
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #18: State Machine Design and Synthesis

2 of 25

State Machine Design and Synthesis

The creative part (“art”), “Turning the crank”,
like writing a program like a compiler does

 The flowchart is in inverse sequence (compared
to analysis). The state/output comes the first and
the drawing of the logic diagram comes the last:

state/output table  transition table
 transition equation  characteristic equation
 excitation equation  logic diagram

2

3 of 25

Clocked Synchronous FSM Structure
 Example: Design a combination lock with two inputs,

X1 and X2.
Open for the sequence X1, X2, X2 (one input per clock)

 Success scenario:

in
pu

ts

Clock

X1

X2

Output

 But there are many potential failure scenarios that need
to be considered …

4 of 25

Clocked Synchronous FSM Structure
 Example: Design a combination lock with two inputs,

X1 and X2.
Open for the sequence X1, X2, X2 (one input per clock)

1ABAADGot X1, X2, X2

0AADACGot X1, X2

0AACABGot X1

0ABAAAStart

UNLOCK11100100NameMeaning

OutputX1 X2State

 Specification ambiguities are resolved in the state table

inputs

next state

3

5 of 25

State Assignment
 Can minimize the number of states but hardly

anyone bothers anymore
 Need to assign binary-variable combinations to

states
– Minimum number of variables for n states is log2 n
– Using more than minimum number may be

advantageous in some situations,
e.g., one variable per state

(“one-hot”: one-out-of-n pattern)
– Example: 4 states  2 state variables (Q1, Q2)

A = 00
B = 01
C = 10
D = 11

Up to this point is the “art” part of FSM design;
the rest is just “turning the crank” part

6 of 25

Transition Table
 Substitute state-variable combinations for

symbolic state names in the state table

10 00 10 00 01 1Got X1, X2, X3

Q1 Q2

00 00 01 10 01 0Got X1, X2

00 00 01 00 00 1Got X1

00 00 10 00 00 0Start

UNLOCK1 11 00 10 0Q1 Q2Meaning

OutputX1 X2State

4

7 of 25

Transition Equations; Circuit
 Transition table specifies each state variable

(Q1, Q2) as a combinational logic function of
Q1, Q2, X1, X2
– Find a realization of each function by your favorite

means—ad hoc, minimal sum-of-products, etc.

 Build the circuit

UNLOCK

CLK

Q1
D

CLK

Q

Q

Q1

D

CLK

Q

Q Q2

Q1

Q2

Q2

X1

X2 () See state table
for output logic

8 of 25

A Complete Design Example
 PROBLEM: Design a machine with inputs A and B

and output Z that is “1” if any is true:
– A had the same value at the two previous ticks

– B has been “1” since the last time the above was trueOR:

in
pu

ts

CLOCK

A

B

Z

Example 1: Example 2:

5

9 of 25

A Complete Design Example
 PROBLEM: Design a machine with inputs A and B

and output Z that is “1” if any is true:
– A had the same value at the two previous ticks

– B has been “1” since the last time the above was trueOR:

S

0????A0Got a 0 on A

0A1A1A0A0INITInitial state

Z10110100SMeaning

A B

State with symbolic name “A0”
means:
Got A=0 on the previous tick, A≠0 on the
tick before that, and B≠1 at some time
since the previous pair of equal A inputs

10 of 25

A Complete Design Example
 PROBLEM: Design a machine with inputs A and B

and output Z that is “1” if any is true:
– A had the same value at the two previous ticks

– B has been “1” since the last time the above was trueOR:

S

1????OKTwo equal A inputs

0A1Got a 1 on A

0A1A1OKOKA0Got a 0 on A

0A1A1A0A0INITInitial state

Z10110100SMeaning

A B

S

0????A0Got a 0 on A

0A1A1A0A0INITInitial state

Z10110100SMeaning

A B

State “OK” means:
Got a pair of equal A inputs (0,0 or 1,1) on the previous two ticks.

Remains in “OK” state as long as A remains constant or B=1.

