
Link Quality and Signal-to-Noise Ratio in 802.11 WLAN 
with Fading: A Time-Series Analysis 

 
Jian Zhang   Ivan Marsic 

Department of ECE, Rutgers University 

{jianz, marsic}@caip.rutgers.edu 
 
 

Abstract—It is known that for multipath fading channels 
individual points or average signal-to-noise ratio (SNR) alone 
do not adequately describe the wireless channel quality. This 
paper uses time-series modeling to investigate the 
relationship between SNR and 802.11 link bandwidth which 
we use to define the link quality. Two models, one linear and 
another nonlinear, are constructed and fitted to time-series of 
SNR as input and link bandwidth as output. Their 
performance is measured in terms of the accuracy of 
prediction of the link bandwidth. By the linear Auto-
Regressive Moving Average eXogenous variables (ARMAX) 
model, we show the existence of nonlinearity in the input data 
series, which results in high prediction error. The prediction 
performance is significantly improved by the nonlinear Echo 
State Network (ESN) model due to its ability of nonlinear re-
expression of the SNR time-series and associating them with 
the correct link bandwidth. 
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I. Introduction 
 

Compared to wired link, wireless communication suffers 
from high transmission errors and its performance changes 
frequently and dramatically, highly depending on the 
channel quality, which usually exhibits great variability. 
The sources of variation include user mobility, 
environmental changes and interference. The rapidly 
varying channel condition results in changing packet error 
rate (PER), therefore making network bandwidth a highly 
dynamic resource. Due to the dynamic variability, the 
wireless link quality needs to be measured and provided to 
wireless applications and protocols, in order for wireless 
networks to most effectively utilize and manage resources. 
 

Traditionally, signal-to-noise ratio (SNR) or carrier-to-
interference ratio (CIR) is measured and reported as an 
indicator of wireless link quality. Most of the 802.11 
WLAN cards measure and display the signal strength 
(usually as signal bars). There is a prior literature [8][3] on 
adapting network parameters, e.g., link transmission rate, 
based on SNR, which assumes high correlation between 
SNR and link quality. The theoretical relationship between 
the SNR and link quality, represented by bit error rate 
(BER), can be derived for an additive white Gaussian 

noise (AWGN) channel. The SNR and BER relationships 
for different 802.11b modulation techniques are shown in 
Fig. 1(a). The link bandwidth is defined in this paper as 
the maximal throughput that can be achieved over the link 
layer. It can be determined from BER, as in Fig. 1(b), for 
packets of a fixed length (adjusted for the overhead of 
PHY and MAC layers). We use the link bandwidth to 
represent the link quality. In one of our datasets collected 
for DBPSK, shown in Fig. 1(c), the link bandwidth values 
are distributed around the theoretical DBPSK curve. Our 
previous work [10] on estimating the 802.11 link 
bandwidth from measured SNR is also based on above 
assumption. 
 

However, the above assumption of a non-fading AWGN 
channel can be invalid in reality, especially in typical 
office and home environments with fading links. The data 
collected in MIT Roofnet [1] show inconsistency of the 
relationship between PER and SNR or transmitter-receiver 
distance. They conclude that the observed large number of 
links with moderate error rates is probably due to 
multipath fading rather than signal attenuation [1]. In [2], 
the authors claim that, although an average error rate curve 
for their multipath scenario has been obtained by 
averaging over a large number of randomly generated 
channels, most of their observed PER is significantly 
lower than this average curve. Similar situation is 
observed in our experimental results, especially those 
collected in office environments with high transmission 
rate (CCK 11) which tends to be more sensitive to 
multipath. In Fig. 2, the measured link bandwidth values 
are distributed in the gray zone ranging from about 0 up to 
5Mbps, although SNR’s are all above 40dB, which by the 
non-fading curve should yield high link bandwidths.  
 

Therefore, individual SNR points alone do not 
adequately describe the wireless channel quality for 
802.11 links with fading channels, i.e., the two-
dimensional scatter plot curve is not sufficient to model 
their relationship. Realizing the limitations of a simple 
correlation, [2] suggests a substitute indicator for the 
prediction of PER, the computation of which, however, 
requires ideal channel estimation in PHY. In this paper, we 
propose a time-series modeling method, assuming that 



SNR time series may provide more information on link 
quality than single points of SNR. Instead of a single-point 
SNR, the current and historical SNR’s and corresponding 
bandwidths are treated as two time-series signals and their 
relationship is modeled as a time series transfer function. 
The model is identified and fitted to the SNR signal and 
corresponding link bandwidth in a training dataset. This 
model is tested on other data, collected in the same 
environment, to determine if there exists regularity in the 
relationship between SNR and link bandwidth. Then, we 
can use the model to predict the link bandwidth in similar 
scenarios. 

