
1

14:332:231
DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University

Electrical & Computer Engineering

Fall 2013

Lecture #14: Adders, Subtracters, and ALUs

2 of 24

Binary Adder [Wakerly 4th Ed., Sec. 6.10, p. 474]
 Binary addition is used frequently

 Addition Development:
– Full-Adder (FA), a 3-input bit-wise addition

functional block,

– Ripple Carry Adder, an iterative array to
perform binary addition, and

– Carry-Look-Ahead Adder (CLA), a hierarchical
structure to improve performance (check in
Wikipedia: http://en.wikipedia.org/wiki/Carry_look-ahead_adder).

Si
ng

le
 b

it
Ve

ct
or

Im
pr

ov
ed

ad
de

r

2

3 of 24

Functional Block: Half Adder
 A 2-input, 1-bit width binary adder that performs the

following computations:

 A half adder adds two bits to produce a two-bit sum
 The low-order bit is named “half sum” (HS), and

the high-order bit is named “carry out” (CO)

 The half adder can be specified
as a truth table for HS and CO 

X
+ Y

CO HS

0
+ 0

0 0

0
+ 1

0 1

1
+ 0

0 1

1
+ 1

1 0

0111

1001

1010

0000

HSCOYX

4 of 24

Half Adder
 Half-adder

for 1-bit
addends

half sum: HS = X  Y

carry out: CO = X · Y

X
Y

HS
CO

0111

1001

1010

0000

HSCOYX

HS
X

CO
Y

3

5 of 24

Full Adder [Recall Binary Addition from Lecture #2]
 Basic building block is “full adder”

– 1-bit-wide adder, produces sum and carry outputs

 Truth table:
OutputsInputs

7

6

5

4

3

2

1

0

Row

11111

10011

10101

01001

10110

01010

01100

00000

CoutSCinYX

Ci
X

+ Y

Co S

6 of 24

Full Adder from Half Adders

HS
A

CO
B

1-bit half adder

Ai

Bi

Si
Ci–1

Ci

1-bit full adder

HS

4

7 of 24

Full Adder

S = HS  CIN = X  Y  CIN = (X·Y + X·Y)  CIN

= X·Y·CIN + X·Y·CIN + X·Y·CIN + X·Y·CIN

first term

first term direct first term complement

COUT = X·Y + X·CIN + Y·CIN

carry
generated
internally

carry
generated

by CIN

8 of 24

Logic Optimization: Full Adder
 Full adder Karnaugh map

OutputsInputs

7

6

5

4

3

2

1

0

Row

11111

10011

10101

01001

10110

01010

01100

00000

CoutSCinYX

5731
1

4620
0

10110100

XY
X

Cin

Y

Cin

0 1 0 1

1 0 1 0

5731
1

4620
0

10110100

XY
X

Cin

Y

Cin

0 0 1 0

0 1 1 1

S:

Cout: X·Y

X·Cin

Y·Cin
Cout = X·Y + X·Cin + Y·Cin

S = X·Y·Cin + X·Y·Cin + X·Y·Cin + X·Y·Cin

X·Y·Cin

X·Y·Cin

X·Y·Cin

X·Y·Cin

5

9 of 24

Full Adder Circuit
a) Gate-level circuit

diagram

b) Logic symbol

c) Alternate logic symbol
suitable for cascading

X
Y
CIN

S

COUT

full adder

COUT CIN

S

X Y

S
X

Y

COUT

CIN

a)

b) c)

10 of 24

Subtraction
 Subtraction is the same as addition of the

twos complement

 Recall Lecture #2:
The two’s complement is the bit-by-bit
complement plus 1

 Therefore, X – Y = X + Y + 1
– Complement Y inputs to adder, set first Cin to 1

6

11 of 24

Subtractor Design Using Adders
 Ripple subtractor

Yi

Yi

74x04

COUT CIN

S

X Y

COUT CIN

S

X Y

COUT CIN

S

X Y

COUT CIN

S

X Y

1

X3 Y3 X2 Y2 X1 Y1 X0 Y0

S3 S2 S1 S0

C4

C3 C2 C1

12 of 24

Subtractor Design Using Adders
 Ripple subtractor

xn–1 yn–1

dn–1

X Y

D
BOUTb_Ln

b_Ln–1

BIN

xn–2 yn–2

dn–2

X Y

D
BOUT

b_Ln–2

BIN

x0 y0

d0

X Y

D
BOUT

b_L0

BIN 1
b_L1

...

7

13 of 24

2’s Complement Adder/Subtractor
 Subtraction can be done by addition of the 2’s Complement.

