
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #2: Binary Number System
Complement Number Representation

2 of 25

Why Binary Number System?
• Because computers work with binary

values
0 & 1, LOW & HIGH, TRUE & FALSE

• Recall the basic building blocks
-- AND, OR, NOT logic gates

•  We need to learn to work with the
Binary Number System

OR gate

X

Y

X

Y

AND gate

X

NOT gate or
inverter

Z = X  Y Z = X  Y Z = X

2

3 of 25

Number Systems
A positional number system has a

radix (or base of the number) any integer r ≥ 2

dp1… dk… d1d0 . d1… dj… dn

Most Significant Digit radix point Least Significant Digit

The integer and the fractional part are processed separately.

Example: 25.375 radix 10
2·101 + 5·100 + 3·101 + 7·102 + 5·103

rk rj

D = Σ di · r i 0 ≤ di ≤ (r1)
i = – n

p – 1

4 of 25

Powers of 2: 2n

n 2n

0

1

2

3

4

5

6

7

8

9

10

1

2

4

8

16

32

64

128

256

512

1024

It will be convenient to remember these powers:

n 2n

–1

–2

–3

0.5

0.25

0.125

3

5 of 25

Integer Part

Divide by r, the remainder is d0, d1, d2,…
from the least significant to the most significant digit.

Will use r = 2, binary conversion: di = {0, 1}

Σ di · r i = (( (dp1 r + dp2)r +  + d2)r + d1)r + d0
i = 0

p – 1

Example: 2510 = ?2
25:2 = 12R1 d0 = 1
12:2 = 6R0 d1 = 0
6:2 = 3R0 d2 = 0
3:2 = 1R1 d3 = 1
1:2 = 0R1 d4 = 1

6 of 25

Integer Part

Example: 2510 = ?2
25:2 = 12R1 d0 = 1
12:2 = 6R0 d1 = 0
6:2 = 3R0 d2 = 0
3:2 = 1R1 d3 = 1
1:2 = 0R1 d4 = 1

 LSB

 MSB
 2510 = 110012

Verify the result: 1·24 + 1·23 + 1·20 = 16 + 8 + 1 = 25

Σ di · r i = (( (dp1 r + dp2)r +  + d2)r + d1)r + d0
i = 0

p – 1

Most
Significant

Bit

Least
Significant

Bit

Divide by r, the remainder is d0, d1, d2,…
from the least significant to the most significant digit.

Will use r = 2, binary conversion: di = {0, 1}

4

7 of 25

Fractional Part

Same like before, but now we multiply with the radix.

Σ di · r i = r1(d1 + r1  (d2 + )))
i = n

– 1

Example: 0.37510 = ?2

0.3752 = 0.750 < 1  d1 = 0
0.7502 = 1.500 > 1  d2 = 1
0.5002 = 1.000  d3 = 1

8 of 25

0.3752 = 0.750 < 1  d1 = 0
0.7502 = 1.500 > 1  d2 = 1
0.5002 = 1.000  d3 = 1

Fractional Part

Example: 0.37510 = ?2

 LSB

 MSB

 0.37510 = 0.0112

Verify the result: 1·22 + 1·23 = 0.25 + 0.125 = 0.375

Σ di · r i = r1(d1 + r1  (d2 + )))
i = n

– 1

Same like before, but now we multiply with the radix.

5

9 of 25

Important Radices
Radices important to computer engineers are: r = 2, 8, 16

1111F17151111

1110E16141110

1101D15131101

1100C14121100

1011B13111011

1010A12101010

100191191001

100081081000

0111711177111

0110611066110

0101510155101

0100410044100

001130113311

001020102210

00011001111

00000000000

4-Bit
String

Hexadecimal
3-Bit

String
OctalDecimalBinary

Example: 11100001.0112 = 011 100 001 . 0112 = 341.38

341.38 = 3·82 + 4·81 + 1·80 + 3·8–1 = 225.37510

11100001.0112 = 1110 0001 . 01102 = E1.616

E1.616 = 14·161 + 1·160 + 6·16–1 = 225.37510

Fourth digit was added to the fractional part

10 of 25

Binary Addition

11111
01011

01101
10001

01110
10010

10100
00000

scoutyxcin s = sum
cin = carry in
cout = carry out

X, Y, Cin  s, Cout

X + Y + Cin = s Cout

0 + 1 + 0 = 1 0
1 + 0 + 1 = 0 1
1 + 1 + 1 = 1 1

110 + 110 = 210

12 + 12 = 102

12 + 12 = 102

sum

carry out

Decimal:

Binary:

6

11 of 25

Binary Addition

11111
01011

01101
10001

01110
10010

10100
00000

scoutyxcin cin = carry in
cout = carry out

X, Y, Cin  s, Cout

Example addition:

X 1 1 0 1 1 0
+ Y 1 0 1 1 1
+ carries 1 1 1 1

sum = 1 0 0 1 1 0 1

X 1 1 0 1 1 0
+ Y 1 0 1 1 1
+ carries

sum =

X 1 1 0 1 1 0
+ Y 1 0 1 1 1
+ carries 1 1

sum = 1 1 0 1

augend
+ addend
= sum

12 of 25

Subtraction

2510

– 710

Decimal:

25
– 7

= 8

15

25
– 17

= 18

borrow 1010 from the next leftward digit

100
– 11

= 11

1002

– 12

Binary:

