14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013
Lecture \#19: Designing State Machines Using State Diagrams

Design Steps Using State Diagrams

- Identify the inputs and outputs
- Identify the states (by their symbolic names)
- Draw the state diagram
- Analyze the state diagram for ambiguities
- If ambiguities found, go back and modify the diagram and analyze again
- iterative process, as the problem and solution become clearer in the designer's mind
- Derive the transition list
- Synthesize the circuit from the transition list

Example State Machine

- Controlling the tail lights of a 1965 Ford Thunderbird
- Flashing sequence for:

Hazard (HAZ) lights:
All 6 lights are flashing

Identifying Inputs and Outputs

- Left-turn signal lever (LEFT)
- Right-turn signal lever (RIGHT)

- Hazard lights pushbutton (HAZ)
- OUTPUTS: LA, LB, C, RA, RB, RC

Initial State Diagram

- Moore machine: output depends only on current state
- Label "1" on a transition arc indicates that all input is ignored and the machine transitions to the next state upon completion of current-state/output computation

Output Table

Output Table						
State	LC	LB	LA	RA	RB	RC
IDLE	0	0	0	0	0	0
L1	0	0	1	0	0	0
L2	0	1	1	0	0	0
L3	1	1	1	0	0	0
R1	0	0	0	1	0	0
R2	0	0	0	1	1	0
R3	0	0	0	1	1	1
LR3	1	1	1	1	1	1

\leftarrow Hazard

Output Equations	
$\mathrm{LA}=\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{LR} 3$	$\mathrm{RA}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3+\mathrm{LR} 3$
$\mathrm{LB}=\mathrm{L} 2+\mathrm{L} 3+\mathrm{LR} 3$	$\mathrm{RB}=\mathrm{R} 2+\mathrm{R} 3+\mathrm{LR} 3$
$\mathrm{LC}=\mathrm{L} 3+\mathrm{LR} 3$	$\mathrm{RC}=\mathrm{R} 3+\mathrm{LR} 3$

Corrected State Diagram

- Problem: doesn't properly handle multiple inputs asserted simultaneously e.g., if in IDLE both LEFT and HAZ are asserted the machine goes to 2 states: L1 and LR3 !!
- Corrections:
(*) give HAZ priority;
(**) treat concurrent LEFT and RIGHT as HAZ
- The corrected state diagram is unambiguous-
 transition expressions on arcs are:
- mutually exclusive: for each state, the product of any pair of outgoing. " 0 " "0"
- all-inclusive:
for each state, the sum of transition expressions on all outgoing arcs is " 1 "

Enhanced State Diagram

- Problem: What if HAZ is activated while the machine cycles through a flashing sequence (left or right)
- The cycle would finish, but a better solution is to transition immediately to LR3

Ambiguity in State Diagram

- In a properly constructed state diagram, each input combination is covered exactly once by an expression of an outgoing arc
- Ambiguous: double-covered or uncovered
- Some input combinations are covered by more than one expressions (double-covered)
- Given such an input combination, there are two or more next-state-transitions to follow
- Mutual exclusion: AND of any pair of expressions should be " 0 "
- Some input combinations are not covered by any expressions (uncovered)
- Given such an input combination, there are no any next-state-transitions to follow
- All-inclusion: OR of all expressions should be "1"

State Diagram Ambiguities - Example

- Example state diagram:
- States: A, B, C
- Inputs: X, Y, Z
- Karnaugh-like maps:
- Consider each state separately
- Draw a different K-map for each state
- Each cell represents a unique combination of inputs
- For all outgoing transitions fill in the corresponding cells with next state
- Each cell should have one and only one entry:
- An empty cell ("uncovered") indicates the All-inclusion rule has been violated
- More than one entry indicates the Mutual-exclusion rule has been violated

State Diagram Ambiguities - Example

- in state A:

- for input $X=1$, transition to next-state B \rightarrow fill in corresponding K-map cells with "B"
- for input $Y=1$, transition to C \rightarrow fill in corresponding K-map cells with "C"
- for input $X=0, Z=1$, transition to A
 \rightarrow fill in corresponding K-map cells with "A"

- Empty cell ("uncovered"):
- All-inclusion rule violated
- Multiple entries ("doubly covered"):
- Mutual-exclusion rule violated
- State A not unambiguously specified !!

State Diagram Ambiguities - Example

- in state B:

- for input $Z=0$, transition to next-state B \rightarrow fill " in corresponding K-map cells with "B"
- for input $X=1, Z=1$, transition to A \rightarrow fill in corresponding K-map cells with "A"
- for input $X=0, Z=1$, transition to C

\rightarrow fill in corresponding K-map cells with "C"

Current state B:

- No ambiguities - each cell has one and only one entry
- State B is unambiguously specified !!
- NOTE: State C is unambiguously specified because of the unconditional transition to A (indicated by " 1 " on the outgoing arc)

State Assignment

(Back to the T-bird lights example...)

