14:332:231 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical & Computer Engineering
Fall 2013

Lecture #2: Binary Number System

Complement Number Representation

Why Binary Number System?

Because computers work with binary values

0 & 1, LOW & HIGH, TRUE & FALSE

Recall the basic building blocks
 -- AND, OR, NOT logic gates

 ⇒ We need to learn to work with the Binary Number System

Number Systems

A positional number system has a radix (or base of the number) any integer $r \ge 2$

$$d_{p-1} \dots d_{k} \dots d_{1} d_{0} \cdot d_{-1} \dots d_{-j} \dots d_{-n}$$

$$d_{p-1} \dots d_{k} \dots d_{1} \dots d_{n} \dots d_{-j} \dots d_{-n}$$

$$d_{p-1} \dots d_{n} \dots d_{$$

Example: 25.375 radix 10

 $2 \cdot 10^{1} + 5 \cdot 10^{0} + 3 \cdot 10^{-1} + 7 \cdot 10^{-2} + 5 \cdot 10^{-3}$

The integer and the fractional part are processed separately.

3 of 25

Powers of 2: 2ⁿ

It will be convenient to remember these powers:

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

n	2 ⁿ	
-1	0.5	
-2	0.25	
-3	0.125	

Integer Part

$$\sum_{i=0}^{p-1} d_i \cdot r^i = ((\cdots (d_{p-1} \cdot r + d_{p-2}) \cdot r + \cdots + d_2) \cdot r + d_1) \cdot r + d_0$$

Divide by \mathbf{r} , the remainder is d_0 , d_1 , d_2 ,... from the least significant to the most significant digit.

Will use r = 2, binary conversion: $d_i = \{0, 1\}$

Example:
$$25_{10} = ?_2$$

$$25:2 = 12R1 \qquad d_0 = 1$$

$$12:2 = 6R0 \qquad d_1 = 0$$

$$6:2 = 3R0 \qquad d_2 = 0$$

$$3:2 = 1R1 \qquad d_3 = 1$$

$$1:2 = 0R1 \qquad d_4 = 1$$

5 of 25

Integer Part

$$\sum_{i=0}^{p-1} \mathbf{d_i} \cdot \mathbf{r^i} = ((\cdots (\mathbf{d_{p-1}} \cdot \mathbf{r} + \mathbf{d_{p-2}}) \cdot \mathbf{r} + \cdots + \mathbf{d_2}) \cdot \mathbf{r} + \mathbf{d_1}) \cdot \mathbf{r} + \mathbf{d_0}$$

$$Divide \text{ by } \mathbf{r}, \text{ the remainder is } \mathbf{d_0}, \mathbf{d_1}, \mathbf{d_2}, \dots$$
from the least significant to the most significant digit.

Will use $\mathbf{r} = 2$, binary conversion: $\mathbf{d_i} = \{0, 1\}$

$$Example: 25_{10} = ?_2$$

$$25:2 = 12R1$$

$$12:2 = 6R0$$

$$6:2 = 3R0$$

$$6:2 = 3R0$$

$$6:2 = 3R0$$

$$3:2 = 1R1$$

$$1:2 = 0R1$$

$$1:2 = 0R1$$

$$25_{10} = 11001_2$$

$$Verify \text{ the result:}$$

$$1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^0 = 16 + 8 + 1 = 25$$

Fractional Part

$$\sum_{i=-n}^{-1} d_i \cdot r^i = r^{-1} \cdot (d_{-1} + r^{-1} \cdot (d_{-2} + \cdots)))$$

Same like before, but now we *multiply* with the radix.

Example: $0.375_{10} = ?_2$

7 of 25

Fractional Part

$$\sum_{i=-n}^{-1} d_i \cdot r^i = r^{-1} \cdot (d_{-1} + r^{-1} \cdot (d_{-2} + \cdots)))$$

Same like before, but now we *multiply* with the radix.

Example: $0.375_{10} = ?_2$

$$0.375 \times 2 = 0.750$$
 < 1 \Rightarrow $d_{-1} = 0$ \leftarrow MSE $0.750 \times 2 = 1.500$ > 1 \Rightarrow $d_{-2} = 1$ $0.500 \times 2 = 1.000$ \Rightarrow $d_{-3} = 1$ \leftarrow LSB $\Rightarrow 0.375_{10} = 0.011_2$

Verify the result: $1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 0.25 + 0.125 = 0.375$

Important Radices

Radices important to computer engineers are: r = 2, 8, 16

4-Bit String	Hexadecimal	3-Bit String	Octal	Decimal	Binary
0000	0	000	0	0	0
0001	1	001	1	1	1
0010	2	010	2	2	10
0011	3	011	3	3	11
0100	4	100	4	4	100
0101	5	101	5	5	101
0110	6	110	6	6	110
0111	7	111	7	7	111
1000	8	_	10	8	1000
1001	9	_	11	9	1001
1010	A	_	12	10	1010
1011	В	_	13	11	1011
1100	C	_	14	12	1100
1101	D	_	15	13	1101
1110	E	_	16	14	1110
1111	F	_	17	15	1111