 
In the rest of the paper, we describe two models, a linear 

and a nonlinear one. In section III, we show that the 
nonlinearity of the signals makes the linear model difficult 
to fit to the training dataset, while the nonlinear model in 
section IV is able to extract the features and regularities of 
the input sequences of SNR and associate them with 
correct output link bandwidth. 
 

II. Data collection 
 

To build and test the model, we need to collect sufficient 
amount of data of SNR and link bandwidth. We ignore the 
issues of multi-user medium sharing on the bandwidth 
measurement since here we only deal with the channel 
quality. Therefore, a single transmitter is connected to a 

single receiver in 802.11 ad-hoc mode and both are located 
in different offices. The modulation rate is fixed to CCK 
11. A UDP flow is started with the rate high enough to 
saturate the link. 
 

The sampling period of the series is 1 second. The 
receiver records an SNR point for each received frame. To 
obtain the SNR over 1-second intervals, we average the 
SNR’s of 20 randomly selected frames that were received 
during that second. If less than 20 frames were received in 
a second, all of them are used. For each 1-second interval, 
the link bandwidth is also calculated as the product of the 
frame size and the number of the received frames. 
 

III. Linear ARMAX modeling 
 

In a single-input, single-output linear causal Auto-
Regressive Moving Average eXogenous variables 
(ARMAX) model [7], the relationship between output 
series yt and the input series xt can be described through a 
linear filter as: 

ttttt nxxxy ++++= −− 22110 ννν   (1) 

where nt is a noise series of the system that is independent 
of the input series xt . Eq. (1) can be rewritten as: 

ttt nxBy +⋅= )(ν    (2) 
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the filter, and B is the backward shift operator. The goal of 
the modeling is to identify and estimate the transfer 
function v(B) and the noise nt based on the available 
information of the input series xt and the output series yt . 
In our case, these correspond to the SNR and the link 
bandwidth, respectively. As seen in Eq. (1), the current 
bandwidth output of the ARMAX model is not only a 
function of the current SNR point as in Fig. 1(b), but also 
depends on the current and past SNR points. 
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Fig. 1: SNR vs. bandwidth relationship for AWGN channel. (a) Q-functions for different modulation schemes. (b) 

Corresponding SNR-BW theoretical relationships. (c) Measured SNR-BW for DBPSK. 
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Fig. 2: Distribution of a dataset on BW-SNR space.



To build an ARMAX model, the input series xt is 
assumed to follow some ARMA(p, q) model, i.e., xt 
satisfies 

txtx BxB αθφ )()( =   (3) 

where αt  is a white noise series, and φ(⋅) and θ(⋅) are the 
pth and qth degree polynomials as 

p
px BBB φφφ −−−= 11)(   (4) 

q
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The original SNR signal has a non-constant mean and 
time varying variance. It has to be processed and 
transformed to a stationary series before modeling and 
fitting. To stabilize the variance, we have tried three 
different kinds of Box-Cox’s power transformations, 
logarithmic, square root and reciprocal transformations 
[7]. The square root transformation is chosen for the best 
performance. Then, we difference the transformed signal 
to make the mean nearly constant. The original SNR series 
and the one after preprocessing are shown in Fig. 3. 
 

We compute the sample autocorrelation function (ACF) 
and the sample partial autocorrelation function (PACF) of 
the preprocessed series to identify the orders of p and q. 
By comparing the Akaike information criterion (AIC) of 
the models with different combinations of p and q, we find 
that the best fitted model is an ARMA(2,6) model, like so 
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The variance of the noise αt is 0.0126. 
 

Brock-Dechert-Scheinkman (BDS) test [2] is performed 
on the residuals of the model for different embedding 
dimension m and ‘near’ distance ε. The large values of 
BDS test in Table I show that the model rejects the i.i.d. 
hypothesis for the residual series, which suggests some 
hidden structures in the series, such as nonlinearity and/or 
nonstationarity. Although there may exist nonlinear 
transformations other than the power transformations we 
have tried, which can better represent such nonstationarity, 
it is difficult to find them since they can be found only by 
exhaustive trial-and-error search. 

