# 14:332:231 <br> DIGITAL LOGIC DESIGN 

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013

Lecture \#2: Binary Number System

## Why Binary Number System?

- Because computers work with binary values

0 \& 1, LOW \& HIGH, TRUE \& FALSE

- Recall the basic building blocks
-- AND, OR, NOT logic gates

- $\Rightarrow$ We need to learn to work with the Binary Number System


## Number Systems

A positional number system has a radix (or base of the number) any integer $r \geq 2$


Example: 25.375 radix 10

$$
2 \cdot 10^{1}+5 \cdot 10^{0}+3 \cdot 10^{-1}+7 \cdot 10^{-2}+5 \cdot 10^{-3}
$$

The integer and the fractional part are processed separately.

## Powers of 2: $2^{n}$

It will be convenient to remember these powers:

| $\mathbf{n}$ | $\mathbf{2 n}^{\mathbf{n}}$ |
| :---: | :---: |
|  | 0 |
| 1 | 1 |
|  | 2 |
| 3 | 4 |
|  | 4 |
| 5 | 16 |
| 6 | 32 |
| 7 | 64 |
|  | 8 |


| $\mathbf{n}$ | $\mathbf{2}^{\mathbf{n}}$ |
| :---: | :---: |
|  |  |
| -1 | 0.5 |
| -2 | 0.25 |
| -3 | 0.125 |
|  |  |

## Integer Part

$\sum_{i=0}^{p-1} d_{i} \cdot r^{i}=\left(\left(\cdots\left(d_{p-1} \cdot r+d_{p-2}\right) \cdot r+\cdots+d_{2}\right) \cdot r+d_{1}\right) \cdot r+d_{0}$
Divide by $\mathbf{r}$, the remainder is $\mathrm{d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{2}, \ldots$
from the least significant to the most significant digit.
Will use $\mathrm{r}=2$, binary conversion: $\mathrm{d}_{\mathrm{i}}=\{0,1\}$
Example: $25_{10}=?_{2} \quad \begin{array}{rlr}25: 2 & =12 R 1 & d_{0}=1 \\ 12: 2 & =6 R 0 & d_{1}=0 \\ 6: 2 & =3 R 0 & d_{2}=0 \\ 3: 2 & =1 R 1 & d_{3}=1 \\ 1: 2 & =\text { OR } 1 & d_{4}=1\end{array}$

## Integer Part

$$
\sum_{i=0}^{p-1} d_{i} \cdot r^{i}=\left(\left(\cdots\left(d_{p-1} \cdot r+d_{p-2}\right) \cdot r+\cdots+d_{2}\right) \cdot r+d_{1}\right) \cdot r+d_{0}
$$

Divide by $\mathbf{r}$, the remainder is $\mathrm{d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{2}, \ldots$
from the least significant to the most significant digit.
Will use $r=2$, binary conversion: $d_{i}=\{0,1\}$
Wil user 2 , binary conversion: $d_{i}\{0,1\}$
Example: $25_{10}=?_{2}$
$\begin{aligned} & 25: 2=12 R 1 \\ & 12: 2=6 R 0\end{aligned}$
$\mathrm{d}_{0}=1 \leftarrow \mathrm{LSB}$
6:2 = 3R0
3:2 = 1R1
$\mathrm{d}_{1}=0$
$\mathrm{d}_{2}=0$
$\mathrm{d}_{3}=1$
$\Rightarrow 25_{10}=11001_{2} \quad 1: 2=0 R 1 \quad \mathrm{~d}_{4}=1 \leftarrow \underset{\substack{\text { Most } \\ \text { Significant }}}{\mathrm{MSB}}$
$\Rightarrow 25_{10}=11001_{2} \quad 1: 2=0 R 1 \quad \mathrm{~d}_{4}=1 \leftarrow \underset{\substack{\text { Most } \\ \text { Significant }}}{\mathrm{MSB}}$
$\Rightarrow 25_{10}=11001_{2} \quad 1: 2=0 R 1 \quad \mathrm{~d}_{4}=1 \leftarrow \underset{\substack{\text { Most } \\ \text { Significant }}}{\mathrm{MSB}}$
Verify the result: $\quad 1 \cdot 2^{4}+1 \cdot 2^{3}+1 \cdot 2^{0}=16+8+1=25$

## Fractional Part

$$
\left.\sum_{i=-n}^{-1} d_{i} \cdot r^{i}=r^{-1} \cdot\left(d_{-1}+r^{-1} \cdot\left(d_{-2}+\ldots\right)\right)\right)
$$

Same like before, but now we multiply with the radix.
Example: $0.375_{10}=?_{2}$
$0.375 \times 2=0.750$
$<1 \quad \Rightarrow \quad d_{-1}=0$
$0.750 \times 2=1.500$
$>1 \Rightarrow d_{-2}=1$
$0.500 \times 2=1.000 \quad \Rightarrow \quad d_{-3}=1$

