14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical & Computer Engineering
Fall 2013

Lecture #19: Designing State Machines Using State Diagrams

Design Steps Using State Diagrams

= |dentify the inputs and outputs
= |dentify the states (by their symbolic names)
= Draw the state diagram

= Analyze the state diagram for ambiguities

— If ambiguities found, go back and modify the
diagram and analyze again

* iterative process, as the problem and solution
become clearer in the designer’s mind

= Derive the transition list
= Synthesize the circuit from the transition list

2 of 22

Example State Machine

= Controlling the tail lights of a
1965 Ford Thunderbird

® Flashing sequence for:
leftturn and right turn

LC LB LA RA RB RC

M IO D D D

EEEEEE EEEEEELCLBLA RA RB RC
"SR RN L LA

D O 0D O M

U U U L Hazard (HAZ) lights:
M M M @ M @ | |
JL 4L 4L JL oJdL Jdt All 6 lights are flashing
M IO D M D

3 of 22

Identifying Inpu‘rs and Outputs

= [eft-turn signal

= Right-turn signal
lever (RIGHT)

= Hazard lights push-
button (HAZ)

= QUTPUTS: LA, LB, C,RA, RB, RC

4 of 22

—
(o8]

8 58 8 868 8 B85
8 58 8 8B 8 B

Iden’rlfymg States

,_
>

8 5888 B B8 B

8 8B BB B B B%
8 B B B8 88 8 B8
8 B85 888 8 B8

é

rn™r M NN

and their Symbolic Names

IDLE
L1
L2
L3
R1
R2
R3

LR3 (hazard lights),,

Initial State Diagram

Output Table

State LC LB LA RA RB RC

IDLE 0 O
L1 0 0
L2 0 1
L3 1 1
Rt 0 0
R2 0 0
R3 0 ©

LR3 1 1

0

A 00 O = o

O e = = I =)
- a2 a2 O 0O O O O
- =2 O O O O O o

< Hazard

LA=1L1+12+L3+LR3
LB=1L2+L3+LR3

LC=L3+LR3

Output Equations

RC =R3 +LR3

RA=R1+R2+R3+LR3 1
RB=R2+R3 +LR3

Moore machine: output depends only on current state

Label “1” on a transition arc indicates that all input is ignored and the machine
transitions to the next state upon completion
of current-state/output computation

6 of 22

Corrected State Diagram

Problem: doesn’t properly handle multiple inputs asserted simultaneously
e.g., if in IDLE both LEFT and HAZ are asserted the machine
goes to 2 states: L1 and LR3 !!

Corrections:

(*) give HAZ priority;

(=) treat concurrent LEFT
and RIGHT as HAZ

The corrected state

diagram is unambiguous—

transition expressions on

arcs are: (LEFT+RIGHT+HAZ)

— mutually exclusive: for

each state, the product
of any pair of outgoing
EBqnsition expressions is

— all-inclusive:
for each state, the sum of
transition expressions on
all outgoing arcs is “1”

7 of 22

Enhanced State Diagram

= Problem: What if HAZ is activated while the machine
cycles through a flashing sequence (left or right)

— The cycle would finish, but
a better solution is to
transition immediately to LR3

Ambiguity in State Diagram

® |n a properly constructed state diagram, each input
combination is covered exactly once by an expression of
an outgoing arc

= Ambiguous: double-covered or uncovered

= Some input combinations are covered by more than one
expressions (double-covered)

— Given such an input combination, there are two or more
next-state-transitions to follow

— Mutual exclusion: AND of any pair of expressions should be “0”
= Some input combinations are not covered by any
expressions (uncovered)

— Given such an input combination, there are no any
next-state-transitions to follow

— All-inclusion: OR of all expressions should be “1”

9 of 22

State Diagram Ambiguities - Example

= Example state diagram: .7
— States: A, B, C
— Inputs: X, Y, Z
= Karnaugh-like maps:
— Consider each state separately
» Draw a different K-map for each state

— Each cell represents a unique
combination of inputs

— For all outgoing transitions fill in the
corresponding cells with next state Current state:

= Each cell should have one and only

one entry: XY ;
— An empty cell (‘uncovered”) indicates 2~ %0 01 1110
the All-inclusion rule has been violated 0

— More than one entry indicates the - —
Mutual-exclusion rule has been violated 1 /—> } z

| IS

Next state(s) Y 10 of 22

State Diagram Ambiguities - Example

® in state A:

— for input X=1, transition to next-state B
=> fill in corresponding K-map cells
with “B”

— for input Y=1, transition to C
=> fill in corresponding K-map cells
with “C”

— for input X=0,Z=1, transition to A
=> fill in corresponding K-map cells
with “A”

= Empty cell (‘uncovered”):
— All-inclusion rule violated

o| g 2C 6B+C 45 "= Multtiple entries (“doubly covered’):
TR Favs v B — Mutual-exclusion rule violated
! +C|B+C| B } z
= State A not unambiguously specified !!