Table I. BDS test results 

 m = 2 m = 3 m = 4 
ε = 0.5σ 35.7942     49.1564     63.8780    
ε = σ 32.6483     40.5832     46.2860    
ε = 1.5σ 28.1427     32.9581     35.5951    
ε = 2σ 24.9336 28.0945 29.5435 

 
Due to the nonlinearity in the signals, the linear 

ARMAX model shows high error on the prediction output. 
In addition, the input SNR series and the output link-
bandwidth series have to be transformed to stationary 

series for the ARMAX modeling. The output has to be 
postprocessed to reverse the preprocessing operations, 
which demands some unavailable prior knowledge in 
prediction process, such as the initial value of the output 
series for reversing the differencing. 
 

Considering the above inadequacies of the ARMAX 
modeling, we turn to nonlinear time-series modeling. The 
Recurrent Neural Network (RNN) technique, more 
specifically Echo State Network (ESN) [4][5], is chosen 
due to its ability for nonlinear modeling and prediction. 
The ESN combines various linear and nonlinear operations 
and automatically tunes the corresponding parameters 
based on the training input/output series. The 
preprocessing is simple, as is the postprocessing. 
 

IV. Nonlinear ESN modeling 
A. ESN model 

ESN is an efficient black-box modeling method for 
nonlinear predication [5]. The idea is to construct a model 
with a series of linear operations (weighting and 
summation), nonlinear operations, and delay operations 
such that it mimics a given empirical dataset. 
 

An ESN is a network of artificial neurons. A neuron is a 
basic computational unit that computes some function, 
usually nonlinear, of the weighted sum of inputs from 
other units or an external source. Its output, in turn, can be 
served as input to other units. ESN has both feed-forward 
and feedback connections. For example, in Fig. 5, the 
output or activation of unit 1 is updated according to 

( ))()()1()( 3322111 txwtxwtxwftx ⋅+⋅+−⋅=  (7) 

where w1, w2, w3 are weights assigned to the three inputs 
of unit 1. Its inputs, x1(t−1), x2(t), and x3(t), are delayed 
output feedback from itself, current output of unit 2 and 
current output of unit 3, respectively. The output of 
internal units is called state. 
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Fig. 3: (a) The original SNR series. (b) The transformed 
and differenced series.



 
In Fig. 5, the input signals are introduced by the input 
layer to the internal layer. The internal units update their 
states at each time step as in Eq. (7). The output of the 
ESN is then decided by the states as follows 
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Eqs. (7) and (8) decide the relationship between the input 
SNR and the output bandwidth in our ESN model. They 
can be viewed as re-expression and association, 
respectively, similar to power transformation and fitting in 
ARMAX. By Eq. (7), the input signal is transformed or re-
expressed, by the internal neurons, as the states which 
expose principal patterns hidden in the input series. This 
mechanism provides richer nonlinear expression than the 
power transformation. By the ESN training algorithm, the 
output weights in Eq. (8) are updated automatically so that 
the revealed patterns are associated with the desired output. 
This is done by adjusting the output weights wi

out so that 
the error e(n) in Eq. (9) is minimized, in the mean square 
error sense, i.e., the difference between the output of the 
model and the desired output is minimized 
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where (fout)−1(⋅) is inverse function of fout(⋅), and ydesired is 
the desired output. After training, ESN can start doing 

prediction when supplied by a real-time SNR input signal. 
 

B. Testing and estimation results 
For the purpose of bandwidth prediction, we created an 

ESN with 400 internal units, single output (bandwidth), 
and single input (SNR). We do not need multiple inputs 
for previous SNR values since ESN, by feedback, stores 
and includes the historical input into the computation of 
current or future states and the output. Both the input and 
output need to be normalized to the range of [−1, 1] by 
shifting and scaling, which is simple and easily reversed, 
compared to the pre- and post-processing in the ARMAX 
modeling. We select the same 5000-point/second training 
dataset as used in the ARMAX modeling. For the purpose 
of effective re-expression, a sparse interconnectivity of the 
internal units is used for the ESN so that the internal states 
display a rich set of systematic variants of the input signal. 
It is achieved by making the spectral radius-----the largest 
absolute value of eigenvalues of the internal-weights 
matrix-----smaller than unity. This ‘‘reservoir of dynamics’’ 
feature of ESN is critical for the accuracy of nonlinear 
prediction. The ESN model is trained and the tuning 
process is repeated until the mean square error on the 
training data reaches desired low level. After that, we 
check our model by predicting the link bandwidth from the 
measured SNR in a different dataset with a total of 20,000 
points. (Recall that both the training and estimation 
datasets are collected in a similar environment). The 
training process takes less than five minutes on a 2 GHz 
Pentium PC, and the prediction runs in real time. 