## Fractional Part

$$
\left.\sum_{i=-n}^{-1} d_{i} \cdot r^{i}=r^{-1} \cdot\left(d_{-1}+r^{-1} \cdot\left(d_{-2}+\cdots\right)\right)\right)
$$

Same like before, but now we multiply with the radix.
Example: $0.375_{10}=\boldsymbol{?}_{2}$


Verify the result: $\quad 1 \cdot 2^{-2}+1 \cdot 2^{-3}=0.25+0.125=0.375$

## Important Radices

Radices important to computer engineers are: $r=2, \mathbf{8 , 1 6}$

| Binary | Decimal | Octal | 3 -Bit <br> String | Hexadecimal | 4 -Bit <br> String |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 000 | 0 | 0000 |
| 1 | 1 | 1 | 0011 | 1 | 0001 |
| 10 | 2 | 2 | 010 | 2 | 0010 |
| 11 | 3 | 3 | 011 | 3 | 0011 |
| 100 | 4 | 4 | 100 | 4 | 0100 |
| 101 | 5 | 5 | 101 | 5 | 0101 |
| 110 | 6 | 6 | 110 | 6 | 0110 |
| 111 | 7 | 7 | 111 | 7 | 0111 |
| 1000 | 8 | 10 | - | 8 | 1000 |
| 1001 | 9 | 11 | - | 9 | 1001 |
| 1010 | 10 | 12 | - | A | 1010 |
| 1011 | 11 | 13 | - | B | 1011 |
| 1100 | 12 | 14 | - | C | 1100 |
| 1101 | 13 | 15 | - | D | 1101 |
| 1110 | 14 | 16 | - | E | 1110 |
| 1111 | 15 | 17 | - | F | 1111 |

Example: $\quad 11100001.011_{2}=011100001.011_{2}=341.3_{8}$

$$
341.3_{8}=3 \cdot 8^{2}+4 \cdot 8^{1}+1 \cdot 8^{0}+3 \cdot 8^{-1}=225.375_{10}
$$

Fourth digit was added to the fractional part
$11100001.011_{2}=11100001.011_{2}=\mathrm{E} 1.6_{16}$
$E 1.6_{16}=14 \cdot 16^{1}+1 \cdot 16^{0}+6 \cdot 16^{-1}=225.375_{10}$


## Binary Addition

| $\mathbf{c}_{\text {in }}$ | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{c}_{\text {out }}$ | $\mathbf{s}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

$$
\begin{aligned}
& \mathrm{c}_{\text {in }}=\text { carry in } \\
& \mathrm{c}_{\text {out }}=\text { carry out } \\
& X, Y, C_{\text {in }} \rightarrow \mathrm{s}, \mathrm{C}_{\text {out }}
\end{aligned}
$$

Example addition:


## Subtraction



Binary:


## Binary Subtraction

| $\mathrm{b}_{\text {in }}$ | $\times$ | $y$ | $\mathrm{b}_{\text {out }}$ | d | $\mathrm{b}_{\text {in }}=$ borrow in |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | $\mathrm{b}_{\text {out }}=$ borrow out |
| ${ }_{0}^{0}$ | 1 | 1 |  | 1 |  |
| 0 | 1 | 1 | 0 | 0 |  |
| 1 | , | 0 | 1 | 0 | $X, Y, B_{\text {in }} \rightarrow \mathrm{s}, \mathrm{B}_{\text {out }}$ |
| 1 | 1 | 1 | 0 | 0 |  |
| 1 | 1 | 1 | 1 | 1 |  |


| $X-Y-B_{\text {in }}=d$ | $B_{\text {out }}$ |
| :--- | :--- |
| $0-1-0=1$ | 1 |
| $1-0-1=0$ | 1 |
| $1-1-1=1$ | 0 |

## Example Subtraction (1)



## Example Subtraction (2)



## Signed-Magnitude Representation

Use the MSB for the sign:
n bits:
$\underbrace{d_{n-1}}_{\text {sign }} \underbrace{d_{n-2} \cdots d_{0}}_{\text {magnitude }}$
$\mathrm{d}_{\mathrm{n}-1}=0 \leftarrow$ positive number
$d_{n-1}=1 \leftarrow$ negative number $n$ bits represent $2^{n}$ numbers
largest positive number: $\quad \begin{array}{r}n-1 \\ 011 \cdots 1\end{array} \sum_{i=0}^{n-2} 1 \cdot 2^{i}=2^{n-1}-1$
smallest negative number: 111 $\cdots 1 \quad-\left(2^{n-1}-1\right)$
two representations for zero: $000 \cdots 0$ and $100 \cdots 0$

## Signed-Magnitude Arithmetic

Arithmetic operations must process the sign separately. For example, subtraction: $A-B$

1. Compare the magnitudes $A \gtrless B$
2. Subtract smaller magnitude from larger magnitude
3. If $B>A$, then change the sign of the result
... too complicated ... will NOT use it for computations.
Instead, we use two's complement representation ...

