
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #19: Designing State Machines Using State Diagrams

2 of 22

Design Steps Using State Diagrams

 Identify the inputs and outputs
 Identify the states (by their symbolic names)
 Draw the state diagram
 Analyze the state diagram for ambiguities

– If ambiguities found, go back and modify the
diagram and analyze again

• iterative process, as the problem and solution
become clearer in the designer’s mind

 Derive the transition list
 Synthesize the circuit from the transition list

2

3 of 22

Example State Machine
 Controlling the tail lights of a

1965 Ford Thunderbird
 Flashing sequence for:

left turn and right turn

LC LB LA RA RB RC

LC LB LA RCRBRA

Hazard (HAZ) lights:

All 6 lights are flashing

4 of 22

Identifying Inputs and Outputs
 Left-turn signal

lever (LEFT)

 Right-turn signal
lever (RIGHT)

 Hazard lights push-
button (HAZ)

 OUTPUTS: LA, LB, C, RA, RB, RC

3

5 of 22

Identifying States
LC LB LA RCRBRA

 IDLE

 L1

 L2

 L3

 R1

 R2

 R3

 LR3 (hazard lights)

and their Symbolic Names

6 of 22

 Moore machine: output depends only on current state
 Label “1” on a transition arc indicates that all input is ignored and the machine

transitions to the next state upon completion
of current-state/output computation

Initial State Diagram

111111LR3

111000R3

011000R2

001000R1

000111L3

000110L2

000100L1

000000IDLE

RCRBRALALBLCState

Output Table

Output Equations

LA = L1 + L2 + L3 + LR3 RA = R1 + R2 + R3 + LR3

LB = L2 + L3 + LR3 RB = R2 + R3 + LR3

LC = L3 + LR3 RC = R3 + LR3

HAZ

(LEFT+RIGHT+HAZ)

1 RIGHT

1

1

1 1

L3 L1

LR3

R1

IDLE

R3

R2

L2

1

LEFT

1

 Hazard

H

az
ar

d

4

7 of 22

 Corrections:
() give HAZ priority;
() treat concurrent LEFT
and RIGHT as HAZ

 The corrected state
diagram is unambiguous—
transition expressions on
arcs are:
– mutually exclusive: for

each state, the product
of any pair of outgoing
transition expressions is
“0”

– all-inclusive:
for each state, the sum of
transition expressions on
all outgoing arcs is “1”

Corrected State Diagram

(LEFT+RIGHT+HAZ) LEFT·HAZ·
RIGHT

1

1 1

1

1 1

L3 L1

LR3

R1

IDLE

R3

R2

L2

RIGHT·HAZ·LEFT

HAZ+LEFT·RIGHT

1

()

()

()

 Problem: doesn’t properly handle multiple inputs asserted simultaneously
e.g., if in IDLE both LEFT and HAZ are asserted the machine
goes to 2 states: L1 and LR3 !!

8 of 22

 Problem: What if HAZ is activated while the machine
cycles through a flashing sequence (left or right)
– The cycle would finish, but

a better solution is to
transition immediately to LR3

Enhanced State Diagram

(LEFT+RIGHT+HAZ) LEFT·HAZ·
RIGHT

1

HAZ HAZ

1
1

HAZ HAZ

L3 L1

LR3

R1

IDLE

R3

R2

L2

RIGHT·HAZ·LEFT

HAZ+LEFT·RIGHT

HAZ

HAZ

HAZ

HAZ

5

9 of 22

Ambiguity in State Diagram
 In a properly constructed state diagram, each input

combination is covered exactly once by an expression of
an outgoing arc

 Ambiguous: double-covered or uncovered
 Some input combinations are covered by more than one

expressions (double-covered)
– Given such an input combination, there are two or more

next-state-transitions to follow
– Mutual exclusion: AND of any pair of expressions should be “0”

 Some input combinations are not covered by any
expressions (uncovered)
– Given such an input combination, there are no any

next-state-transitions to follow
– All-inclusion: OR of all expressions should be “1”

10 of 22

State Diagram Ambiguities - Example
 Example state diagram:

– States: A, B, C
– Inputs: X, Y, Z

 Karnaugh-like maps:
– Consider each state separately

• Draw a different K-map for each state
– Each cell represents a unique

combination of inputs
– For all outgoing transitions fill in the

corresponding cells with next state

 Each cell should have one and only
one entry:
– An empty cell (“uncovered”) indicates

the All-inclusion rule has been violated
– More than one entry indicates the

Mutual-exclusion rule has been violated
3

2

01

7

6

11

51

1

40

0

1000

X

Z

XY

Z

Y

Current state:

Next state(s)

Y

A

CB

X

X·Z

Z

X·Z

X·Z

1

6

11 of 22

State Diagram Ambiguities - Example
 in state A:

– for input X=1, transition to next-state B
 fill in corresponding K-map cells
with “B”

– for input Y=1, transition to C
 fill in corresponding K-map cells
with “C”

– for input X=0,Z=1, transition to A
 fill in corresponding K-map cells
with “A”

3

2

01

7

6

11

51

1

40

0

1000

X

Z

XY

Z

Y

B+C B

B+C B

C

A+CA

 Empty cell (“uncovered”):
– All-inclusion rule violated

 Multiple entries (“doubly covered”):
– Mutual-exclusion rule violated

 State A not unambiguously specified !!

