14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013
Lecture \#18: State Machine Design and Synthesis

State Machine Design and Synthesis

The creative part ("art"), "Turning the crank", like writing a program like a compiler does

- The flowchart is in inverse sequence (compared to analysis). The state/output comes the first and the drawing of the logic diagram comes the last:
state/output table \rightarrow transition table
\rightarrow transition equation \rightarrow characteristic equation
\rightarrow excitation equation \rightarrow logic diagram

Clocked Synchronous FSM Structure

- Example: Design a combination lock with two inputs, X1 and X2.
Open for the sequence $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 2$ (one input per clock)
- Success scenario:

- But there are many potential failure scenarios that need to be considered ...

Clocked Synchronous FSM Structure

- Example: Design a combination lock with two inputs, X1 and X2.
Open for the sequence $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 2$ (one input per clock)

- Specification ambiguities are resolved in the state table

State Assignment

- Can minimize the number of states but hardly anyone bothers anymore
- Need to assign binary-variable combinations to states
- Minimum number of variables for n states is $\left\lceil\log _{2} n\right\rceil$
- Using more than minimum number may be advantageous in some situations, e.g., one variable per state
("one-hot": one-out-of-n pattern)
- Example: 4 states $\rightarrow 2$ state variables (Q1, Q2)

$$
\begin{aligned}
& A=00 \\
& B=01 \\
& C=10 \\
& D=11
\end{aligned}
$$

Up to this point is the "art" part of FSM design; the rest is just "turning the crank" part

Transition Table

- Substitute state-variable combinations for symbolic state names in the state table

State		X1 $\times 2$				Output
Meaning	Q1 Q2	00	01	10	11	UNLOCK
Start	00	00	00	01	00	0
Got X1	01	00	10	00	00	0
Got X1, X2	10	00	11	00	00	0
Got X1, X2, X3	11	00	00	01	00	1
				* Q2*		

Transition Equations; Circuit

- Transition table specifies each state variable (Q1*, Q2*) as a combinational logic function of Q1, Q2, X1, X2
- Find a realization of each function by your favorite means-ad hoc, minimal sum-of-products, etc.
- Build the circuit

A Complete Design Example

- PROBLEM: Design a machine with inputs A and B and output Z that is " 1 " if any is true:
- A had the same value at the two previous ticks

OR: - B has been "1" since the last time the above was true

Example 1: Example 2:

A Complete Design Example

- PROBLEM: Design a machine with inputs A and B and output Z that is " 1 " if any is true:
- A had the same value at the two previous ticks

OR: - B has been "1" since the last time the above was true

State with symbolic name "A0" means:

Got $A=0$ on the previous tick, $A \neq 0$ on the tick before that, and $B \neq 1$ at some time since the previous pair of equal A inputs

A Complete Design Example

- PROBLEM: Design a machine with inputs A and B and output Z that is " 1 " if any is true:
- A had the same value at the two previous ticks

OR: - B has been "1" since the last time the above was true

Meaning	S	A B				z
		00	01	11	10	
Initial state	INIT	A0	A0	A1	A1	0
Got a 0 on A	A0	?	?	?	?	0

State "OK" means:
Got a pair of equal A inputs (0,0 or 1,1) on the previous two ticks.
Remains in " OK " state as long as A remains constant or $\mathrm{B}=1$.
But, how to know if A "remained constant" ? $\boldsymbol{\rightarrow}$ need to split "OK" state

A Complete Design Example

- PROBLEM: Design a machine with inputs A and B and output Z that is " 1 " if any is true:
- A had the same value at the two previous ticks

OR: - B has been "1" since the last time the above was true
Why we need to split the state "OK" into OK0 and OK1:

- If we don't know what was the value of A before time " t ", then when $\mathrm{B} \neq 1$, we cannot know if A "remained constant" (Case 1) or not (Case 2)

Case 1:
CLOCK

Case 2:

OK0: Machine arrived to "OK" via $2 \times(\mathrm{A}=0)$

OK1: Machine arrived to "OK" via $2 \times(A=1)$ 11 of 25

A Complete Design Example

- PROBLEM: Design a machine with inputs A and B and output Z that is " 1 " if any is true:
- A had the same value at the two previous ticks

OR: - B has been " 1 " since the last time the above was true

Machine arrived to "OK" via $2 \times(\mathrm{A}=0)$	Meaning	S	A B				Z
			00	01	11	10	
	Initial state	INIT	A0	A0	A1	A1	0
	Got a 0 on A	A0	OKo	OKo	A1	A1	0
	Got a 1 on A	A1	A0	A0	OK1	OK1	0
	Two equal, $A=0$ last	OKo	OKo	OKo	OK1	A1	1
,	Two equal, $A=1$ last	OK1	A0	OKo	OK1	OK1	1

■ We achieved "closure" of the state table, which now describes a finite-state machine

Timing Diagram for Example FSM

- Output Z is " 1 " if any is true:

- A had the same value at the two previous ticks

OR: - B has been "1" since the last time the above was true

A B					
\mathbf{s}	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	\mathbf{z}
INIT	A0	A0	A1	A1	0
A0	OK0	OK0	A1	A1	0
A1	A0	A0	OK1	OK1	0
OK0	OK0	OK0	OK1	A1	1
OK1	A0	OK0	OK1	OK1	1
	S*				

State Diagram

- State Diagram is drawn from the state/output table:
- First draw ovals for all states
- Second, for each state ("current state") draw outgoing arcs for different inputs
- The endpoint of an arc ("next state") is determined by the state table

