# 14:332:231 <br> DIGITAL LOGIC DESIGN 

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013

Lecture \#14: Adders, Subtracters, and ALUs

Binary Adder [Wakerly 4t Ed., Sec. 6.10, p. 474]

- Binary addition is used frequently
- Addition Development:
$\stackrel{\text { ta }}{\sim} \int-$ Full-Adder (FA), a 3-input bit-wise addition functional block,
- Ripple Carry Adder, an iterative array to perform binary addition, and
- Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance (check in
Wikipedia: http://en.wikipedia.org/wiki/Carry_look-ahead_adder).


## Functional Block: Half Adder

- A 2-input, 1-bit width binary adder that performs the following computations:

$$
\begin{array}{rrrrr}
\mathrm{X} & \begin{array}{r}
0 \\
+ \\
\mathrm{Y}
\end{array} & \begin{array}{r}
0 \\
+0 \\
\mathrm{COHS}
\end{array} & \begin{array}{r}
00
\end{array} & \begin{array}{l}
1 \\
01
\end{array} \\
\hline 01 & \frac{1}{0} & +1 \\
\hline 10
\end{array}
$$

- A half adder adds two bits to produce a two-bit sum
- The low-order bit is named "half sum" (HS), and the high-order bit is named "carry out" (CO)
- The half adder can be specified as a truth table for HS and CO

| $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{C O}$ | $\mathbf{H S}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |



## Full Adder [Recall Binary Addition from Lecture \#2]

- Basic building block is "full adder"
- 1-bit-wide adder, produces sum and carry outputs
- Truth table:

| Row | Inputs |  |  |  | Outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{X}$ | $\mathbf{Y}$ | Cin |  | $\mathbf{S}$ | Cout |
|  | 0 | 0 | 0 |  | 0 | 0 |
| 1 | 0 | 0 | 1 |  | 1 | 0 |
| 2 | 0 | 1 | 0 |  | 1 | 0 |
| 3 | 0 | 1 | 1 |  | 0 | 1 |
| 4 | 1 | 0 | 0 |  | 1 | 0 |
| 5 | 1 | 0 | 1 |  | 0 | 1 |
| 6 | 1 | 1 | 0 |  | 0 | 1 |
| 7 | 1 | 1 | 1 |  | 1 | 1 |

## Full Adder from Half Adders



## Full Adder

$$
\begin{aligned}
\mathbf{S} & =\mathrm{HS} \oplus \mathrm{CIN}=X \oplus Y \oplus \mathrm{CIN}=\overbrace{\left(X \cdot Y^{\prime}+X^{\prime} \cdot Y\right)}^{\text {first term }} \oplus \mathrm{CIN} \\
& =\underbrace{X \cdot Y^{\prime} \cdot \mathrm{CIN}^{\prime}+X^{\prime} \cdot Y \cdot \mathrm{CIN}^{\prime}}_{\text {first term direct }}+\underbrace{\mathrm{X}^{\prime} \cdot Y^{\prime} \cdot \mathrm{CIN}+X \cdot Y \cdot \mathrm{CIN}}_{\text {first term complement }}
\end{aligned}
$$

$$
\text { COUT }=X \cdot Y+X \cdot C I N+Y \cdot C I N
$$

## Logic Optimization: Full Adder

- Full adder Karnaugh map

| Row | Inputs |  |  |  |  | Outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{X}$ | $\mathbf{Y}$ | Cin |  | $\mathbf{S}$ | Cout |  |
| 0 | 0 | 0 | 0 |  | 0 | 0 |  |
| 1 | 0 | 0 | 1 |  | 1 | 0 |  |
| 2 | 0 | 1 | 0 |  | 1 | 0 |  |
| 3 | 0 | 1 | 1 |  | 0 | 1 |  |
| 4 | 1 | 0 | 0 |  | 1 | 0 |  |
| 5 | 1 | 0 | 1 |  | 0 | 1 |  |
| 6 | 1 | 1 | 0 |  | 0 | 1 |  |
| 7 | 1 | 1 | 1 |  | 1 | 1 |  |