100
– 1

= 1

10

because

10

100
– 1 1

= 011

minuend
subtrahend

difference

b o r
r
o w

b o r
r
o w

b o r
r
o w

102
– 12
= 12

borrow 102 (=210) from the next leftward digit

7

13 of 25

Binary Subtraction

11111
00011

01101
11001

00110
10010

11100
00000

dboutyxbin bin = borrow in
bout = borrow out

X, Y, Bin  s, Bout

X – Y – Bin = d Bout

0 – 1 – 0 = 1 1
1 – 0 – 1 = 0 1
1 – 1 – 1 = 1 0

14 of 25

Example Subtraction (1)

minuend

subtrahend

difference

X 229

Y – 46

X – Y 183

1 1 1 0 0 1 0 1

– 0 0 1 0 1 1 1 0

1 0 1 1 0 1 1 1

102

The borrow ripples through leftwards until
there is a non-zero digit from which to
borrow.

Must borrow 1, yielding
the new subtraction 102 – 12 = 12

After the first borrow, the new subtraction
for the column is (1 – 1) – 1,
so we must borrow again.

borrows

102102

102102

1 1 1 11

8

15 of 25

102

102102

102

Example Subtraction (2)

minuend

subtrahend

difference

X 77

Y – 23

X – Y 54

1 0 0 1 1 0 1

– 1 0 1 1 1

1 1 0 1 1 0

borrows

1 1 0 1 1 0
+ 1 0 1 1 1

1 0 0 1 1 0 1

1 1 11

Verify the result:

16 of 25

Signed-Magnitude Representation
Use the MSB for the sign:

dn–1 = 0  positive number
dn–1 = 1  negative number

n bits:
dn–1 dn–2  d0

sign magnitude

largest positive number: 0111

smallest negative number: 1111

two representations for zero: 0000 and 1000

–(2n–1 – 1)

Σ 1 2i = 2n–1 – 1
i = 0

n – 2n – 1 bits

n bits represent 2n numbers

9

17 of 25

Signed-Magnitude Arithmetic
Arithmetic operations must process the sign separately.
For example, subtraction: A – B

1. Compare the magnitudes A ≷ B
2. Subtract smaller magnitude from larger magnitude
3. If B > A, then change the sign of the result

… too complicated … will NOT use it for computations.

Instead, we use two’s complement representation …

?

18 of 25

Radix-Complement Representation

radix-complement representation of D:

How to compute it?
(would like to avoid subtraction)

[D]r = rn – D

The involution property: [[D]r]r = rn – (rn – D) = D

Assumptions:

 fixed number of digits, n

 D = dn1… dk… d1d0 , radix r

10

19 of 25

Radix-Complement Computation

Then, [D]r = rn – D = ((rn – 1) – D) + 1

For example, for r = 10 and n = 4, (rn – 1) = 9999

for r = 2 and n = 5, (rn – 1) = 11111

[D]r = rn – D

Observe that (rn – 1) has the form mm … mm
where m = r – 1

Rewrite rn = (rn – 1) + 1

n

Define the complement of a digit d to be dr = r – 1 – d

For example, for r = 10, the complements of 3, 5, and 8 are
310 = 10 – 1 – 3 = 6 510 = 10 – 1 – 5 = 4 810 = 10 – 1 – 8 = 1

Then, the complement of D is obtained by
complementing individual digits of D and adding 1

20 of 25

2’s-Complement Representation
n-bit 2’s-complement representation of D:

Compute two’s complement as:

[D]2 = 2n – D2

[D]2 = (2n – 1 – D2) + 1

2n – 1:
– D:

1 1  1  n bits
– dn–1dn–2  d0

dn–1dn–2  d0
+ 1

[D]2

1 – di = di
1 – 0 = 1

1 – 1 = 0

11

21 of 25

2’s-Complement Computation
1. Complement the digits

2. Add 1 to the Least Significant Bit

3. Discard carry out from Most Significant Bit

[D]2 = (2n – 1 – D2) + 1

2n – 1:
– D:

1 1  1  n bits
– dn–1dn–2  d0

dn–1dn–2  d0
+ 1

[D]2

1 – di = di
1 – 0 = 1

1 – 1 = 0

22 of 25

Two’s Complement Number System

0000
0001

0010

0011

0100

0101

0110

011110001001

1010

1011

1100

1101

1110

1111

0
1

2

3

4

5

6

7-8-7

-6

-5

-4

-3

-2

-1

 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 

12

23 of 25

2’s-Complement Representation (2)
Range of n-bit 2’s complement: –2n–1 ≤ A ≤ 2n–1 – 1

1310 = 011012  10010
1

10011 = –1310

Example: n = 5
represent –1310 in 2’s complement:

What decimal number is represented in 5-bit 2’s complement:
11010

?

24 of 25

2’s-Complement Representation (2)

so the number is: –610

Example: n = 5
represent –1310 in 2’s complement:

Range of n-bit 2’s complement: –2n–1 ≤ A ≤ 2n–1 – 1

1310 = 011012  10010
1

10011 = –1310

What decimal number is represented in 5-bit 2’s complement:
11010

negative number for magnitude: 00101
+ 1
00110  that is 610

complement the digits
and add 1

13

25 of 25

So, what is this number?
10110012 = ?10

Answer: depends on the representation!

Unsigned: 10110012 = 8910

Signed-magnitude: 10110012 = – 2510

Two’s complement: 10110012 = – 3910