State Assignment

- Determine how many binary variables to represent the states in the state table
- For s states we need $\left\lceil\log _{2} s\right\rceil$ binary variables
- Coded state = binary combination assigned to a particular state
- In our example:
- five states $\rightarrow\left\lceil\log _{2} 5\right\rceil=3$
$-2^{3}=8 \rightarrow$ three unused binary combinations (a.k.a. unused coded states)

State Assignment

- There are $\binom{8}{5}=6,720$ different state assignments of 5 states to 8 possible states (3 binary variables)
- And there are many more using 4 or more binary variables
- Simplest is counting order, but may not lead to simplest excitation \& output equations, nor the simplest logic circuit

	Coded State Assignment	
State Name	Simplest Q1-Q3	
INIT	000	
A0	001	
A1	010	
OK0	011	
OK1	100	

Heuristics for "Best" State Assignment

- Choose an initial coded state into which the machine can be easily forced at reset
- Minimize the number of state variables that change on each transition
- Maximize the number of variables that don't change in a group of "related" states
- Exploit symmetries in problem-spec / state-table
- Decompose the set of variables into individual bits, where each bit has a well-defined meaning w.r.t. input effects or output behavior of the machine
- Etc. \rightarrow see Wakerly, $4^{\text {th }}$ edition, page 561

State Assignment Examples

- Here are a few "obvious" or "interesting" assignments
- Decomposed:
- Initial state is " 000 ", which is easy to force to, e.g., applying RESET signal to flop-flops' CLR inputs
- For remaining four states, Q1 used to indicate if the machine is in INIT
- When Q1=1, Q2 and Q3 used to distinguish among the four non-INIT states
- One-hot uses one bit per state (one-out-of-5 pattern: 5 bits instead of minimum 3)
- Advantage: leads to simple excitation equations || Disadvantage: requires more flip-flops
- Almost One-hot - uses "no-hot" combination "0000" for the initial state

	Coded State Assignment			
State Name	Simplest Q1-Q3	Decomposed Q1-Q3	One-hot Q1-Q5	Almost One-hot Q1-Q5
INIT	000	000	00001	0000
A0	001	100	00010	0001
A1	010	101	00100	0010
OK0	011	110	01000	0100
OK1	100	111	10000	1000

Dealing with Unused States

- Minimum risk:

Assuming that the machine may somehow get into one of the unused (or "illegal") states, all unused states automatically go to the "initial" state (we will first use this design for our example)

- Minimal cost:

Assuming that the machine will never enter an unused state, all unused states are labeled with " d " (don't-care) and are used if the minimization requires it (will see this design later)

Transition/Output Table

- For transition table, simple textual substitution
- Assuming "decomposed" state assignment:

state/output table

transition/output table

Excitation Table (numem

- Assuming D flip-flops (characteristic equation $Q^{*}=\mathrm{D}$), excitation table is identical to transition table, $\mathrm{D}=\mathrm{Q}$ *

	$\boldsymbol{A} \boldsymbol{B}$				
Q1 Q2 Q3	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	\boldsymbol{Z}
000	100	100	101	101	0
100	110	110	101	101	0
101	100	100	111	111	0
110	110	110	111	101	1
111	100	110	111	111	1
Q1* Q2* Q3*					
\boldsymbol{L}					

transition/output table
excitation/output table

Excitation Table as Truth Table

- Excitation table as truth table for
three combinational logic functions (D1, D2, D3) and five variables (A, B, Q1, Q2, Q3)
- Developing excitation equations using a 5-variable Karnaugh map [recall Lecture \#7]
- But, excitation table is not quite a truth table-doesn't specify functional values for all input combinations (i.e., unused states)
- Minimal risk approach to handling unused states: next-state $=$ INIT $=000$

Developing Excitation Equations

- Excitation maps for D1, D2, and D3 assuming that unused states have "0 00 " as the next-state

Q1=1

- Flip-flop excitation inputs:

$$
\begin{aligned}
& \mathrm{D} 1=\mathrm{Q} 1+\mathrm{Q}^{\prime} \cdot \mathrm{Q}^{\prime} \\
& \mathrm{D} 2=\mathrm{Q} 1 \cdot \mathrm{Q} 3^{\prime} \cdot \mathrm{A}^{\prime}+\mathrm{Q} 1 \cdot \mathrm{Q} 3 \cdot \mathrm{~A}+\mathrm{Q} 1 \cdot \mathrm{Q} 2 \cdot \mathrm{~B} \\
& \mathrm{D} 3=\mathrm{Q} 1 \cdot \mathrm{~A}+\mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 3^{\prime} \cdot \mathrm{A} \\
& \mathrm{Z}=\mathrm{Q} 1 \cdot \mathrm{Q} 2 \cdot \mathrm{Q}^{\prime}+\mathrm{Q} 1 \cdot \mathrm{Q} 2 \cdot \mathrm{Q} 3=\mathrm{Q} 1 \cdot \mathrm{Q} 2
\end{aligned}
$$

Minimal Cost Excitation Equations

Excitation maps for D1, D2, and D3 assuming that next-states of unused states are "don't-cares"

Q1=1

Q1=0

- Flip-flop excitation inputs are now simpler ("minimal cost"):

D1 = 1
$\mathrm{D} 2=\mathrm{Q} 1 \cdot \mathrm{Q}^{\prime} \cdot \mathrm{A}^{\prime}+\mathrm{Q} 3 \cdot \mathrm{~A}+\mathrm{Q} 2 \cdot \mathrm{~B}$
D3 $=A$
$\mathrm{Z}=\mathrm{Q} 2$
draw the circuit ...

Minimal Cost Circuit

- Logic diagram for the excitation maps using "don't-cares" as next states of unused states

