14:332:231
 DIGITAL LOGIC DESIGN

Ivan Marsic, Rutgers University
Electrical \& Computer Engineering
Fall 2013

Organizational Matters (1)

- Instructor: Ivan MARSIC
- Office: CoRE Building, room 711
- Email: marsic@ece.rutgers.edu
- Office hours: Tuesday 1:30-3 PM
- TAs:

1. Mehrnaz Tavan mehrnaztavan1@gmail.com
2. Talal Ahmed talal.ahmed@rutgers.edu
3. Zahra Shakeri ze shakeri@yahoo.com
4. Xiangyi Gao xg45@eden.rutgers.edu

- TAs office hours T.B.A.

Organizational Matters (2)

- Required Text:
- John F. Wakerly, Digital Design: Principles and Practices, Prentice Hall: Englewood Cliffs, N.J., 4th Edition, 2005, ISBN 0-13-186389-4
- The laboratory notes will be available via the Web (on Sakai)
- Important announcements will be mailed on the class mailing list
- Labs will be run by the TAs in five (5) different sections

Organizational Matters (3)

- Grading:
- Homework 20 \%
- Midterm Exam 120 \%
- Midterm Exam 220 \%
- Final Exam 30 \%
- Random Quizzes 10 \%
(~Oct 11 or 18)
(~Nov 19 or 27)

Clock Rate Grows Exponentially

What is a Digital Circuit?

- Defined by the interpretation of the signals (waveforms, if in time) in the circuit.
- Analog
- Continuous Values
- Fast, economical, low accuracy
- Susceptible to noise \& distortion
- DIGITAL
- Discrete Levels, less sensitive to noise
- Accuracy related to cost (number of "bits")
- Less susceptible to noise
- Binary: 2 Levels or States
- Multi-valued: More than two Levels

Digital Logic Elements

- Binary system -- 0 \& 1, LOW \& HIGH
- Basic building blocks -- AND, OR, NOT logic gates
AND gate \quad OR gate

\mathbf{X}	\mathbf{Y}	\mathbf{X} AND \mathbf{Y}
0	0	0
0	1	0
1	0	0
1	1	1

\mathbf{X}	\mathbf{Y}	\mathbf{X} OR \mathbf{Y}
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{X}	NOT \mathbf{X}
0	1
1	0

Logic Gate Symbols and Behavior

- Logic gates have special symbols:

- And waveform behavior in time as follows:

Digital Logic Elements (2)

\mathbf{X}	\mathbf{Y}	\mathbf{X} NAND \mathbf{Y}
0	0	1
0	1	1
1	0	1
1	1	0

Digital Logic Elements (3)

NAND gate

NOR gate

X——

\mathbf{X}	\mathbf{Y}	\mathbf{X} nand \mathbf{Y}
0	0	1
0	1	1
1	0	1
1	1	0

\mathbf{X}	\mathbf{Y}	\mathbf{X} NOR \mathbf{Y}
0	0	1
0	1	0
1	0	0
1	1	0

Z \qquad

Truth Tables

- A Truth Table is a tabular notation for representing the logic value of a function for all possible combinations of the values of its arguments.

\mathbf{X}	$\mathbf{Z}=$ пот \mathbf{X}
0	1
1	0

NOT

\mathbf{X}	\mathbf{Y}	$\mathbf{Z}=\mathbf{X}$ and \mathbf{Y}
0	0	0
0	1	0
1	0	0
1	1	1
AND		

\mathbf{X}	\mathbf{Y}	$\mathbf{Z}=\mathbf{X}$ OR \mathbf{Y}
0	0	0
0	1	1
1	0	1
1	1	1
OR		

$\mathrm{XOR}=$??

