
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #22: Introduction to Verilog

2 of 21

Hardware Description Languages
 Basic idea:

– Language constructs describe
circuits with two basic forms:

– Structural descriptions:
connections of components (gates &
flip-flops). Nearly one-to-one
correspondence with schematic
diagram (circuit structure).

– Behavioral descriptions: use
statements (assignments and tests of
logical conditions) to describe the
relationships between inputs and
outputs (circuit function).

 Originally invented for simulation
– Now “logic synthesis” tools exist to

automatically convert from HDL
source to circuits.

– High-level constructs greatly
improve designer productivity.

– However, this may lead to a false
belief that hardware design is the
same as writing programs!*

* Describing hardware with a language is similar, however, to writing a parallel program.

“Structural” example:

Decoder(output x0,x1,x2,x3; inputs a,b)
{

wire a_L, b_L;
inv(b_L, b);
inv(a_L, a);
and(x0, a_L, b_L);
and(x1, a_L, b);
and(x2, a, b_L);
and(x3, a, b);

}

“Behavioral” example:

Decoder(output x0,x1,x2,x3; inputs a,b)
{

case [a b]
00: [x0 x1 x2 x3] = 0x1;
01: [x0 x1 x2 x3] = 0x2;
10: [x0 x1 x2 x3] = 0x4;
11: [x0 x1 x2 x3] = 0x8;

endcase;
}

a_
L

b
_L

x0

x1

x2

x3

a b

2

3 of 21

Sample Design Methodology

HDL
Specification

Simulation Synthesis

Hierarchically defines structure
and/or function of circuit.

Verification: Checks if the
design behaves as required
with regards to function, timing,
and power consumption.

Maps specification to resources
of the implementation platform
(FPGA or custom silicon).

4 of 21

Top-Down Architecture (1)
 Top Down Refinement Process
 Start Here:

ProjectInputs Outputs

3

5 of 21

Top-Down Architecture (2)
 End Here:

6 of 21

History of the Verilog HDL
 1984: Gateway Design Automation introduced Verilog-XL

– digital logic simulator
– The Verilog language was part of the Verilog-XL simulator
– The language was mostly created by 1 person, Phil Moorby
– The language was intended to be used with only 1 product

 1989: Gateway merged into Cadence Design Systems
 1990: Cadence made the Verilog HDL public domain
 1995: The IEEE standardized the Verilog HDL (IEEE 1364)
 2001: The IEEE enhanced the Verilog HDL for modeling

scalable designs, deep sub-micron accuracy, etc.
 2005: The IEEE added minor corrections, spec

clarifications, and a few new language features
 2009: The IEEE standardized SystemVerilog, with many

new features and capabilities to aid design verification and
design modeling

4

7 of 21

Verilog Introduction
 A module definition describes a component in a circuit
 Two ways to describe module contents:

– Structural Verilog
• Lists sub-components and how they are connected
• Just like schematics, but using text
• Tedious to write, hard to understand
• You get precise control over circuit details
• May be necessary to map to special resources of the FPGA

– Behavioral Verilog
• Describes what a component does, not how it does it
• Synthesized into a circuit that has this behavior
• Result is only as good as the tools

 Build up a hierarchy of modules. Top-level module is your
entire design (or the test environment for your design).

8 of 21

Verilog Modules

declarations

statements

module

declarations

statements

module A

declarations

statements

declarations

statements

declarations

statements

declarations

statements

declarations

statements

module B module C module D

module E module F

■ One module

■ Modules instantiating
other modules hierarchically

■ Verilog modules are the building blocks for Verilog designs

5

9 of 21

Contents of a Verilog Module
 Modules may

represent:
– An entire design
– Major hierarchical

blocks within a design
– Individual components

within a design

 Modules are
completely self
contained
– The only things

“global” in Verilog are
the names of modules
and primitives

– Verilog does not have
global variables or
functions

module name (ports) ;

port declarations

data type declarations

functionality

timing

endmodule

10 of 21

Verilog Modules and Instantiation
 Modules define circuit components
 Instantiation defines hierarchy of the design

module addr_cell (a, b, cin, s, cout);
input a, b, cin;
output s, cout;

endmodule

module adder (A, B, S);
...
addr_cell ac1 (… connections …);
addr_cell ac2 (… connections …);
...