Example: $11100001.011_2 = 011_1100_1001_1 = 011_2 = 341.3_8$

 $341.3_8 = 3.8^2 + 4.8^1 + 1.8^0 + 3.8^{-1} = 225.375_{10}$

Fourth digit was added to the fractional part

 $11100001.011_2 = 1110\ 0001\ .\ 0110_2 = E1.6_{16}$

E1.6₁₆ = $14 \cdot 16^{1} + 1 \cdot 16^{0} + 6 \cdot 16^{-1} = 225.375_{10}$

Binary Addition

C _{in}	х	у	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

s = sum $c_{in} = carry in$ $c_{out} = carry out$

 $X, Y, C_{in} \rightarrow s, C_{out}$

Decimal:

$$1_{10} + 1_{10} = 2_{10}$$

Binary

$$1_2 + 1_2 = 10_2$$

$$_{2} + 1_{2} = 10_{2}$$

$$X + Y + C_{in} = s$$
 C_{out}

$$0 + 1 + 0 = 1$$
 0
1 + 0 + 1 = 0 1

+ 1 + 1 = 1

b _{in}	х	у	b _{out}	d	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	0	1	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	1	0	
1	1	0	0	0	
1	1	1	1	1	

$$b_{in}$$
 = borrow in b_{out} = borrow out

$$X, Y, B_{in} \rightarrow s, B_{out}$$

$$X - Y - B_{in} = d$$
 B_{out}

$$0 - 1 - 0 = 1$$

$$1 - 0 - 1 = 0$$
 1

$$1 - 1 - 1 = 1$$

13 of 25

7

Example Subtraction (2)

Signed-Magnitude Representation

Use the MSB for the sign:

n bits:
$$d_{n-1} d_{n-2} \cdots d_0$$
sign magnitude

 $d_{n-1} = 0 \leftarrow positive number$ $d_{n-1} = 1 \leftarrow \text{negative number}$

n bits represent 2ⁿ numbers

011...1 largest positive number:

 $\sum_{i=0}^{n-2} 1 \cdot 2^{i} = 2^{n-1} - 1$

smallest negative number: 111...1 $-(2^{n-1}-1)$

two representations for zero: 000...0 and 100...0

Signed-Magnitude Arithmetic

Arithmetic operations must process the sign separately. For example, subtraction: A - B

?

- 1. Compare the magnitudes A ≥ B
- 2. Subtract smaller magnitude from larger magnitude
- 3. If B > A, then change the sign of the result

... too complicated ... will NOT use it for computations.

Instead, we use two's complement representation ...

17 of 25

Radix-Complement Representation

Assumptions:

- fixed number of digits, n
- D = $d_{n-1} \dots d_k \dots d_1 d_0$, radix r

radix-complement representation of D:

$$[D]_r = r^n - D$$

The involution property: $[[D]_r]_r = r^n - (r^n - D) = D$

How to compute it? (would like to avoid subtraction)

Radix-Complement Computation

$$[D]_r = r^n - D$$

lack Rewrite $r^n = (r^n - 1) + 1$

Then, $[D]_r = r^n - D = ((r^n - 1) - D) + 1$

• Observe that $(r^n - 1)$ has the form $mm \dots mm$ where m = r - 1

For example, for r = 10 and n = 4, $(r^n - 1) = 9999$ for r = 2 and n = 5, $(r^n - 1) = 11111$

igoplus Define the *complement* of a digit d to be $d_r = r - 1 - d$

For example, for r = 10, the complements of 3, 5, and 8 are $3'_{10} = 10 - 1 - 3 = 6$ $5'_{10} = 10 - 1 - 5 = 4$

$$8'_{10} = 10 - 1 - 8 = 1$$

Then, the complement of D is obtained by complementing individual digits of D and adding 1

19 of 25

2's-Complement Representation

n-bit 2's-complement representation of D:

$$[D]_2 = 2^n - D_2$$

Compute two's complement as:

$$[D]_2 = (2^n - 1 - D_2) + 1$$

2's-Complement Computation

- 1. Complement the digits
- 2. Add 1 to the Least Significant Bit
- 3. Discard carry out from Most Significant Bit

2's-Complement Representation (2)

Range of n-bit 2's complement: $-2^{n-1} \le A \le 2^{n-1} - 1$

Example: n = 5

represent –13₁₀ in 2's complement:

$$13_{10} = 01101_2 \rightarrow 10010$$

$$\frac{1}{10011} = -13_{10}$$

What decimal number is represented in 5-bit 2's complement: 11010

?

23 of 25

2's-Complement Representation (2)

Range of n-bit 2's complement: $-2^{n-1} \le A \le 2^{n-1} - 1$

Example: n = 5

represent -13_{10} in 2's complement:

$$13_{10} = 01101_2 \rightarrow 10010$$

$$\frac{1}{10011} = -13_{10}$$

What decimal number is represented in 5-bit 2's complement:

complement the digits and add 1 $\frac{+}{00110}$ \leftarrow that is 6_{10}

so the number is: -6_{10}

So, what is this number?

Answer: depends on the representation!

Unsigned: $1011001_2 = 89_{10}$

Signed-magnitude: $1011001_2 = -25_{10}$

Two's complement: $1011001_2 = -39_{10}$