14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013

Lecture \#16: D Latch ; Flip-Flops

D Latch

- "Data" latch: single input "D", plus enable input "C"
- The D Latch eliminates the $S=R=1$ problem of the $S R$ latch
- However, violations of setup and hold time still cause metastability ...

Characteristic equation:

$$
Q^{*}=C^{\prime} \cdot Q+C \cdot D
$$

D Latch Operation

- Functional behavior of a D latch for various inputs:
- When the enable input C is asserted, the Q output follows the D input
- The latch is said to be "open" and the path from D input to Q output is "transparent" \rightarrow transparent latch
- When enable (C) is asserted, the latch acts like a combinational circuit!

D Latch Timing Parameters

- Propagation delay (from C or D to output Q)
- Setup time (D before C falling/rising edge)
- Hold time (D after C falling/rising edge)
- If D changes within setup or hold times (shaded window), metastability

(1) \& (4) - Latch initially closed and when C asserted, Q changes
(2), (3) \& (5) - Latch already opened, so Q transparently follows D

Latch Issues

- Latches can cause serious timing problems (races) in sequential circuits
- Due to the fact that a latch is "transparent":
$D=Q$ while the clock $C=1$
- Advantage: input changes can be seen immediately at output
- Disadvantage: output changes every time input changes (while C = 1)
- Desired behavior for a memory device: stored value changes only at discrete time instants, determined by rising or falling edges of clock signal
- The timing problems can be avoided by using "Flip-Flops"

The Latch Timing Problem (cont'd)

- Similar timing problems in the sequential circuits:
- Recall that an enabled latch acts like a combinational circuit
- Hence, we possibly have two cascaded combinational circuits feeding each other, generating oscillations and unstable transient behavior

- Need for circuits that change state only once per clock cycle:
- $\mathrm{C}=1$:
- Now the current state becomes X_{1} and a new state is generated by the combinational logic circuit: X_{2}.
- However, if $C=1$, the new "next state" X_{2} will create a new current state X_{2} !, etc...

Use Flip-flops to Solve the Timing Problem

- A solution to the latch timing problem is to break the closed path from In to Out within the storage element
$\mathrm{c}: 0 \rightarrow 1-\mathrm{Cl}_{\mathrm{c}}^{\mathrm{C}} \mathrm{Q}$
$\mathrm{C}: 0 \rightarrow 1 \rightarrow$ CLK a
D latch
D flip-flop

Clock Signals

- Clocks are regular periodic signals used to specify state changes
- Very important for sequential circuits
- State variables change state at the clock edge

Active high:

Active low:

Flip-flops

- Flip-flops change state only on the edge of a clock (CLK) pulse (either rising or falling edge)
- Symbolized by the dynamic input indicator |>
- Clock is active high \rightarrow then the state changes on the rising (positive) edge
- Clock is active low \rightarrow then the state changes on the falling (negative) edge

The D Flip-flop: The Principle

- Positive-edge triggered D flip-flop
- Inputs sampled on rising edge; outputs change after rising edge

Next-state equation: $Q^{*}=\mathrm{D}$

Inputs			Outputs	
D	CLK		Q	QN
0	Γ		0	1
1	Γ		1	0
x	0		last Q last QN	
x	1		last Q last QN	

The D Flip-flop: Implementation

- Consists of two clocked D latches in series with the clock on the second latch inverted

- Master latch responds to input (QM changes)
- Slave latch is inactive
- Output Q unchanged
- Master latch is inactive
- Slave latch responds to input QM
- Output Q changes

The D Flip-flop: Implementation

- Positive-edge triggered D flip-flop:
- Output changes at positive clock edge

CLK
master
slave

D
(output of the master latch) QM

Q

Edge-triggered D Flip-flop Behavior

Flip-flop Timing Constraints

Proper operation requires strict timing rules:

- Minimum clock pulse width: $\mathrm{t}_{\mathrm{pw}}\left(\mathrm{t}_{\mathrm{pwH}}, \mathrm{t}_{\mathrm{pwL}}\right)$
- Set-up time ($\mathrm{t}_{\text {setup }}$):
minimum time that the input signal must be present prior to a clock edge
- Hold time ($\mathrm{t}_{\text {hold }}$): minimum time the input must be kept after the clock edge

D Flip-flop Timing Parameters

- Propagation delay (from CLK)
- Setup time (D before CLK)
- Hold time (D after CLK)
- Shaded window duration is $\mathrm{t}_{\text {setup }}+\mathrm{t}_{\text {hold }}$ - values depend on the technology and gate delays

Other D Flip-flop Variations

- Negative-edge triggered D flip-flop
- Simply inverts the clock input - active low
- Action takes place on the falling edge of CLK_L

Inputs			Outputs	
	D	CLK_L		Q

D Flip-flop w/ Asynchronous Inputs

- with Preset (PR) and Clear (CLR), similar to set/reset of S-R latch
- Used to force the flip-flop to a particular state independent of CLK \& D
- Suitable for initialization and testing purposes, e.g., to initialize a counter
- Positive-edge-triggered

- Placing a "0" on CLR_L forces the state $\mathrm{Q}=0$
- If CLR_L = 1, no effect on NAND gates
- Similarly, $P R _L=0$ forces the state $Q=1$, and $P R _L=1$ has no effect

Clock Enable Positive-edge-triggered D Flip-flop

- Flip-flops sometimes include additional logic: Clock enable (EN or CE)
- At clock edge, holds the last value stored, rather than load a new value
- A 2-input multiplexer controls the input value of the internal D flip-flop

- If $E N$ is asserted, the external input D is selected
- If EN is negated, the flip-flop's current output is used

Sections not covered \& not required...

- Wakerly, Section 7.2.7
"Scan Flip-flop"
- Wakerly, Section 7.2.8
"Master/slave S-R Flip-flop"
- Wakerly, Section 7.2.9
"Master/slave J-K Flip-flop"

Edge-triggered J-K Flip-flop

- Not used much anymore, except in the lab ...

Inputs			Outputs	
J	K	CLK	Q	QN
X	x	0	last Q	last QN
X	X	1	last Q	last QN
0	0	$\boxed{\square}$	last Q	last QN
0	1	\checkmark	0	1
1	0	\checkmark	1	0
1	1	\checkmark	last QN	last Q
				20 of 23

Functional Behavior of a Positive-edge-triggered J-K Flip-flop

- The commercial version is a TTL positive-edgetriggered J-K flip-flop 74x109

T (toggle) Flip-flop

- Changes state at every clock tick
- Signal on the Q output has frequency $=1 / 2 T$
- Used in counters and frequency dividers
- Can be constructed from D or J-K flip-flops

J-K flip-flop:

Next-state equation: $Q^{*}=Q^{\prime}$