endmodule

Note: A module is not a function in the C sense. There is no call and return
mechanism. Think of it more like a hierarchical data structure.

module name port list

keywords
(reserved words) module body

port declarations:

input identifier, … identifier;
output identifier, … identifier;
inout identifier, … identifier;

input [msb:lsb] identifier, … identifier;
output [msb:lsb] identifier, … identifier;
inout [msb:lsb] identifier, … identifier;

instance of addr_cell module

range specification
(defined later)

top-level module

adder
lower-level module

addr_cell

6

11 of 21

Verilog Modules and Instantiation
 Verilog supports ANSI C style port declarations

– The port direction and data type of the signal can be included in the port list

module addr_cell (input wire a,
input wire b,
input wire cin,
output reg sum, cout);

endmodule

module adder (A, B, S);
...
addr_cell ac1 (… connections …);
addr_cell ac2 (… connections …);
...

endmodule

port list

module body

instance of addr_cell module

12 of 21

Verilog Logical System
 Verilog uses four-valued logic system

 A 1-bit signal can take on one of 4 values:
0 Logical 0, or false

1 Logical 1, or true

x An unknown/undefined logical value

z High impedance (floating), as in three-state
logic

 Verilog has built-in bitwise boolean
operators (see table in a later slide)

7

13 of 21

Verilog Nets and Wires
 Verilog has two classes of signals: Nets and Variables
 A net corresponds to a wire in a physical circuit and provides

connectivity between modules
– wire is the default Net type

• 'wire' is any signal name that appears in a module’s input/output port list, but
not in module’s net declaration

• 'wire' can be a scalar (single connection) or a vector (multiple connection)

 Verilog net types:
wire, tri, triand, trior, tri0, tri1, trireg, wand,
wor, supply0, supply1

– supply0, supply1 are considered to be permanently wired to the power rail

– 'wire' is conventionally used when a single driver is present
– 'tri' is used when multiple drivers are present

• When a 'tri' net is driven to a single value by ≥1 drivers, it takes on that value
• When a 'tri' net is undriven, it floats (value 'z')
• When it’s driven to different values (0, 1, or x) by different drivers, it is in

contention (value 'x')

 'wire' is obsolete in SystemVerilog; instead, use the logic signal type

14 of 21

Verilog Internal Variables
 Internal variables store values during a Verilog module’s execution

– They are neither inputs nor outputs, but are used only internal to the module
– Don’t have physical significance in a circuit
– Used when describing circuit’s behavior, in “procedural code”

when we need to break a complex function into intermediate steps
 A variable can be assigned value in one Verilog statement; retains this

value until overwritten in a later statement
– Unlike a Net, a variable’s value can be changed only within procedural code

in a module, not from outside the module
– Input & inout ports of a module cannot be variables;

they must be 'net' types (e.g., 'wire')
– Output ports can be either be 'net' or variable ('reg') types

 Two common types of variables:
– reg (in old Verilog, but logic in SystemVerilog)
– integer (used as loop control variables, e.g., in for loops)

 'reg' is NOT a register or flip-flop
– It’s just a variable used on the left hand side of <= or = assignment

statements
– It’s replaced with logic in SystemVerilog

8

15 of 21

Verilog Numbers
 Constants / Literals

14 ordinary decimal number
–14 2’s complement representation
12'b0000_0100_0110 12-bit binary number (“_” is ignored)
12'h046 12-bit hexadecimal number
4'bx 4-bit binary number with unknown value xxxx
8'hfx 8-bit hexadecimal number, equivalent to 8'b1111_xxxx

 Parameter declaration for defining named constants
parameter BUS_SIZE = 32, MSB = BUS_SIZE–1;

 Signal values
– By default, Values are unsigned

• e.g., C[4:0] = A[3:0] + B[3:0];
• if A = 0110 (6) and B = 1010(–6) then C = 10000 not 00000
• i.e., B is zero-padded, not sign-extended

wire signed [31:0] x;
Declares a signed (2’s complement) signal array.

n'Bdd…d
size in bits

base (b=binary, o=octal, h=hexadec.)

digits

16 of 21

Vectors and Bit Selection
 Vector is a group of individual 1-bit signals

– Nets, variables, and constants can all be vectors

– Examples:
reg [7:0] byte1, byte2, byte3;

reg [15:0] word1, word2;

reg [1:16] Zbus;

