
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #19: Designing State Machines Using State Diagrams

2 of 22

Design Steps Using State Diagrams

 Identify the inputs and outputs
 Identify the states (by their symbolic names)
 Draw the state diagram
 Analyze the state diagram for ambiguities

– If ambiguities found, go back and modify the
diagram and analyze again

• iterative process, as the problem and solution
become clearer in the designer’s mind

 Derive the transition list
 Synthesize the circuit from the transition list

2

3 of 22

Example State Machine
 Controlling the tail lights of a

1965 Ford Thunderbird
 Flashing sequence for:

left turn and right turn

LC LB LA RA RB RC

LC LB LA RCRBRA

Hazard (HAZ) lights:

All 6 lights are flashing

4 of 22

Identifying Inputs and Outputs
 Left-turn signal

lever (LEFT)

 Right-turn signal
lever (RIGHT)

 Hazard lights push-
button (HAZ)

 OUTPUTS: LA, LB, C, RA, RB, RC

3

5 of 22

Identifying States
LC LB LA RCRBRA

 IDLE

 L1

 L2

 L3

 R1

 R2

 R3

 LR3 (hazard lights)

and their Symbolic Names

6 of 22

 Moore machine: output depends only on current state
 Label “1” on a transition arc indicates that all input is ignored and the machine

transitions to the next state upon completion
of current-state/output computation

Initial State Diagram

111111LR3

111000R3

011000R2

001000R1

000111L3

000110L2

000100L1

000000IDLE

RCRBRALALBLCState

Output Table

Output Equations

LA = L1 + L2 + L3 + LR3 RA = R1 + R2 + R3 + LR3

LB = L2 + L3 + LR3 RB = R2 + R3 + LR3

LC = L3 + LR3 RC = R3 + LR3

HAZ

(LEFT+RIGHT+HAZ)

1 RIGHT

1

1

1 1

L3 L1

LR3

R1

IDLE

R3

R2

L2

1

LEFT

1

 Hazard


H

az
ar

d

4

7 of 22

 Corrections:
() give HAZ priority;
() treat concurrent LEFT
and RIGHT as HAZ

 The corrected state
diagram is unambiguous—
transition expressions on
arcs are:
– mutually exclusive: for

each state, the product
of any pair of outgoing
transition expressions is
“0”

– all-inclusive:
for each state, the sum of
transition expressions on
all outgoing arcs is “1”

Corrected State Diagram

(LEFT+RIGHT+HAZ) LEFT·HAZ·
RIGHT 

1

1 1

1

1 1

L3 L1

LR3

R1

IDLE

R3

R2

L2

RIGHT·HAZ·LEFT 

HAZ+LEFT·RIGHT

1

()

()

()

 Problem: doesn’t properly handle multiple inputs asserted simultaneously
e.g., if in IDLE both LEFT and HAZ are asserted the machine
goes to 2 states: L1 and LR3 !!

8 of 22

 Problem: What if HAZ is activated while the machine
cycles through a flashing sequence (left or right)
– The cycle would finish, but

a better solution is to
transition immediately to LR3

Enhanced State Diagram

(LEFT+RIGHT+HAZ) LEFT·HAZ·
RIGHT 

1

HAZ HAZ

1
1

HAZ HAZ

L3 L1

LR3

R1

IDLE

R3

R2

L2

RIGHT·HAZ·LEFT 

HAZ+LEFT·RIGHT

HAZ

HAZ

HAZ

HAZ

5

9 of 22

Ambiguity in State Diagram
 In a properly constructed state diagram, each input

combination is covered exactly once by an expression of
an outgoing arc

 Ambiguous: double-covered or uncovered
 Some input combinations are covered by more than one

expressions (double-covered)
– Given such an input combination, there are two or more

next-state-transitions to follow
– Mutual exclusion: AND of any pair of expressions should be “0”

 Some input combinations are not covered by any
expressions (uncovered)
– Given such an input combination, there are no any

next-state-transitions to follow
– All-inclusion: OR of all expressions should be “1”

10 of 22

State Diagram Ambiguities - Example
 Example state diagram:

– States: A, B, C
– Inputs: X, Y, Z

 Karnaugh-like maps:
– Consider each state separately

• Draw a different K-map for each state
– Each cell represents a unique

combination of inputs
– For all outgoing transitions fill in the

corresponding cells with next state

 Each cell should have one and only
one entry:
– An empty cell (“uncovered”) indicates

the All-inclusion rule has been violated
– More than one entry indicates the

Mutual-exclusion rule has been violated
3

2

01

7

6

11

51

1

40

0

1000

X

Z

XY

Z

Y

Current state:

Next state(s)

Y

A

CB

X

X·Z

Z

X·Z

X·Z

1

6

11 of 22

State Diagram Ambiguities - Example
 in state A:

– for input X=1, transition to next-state B
 fill in corresponding K-map cells
with “B”

– for input Y=1, transition to C
 fill in corresponding K-map cells
with “C”

– for input X=0,Z=1, transition to A
 fill in corresponding K-map cells
with “A”

3

2

01

7

6

11

51

1

40

0

1000

X

Z

XY

Z

Y

B+C B

B+C B

C

A+CA

 Empty cell (“uncovered”):
– All-inclusion rule violated

 Multiple entries (“doubly covered”):
– Mutual-exclusion rule violated

 State A not unambiguously specified !!