S:

$S=X \cdot Y^{\prime} \cdot \operatorname{Cin}^{\prime}+X^{\prime} \cdot Y \cdot C^{\prime} n^{\prime}+X^{\prime} \cdot Y^{\prime} \cdot \operatorname{Cin}+X \cdot Y \cdot C i n$
Cout:


## Full Adder Circuit

a) Gate-level circuit diagram
b) Logic symbol
c) Alternate logic symbol suitable for cascading
a)

b)

c)


## Subtraction

- Subtraction is the same as addition of the twos complement
- Recall Lecture \#2:

The two's complement is the bit-by-bit complement plus 1

- Therefore, $X-Y=X+\bar{Y}+1$
- Complement $Y$ inputs to adder, set first $C_{\text {in }}$ to 1


## Subtractor Design Using Adders

- Ripple subtractor



## Subtractor Design Using Adders

- Ripple subtractor



## 2's Complement Adder/Subtractor

- Subtraction can be done by addition of the 2's Complement.

1. Complement each bit (1's Complement.)
2. Add 1 to the result.

- The circuit shown computes both A + B and A-B:
- For $S=1$, subtract, the 2 's complement of $B$ is formed by using XORs to form the 1's comp and adding the 1 applied to $\mathrm{C}_{0}$.
- For $S=0$, add, $B$ is passed through unchanged



## How to Detect Overflow

- Rule was: Sign of the two operands identical and different from the sign of the result [recall Lecture \#3]
- Sign = most significant bit (MSB)
$O V R=X_{n-1} \cdot Y_{n-1} \cdot S_{n-1}^{\prime}+X_{n-1}^{\prime} \cdot Y_{n-1}^{\prime} \cdot S_{n-1}$
or:
OVR $=C_{n-1} \oplus C_{n} \quad$ carry-in different from carry-out

$$
\begin{array}{ll}
011 \cdots 1 & 2^{n-1}-1 \\
000 \cdots 1 & 1
\end{array}
$$

OVR $=0 \cdot 0 \cdot 0+1 \cdot 1 \cdot 1=1$
or
OVR = $1 \oplus 0=1$

## Ripple Adder

- To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that operate on the vectors
- Example:

4-bit ripple carry adder: Adds input vectors $A(3: 0)$ and $B(3: 0)$ to get a sum vector $S(3: 0)$

- Note: carry-out of block $i$ becomes carry-in of block $i+1$
$\left.\begin{array}{|c|c|c|c|}\hline \text { Description } & \text { Bit index } \\ & 3 & \text { Name } \\ \hline \text { Carry in } & 0 & 1 & 1\end{array}\right)$


## Ripple Adder



- It is relatively slow: For $n$ bits, the worst case is:
- All of the adder's bits (and $\mathrm{c}_{0}$ ) are present $\begin{gathered}111 \cdots \\ 000 \cdots 1\end{gathered}$ simultaneously
$-\mathrm{tADD}=\mathrm{t}_{\text {XYCOUT }}+(\mathrm{n}-2) \cdot \mathrm{t}_{\mathrm{C}_{\text {INCOUT }}}+\mathrm{t}_{\mathrm{C}_{\text {INS }}}$

$$
\text { LSB }\left(\text { out } \mathrm{C}_{1}\right) \quad \mathrm{MSB}\left(\text { in } \mathrm{C}_{\mathrm{n}-1}\right)
$$

- Carry look-ahead adders are the solution


## Carry Lookahead Adder

- Uses a different circuit to calculate the carry out (calculates it ahead of the addition), to speed up the overall addition
- Requires more complex circuits
- Trade-off: speed vs. area (complexity, cost)


## Carry Look-Ahead Addition

- Carry generate: input bits combination $\left(x_{i}, y_{j}\right)$ that produces a carry-out of " 1 " ( $\mathrm{c}_{\mathrm{i}+1}=1$ ) independent of lowerorder bits $\left(x_{0} \ldots x_{i-1}, y_{0} \ldots y_{i-1}\right)$ and $c_{0}$.
- Carry propagate: input bits combination ( $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ ) that produces a carry-out of " 1 " $\left(c_{i+1}=1\right)$ when $c_{i}=1$.



