14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013

Lecture \#15: Sequential Circuits: Latches

Sequential Circuits

- Combinational circuits: current input \rightarrow output
- Sequential circuit: current and past inputs \rightarrow output
- Sequential circuits
- The information about the previous inputs history is called the "state" of the system
- "State" is needed to predict the current and future behavior
- State variables are bits of information stored in a memory (flip-flop) device n bits $\rightarrow 2^{n}$ states
- A finite-state machine
- Output depends on the current input and the past history represented by the states
- Since n is always finite, sequential circuits are also called finite state machines (FSM)

Describing Sequential Circuits

- State table
- For each current-state, specify next-states as function of inputs and current state
- State diagram
- Graphical version of state table

Bistable Element

- The simplest sequential circuit
- Signal B = A' appears after a short delay $\mathrm{t}_{\mathrm{pd}}=$ propagation delay
 feedback: reinforces the input A

Bistable Element

- The simplest sequential circuit
- No input... for the moment
- Two states = one Boolean state variable, say, "Q"
"twisted" representation:

(Q_L is active low)

Bistable Element

- Assume Q is equal " 0 "

D

F- Bottom inverter's HIGH output \rightarrow top inverter's input

\rightarrow Top inverter's output is forced LOW

Bistable Element

Now assume Q is equal " 1 "

Analog Analysis (1)

- Assume pure CMOS thresholds, 5 V is the V_{Cc}
- Theoretical threshold center is 2.5 V
- In principle, any TTL/CMOS have the same behavior, but different constants ...

[Recall Lecture \#9]

Analog Analysis (2)

Assume threshold inputs at 2.5 V :
 If nothing moves ... but a little input noise moves Q for example to ...

Metastability

- Metastability is inherent in any bistable circuit

Transfer function:

$$
\begin{aligned}
V_{\mathrm{in} 1} & =V_{\text {out } 2} \\
& =T\left(V_{\mathrm{in} 2}\right) \\
& =T\left(V_{\text {out } 1}\right) \\
& =T\left(T\left(V_{\mathrm{in} 1}\right)\right) \\
V_{\mathrm{in} 2} & =T\left(T\left(V_{\mathrm{in} 2}\right)\right)
\end{aligned}
$$

- Two stable points, one metastable point

Another Look at Metastability

- If the ball sits exactly on the top of the hill, the bistable circuit can be in metastable state until random noise nondeterministically chooses one of the stable states.
- Can appear in any sequential circuit, as we will see ...

Latches and Flip-Flops

- The two most popular varieties of elements used to build sequential circuits are: latches and flipflops

Latch: level sensitive storage element
Flip-Flop: edge triggered storage element

- Common examples of latches: S-R latch, $\bar{S}-\bar{R}$ latch, D latch (= gated D latch)
- Common examples of flip-flops (FF): D-FF, D-FF with enable, Scan-FF, JK-FF, T-FF

S-R Latch Operation

- Typical operation of an S-R Latch
- (a) "normal" inputs
(a)

Inputs		Outputs		
S	R	Q	QN	
0	0	last Q	last QN	(hold)
0	1	0	1	(reset)
1	0	1	0	(set)
1	1	0	0	(forbidden)

S-R Latch Operation

- Typical operation of an S-R Latch
- (a) "normal" inputs
(b) S and R asserted simultaneously
(a)

Inputs		Outputs		
S	R	Q	QN	
0	0	last Q	last QN	(hold)
0	1	0	1	(reset)
1	0	1	0	(set)
1	1	0	0	(forbidden)

(b)

S-R Latch Operation

- Typical operation of an S-R Latch
- (a) "nommal" inputs
(b) S and R asserted simultaneously
(a)

Metastability is possible if S and R are negated simultaneously
(b)

Improper S-R Latch Operation

- Metastability may occur if S and R are negated simultaneously: the circuit starts to oscillate

(b)

S-R Latch Timing Parameters

- Propagation delay $\left(\mathrm{t}_{\mathrm{p}}\right)$ for an input transition to produce an output
- Minimum pulse width (t_{pw}) needed for deterministic transitions

- Recovery time $\left(\mathrm{t}_{\text {rec }}\right)=$ minimum delay between negating S and R for them not to be considered simultaneous
- $t_{\text {rec }}$ and $t_{\text {pw }}$ are related: both measure how long it takes for the latch feedback loop to stabilize
- Violations of t_{pw} and $\mathrm{t}_{\text {rec }}$ cause metastability

R-S Latch Analysis

- Break the feedback path

Inputs			Output	(hold)
S(t)	R(t)	Q(t)	Q(t+ ${ }^{\text {(}}$	
0	0	0	0	
0	0	1	1	
0	1	0	0	(reset)
0	1	1	0	
1	0	0	1	
1	0	1	1	(set)
1	1	0	x	
1	1	1	x	(not allowed)

Next state equation, a.k.a. characteristic equation:

$$
Q(t+\Delta)=S(t)+R^{\prime}(t) \cdot Q(t) \quad \Leftrightarrow \quad Q^{+}=Q^{*}=S+R^{\prime} \cdot Q
$$

Theoretical R-S Latch Behavior

- State diagram
- states: possible values
- transitions: changes based on inputs

Observed R-S Latch Behavior

- Very difficult to observe R-S latch in the 1-1 state
- one of R or S usually changes first
- Ambiguously returns to state 0-1 or 1-0

$\bar{S}-\bar{R}$ Latch using NAND gates

- Used more than S-R latch with NOR
because NAND gates are preferred over NOR gates

- Timing and metastability similar as for S-R

- Next state equation (characteristic equation):

$$
Q(t+\Delta)=S^{\prime}(t)+R(t) \cdot Q(t) \quad \Leftrightarrow \quad Q^{+}=Q^{*}=S^{\prime}+R \cdot Q
$$

Bistable Application: Switch Debouncing

- Mitigating oscillations in mechanical switches when the wiper makes contact with the terminal

$$
55^{0+16}
$$

- Problem if the switch is used for counting the number of pushes

Wakerly, Section 8.2.3

Switch Debouncer [wokery, Section 233]

- No debouncing:

- Using a bistable for debouncing:

- SW trying to maintain 0 when the push starts but the first contact with SW_L moves it to 1 . After say 30 ns , the switch changes, DSW=1

Using a Bistable for Debouncing

- Before the button is pushed, the top contact holds SW at 0 V and top inverter produces "1" on SW_L

- When the button is pushed and contact is broken, feedback in the bistable holds SW at $V_{\text {OL }}$, i.e., logic "0"

- When the wiper hits the bottom contact, SW_L is forced to logic "0" and the output of the top inverter also becomes " 0 "
- After this, feedback in the bistable maintains the logic "0" on SW even if the wiper bounces off the bottom contact

Using an S-R Latch for Debouncing

- The pull-up resistors avoid the momentarily shorting of the gate outputs, when the output of the top inverter is still HIGH and the SW_L becomes connected to the ground

S-R Latch with Enable

- Sensitive to S/R inputs only when an enabling input \mathbf{C} is asserted ("c" stands for "clock')

Inputs			Outputs	
S	R	C	Q	QN
0	0	1	last Q	last QN
0	1	1	0	1
1	0	1	1	0
1	1	1	1	1
x	x	0	last Q	last QN

S-R Latch with Enable

- Typical operation
- If both S and R are "1" when the enabling input C is turned from " 1 " to " 0 ", the circuit behaves like an S-R latch and the output can become metastable