Y

A

CB

X

X·Z

Z

X·Z

X·Z

1

Current state A:

12 of 22

State Diagram Ambiguities - Example
 in state B:

– for input Z=0, transition to next-state B
 fill in corresponding K-map cells
with “B”

– for input X=1,Z=1, transition to A
 fill in corresponding K-map cells
with “A”

– for input X=0,Z=1, transition to C
 fill in corresponding K-map cells
with “C”

Y

A

CB

X

X·Z

Z

X·Z

X·Z

1

3

2

01

7

6

11

51

1

40

0

1000

X

Z

XY

Z

Y

B B

A A

B

CC

 No ambiguities — each cell has one
and only one entry

 State B is unambiguously specified !!

 NOTE: State C is unambiguously
specified because of the unconditional
transition to A (indicated by “1” on the
outgoing arc)

B

Current state B:

7

13 of 22

State Assignment
(Back to the T-bird lights example…)

 For 8 states, need 3 flip-flops
 Initial (IDLE) state coded as “000”

for easy reset
 State variable Q2 used to

distinguish “left” vs. “right”
 State variables Q1 and Q0 used to

“count” in Gray-code sequence:
IDLEL1L2L3IDLE
– Minimizes the number of state-

variable changes per transition

 The remaining binary combination
“100” used for the LR3 state

001LR3

011R3
111R2
101R1
010L3
110L2
100L1
000IDLE

Q0Q1Q2State

State Assignment

14 of 22

Listing Next State Transitions
 From state IDLE:

– Input: (LEFT+RIGHT+ HAZ)
– Input: LEFT·HAZ·RIGHT
– Input: HAZ + LEFT·RIGHT
– Input: RIGHT·HAZ·LEFT

 From state L1:
– Input: HAZ
– Input: HAZ

 From state L2:
– Input: HAZ
– Input: HAZ

 From state L3:
– Input: 1 (state completion transition)

 …

(LEFT+RIGHT+HAZ) LEFT·HAZ·R
IGHT 

1

HAZ HAZ

1
1

HAZ HAZ

L3 L1

LR3

R1

IDLE

R3

R2

L2

RIGHT·HAZ·LEFT 

HAZ+LEFT·RIGHT

HAZ

HAZ

HAZ

HAZ

8

15 of 22

Transition List
 Similar to a transition table, but transitions in the state diagram are

specified by expressions, not by an extensive tabulation of next states

000IDLE1001LR3

000IDLE1011R3

001LR3HAZ111R2

011R3HAZ111R2

001LR3HAZ101R1

111R2HAZ101R1

000IDLE1010L3

001LR3HAZ110L2

010L3HAZ110L2

001LR3HAZ100L1

110L2HAZ100L1

101R1RIGHT · HAZ · LEFT000IDLE

001LR3HAZ + LEFT · RIGHT000IDLE

100L1LEFT · HAZ · RIGHT000IDLE

000IDLE(LEFT + RIGHT + HAZ)000IDLE

Q0Q1Q2STransition ExpressionQ0Q1Q2S

Current State Next State

From a transition

list, circuit synthesis

is just “turning-the-

crank,” —

automated using a

CAD toolO
u

tg
oi

ng
 T

ra
ns

iti
on

s

16 of 22

Synthesizing Circuit from Transition List
 Transition equation

V = ∑transition-list rows where V=1 (transition p-term)

– A p-term is the product of current state’s minterm and the transition
expression

 The transition equation for Q2 is the T-bird machine:
Q2 = Q2·Q1·Q0 · (HAZ + LEFT·RIGHT)

+ Q2·Q1·Q0 · (RIGHT·HAZ·LEFT)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)
+ Q2·Q1·Q0 · (HAZ)

 After simplification:
Q2 = Q2·Q1·Q0·(HAZ+RIGHT) + Q2·Q0·(HAZ) + Q2·Q0
Q1 = Q0·HAZ
Q0 = Q2·Q1·Q0·HAZ·(LEFTRIGHT) + Q1·Q0·HAZ