1. Complement each bit (1’s Complement.)
2. Add 1 to the result.

 The circuit shown computes both A + B and A – B:
– For S = 1, subtract, the 2’s complement of B is formed by using

XORs to form the 1’s comp and adding the 1 applied to C0.
– For S = 0, add, B is passed through unchanged

14 of 24

How to Detect Overflow
 Rule was: Sign of the two operands identical and

different from the sign of the result [recall Lecture #3]
 Sign = most significant bit (MSB)

OVR = Xn–1 · Yn–1 · Sn–1 + Xn–1 · Yn–1 · Sn–1

or:
OVR = Cn–1  Cn carry-in different from carry-out

2n–1 – 1
1

011··· 1
000··· 1

100··· 0

OVR = 0·0·0 + 1·1·1 = 1 or

OVR = 1  0 = 1

8

15 of 24

Ripple Adder
 To add multiple operands, we “bundle” logical

signals together into vectors and use functional
blocks that operate on the vectors

 Example:
4-bit ripple carry adder:
Adds input vectors
A(3:0) and B(3:0) to get
a sum vector S(3:0)

 Note: carry-out of block i
becomes carry-in of block
i + 1 Ci+10 0 1 1Carry out

Si1 1 1 0Sum

Bi0 0 1 1Addend

Ai1 0 1 1Augend

Ci0 1 1 0Carry in

Name
Bit index

3 2 1 0
Description

16 of 24

Ripple Adder

 It is relatively slow: For n bits, the worst case is:
 All of the adder’s bits (and c0) are present

simultaneously
 tADD = tXYCOUT

+ (n–2)·tCINCOUT
+ tCINS

LSB (out C1) MSB (in Cn–1)

 Carry look-ahead adders are the solution

COUT CIN

S

X Y

COUT CIN

S

X Y

COUT CIN

S

X Y

COUT CIN

S

X Y

X3 Y3 X2 Y2 X1 Y1 X0 Y0

S3 S2 S1 S0

C4

C3 C2 C1
C0

111··· 1 –1
000··· 1 +1

9

17 of 24

Carry Lookahead Adder
 Uses a different circuit to calculate the carry

out (calculates it ahead of the addition), to speed up
the overall addition

 Requires more complex circuits

 Trade-off: speed vs. area (complexity, cost)

18 of 24

Carry Look-Ahead Addition
 Carry generate: input bits combination (xi,yi) that

produces a carry-out of “1” (ci+1 = 1) independent of lower-
order bits (x0 … xi–1, y0 … yi–1) and c0.

 Carry propagate: input bits combination (xi,yi) that
produces a carry-out of “1” (ci+1 = 1) when ci = 1.

pi

xi

gi

yi

11111
10011

10101
01001

10110
01010

01100
00000

CoutSCinYX

OutputsInputs

No carry
No carry

No carry
Carry propagated
No carry
Carry propagated

Carry generated
Carry generated

& propagated

gi = xi · yi

pi = xi + yi

 ci+1 = gi + pi · ci

ci ci+1

 carry-generate

 carry-propagate

Note that we
could use
half adder:

pi = xi  yi

10

19 of 24

4-bit Carry Lookahead Adder
 Conceptual

diagram

si = HSi  ci = pi  ci

ci+1 = gi + pi · ci

s3
p3

g3y3

x3

g2
y2

x2

g1
y1

x1

g0
y0

x0

s2
p2

p1

p0

s1

s0

c3

c2

c1

c0

pi


see previous slide

Note that gi = 1  pi = 1
(but not vice versa)

gi  pi · gi

20 of 24

Carry Lookahead Logic
 Structure of one stage of a

carry-lookahead adder:

gi = xi · yi

pi = xi + yi

si

xi

yi

Carry
Lookahead

Logic

hsi

ci

xi–1

x0

yi–1

y0
c0

 carry-generate signal

 carry-propagate signal

11

21 of 24

Carry equations for first 4 adder stages

c1 = p0 · (g0 + c0)

c2 = p1 · (g1 + c1)
= p1 · (g1 + p0 · (g0 + c0))
= p1 · (g1 + p0) · (g1 + g0 + c0)

c3 = p2 · (g2 + c2)
= p2 · (g2 + p1 · (g1 + p0) · (g1 + g0 + c0))
= p2 · (g2 + p1) · (g2 + g1 + p0) · (g2 + g1 + g0 + c0)

c4 = p3 · (g3 + c3)
= p3 · (g3 + p2 · (g2 + p1) · (g2 + g1 + p0) · (g2 + g1 + g0 + c0))
= p3 · (g3 + p2) · (g3 + g2 + p1) · (g3 + g2 + g1 + p0) · (g3 + g2 + g1 + g0 + c0)

distributivity theorem

22 of 24

74x283 4-bit Adder
 Uses carry lookahead (CLA) internally
 Differences from general CLA design:

– Active-low versions of carry-generate (gi) and
carry-propagate (pi) (b/c inverting gates are
faster)

– Algebraic manipulation of the half-sum:

hsi = xi  yi = xi·yi + xi·yi

= (xi + yi) · (xi + yi)
= (xi + yi) · (xi · yi)
= pi · gi

– Creates the carry signals using INVERT-OR-
AND
(has  delay as a single inverting gate):

ci+1 = pi · gi + pi · ci

= pi · (gi + ci)
 See Wakerly 4th ed., page 481, for carry

equations

7

5

6

3

2

14

15

12

11

4

1

13

10

9

C0

A0

B0

A1

B1

A2

B2

A3

B3

74x283

S0

S1

S2

S3

C4

12

23 of 24

74x283 4-bit Adder (detail)

p1 · (g1 + p0) · (g1 + g0 + c0)

p0 · (g0 + c0)

“generate”

“propagate”

“half sum”

carry-in from
previous stage

g0

p0

c0

c0

hs0

24 of 24

16-bit Group-ripple Adder
 Ripple carry

between
groups

 Total
propagation
delay
8 inverting
gates

