number of iterations

[behavioral style]

10

19 of 29

Blocking vs. Nonblocking Statements
 Blocking assignment:

variable-name = expression;
– “immediate assignment” or within a specifiable delay
– Evaluates the expression immediately and assigns to

variable
– Use blocking assignments to create combinational logic

 Nonblocking assignment:
variable-name <= expression;

– “nonblocking and slightly deferred assignment” or “late
assignment”

– Evaluates the expression immediately but does NOT
assign to variable until an infinitesimal delay after the
always block has completed execution

– Use nonblocking assignments to create sequential logic

[behavioral style]

20 of 29

always Block Example (2)
 Sensitivity list signals @(...) determine when the always block executes

– For example, the flip-flop includes only clk in the sensitivity list
– Flip-flop remembers its old value of q until the next rising edge of the clk, even if

d changes in the interim
– In contrast, continuous assignment statements (assign) are reevaluated anytime

any of the inputs on the right hand side changes
therefore, such code necessarily describes combinational logic

[behavioral style]

module register (//a vector of flip-flops

input logic clk,

input logic [3:0] d;

output logic [3:0] q);

always_ff @ (posedge clk)

q <= d;

endmodule
nonblocking assignment

keyword in SystemVerilog

“sensitivity” list,
triggers the action in
the statement body

 SystemVerilog introduced always_ff, always_latch, and always_comb
(seen above) to imply flip-flops, latches, or combinational logic

 This reduces the risk of common errors

11

21 of 29

if statement
 A condition (logical expression) is tested; if true the

enclosed procedural statement is executed
 Nested if-else example:

module mux4 (in0, in1, in2, in3, select, out);

input in0,in1,in2,in3;

input [1:0] select;

output out;

reg out;

always @ (in0 in1 in2 in3 select)

if (select == 2'b00) out=in0;

else if (select == 2'b01) out=in1;

else if (select == 2'b10) out=in2;

else out=in3;

endmodule // mux4

 Nested if structure leads to “priority logic” structure, with different
delays for different inputs (in3 to out delay > than in0 to out delay).
case statement treats all inputs the same …

keyword

[behavioral style]

22 of 29

case statement
 Evaluates the “selection expression,” finds the first “choice” that

matches the expression’s value and executes the corresponding
procedural statement

 case statement example:

module mux4 (in0, in1, in2, in3, select, out);

input in0,in1,in2,in3;

input [1:0] select;

output out;

reg out;

always @ (in0 in1 in2 in3 select)

case (select)

2'b00: out=in0;

2'b01: out=in1;

2'b10: out=in2;

2'b11: out=in3;

endcase

endmodule // mux4

keyword

The statement(s) corresponding
to whichever constant matches
“select” get applied.

Recall that we could use a
“wildcard” token * to indicate a
combinational logic sensitivity list
or always_comb in SystemVerilog

always @*

case (select)

...

endcase

[behavioral style]

12

23 of 29

Incomplete case statement
 Listed choices may not be “all inclusive”—some possible

values of the selection expression may be missing
 Incomplete case statement example:

module mux3 (in0, in1, in2, select, out);

input in0,in1,in2;

input [1:0] select;

output reg out;

always @ (in0 in1 in2 select)

case (select)

2'b00: out=in0;

2'b01: out=in1;

2'b10: out=in2;

endcase

endmodule // mux3

If sel = 2'b11 = 3, mux will
output the previous value!
—inferred an unwanted latch

Inferring an unwanted latch can be
prevented with a default statement:

default: out=1'bx;

[behavioral style]

24 of 29

for looping statement
 Syntax of a Verilog for statement:

for (loop-index = first-expr; logical expression; loop-idx = next-expr)
procedural-statement

 for statement example — prime-number detector:

module Vprimebv (input [15:0] N, output reg F);

reg prime;

integer i;

always @ (N) begin

prime = 1; // initial value

if ((N==1) || (N==2)) prime = 1; // special cases

else if ((N % 2) == 0) prime = 0; // even, not prime

else for (i = 3; i <= 255; i = i+2)

if ((N % i) == 0) && (N != i))

prime = 0; // set to 0 if N is divisible by any i

if (prime==i) F = 1; else F = 0;

end

endmodule // Vprimebv

keyword

i = loop-index

for statement

[behavioral style]

13

25 of 29

Behavioral vs. Structural
 Rule of thumb:

– Behavioral doesn’t have sub-components

– Structural has sub-components:
• Instantiated Modules

• Instantiated Gates

• Instantiated Primitives

 Most levels are mixed

26 of 29

Behavioral Example
 Behavioral only

 No instantiations

14

27 of 29

Behavioral and Structural
 Behavioral:

– Adder function

– Register function

 Structural:
– Top module

– Two instantiations

28 of 29

Structural Low-level Details

15

29 of 29

Design Strategy
 Generally, complex systems are designed

hierarchically

 The overall system is described structurally by
instantiating its major components (“subsystems”)

 Each subsystem is described structurally from its
building blocks …

 Continued recursively until pieces are simple
enough to describe behaviorally

 Recommended to avoid (at least minimize) mixing
structural and behavioral descriptions within a
single module