11 of 22

State Diagram Ambiguities - Example

® in state B:

— for input Z=0, transition to next-state B
=> fill in corresponding K-map cells
with “B”

— for input X=1,Z=1, transition to A
=> fill in corresponding K-map cells
with “A”

— for input X=0,Z=1, transition to C
=> fill in corresponding K-map cells

with “C”
Current state B: = No ambiguities — each cell has one
X and only one entry
N —
00 01 11 10 . . i
z R PR a— = State B is unambiguously specified !!

0B |B B | B

1 N R E = NOTE: State C is unambiguously
e |c z specified because of the unconditional
transition to A (indicated by “1” on the
Y outgoing arc)

12 of 22

State Assignment

(Back to the T-bird lights example...)

State Assignment

= For 8 states, need 3 flip-flops State Q2 Q1 QO
= |nitial (IDLE) state coded as “000” IDLE 0 0 0
for easy reset t; 8 ‘1) 1
= State variable Q2 used to L3 0 1 0
distinguish “left” vs. “right” Rt 1 0 1
= State variables Q1 and QO used to A
“count” in Gray-code sequence: R3 1 0 0

IDLE-»>L1—-L2—L3—IDLE

— Minimizes the number of state-
variable changes per transition

® The remaining binary combination
“100” used for the LR3 state

13 of 22

Listing Next State Transitions

® From state IDLE:

— Input: (LEFT+RIGHT+ HAZ)
— Input: LEFT-HAZ'-RIGHT'
— Input: HAZ + LEFT-RIGHT
— Input: RIGHT-HAZ'-LEFT’
From state L1: (LEFT+RIGHT+HAZ)
— Input: HAZ
— Input: HAZ’
From state L2:
— Input: HAZ
— Input: HAZ'
From state L3:
— Input: 1 (state completion transition)

14 of 22

Transition List

Outgoing Transitions

= Similar to a transition table, but transitions in the state diagram are
specified by expressions, not by an extensive tabulation of next states

Current State Next State

S Q2 Q1 QO Transition Expression S# Q2% Qlsx QO=

IDLE 0 O O (LEFT+RIGHT +HAZ) IDLE 0 0 0
IDLE 0 0 O LEFT-HAZ -RIGHT L1 0 0 1
IDLE 0 0 0 HAZ+LEFT:RIGHT LR3 1 0 0
IDLE 0 0 O RIGHT: -HAZ - LEFT R1 1 0 1
L1 0 0 1 HAZ L2 0 1 1
{ L1 0 0 1 HAZ LR3 1 0 0 From a transition
L2 0 1 1 HAZ L3 0 1 0 list, circuit synthesis
{ L2 0 1 1 HAZ LR3 1 0 0 is just “turning-the-
L 3 0 1 0 1 IDLE 0 0 0 crank,” —
{ R1 10 1 HAZ R2 1 1 1 automated using a
R1 17 0 1 HAZ LR3 1 0 0 CAD tool
R2 1 1 1 HAZ R3 1 1 0
{ R2 1 1 1 HAZ LR3 1 0 0
|: R3 1 1 0 1 IDLE 0 0 0
|: LR3 1 0 0 1 IDLE 0 0 0

15 of 22

Synthesizing Circuit from Transition List

= Transition equation

Vi ; (transition p-term)

= Ztransition—list rows where V=
— A p-term is the product of current state’s minterm and the transition
expression
= The transition equation for Q2+ is the T-bird machine:
Q2+ = Q2"-Q1"-Q0’ - (HAZ + LEFT-RIGHT) +— 5 @ & 0 rersionsprssion 5+ o

2
9
<

+Q2'-Q1-Q0’ - (RIGHT-HAZ' LEFT’) BE oo o o

+ QZ'Q']'QO . (HAZ) ELE g g \1) :LG;T-HAZ'-LEFT' S ? g :
+Q2-a1-Q0 - (HAZ) oot me
+ Q2Q1’QO " (HAZ’) L2 0 1 1 HAZ wrs @® o o
+Q2:Q1"Q0 - (HAZ) RN oo s
+Q2-Q1-Q0 - (HAZ') VI A IR
+Q2-Q1-Q0 - (HAZ) « I pyan

= After simplification:
Q2+ = Q2'-Q1-Q0’"-(HAZ+RIGHT) + Q2'-Q0-(HAZ) + Q2-:Q0
Q1+ = Q0-HAZ'
Q0+ = Q2"-Q1"-Q0"-HAZ'-(LEFT®RIGHT) + Q1'-Q0-HAZ’

= Note: These equations are not necessarily minimal

16 of 22

Another State-Machine Design Example

® The Guessing Game
— 1-out-of-4 lamps lit
— At each clock tick, the pattern is rotated by one
— Make a guess by pressing a button Gi:
+ If Gi = asserted(Li) play stops
+ If Gi # asserted(Li) play stops and ERR lamp is lit

I 2 3 4]
E G1 G2 G3 G4
L1 L2 L3 L4
‘b\\\\ |npUtS

Outputs

State Machine

Clock|||||||

17 of 22

State Diagram - First Try

®= Machine cycles
through states S1-S4
as long as no Gi is

asserted
G1-G2-G3'-G4'
= Goes to STOP when a l Ve
gueSS iS made G1+G2+G3+G4
" PROBLEM: In STOP, 162G -G
doesn’t “remember” if @ G1+G2+G3+G4
guess was correct, SO crererer

