14:332:231
DIGITAL LOGIC DESIGN

lvan Marsic, Rutgers University
Electrical & Computer Engineering
Fall 2013

Lecture #14: Adders, Subtracters, and ALUs

Binary Adder [wakerly 4™ Ed., Sec. 6.10, p. 474

= Binary addition is used frequently

= Addition Development:

— Full-Adder (FA), a 3-input bit-wise addition
functional block,

— Ripple Carry Adder, an iterative array to
perform binary addition, and

— Carry-Look-Ahead Adder (CLA), a hierarchical
structure to improve performance (check in
Wlklpedla http://en.wikipedia.org/wiki/Carry_Iook-ahead_adder).

it
f_)_\

Vector
—— 5”’19'6 b

Improved
adder
f_)%

2 0f 24

Functional Block: Half Adder

A 2-input, 1-bit width binary adder that performs the
following computations:

X 0 0 1 1
+ Y +0 +1 +0 +1
COHS 00 01 01 10

A half adder adds two bits to produce a two-bit sum

The low-order bit is named “half sum” (HS), and
the high-order bit is named “carry out” (CO)

= The half adder can be specified X Y CO HS
as a truth table forHSandCco = | | © |
1 0 0 1
1 1 1 0
30f 24
Half Adder
= Half-adder
for 1-bit X _Y COHS] |
0 0 0 0 X HS
addends o 1 o0 1 —v col—
1 0 0 1
1 1 1 0

carry out: CO=X-Y v - co

X \
half sum: HS=X®Y FDHS

4 of 24

FU” Addel" [Recall Binary Addition from Lecture #2]

= Basic building block is “full adder”
— 1-bit-wide adder, produces sum and carry outputs

® Truth table:

Inputs Outputs
Row
X Y Cin S Cout

0 0 0 0 0 0
1 0 0 1 1 0
2 0 1 0 1 0
3 0 1 1 0 1
4 1 0 0 1 0
5 1 0 1 0 1
6 1 1 0 0 1
7 1 1 1 1 1

5 of 24

Full Adder from Half Adders

1-bit half adder

B

=iDs

— HS

—CO

1-bit full adder

HS

D

—1 -

A| \ ‘_\
| J

— Ci

6 of 24

Full Adder

first term
) EEE—
S=HS®CIN=X®Y®CIN=(X-Y'+X"Y) ® CIN
=X-Y''CIN' + X"-Y-CIN' + X"-Y'-CIN + X-Y-CIN
N J N J

first term direct first term complement

COUT = XY +\X-CIN + Y-CINJ

carry carry
generated generated
internally by CIN

7 of 24

Logic Optimization: Full Adder

= Full adder Karnaugh map

Inputs

py)
o
2

Y

Cin

~No abhwNREOo

B R R P OO O OoOlX

P P OO®RPFP OO

0

P ORr ORFROPR

S:

Cout:

S=X-Y'-Cin’ + X"-Y-Cin' + X"-Y'-Cin + X-Y-Cin

Cout = X-Y + X-Cin + Y-Cin

X"-Y-Cin’

X
1

11

X-Y'-Cin’

XY
Cir\ 00 \o1
0

%1 0

@'o

130

5

0

:lcm

I_/X-Y-Cin

X

X"-Y'-Cin

XY

XY
Cif\ 00 01
0

11 10

-

0

O 2

1 1

0

(1)
af) :ICin

! X-Cin

Y-Cin g o4

Full Adder Circuit

a) Gate-level circuit
YD
. Y- S
b) Logic symbol CIN !
C) Alternate logic symbol o

suitable for cascading

couTt

b) full adder C) * *
!
Subtraction

= Subtraction is the same as addition of the
twos complement

= Recall Lecture #2:
The two’s complement is the bit-by-bit
complement plus 1

= Therefore, X—Y=X+Y +1
— Complement Y inputs to adder, set first C,, to 1

10 of 24

Subtractor Desigh Using Adders

= Ripple subtractor

Yi
74x04?
Y,
Xs Ys X, Y, X, Y, Xo Yo
b b b b
X Y X Y X Y X Y
Cs C, c,
C4<— COUT CIN COUT CIN COUT CIN COUT CIN|=1
S S S S
! ! v !
S3 SZ Sl SO
11 of 24

Subtractor Design Using Adders

= Ripple subtractor

Xp1 Yna X2 Yn2 Xo Yo
} Q \ Q } Q
X Y X Y X Y
b—Ln—l b_l-n_z l’:)_L1 b_Lo
b_L,<+—QBOUT BINO+=—QBOUT BIN[O . O BOUT BINO<+=—1
D D D
dn—l dn—z dO

12 of 24

2's Complement Adder/Subtractor

= Subtraction can be done by addition of the 2's Complement.
1. Complement each bit (1's Complement.)
2. Add 1 to the result.

®= The circuit shown computes both A + B and A — B:

— For S =1, subtract, the 2's complement of B is formed by using
XORs to form the 1's comp and adding the 1 applied to C,,.