- For 8 states, need 3 flip-flops
- Initial (IDLE) state coded as "000" for easy reset
- State variable Q2 used to distinguish "left" vs. "right"
- State variables Q1 and Q0 used to "count" in Gray-code sequence:
IDLE \rightarrow L1 \rightarrow L2 \rightarrow L3 \rightarrow IDLE

State Assignment

State	Q2	Q1	Q0
IDLE	0	0	0
L1	0	0	1
L2	0	1	1
L3	0	1	0
R1	1	0	1
R2	1	1	1
R3	1	1	0
LR3	1	0	0

- Minimizes the number of statevariable changes per transition
- The remaining binary combination "100" used for the LR3 state

Listing Next State Transitions

- From state IDLE:
- Input: (LEFT+RIGHT+ HAZ)'
- Input: LEFT•HAZ'RIGHT'
- Input: HAZ + LEFT•RIGHT
- Input: RIGHT•HAZ'•LEFT'
- From state L1:
- Input: HAZ
- Input: HAZ'
- From state L2:
- Input: HAZ
- Input: HAZ'
- From state L3:
usmant
- Input: 1
- ...
(state completion transition)

Transition Lis \dagger

- Similar to a transition table, but transitions in the state diagram are specified by expressions, not by an extensive tabulation of next states

From a transition list, circuit synthesis is just "turning-thecrank," automated using a CAD tool

Synthesizing Circuit from Transition List

- Transition equation
$\mathrm{V} *=\sum_{\text {transition-list rows where } \mathrm{V} *=1}$ (transition p-term)
- A p-term is the product of current state's minterm and the transition expression
- The transition equation for $\mathrm{Q} 2 *$ is the T-bird machine:

s	Q2 Q1 Q0	Transition Expression	s* Q2.	Q1*
IDLE	000	(LEFT + RIGHT + HAZ)'	IDLE	0 0
IDE	L	LEFT - HAZ - RIGHT	11	0
IDLE	H	haz + LEFT - RIGHT	$L^{\text {R3 }}$ (1)	0
IDLE	R	RIGHT • HAZ' 'LEFT'	R1 (1)	0
L1	01 Haz	haz'	12	1
${ }^{1}$	H	haz	LR3 (1)	0
L^{2}	11 Haz	HAZ'	${ }^{1} 3$	1
L^{2}	11 Haz	haz	LR3 (1)	0
$\stackrel{\text { L }}{ }$,		IDLE 0	0
R1	01 Haz	haz'	R2 (1)	1
R1	H	haz	LR3 (1)	0
R2	H	HAZ ${ }^{\prime}$	R3 (1)	1
R2			LR3-(1)	
R3	1101			

- After simplification:

$$
\begin{aligned}
& \text { Q2* = Q2' Q1' } \cdot \text { Q1' } \cdot(\mathrm{HAZ}+\text { RIGHT })+\mathrm{Q} 2 \cdot \cdot \mathrm{Q} 0 \cdot(\mathrm{HAZ})+\mathrm{Q} 2 \cdot \mathrm{Q} 0 \\
& \text { Q1* = Q0. } \mathrm{HAZ}
\end{aligned}
$$

- Note: These equations are not necessarily minimal

Another State-Machine Design Example

- The Guessing Game
- 1-out-of-4 lamps lit
- At each clock tick, the pattern is rotated by one
- Make a guess by pressing a button Gi:
- If $\mathrm{Gi}=\operatorname{asserted}(\mathrm{Li})$ play stops
- If $\mathrm{Gi} \neq$ asserted(Li) play stops and ERR lamp is lit

L1 L2 L3 L4

Outputs
 Inputs

State Diagram - First Try

- Machine cycles
through states S1-S4
as long as no Gi is asserted
- Goes to STOP when a guess is made
- PROBLEM: In STOP, doesn't "remember" if guess was correct, so cannot control ERR lamp
- Moore machine: output depends on current state only

State Diagram - Corrected

- Solution: two "stopped" states, SOK and SERR
- SOK = correct guess
- SERR = wrong guess \rightarrow assert ERR output
- Machine goes
to SERR
if user presses ≥ 2 buttons at once or changes guess while in STOP