 Note: These equations are not necessarily minimal

000IDLE1001LR3

000IDLE1011R3

001LR3HAZ111R2

011R3HAZ111R2

001LR3HAZ101R1

111R2HAZ101R1

000IDLE1010L3

001LR3HAZ110L2

010L3HAZ110L2

001LR3HAZ100L1

110L2HAZ100L1

101R1RIGHT · HAZ · LEFT000IDLE

001LR3HAZ + LEFT · RIGHT000IDLE

100L1LEFT · HAZ · RIGHT000IDLE

000IDLE(LEFT + RIGHT + HAZ)000IDLE

Q0Q1Q2STransition ExpressionQ0Q1Q2S

000IDLE1001LR3

000IDLE1011R3

001LR3HAZ111R2

011R3HAZ111R2

001LR3HAZ101R1

111R2HAZ101R1

000IDLE1010L3

001LR3HAZ110L2

010L3HAZ110L2

001LR3HAZ100L1

110L2HAZ100L1

101R1RIGHT · HAZ · LEFT000IDLE

001LR3HAZ + LEFT · RIGHT000IDLE

100L1LEFT · HAZ · RIGHT000IDLE

000IDLE(LEFT + RIGHT + HAZ)000IDLE

Q0Q1Q2STransition ExpressionQ0Q1Q2S

9

17 of 22

Another State-Machine Design Example
 The Guessing Game

– 1-out-of-4 lamps lit
– At each clock tick, the pattern is rotated by one
– Make a guess by pressing a button Gi:

• If Gi = asserted(Li) play stops
• If Gi ≠ asserted(Li) play stops and ERR lamp is lit

L1 L2 L3 L4

ERR

State Machine

Outputs
Inputs

G1 G2 G3 G4

Clock

18 of 22

State Diagram – First Try
 Machine cycles

through states S1–S4
as long as no Gi is
asserted

 Goes to STOP when a
guess is made

 PROBLEM: In STOP,
doesn’t “remember” if
guess was correct, so
cannot control ERR
lamp

– Moore machine: output
depends on current
state only

G1+G2+G3+G4

STOP

S1
L1 = 1

S2
L2 = 1

S3
L3 = 1

S4
L4 = 1

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1+G2+G3+G4

G1+G2+G3+G4

G1+G2+G3+G4

G1+G2+G3+G4

G1·G2·G3·G4

10

19 of 22

State Diagram – Corrected
 Solution: two “stopped” states, SOK and SERR

– SOK = correct guess
– SERR = wrong guess  assert ERR output

 Machine goes
to SERR
if user presses
≥2 buttons
at once
or changes
guess while
in STOP

G1+G2+G3+G4

S1
L1 = 1

S2
L2 = 1

S3
L3 = 1

S4
L4 = 1

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G2+G3+G4

G1+G3+G4

G1+G2+G4

G1+G2+G3

G1+G2+G3+G4

SOK

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

G1·G2·G3·G4

SERR
ERR = 1

20 of 22

Transition List for Guessing Game

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

L1

Output

0000000S1G1·G2·G3·G4001SOK

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

Q1

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

Q1

0

1

0

1

0

0

1

0

0

1

0

1

1

0

1

Q0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

L2

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

L3

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

L4

Next StateCurrent State

10S1G1·G2·G3·G411SERR

11SERRG1+G2+G3+G411SERR

01SOKG1+G2+G3+G401SOK

01SERRG1+G2+G300S4

01SOKG1·G2·G3·G400S4

00S1G1·G2·G3·G400S4

01SERRG1+G2+G410S3

01SOKG1·G2·G3·G410S3

00S4G1·G2·G3·G410S3

01SERRG1+G3+G410S2

01SOKG1·G2·G3·G410S2

00S3G1·G2·G3·G410S2

01SERRG2+G3+G400S1

01SOKG1·G2·G3·G400S1

00S2G1·G2·G3·G400S1

ERRQ2STransition ExpressionQ0Q2S

O
u

tg
oi

ng
 T

ra
ns

iti
on

s

11

21 of 22

Transition Equations
 Obtained from the transition list—transition equations:

Q1 = Q2·Q0 · G1·G2·G3·G4
Q0 = Q2·Q1·Q0 · (G1·G2·G3·G4)

+ Q2·Q1·Q0 · (G2+G3+G4)
+ Q2·Q1·Q0 · (G1·G2·G3·G4)
+ Q2·Q1·Q0 · (G1+G3+G4)
+ Q2·Q1·Q0 · (G1+G2+G4)
+ Q2·Q1·Q0 · (G1+G2+G3)
+ Q2·Q1·Q0 · (G1+G2+G3+G4)

Q2 = (Q2+Q1) · (G1·G2·G3·G4)  formulated for “0”s

 Moore machine  outputs independent of transition
expressions  only one row of transition list must be
considered for each current state

 Output equations:
L1 = Q2·Q1·Q0 L3 = Q2·Q1·Q0 ERR = Q2·Q1·Q0
L2 = Q2·Q1·Q0 L4 = Q2·Q1·Q0

22 of 22

Unused States
 Guessing machine state diagram has 6 states, but 3 flip-

flops have 8 states
 Omitted unused states implicitly treated as “don’t-cares” in

next state equations:
– Equations for Q1 and Q0 written as sum of transition p-terms for

state/input combinations with explicit “1” in Q1 and Q0 columns
– Unused states implicitly assumed to have “0” in Q1 and Q0

columns
– Equation for Q2 written as a sum of transition p-terms for

state/input combinations with explicit “0” in Q2 column

 As a consequence, all unused states have a coded next
state of “100” for all input combinations
== coding for SOK state

 This is safe & acceptable, but could treat them explicitly as
“don’t-cares” – see Wakerly, 4th ed., page 583