— For S =0, add, B is passed through unchanged

13 of 24

How to Detect Overflow

" Rule was: Sign of the two operands identical and
different from the sign of the result [recall Lecture #3]

= Sign = most significant bit (MSB)

OVR = Xn—l) Yn—l) S,n—l + X'n—l ' Y’n—l ' Sn—l
or:
OVR=C,_; ®C, carry-in different from carry-out

011---1 2n1 -1
000--- 1 1
100--- 0

OVR = 0-00+1-1-1 =1 or

OVR =1®0 =1
14 of 24

Ripple Adder

] Note Carry-OUt Of bIOCk I E. .. T 2

®" To add multiple operands, we “bundle” logical
signals together into vectors and use functional
blocks that operate on the vectors

= Example: | Bitindex
o . Description Name
4-bit ripple carry adder: 3210
Adds input vectors Carryin | 0110 | Ci

A(3:0) and B(3:0) to get i| ‘Augend | 1011 | Ai
a sum vector S(3:0) :

becomes carry-in of block
i+1 Carry out 0011 Ci+1

15 of 24

Ripple Adder

X3 Y3 X, Y, X4 Y, Xo Yo
b b b b
X Y X Y X Y X Y
Cs G, C,
C,<COUT CIN COUT CIN COUT CIN COUT CIN|=—C,
S S S S
33 Sz S1 SO

It is relatively slow: For n bits, the worst case is:

All of the adder’s bits (and c,) are present L

. 000---1 +1
simultaneously

tADD = tuvcoyr * (N=2) topcoyr * s
LSB (out C,) MSB (in C,_;)
Carry look-ahead adders are the solution

16 of 24

Carry Lookahead Adder

= Uses a different circuit to calculate the carry
out (calculates it ahead of the addition), t0 speed up
the overall addition

= Requires more complex circuits

= Trade-off: speed vs. area (complexity, cost)

17 of 24

Carry Look-Ahead Addition

= Carry generate: input bits combination (x;,y,) that
produces a carry-out of “1” (c,,; = 1) independent of lower-
order bits (Xg ... X1, Yo --- yi_D and c,,.

= Carry propagate: input bits combination (x;,y;) that
produces a carry-out of “1” (c;,; = 1) when c; = 1.

Inputs Outputs » gi =X - Y; < carry-generate
X Y Cin S Cout P; = X; +Y; < carry-propagate
0O O 0 0 0 No carry
0 O 1 1 0 No carry
6 1 0 1 0 Nocarry =Cu =g *+PC
0 1 0 Carry propagated
1 0 0 1 0 No carry
1 0 0 Carry propagated Note that we

X \ could use
1 1 0 0 1 carry generated i b half adder-
1 1 1 Carry generated =i @i
T T & propagated pr=xoyl
D
g,
Ci Cit1
18 of 24

4-bit Carry Lookahead Adder

= Conceptual
diagram

%k
pi see previous slide

\

S, = HS5®c, = p®c

Cb1= Qi TP~ G

x3

y3

X2

y2

x1

p3

793

p2

s3
c3

1) D—s2

c2

g2

pl

0] [99] [08] |09

y1 cl
g1 |
x0 po A\
Note thatg, =1 =p,=1 F‘—L[}SO
(but not vice versa) y0
9i=pi"G 9 c0
19 of 24
Carry Lookahead Logic
= Structure of one stage of a
carry-lookahead adder:
X; hs;
0i=X; Y < carry-generate signal & Si
Pi =X +Y; <« carry-propagate signal
Xo] Carry
pp— Lookahead
Foe Logic
Yo _°]
Co—
20 of 24

10

Carry equations for first 4 adder stages

Po -

=Py

Py

Py -

P, -

P2

= P3
Ps -

P3

(9o * Co)

(9, +¢y)

(91 + Po - (9o + Cp))

(9, +Po) - (9, + 9o+ Cp) distributivity theorem
(9, +¢)

(@2+ Py - (91 +P) - (91 + 0o +Cp))

(924 P1) (9291 +Pg) - (92+ 91+ do + Cp)

(93 + C3)
@3+ P2 (92 P1) - (92+ 91+ Po) - (92+ 91 + g+ Cp))
“(G3+P2) (G3+ 9+ Py) - (@a+ 92+ 91+ Pg) - (@3 +09,+ 09y + g+ Cp)

21 of 24
74x283 4-bit Adder
Uses carry lookahead (CLA) internally
= Differences from general CLA design:
— Active-low versions of carry-generate (g;') and
carry-propagate (p;’) (b/c inverting gates are
faster,
— Algebraic manipulation of the half-sum:
hs; =X @ y; =Xy + Xy, = —
=06+y) - 06 +y) o
=06+Y) - (- Y
=pi- g
— Creates the carry signals using INVERT-OR-
A
(has ~delay as a single inverting gate):
Ci+l=p; g +p-C
=pi-(@+c) rE = — =y .-
= See Wakerly 4" ed., page 481, for carry T e o i
equations - >
)] 11 —
74x283 i e T P
—
—
75 co 4) |
— IS T / — 1 —————— . T
|0 o = “--J N
—B0)] P .
—a1 S1 = Lo —
g1 =~
14 I e
o s2 = o
=52 s3P— Tile= oL/)
TN o 1 e <>
caP— o il

22 of 24

74x283 4-bit Adder (detail)

— >
i

d -

Bl — 8
=i L >
i
“generateA”)
BO —

“half sum”

90’
P’
Co'

>

carry-in from

!
“propagate”

previous stage
23 of 24

16-bit Group-ripple Adder

X[15:0]

Ripple carry Y150
between
groups co

Total
propagation
delay
~8 inverting
gates

X0

——— A0 S0

31 A1 81

PRI] R

T4x283 T4x283
Z1co {co
5 4 4 S8
ao s “Hao S0
BO =]
81 59

= A1 g1 2
“a2 52—

2as s3lo

Zlas s3f
B3 L 83 cal2
U1
c4 c12
Tax2B3 T4x283
oo — co]
= AD 50
- — B0 '
31 4 g1 A1 s1
= B] o 4 Bi
— A2 gz |2 ad Y 52
: A - 82 1
as saf” a3 53 =
B3 cale_c8 B3 ca |8 ci6

5[15:0]
24 of 24

12