G1G2-G3"-G4'

cannot control ERR @
G1+G2+G3+G4

lamp @

G1G2"-G3"-G4’ G1+G2+G3+G4

— Moore machine: output
depends on current
state only

G1+G2+G3+G4

18 of 22

State Diagram - Corrected

= Solution: two “stopped” states, SOK and SERR
— SOK = correct guess
— SERR = wrong guess - assert ERR output

®= Machine goes
to SERR ~

. G1-G2-G3"-G4' G1-G2-G3"-G4'
if user presses \Wv Ve
22 buttons G1-G2-G3-G4' m G2+G3+G4
at once {’ Q;y
or changes 616263 G4
guess while srozerer (s Giicscs
in STOP s L2=1 ™\
@ G1-G2-G3"-G4'
\GT G2'-G3-G4' @ G1+G2+G4 /ERR ,
L3=1
G1+G2+G3+G4 G1-G2-G3-G4’ G1+G2+G3+G4
G1-G2-G3"G4 m G1+G2+G3

_ G1"G2-G3'-G4'

19 of 22

Transition List for Guessing Game

Current State Next State Output

S Q2 Q1 QO Transition Expression S#* Q2% Q1% QO+ L1 L2 L3 L4 ERR
S1 0O 0 O G1-G2'-G3'-G4’ S2 0 0 1 1. 0 0 O 0
{ S1 0O 0 O G1-G2'-G3'-G4' SOK 1 0 0 1. 0 0 O 0
S1 0O 0 O G2+G3+G4 SERR 1 0 1 1. 0 0 O 0
S2 0o 0 1 G1'-G2'-G3'-G4’ S3 0 1 1 01 0 O 0
% {82 0O 0 1 G1-G2-G3'-G4' SOK 1 0 0 0o 1 0 O 0
= S2 0O 0 1 G1+G3+G4 SERR 1 0 1 0o 1 0 O 0
%{ S3 o 1 1 G1'-G2'-G3'-G4’ S4 0 1 0 0 0 1 0 0
= S3 o 1 1 G1-G2'-G3-G4' SOK 1 0 0 0 0 1 0 0
2 S3 o 1 1 G1+G2+G4 SERR 1 0 1 0O 0 1 0 0
S [(s4 0 1 0 G1-G2-G3-G4 S1 0 0 0 00 0 1 0
=] S4 0o 1 0 G1-G2'-G3'-G4 SOK 1 0 0 o o0 o0 1 0
© {84 o 1 0 G1+G2+G3 SERR 1 0 1 o o0 o0 1 0
SOK 1 0 0 G1+G2+G3+G4 SOK 1 0 0 0 0 0 O 0
{ SOK 17 0 O G1-G2-G3'-G4’ S1 0 0 0 0 0 0 O 0
< SERR 1 0 1 G1+G2+G3+G4 SERR 1 0 1 0 0 0 O 1
SERR 1 0 1 G1'-G2'-G3'-G4’ S1 0 0 0 0 0 0 O 1

20 of 22

10

Transition Equations

= Obtained from the transition list—transition equations:
Q1* = Q2'-Q0 - G1'-G2'-G3'-G4’
QO = Q2'-Q1"-Q0" - (G1'-G2'-G3'-G4")

Q2-Q1"-Q0’ - (G2+G3+G4)

Q2-Q1"-Q0 - (G1"-G2'-G3'-G4')

Q2-Q1"Q0 - (G1+G3+G4)

Q2-Q1-Q0 - (G1+G2+G4)

Q2-Q1-Q0’ - (G1+G2+G3)

Q2-Q1"-Q0 - (G1+G2+G3+G4)
Q2+ = (Q2'+Q1') - (G1"-G2'-G3'-G4') < formulated for “0”s

®* Moore machine - outputs independent of transition
expressions = only one row of transition list must be
considered for each current state

= Qutput equations:
L1=Q2"-Q1"-Q0’ L3 =Q2"-Q1-Q0 ERR =Q2-:Q1"-Q0
L2=Q2"-Q1"-Q0 L4 =Q2'-Q1-Q0’

+ 4+ + + + 4+

21 of 22

Unused States

Guessing machine state diagram has 6 states, but 3 flip-
flops have 8 states

Omitted unused states implicitly treated as “don’t-cares” in
next state equations:

— Equations for Q1+ and QO+ written as sum of transition p-terms for
state/input combinations with explicit “1” in Q1+ and Q0* columns

— Unused states implicitly assumed to have “0” in Q1% and Q0=
columns

— Equation for Q2+" written as a sum of transition p-terms for
state/input combinations with explicit “0” in Q2+ column
" As a consequence, all unused states have a coded next
state of “100” for all input combinations
== coding for SOK state

This is safe & acceptable, but could treat them explicitly as
“don’t-cares” — see Wakerly, 4t ed., page 583

22 of 22

11