But, how to know if A “remained constant” ?  need to split “OK” state

6

11 of 25

A Complete Design Example
 PROBLEM: Design a machine with inputs A and B

and output Z that is “1” if any is true:
– A had the same value at the two previous ticks

– B has been “1” since the last time the above was trueOR:

Why we need to split the state “OK” into OK0 and OK1:

 If we don’t know what was the value of A before time “t”, then when B≠1,
we cannot know if A “remained constant” (Case 1) or not (Case 2)

OK0: Machine

arrived to “OK”

via 2×(A=0)

OK1: Machine

arrived to “OK”

via 2×(A=1)

CLOCK

A

B

Z

Case 1: Case 2:

time t–1 time “t”time t–1 time “t”

OK0OK1

12 of 25

A Complete Design Example
 PROBLEM: Design a machine with inputs A and B

and output Z that is “1” if any is true:
– A had the same value at the two previous ticks

– B has been “1” since the last time the above was true

S

1OK1OK1OK0A0OK1Two equal, A=1 last

1A1OK1OK0OK0OK0Two equal, A=0 last

0OK1OK1A0A0A1Got a 1 on A

0A1A1OK0OK0A0Got a 0 on A

0A1A1A0A0INITInitial state

Z10110100SMeaning

A B

OR:

■ We achieved “closure” of the state table, which now describes a finite-state machine

Machine

arrived to “OK”

via 2×(A=0)

Machine

arrived to “OK”

via 2×(A=1)

7

13 of 25

Timing Diagram for Example FSM
 Output Z is “1” if any is true:

– A had the same value at the two previous ticks
– B has been “1” since the last time

the above was true

S

1OK1OK1OK0A0OK1

1A1OK1OK0OK0OK0

0OK1OK1A0A0A1

0A1A1OK0OK0A0

0A1A1A0A0INIT

Z10110100S

A B

in
pu

ts

CLOCK

A

B

STATE:

Z

INIT A0 OK0 A1 OK1 A0 OK0 A1OK1 OK1OK0 A0

OR:

illustrates why OK0 vs. OK1 needed

14 of 25

State Diagram
 State Diagram is drawn from the state/output table:

– First draw ovals for all states
– Second, for each state (“current state”) draw outgoing arcs for different

inputs
• The endpoint of an arc (“next state”) is determined by the state table:

A

A0
Z = 0

INIT
Z = 0

A1
Z = 0

A

A

A

OK0

Z = 1

OK1

Z = 1

A A

A

A·B

A·B

A·B

A·B
A

S

1OK1OK1OK0A0OK1

1A1OK1OK0OK0OK0

0OK1OK1A0A0A1

0A1A1OK0OK0A0

0A1A1A0A0INIT

Z10110100S

A B

inputs

current
state

next
state

8

15 of 25

State Assignment
 Determine how many binary variables to

represent the states in the state table
– For s states we need log2 s binary variables

 Coded state = binary combination assigned
to a particular state

 In our example:
– five states  log2 5 = 3

– 23 = 8  three unused binary combinations
(a.k.a. unused coded states)

16 of 25

State Assignment
 There are = 6,720 different state assignments of 5

states to 8 possible states (3 binary variables)
– And there are many more using 4 or more binary variables

 Simplest is counting order, but may not lead to simplest
excitation & output equations, nor the simplest logic circuit

100OK1

011OK0

010A1

001A0

000INIT

Simplest
Q1–Q3

State
Name

Coded State Assignment

8
5

9

17 of 25

Heuristics for “Best” State Assignment

 Choose an initial coded state into which the
machine can be easily forced at reset
 Minimize the number of state variables that

change on each transition
 Maximize the number of variables that don’t

change in a group of “related” states
 Exploit symmetries in problem-spec / state-table
 Decompose the set of variables into individual

bits, where each bit has a well-defined meaning
w.r.t. input effects or output behavior of the
machine
 Etc.  see Wakerly, 4th edition, page 561

18 of 25

State Assignment Examples
 Here are a few “obvious” or “interesting” assignments

– Decomposed:
• Initial state is “000”, which is easy to force to, e.g., applying RESET signal to flop-flops’

CLR inputs
• For remaining four states, Q1 used to indicate if the machine is in INIT
• When Q1=1, Q2 and Q3 used to distinguish among the four non-INIT states

– One-hot uses one bit per state (one-out-of-5 pattern: 5 bits instead of minimum 3)
• Advantage: leads to simple excitation equations || Disadvantage: requires more flip-flops

– Almost One-hot — uses “no-hot” combination “0000” for the initial state

100010000111100OK1

010001000110011OK0

001000100101010A1

000100010100001A0

000000001000000INIT

Almost One-hot
Q1–Q5

One-hot
Q1–Q5

Decomposed
Q1–Q3

Simplest
Q1–Q3

State
Name

Coded State Assignment

10

19 of 25

Dealing with Unused States
 Minimum risk:

Assuming that the machine may somehow get
into one of the unused (or “illegal”) states, all
unused states automatically go to the “initial” state
(we will first use this design for our example)