Transition List for Guessing Game

Current State				Transition Expression	Next State				Output				
S	Q2	Q1	Q0		S*	Q2*	Q1*	Q0*	L1	L2	L3	L4	ERR
S1	0	0	0	$\mathrm{G}^{\prime} \cdot \mathrm{G}^{\prime} \cdot \mathrm{G}^{\prime} \cdot \mathrm{G}^{\prime}$	S2	0	0	1	1	0	0	0	0
S S1	0	0	0	$\mathrm{G} 1 \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G}^{\prime} \cdot \mathrm{G} 4^{\prime}$	SOK	1	0	0	1	0	0	0	0
S1	0	0	0	G2+G3+G4	SERR	1	0	1	1	0	0	0	0
- S^{2}	0	0	1	$\mathrm{G} 1^{\prime} \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}$	S3	0	1	1	0	1	0	0	0
$\stackrel{\infty}{\sim}$ S2	0	0	1	G1'.G2.G3' G4'	SOK	1	0	0	0	1	0	0	0
:	0	0	1	G1+G3+G4	SERR	1	0	1	0	1	0	0	0
$\stackrel{\sim}{\sim}$	0	1	1	$\mathrm{G} 1^{\prime} \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}$	S4	0	1	0	0	0	1	0	0
$\stackrel{\text { V }}{ }{ }^{\text {d }}$ S3	0	1	1	G1'.G2'.G3.G4'	SOK	1	0	0	0	0	1	0	0
아 S3	0	1	1	G1+G2+G4	SERR	1	0	1	0	0	1	0	0
- $\overline{\text { O }}$ S4	0	1	0	G1'.G2'G3' G^{\prime}	S1	0	0	0	0	0	0	1	0
$\stackrel{3}{3}$ S 4	0	1	0	$\mathrm{G1} \cdot \mathrm{G}^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4$	SOK	1	0	0	0	0	0	1	0
\bigcirc S4	0	1	0	G1+G2+G3	SERR	1	0	1	0	0	0	1	0
\{SOK	1	0	0	G1+G2+G3+G4	SOK	1	0	0	0	0	0	0	0
$\{$ SOK	1	0	0	$\mathrm{G} 1^{\prime} \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}$	S1	0	0	0	0	0	0	0	0
$\{$ SERR	1	0	1	G1+G2+G3+G4	SERR	1	0	1	0	0	0	0	1
S SERR	1	0	1	$\mathrm{G} 1^{\prime} \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}$	S1	0	0	0	0	0	0	0	1

Transition Equations

- Obtained from the transition list-transition equations:
$\mathrm{Q} 1^{*}=\quad \mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 0 \cdot \mathrm{G} 1^{\prime} \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}$
$\mathrm{Q} 0 *=\quad \mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0^{\prime} \cdot\left(\mathrm{G} 1^{\prime} \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}\right)$
$+\quad \mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0^{\prime} \cdot(\mathrm{G} 2+\mathrm{G} 3+\mathrm{G} 4)$
$+\quad \mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0 \cdot\left(\mathrm{G} 1^{\prime} \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}\right)$
$+\quad \mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0 \cdot(\mathrm{G} 1+\mathrm{G} 3+\mathrm{G} 4)$
$+\quad \mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1 \cdot \mathrm{Q} 0 \cdot(\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 4)$
$+\quad \mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1 \cdot \mathrm{Q} 0^{\prime} \cdot(\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 3)$
$+\quad \mathrm{Q} 2 \cdot \mathrm{Q} 1 \cdot \mathrm{Q} 0 \cdot(\mathrm{G} 1+\mathrm{G} 2+\mathrm{G} 3+\mathrm{G} 4)$
$\mathrm{Q} 2 *^{\prime}=\quad\left(\mathrm{Q} 2^{\prime}+\mathrm{Q} 1^{\prime}\right) \cdot\left(\mathrm{G} 1^{\prime} \cdot \mathrm{G} 2^{\prime} \cdot \mathrm{G} 3^{\prime} \cdot \mathrm{G} 4^{\prime}\right) \quad \leftarrow$ formulated for "0"s
- Moore machine \rightarrow outputs independent of transition expressions \rightarrow only one row of transition list must be considered for each current state
- Output equations:
L1 = Q2'. Q1'. Q0'
$\mathrm{L} 3=\mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1 \cdot \mathrm{Q} 0$
$E R R=Q 2 \cdot Q 1 \cdot Q 0$
$\mathrm{L} 2=\mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0 \quad \mathrm{~L} 4=\mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1 \cdot \mathrm{Q}^{\prime}$

Unused States

- Guessing machine state diagram has 6 states, but 3 flipflops have 8 states
- Omitted unused states implicitly treated as "don't-cares" in next state equations:
- Equations for Q1* and Q0* written as sum of transition p-terms for state/input combinations with explicit "1" in Q1* and Q0* columns
- Unused states implicitly assumed to have "0" in Q1* and Q0* columns
- Equation for Q2*' written as a sum of transition p-terms for state/input combinations with explicit "0" in Q2* column
- As a consequence, all unused states have a coded next state of " 100 " for all input combinations == coding for SOK state
- This is safe \& acceptable, but could treat them explicitly as "don't-cares" - see Wakerly, $4^{\text {th }}$ ed., page 583