\mathbf{X}	\mathbf{Y}	$\mathbf{Z}=\mathbf{X}$ xor \mathbf{Y}
0	0	0
0	1	1
1	0	1
1	1	0

Truth Tables \& Logic Diagrams

- Conceptual problem
representation

- Truth table: Truth table for the multiplexer function
- Synthesize into
a logic diagram

\mathbf{S}	\mathbf{A}	\mathbf{B}	\mathbf{Z}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Logic Equations \& Logic Diagrams

- Logic equation for a multiplexer:

$$
Z=S^{\prime} \cdot A+S \cdot B
$$

- Logic diagram: Gate-level logic diagram for multiplexer function

Prepackaged Building Blocks

E.g., using an MSI
building block to implement a multiplexer

What are Logic Gates built from?

Transistors!

Digital Model of a Transistor

- We make abstraction of the signals: 0 or 1
- As a result a transistors can be considered a switch (ON or OFF; 1 or 0)

Transistor-Transistor Logic (TTL)

E.g., bipolar transistor inverter (npn)

Complementary Metal-Oxide Semiconductor

Field-Effect Transistor (CMOS) Logic
E.g., CMOS inverter

NOT gate or inverter

$\mathbf{V}_{\text {IN }}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{V}_{\text {OUT }}$
$0.0 \mathrm{~V}(\mathrm{~L})$	off	on	$5.0 \mathrm{~V}(\mathrm{H})$
$5.0 \mathrm{~V}(\mathrm{H})$	on	off	$0.0 \mathrm{~V}(\mathrm{~L})$

Logic Levels (1)

- Undefined region is inherent
$-" 0 " \equiv 0-0.8 \quad x x x x x \quad " 1 " \equiv 2-5 \mathrm{~V}$ TTL
- "digital", not analog voltages

Logic values and noise margins

Resistor-Transistor Inverter

OT gate or
inverter
IN

Logic Levels (2)

- Switching threshold varies with voltage, \rightarrow temperature, production process, phase of the moon, etc.
- Need "noise margin" between the output and input
- The more you push the technology, the more "analog" it becomes
- Accidental versus purposeful "push"
- Logic voltage levels (CMOS) decreasing with progress in microelectronics

$$
\mathrm{V}_{\mathrm{cc}}: \quad 5 \rightarrow 3.3 \rightarrow 2.5 \rightarrow 1.8 \mathrm{~V}
$$

TTL Logic Levels \& Noise Margins

- Asymmetric (unlike CMOS, which could also be symmetric)

- Some CMOS families can be made compatible with TTL

Importance of Specifications

- Digital analysis works only if circuits are operated in specifications from the manuals:
- Power supply voltage
- Temperature
- Input-signal quality
- Output loading
- Must do some "analog" analysis too to prove that circuits are operated in specifications:
- Fan-in and fan-out specifications
- Timing analysis

Input/Output Loading Specs

- Each gate input requires a certain amount of current to drive it in the LOW state and in the HIGH state:
$-I_{I L}$ and $I_{I H}$
- These amounts are specified by the manufacturer
- Fan-out calculation:
- (LOW state) The sum of the I_{IL} values of the driven inputs may not exceed $\mathrm{I}_{\text {OLmax }}$ of the driving output
- (HIGH state) The sum of the I_{IH} values of the driven inputs may not exceed $\mathrm{I}_{\mathrm{OHmax}}$ of the driving output

Combinational Circuits

- Combinational circuit's output depends only on the current input values (called an input combination)
- IDEAL: Output responds instantly
- REALITY: Propagation delay, spurious outputs ("glitches") that must eventually settle
- Sequential circuit's output depends not only on its current input but also on the past sequence of inputs that have been applied to it.
- I.e., a sequential circuit has memory of past events
- REALITY: Output depends on the duration of the inputs

Combinational \& Sequential Systems

Feedback

Transition Times

(a) Ideal case of zero-time switching:

(b) A more realistic approximation:

(c) Actual timing, showing rise and fall times:

Classification of Designs

- SYNCHRONOUS
- All feedback occurs at the same time, as defined by a
- special signal called a clock
- ASYNCHRONOUS
- Feedback occurs whenever values change. No special clock signals
- Remember:

Avoid asynchronous design if you can!
Try to identify the unavoidable asynchronous interfaces and convert them to synchronous form as reliably and with as few gates as possible