## 4-bit Carry Lookahead Adder

- Conceptual diagram

Note that $g_{i}=1 \Rightarrow p_{i}=1$
(but not vice versa) $g_{i} \Rightarrow p_{i} \cdot g_{i}$


## Carry Lookahead Logic

- Structure of one stage of a carry-lookahead adder:
$g_{i}=x_{i} \cdot y_{i} \leftarrow$ carry-generate signal



## Carry equations for first 4 adder stages

$c_{1}=p_{0} \cdot\left(g_{0}+c_{0}\right)$
$\mathrm{c}_{2}=\mathrm{p}_{1} \cdot\left(\mathrm{~g}_{1}+\mathrm{c}_{1}\right)$
$=p_{1} \cdot\left(g_{1}+p_{0} \cdot\left(g_{0}+c_{0}\right)\right)$
$=p_{1} \cdot\left(g_{1}+p_{0}\right) \cdot\left(g_{1}+g_{0}+c_{0}\right) \quad$ distributivity theorem
$c_{3}=p_{2} \cdot\left(g_{2}+c_{2}\right)$
$=p_{2} \cdot\left(g_{2}+p_{1} \cdot\left(g_{1}+p_{0}\right) \cdot\left(g_{1}+g_{0}+c_{0}\right)\right)$
$=p_{2} \cdot\left(g_{2}+p_{1}\right) \cdot\left(g_{2}+g_{1}+p_{0}\right) \cdot\left(g_{2}+g_{1}+g_{0}+c_{0}\right)$
$\mathrm{c}_{4}=\mathrm{p}_{3} \cdot\left(\mathrm{~g}_{3}+\mathrm{c}_{3}\right)$
$=p_{3} \cdot\left(g_{3}+p_{2} \cdot\left(g_{2}+p_{1}\right) \cdot\left(g_{2}+g_{1}+p_{0}\right) \cdot\left(g_{2}+g_{1}+g_{0}+c_{0}\right)\right)$
$=p_{3} \cdot\left(g_{3}+p_{2}\right) \cdot\left(g_{3}+g_{2}+p_{1}\right) \cdot\left(g_{3}+g_{2}+g_{1}+p_{0}\right) \cdot\left(g_{3}+g_{2}+g_{1}+g_{0}+c_{0}\right)$

## 74×283 4-bit Adder

- Uses carry lookahead (CLA) internally
- Differences from general CLA design:
- Active-low versions of carry-generate ( $\mathrm{g}_{\mathrm{i}}$ ) and carry-propagate ( $\mathrm{p}_{\mathrm{i}}{ }^{\prime}$ ) (b/c inverting gates are faster)
- Algebraic manipulation of the half-sum:
$\mathrm{hs}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \oplus \mathrm{y}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \cdot \mathrm{y}_{\mathrm{i}}^{\prime}+\mathrm{x}_{\mathrm{i}}^{\prime} \cdot \mathrm{y}_{\mathrm{i}}$
$=\left(x_{i}+y_{i}\right) \cdot\left(x_{i}^{\prime}+y_{i}^{\prime}\right)$
$=\left(x_{i}+y_{i}\right) \cdot\left(x_{i} \cdot y_{i}\right)^{\prime}$
$=p_{i} \cdot g_{i}^{\prime}$
- Creates the carry signals using INVERT-OR-

AND
(has $\approx$ delay as a single inverting gate)
$\mathrm{ci}+1=\mathrm{p}_{\mathrm{i}} \cdot \mathrm{g}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}} \cdot \mathrm{c}$

- See Wakerly $4^{\text {th }}$ ed., page 481 , for carry equations




## $74 \times 283$ 4-bit Adder (detail)



## 16-bit Group-ripple Adder

- Ripple carry between groups
- Total
propagation delay
$\approx 8$ inverting gates