## Radix-Complement Representation

Assumptions:

- fixed number of digits, $n$
- $D=d_{n-1} \ldots d_{k} \ldots d_{1} d_{0}$, radix $r$
radix-complement representation of $D$ :

$$
[D]_{r}=r^{n}-D
$$

The involution property: $\quad\left[[D]_{r}\right]_{r}=r^{n}-\left(r^{n}-D\right)=D$
How to compute it?
(would like to avoid subtraction)

## Radix-Complement Computation

$$
[D]_{r}=r^{n}-D
$$

$\Delta$ Rewrite $r^{n}=\left(r^{n}-1\right)+1$
Then,

$$
[D]_{r}=r^{n}-D=\left(\left(r^{n}-1\right)-D\right)+1
$$

Observe that $\left(r^{n}-1\right)$ has the form $m m \ldots m m$

$$
\text { where } m=r-1 \quad \mathrm{n}
$$

For example, for $r=10$ and $n=4, \quad\left(r^{n}-1\right)=9999$

$$
\text { for } r=2 \quad \text { and } n=5, \quad\left(r^{n}-1\right)=11111
$$

Define the complement of a digit $d$ to be $d^{\prime}{ }_{r}=r-1-d$
For example, for $r=10$, the complements of 3,5 , and 8 are

$$
3^{\prime}{ }_{10}=10-1-3=6 \quad 5_{10}^{\prime}=10-1-5=4 \quad 8^{\prime}{ }_{10}=10-1-8=1
$$

Then, the complement of $D$ is obtained by
complementing individual digits of $D$ and adding 1

## 2's-Complement Representation

n-bit 2's-complement representation of D:

$$
[D]_{2}=2^{n}-D_{2}
$$

Compute two's complement as:

$$
[D]_{2}=\left(2^{n}-1-D_{2}\right)+1
$$

4 $2^{n}-1: \quad 1 \quad 1 \quad \cdots 1 \leftarrow n$ bits


## 2's-Complement Computation

1. Complement the digits
2. Add 1 to the Least Significant Bit
3. Discard carry out from Most Significant Bit

$$
[D]_{2}=\left(2^{n}-1-D_{2}\right)+1
$$

$2^{n}-1: \quad 1 \quad 1 \quad \cdots 1 \leftarrow n$ bits

$$
-\mathrm{D}: \begin{aligned}
& \frac{-d_{n-1} d_{n-2} \cdots d_{0}}{d^{\prime}{ }_{n-1} d^{\prime}{ }_{n-2} \cdots d_{0}^{\prime}} \\
& \frac{+\quad 1}{[D]_{2}}
\end{aligned} \quad \begin{aligned}
& 1-d_{i}=d_{i}^{\prime}-1-0=1 \\
& 1-1=0
\end{aligned}
$$

## Two's Complement Number System



## 2's-Complement Representation (2)

Range of $n$-bit 2's complement: $\quad-2^{n-1} \leq A \leq 2^{n-1}-1$
Example: $\quad \mathrm{n}=5$
represent $-13_{10}$ in 2 's complement:

$$
13_{10}=01101_{2} \rightarrow \frac{10010}{\frac{1}{10011}}=-13_{10}
$$

What decimal number is represented in 5-bit 2's complement: 11010
?

## 2's-Complement Representation (2)

Range of $n$-bit 2's complement: $\quad-2^{n-1} \leq A \leq 2^{n-1}-1$
Example: $\quad \mathrm{n}=5$
represent $-13_{10}$ in 2 's complement:

$$
13_{10}=01101_{2} \rightarrow \frac{10010}{\frac{1}{10011}=-13_{10}}
$$

What decimal number is represented in 5-bit 2's complement:
$\begin{array}{ll}\text { negative number } & \begin{array}{c}\text { for magnitude: } \\ \text { complement the digits } \\ \text { and add } 1\end{array} \\ & \begin{array}{l}00101 \\ +\quad 1 \\ +\quad 1010\end{array} \text { that is } 6_{10}\end{array}$
so the number is: $\mathbf{- 6}_{\mathbf{1 0}}$

# So, what is this number? <br> $1011001_{2}=?_{10}$ 

Answer: depends on the representation!
Unsigned
$1011001_{2}=89_{10}$
Signed-magnitude: $\quad 1011001_{2}=-25_{10}$
Two's complement: $\quad 1011001_{2}=-39_{10}$