Y

A

CB

X

X·Z

Z

X·Z

X·Z

1

Current state A:

12 of 22

State Diagram Ambiguities - Example
 in state B:

– for input Z=0, transition to next-state B
 fill in corresponding K-map cells
with “B”

– for input X=1,Z=1, transition to A
 fill in corresponding K-map cells
with “A”

– for input X=0,Z=1, transition to C
 fill in corresponding K-map cells
with “C”

Y

A

CB

X

X·Z

Z

X·Z

X·Z

1

3

2

01

7

6

11

51

1

40

0

1000

X

Z

XY

Z

Y

B B

A A

B

CC

 No ambiguities — each cell has one
and only one entry

 State B is unambiguously specified !!

 NOTE: State C is unambiguously
specified because of the unconditional
transition to A (indicated by “1” on the
outgoing arc)

B

Current state B:

7

13 of 22

State Assignment
(Back to the T-bird lights example…)

 For 8 states, need 3 flip-flops
 Initial (IDLE) state coded as “000”

for easy reset
 State variable Q2 used to

distinguish “left” vs. “right”
 State variables Q1 and Q0 used to

“count” in Gray-code sequence:
IDLEL1L2L3IDLE
– Minimizes the number of state-

variable changes per transition

 The remaining binary combination
“100” used for the LR3 state

001LR3

011R3
111R2
101R1
010L3
110L2
100L1
000IDLE

Q0Q1Q2State

State Assignment

14 of 22

Listing Next State Transitions
 From state IDLE:

– Input: (LEFT+RIGHT+ HAZ)
– Input: LEFT·HAZ·RIGHT
– Input: HAZ + LEFT·RIGHT
– Input: RIGHT·HAZ·LEFT

 From state L1:
– Input: HAZ
– Input: HAZ

 From state L2:
– Input: HAZ
– Input: HAZ

 From state L3:
– Input: 1 (state completion transition)

 …

(LEFT+RIGHT+HAZ) LEFT·HAZ·R
IGHT

1

HAZ HAZ

1
1

HAZ HAZ

L3 L1

LR3

R1

IDLE

R3

R2

L2

RIGHT·HAZ·LEFT

HAZ+LEFT·RIGHT

HAZ

HAZ

HAZ

HAZ

8

15 of 22

Transition List
 Similar to a transition table, but transitions in the state diagram are

specified by expressions, not by an extensive tabulation of next states

000IDLE1001LR3

000IDLE1011R3

001LR3HAZ111R2

011R3HAZ111R2

001LR3HAZ101R1

111R2HAZ101R1

000IDLE1010L3

001LR3HAZ110L2

010L3HAZ110L2

001LR3HAZ100L1

110L2HAZ100L1

101R1RIGHT · HAZ · LEFT000IDLE

001LR3HAZ + LEFT · RIGHT000IDLE

100L1LEFT · HAZ · RIGHT000IDLE

000IDLE(LEFT + RIGHT + HAZ)000IDLE

Q0Q1Q2STransition ExpressionQ0Q1Q2S

Current State Next State

From a transition

list, circuit synthesis

is just “turning-the-

crank,” —

automated using a

CAD toolO
u

tg
oi

ng
 T

ra
ns

iti
on

s

16 of 22

Synthesizing Circuit from Transition List
 Transition equation

V = ∑transition-list rows where V=1 (transition p-term)

– A p-term is the product of current state’s minterm and the transition
expression

 The transition equation for Q2 is the T-bird machine:
Q2 = Q2·Q1·Q0 · (HAZ + LEFT·RIGHT)

+ Q2·Q1·Q0 · (RIGHT·HAZ·LEFT)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)

 After simplification:
Q2 = Q2·Q1·Q0·(HAZ+RIGHT) + Q2·Q0·(HAZ) + Q2·Q0
Q1 = Q0·HAZ
Q0 = Q2·Q1·Q0·HAZ·(LEFTRIGHT) + Q1·Q0·HAZ