 Minimal cost:
Assuming that the machine will never enter an

unused state, all unused states are labeled with
“d” (don’t-care) and are used if the minimization
requires it
(will see this design later)

20 of 25

Transition/Output Table
 For transition table, simple textual substitution

 Assuming “decomposed” state assignment:

state/output table transition/output table

S
1OK1OK1OK0A0OK1

1A1OK1OK0OK0OK0
0OK1OK1A0A0A1

0A1A1OK0OK0A0
0A1A1A0A0INIT

Z10110100S

A B

Q1 Q2 Q3
1111111110100111

1101111110110110
0111111100100101

0101101110110100

0101101100100000
Z10110100Q1 Q2 Q3

A B

11

21 of 25

Excitation Table ()
 Assuming D flip-flops (characteristic

equation Q = D), excitation table is
identical to transition table, D = Q

transition/output table excitation/output table

D1 D2 D3
1111111110100111

1101111110110110
0111111100100101

0101101110110100

0101101100100000
Z10110100Q1 Q2 Q3

A B

“decomposed”
state assignment

Q1 Q2 Q3
1111111110100111

1101111110110110
0111111100100101

0101101110110100

0101101100100000
Z10110100Q1 Q2 Q3

A B

22 of 25

Excitation Table as Truth Table
 Excitation table as truth table for

three combinational logic functions (D1, D2, D3) and
five variables (A, B, Q1, Q2, Q3)

 Developing excitation equations using a
5-variable Karnaugh map [recall Lecture #7]

 But, excitation table is not quite a truth table—doesn’t specify
functional values for all input combinations (i.e., unused states)
– Minimal risk approach to handling unused states: next-state = INIT = 000

excitation/output table

D1 D2 D3
1111111110100111

1101111110110110
0111111100100101

0101101110110100

0101101100100000
Z10110100Q1 Q2 Q3

A B

9135101

11157311

10146210

8124000

10110100

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

A B

Q2

B

Q3

A

Q2 Q3

D1:

Q1=0 Q1=1

Three states
{001, 010, 011}
are not used!

12

23 of 25

Developing Excitation Equations

 Flip-flop excitation inputs:
D1 = Q1 + Q2·Q3
D2 = Q1·Q3·A + Q1·Q3·A + Q1·Q2·B
D3 = Q1·A + Q2·Q3·A
Z = Q1·Q2·Q3 + Q1·Q2·Q3 = Q1·Q2

01

11

10

00

10110100

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

1 1 0 0

0 0 1 1

0 1 1 1

1 1 1 0

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

A B

Q2

B

Q3

A

Q2 Q3

9135101

11157311

10146210

8124000

10110100

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

A B

Q2

B

Q3

A

Q2 Q3

D2

D1

Q1=0 Q1=1

Q1=0 Q1=1 Q1=0 Q1=1

 Excitation maps for D1, D2, and D3
assuming that unused states have
“0 0 0” as the next-state

Q2·Q3

Q1

Q1·Q3·A

Q1·Q3·A

Q1·Q2·B

Q2·Q3·A

Q1·A

D3

24 of 25

Minimal Cost Excitation Equations

 Flip-flop excitation inputs are now simpler (“minimal cost”):
D1 = 1
D2 = Q1·Q3·A + Q3·A + Q2·B
D3 = A

Z = Q2 draw the circuit …

01

11

10

00

10110100

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

1 1 0 0

0 0 1 1

0 1 1 1

1 1 1 0

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

A B

Q2

B

Q3

A

Q2 Q3

9135101

11157311

10146210

8124000

10110100

1 1 1 1

d d d d

d d d d

d d d d

A B

Q2

B

Q3

A

Q2 Q3

01

11

10

00

10110100

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

A B

Q2

B

Q3

A

Q2 Q3

D2

D1

Q1=0 Q1=1

Q1=0 Q1=1 Q1=0 Q1=1

 Excitation maps for D1, D2, and D3
assuming that next-states of
unused states are “don’t-cares”

1

Q1·Q3·A

Q3·A

Q2·B

AD3

0 0 0 0

d d d d

d d d d

d d d d

0 0 1 1

d d d d

d d d d

d d d d

13

25 of 25

Minimal Cost Circuit
 Logic diagram for the excitation maps using

“don’t-cares” as next states of unused states

CLK

D2

Q3

A

B

RESET_L

D

CLK

Q

Q
CLR

Q2
D

CLK

Q

Q
CLR

D

CLK

Q

Q
CLR

1

Z

Q1D1

D3

Q1

Q3

Q2

A

A

B

Q3