– Note: in SystemVerilog use logic instead of reg

 Bit select syntax to select individual bits
– Example: byte1[7] selects the leftmost bit

 Part select selects a range of bits
– Example: byte1[5:2] selects the middle 4 bits

9

17 of 21

Verilog Operators (1)
 Concatenation operator { } joins together two or

more bits or vectors into a single vector
– Example: {2'b00, 2'b11} produces {4'b0011}

 Replication operator n{ } replicates a bit or vector
n times
– Example: {2{byte1}, 2{byte2}} produces a 32-bit

vector {byte1, byte1, byte2, byte2}

– “Bit swizzling”: using bit/part select and concatenation
to form busses

• Example: {c[2:1], {3{d[0]}}, c[0], 3'b101} forms
a 9-bit bus c2c1d0d0d0c0101

 See next-slide table for more operators
 Padding: vectors of different sizes are aligned on

their rightmost bits and padded with zeros at left
– Example: 2'b11 & 4'b0101 produces 4'b0001

18 of 21

Verilog Operators (2)

Shift

Shift

shift left

shift right

<<

>>

Arithmetic

Arithmetic

binary plus (addition)

binary minus (subtraction)

+

–

Arithmetic

Arithmetic

Arithmetic

multiply

divide

modulus

*

/

%

Replicationreplication{{ }}

Concatenationconcatenation{ }

Arithmetic

Arithmetic

unary plus (sign)

unary minus (sign)

+

–

Logical

Bit-wise

Reduction

Reduction

Reduction

Reduction

Reduction

Reduction

logical negation

negation

reduction AND

reduction OR

reduction NAND

reduction NOR

reduction XOR

reduction XNOR

!

~

&

|

~&

~|

^

~^ or ^~

parenthesis()

bit-select or part-select[]

Functional GroupName
Verilog

Operator

Relational

Relational

Relational

Relational

greater than

greater than or equal to

less than

less than or equal to

>

>=

<

<=

Equality

Equality

logical equality

logical inequality

==

!=

Conditionalconditional?:

Logicallogical OR||

Logicallogical AND&&

Bit-wisebit-wise OR|

Bit-wise

Bit-wise

bit-wise XOR

bit-wise XNOR

^

^~ or ~^

Bit-wisebit-wise AND&

Equality

Equality

case equality

case inequality

===

!==

Arithmetic

Arithmetic

arithmetic shift left

arithmetic shift right

<<<

>>>

10

19 of 21

Verilog Operators (3)
 Built-in arithmetic operators treat vectors as

unsigned integers;
leftmost bit of a vector is MSB

 Shift operator shifts the 1st operand by a number
of positions given by the 2nd operand
– Example: 8'b11010011<<3 gives 8'b10011000

 Boolean reduction operators take a single vector
operand and collapse it to a 1-bit result
– Reduction operators combine all bits in the vector and

return a 1-bit result

– Example: ^word produces 1'b1 if odd number of bits of
'word' are 1 (parity calculation using XOR operation ^)

20 of 21

Verilog Operators (4)
Arithmetic Shift Operators

 The >>> token does an arithmetic shift right, filling with the value of
the sign bit

– Different than the >> bit shift right operator, which always fills with zero

 The <<< token does an arithmetic shift left, filling with zeros

– Same functionality as the << bit shift left operator

 Example:

– Given: in = 8'b11001010;

assign out = in >> 3;
//bit shift right results in 8'b00011001

assign out = in >>> 3;
//arithmetic shift right results in 8'b11111001

11

21 of 21

Verilog Operators (5)
"case equality" operator ===

 == tests logical equality
(tests for 1 and 0, all other will result in x)

 === tests 4-state logical equality
(tests for 1, 0, z and x)

 Example, after executing dataoutput = 52'bx:
– if (dataoutput[7:0] == 8'bx) begin ...

versus
– if (dataoutput[7:0] === 8'bx) begin ...

 the second gives 1, but the first gives 0.
– The result of dataoutput == 8'bx is not really "0", it is "x".

However, both "0" and "x" are false values, meaning the body of
the if will not be executed.

– For the === and !== operators, bits with x and z are included in the
comparison and must match for the result to be true.

– So, a == b is 'a equals b‘ and a === b is 'a really equals b'