 Note: These equations are not necessarily minimal

000IDLE1001LR3

000IDLE1011R3

001LR3HAZ111R2

011R3HAZ111R2

001LR3HAZ101R1

111R2HAZ101R1

000IDLE1010L3

001LR3HAZ110L2

010L3HAZ110L2

001LR3HAZ100L1

110L2HAZ100L1

101R1RIGHT · HAZ · LEFT000IDLE

001LR3HAZ + LEFT · RIGHT000IDLE

100L1LEFT · HAZ · RIGHT000IDLE

000IDLE(LEFT + RIGHT + HAZ)000IDLE

Q0Q1Q2STransition ExpressionQ0Q1Q2S

000IDLE1001LR3

000IDLE1011R3

001LR3HAZ111R2

011R3HAZ111R2

001LR3HAZ101R1

111R2HAZ101R1

000IDLE1010L3

001LR3HAZ110L2

010L3HAZ110L2

001LR3HAZ100L1

110L2HAZ100L1

101R1RIGHT · HAZ · LEFT000IDLE

001LR3HAZ + LEFT · RIGHT000IDLE

100L1LEFT · HAZ · RIGHT000IDLE

000IDLE(LEFT + RIGHT + HAZ)000IDLE

Q0Q1Q2STransition ExpressionQ0Q1Q2S

9

17 of 22

Another State-Machine Design Example
 The Guessing Game

– 1-out-of-4 lamps lit
– At each clock tick, the pattern is rotated by one
– Make a guess by pressing a button Gi:

• If Gi = asserted(Li) play stops
• If Gi ≠ asserted(Li) play stops and ERR lamp is lit

L1 L2 L3 L4

ERR

State Machine

Outputs
Inputs

G1 G2 G3 G4

Clock

18 of 22

State Diagram – First Try
 Machine cycles

through states S1–S4
as long as no Gi is
asserted

 Goes to STOP when a
guess is made

 PROBLEM: In STOP,
doesn’t “remember” if
guess was correct, so
cannot control ERR
lamp

– Moore machine: output
depends on current
state only

G1+G2+G3+G4

STOP

S1
L1 = 1

S2
L2 = 1

S3
L3 = 1

S4
L4 = 1

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1+G2+G3+G4

G1+G2+G3+G4

G1+G2+G3+G4

G1+G2+G3+G4

G1·G2·G3·G4

10

19 of 22

State Diagram – Corrected
 Solution: two “stopped” states, SOK and SERR

– SOK = correct guess
– SERR = wrong guess assert ERR output

 Machine goes
to SERR
if user presses
≥2 buttons
at once
or changes
guess while
in STOP

G1+G2+G3+G4

S1
L1 = 1

S2
L2 = 1

S3
L3 = 1

S4
L4 = 1

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G2+G3+G4

G1+G3+G4

G1+G2+G4

G1+G2+G3

G1+G2+G3+G4

SOK

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

SERR
ERR = 1

20 of 22

Transition List for Guessing Game

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

L1

Output

0000000S1G1·G2·G3·G4001SOK

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

Q1

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

Q1

0

1

0

1

0

0

1

0

0

1

0

1

1

0

1

Q0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

L2

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

L3

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

L4

Next StateCurrent State

10S1G1·G2·G3·G411SERR

11SERRG1+G2+G3+G411SERR

01SOKG1+G2+G3+G401SOK

01SERRG1+G2+G300S4

01SOKG1·G2·G3·G400S4

00S1G1·G2·G3·G400S4

01SERRG1+G2+G410S3

01SOKG1·G2·G3·G410S3

00S4G1·G2·G3·G410S3

01SERRG1+G3+G410S2

01SOKG1·G2·G3·G410S2

00S3G1·G2·G3·G410S2

01SERRG2+G3+G400S1

01SOKG1·G2·G3·G400S1

00S2G1·G2·G3·G400S1

ERRQ2STransition ExpressionQ0Q2S

O
u

tg
oi

ng
 T

ra
ns

iti
on

s

11

21 of 22

Transition Equations
 Obtained from the transition list—transition equations:

Q1 = Q2·Q0 · G1·G2·G3·G4
Q0 = Q2·Q1·Q0 · (G1·G2·G3·G4)

+ Q2·Q1·Q0 · (G2+G3+G4)
+ Q2·Q1·Q0 · (G1·G2·G3·G4)
+ Q2·Q1·Q0 · (G1+G3+G4)
+ Q2·Q1·Q0 · (G1+G2+G4)
+ Q2·Q1·Q0 · (G1+G2+G3)
+ Q2·Q1·Q0 · (G1+G2+G3+G4)

Q2 = (Q2+Q1) · (G1·G2·G3·G4) formulated for “0”s

 Moore machine outputs independent of transition
expressions only one row of transition list must be
considered for each current state

 Output equations:
L1 = Q2·Q1·Q0 L3 = Q2·Q1·Q0 ERR = Q2·Q1·Q0
L2 = Q2·Q1·Q0 L4 = Q2·Q1·Q0

22 of 22

Unused States
 Guessing machine state diagram has 6 states, but 3 flip-

flops have 8 states
 Omitted unused states implicitly treated as “don’t-cares” in

next state equations:
– Equations for Q1 and Q0 written as sum of transition p-terms for

state/input combinations with explicit “1” in Q1 and Q0 columns
– Unused states implicitly assumed to have “0” in Q1 and Q0

columns
– Equation for Q2 written as a sum of transition p-terms for

state/input combinations with explicit “0” in Q2 column

 As a consequence, all unused states have a coded next
state of “100” for all input combinations
== coding for SOK state

 This is safe & acceptable, but could treat them explicitly as
“don’t-cares” – see Wakerly, 4th ed., page 583