 
The results are shown in Fig. 4. The output of ESN is 

the estimated link bandwidth, which is the dashed 
brighter-colored curve in the figure. The actual link 
bandwidth is the solid curve. The bottom row in Fig. 4(a) 
shows smoothed estimated bandwidth which may be more 
suitable for use by adaptive applications. The figure shows 
good agreement between the estimated and the actual 
values. The relative error is 
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Fig. 4: (a) Comparison of actual and estimated bandwidth and estimation error by ESN model. The bottom row shows 
the estimated bandwidth smoothed by averaging over a window of 100 points; (b) Relative estimation error.

 
Fig. 5: Structure of an echo state network. 
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where yi and ŷi are the actual and estimated outputs at ith 
point, respectively. Fig. 4(b) shows the distribution of the 
estimates in different relative error ranges. It shows that 
around 30% of points are estimated with relative error 
lower than 10%. For the same dataset, the ESN model 
outperforms both the two-dimensional non-fading model, 
Fig. 1(b), and the ARMAX model. The non-fading model 
fails to predict the degradation of link bandwidth due to 
the fading since it always overestimates the bandwidth, 
given the high SNR input. Compared to ARMAX, the 
ESN model provides variety of options for re-expression 
of SNR series, which contributes to the performance. 
Despite the overall estimate accuracy improvement, on the 
other hand, we also notice there are around 20% of points 
that are estimated with high error (over 100%). The high 
relative error happens mainly at the points of extremely 
low actual bandwidth, which is an artifact of how we 
calculate the relative error: if the actual bandwidth yi in the 
denominator of Eq. (10) is very small it yields a high error 
value. Another reason for those high error points could be 
the incompleteness of the training dataset. That is, some 
input/output sequences are not present in the training 
dataset. When they appear in the estimating dataset, their 
corresponding bandwidth cannot be estimated correctly. 
However, the bigger the training dataset is, the longer and 
costlier the computation. Finding a complete, yet non-
redundant training dataset is still an open problem. 
 

The sensitivity of the ESN model to the input variations 
can be adjusted by configuring the spectral radius α of the 
internal weight matrix W. The balance and tradeoff 
between agility and stability can be chosen for applications 
with different preferences and requirements. α is 
intimately linked to the intrinsic timescale of the internal-
state dynamics. For short-memory implementation with a 
small α, the agility is enhanced by sacrificing the stability; 
and vice versa, with big α for long-memory. The 
parameters of the ESN are initialized as listed in Table II.  

Table II. Parameters of the ECN model 

Parameter name Value 
Spectral radius 0.7 
Size of internal layer  400 units 
Percentage of non-zero elements 
in internal weight matrix 

2% 

Internal weights 0.1 or −0.1 
Input weights 3 or −3 
Backward weights 0.1 or −0.1 

C.  Tuning for different environments 
Since the model is built on empirical data and the data is 

expected to depend on the environment and the type of 
802.11 devices, we may need to re-train the model for 

different devices or fading environments (such as different 
buildings, indoor/outdoor). This should not be a great 
problem for the ESN model, since the training process is 
performed offline and can be finished in a short time. 

 
V.  Conclusions 

 
In this paper, we study the relationship of SNR and 

bandwidth in fading environments by time-series 
modeling. Our experimental data confirm that individual 
SNR points do not adequately describe the wireless link 
quality with multipath. Instead, by the time-series 
modeling, the patterns of SNR sequences can be 
recognized and associated with the corresponding link 
quality. The process of building a linear ARMAX model 
indicates nonlinearity in the SNR series. The nonlinear 
ESN model, with its ability of providing rich re-
expressions and associations of signals, achieves accurate 
prediction on link bandwidth. This shows that even under 
multipath fading, the relationship of the SNR and link 
bandwidth can be captured by a combination of linear, 
nonlinear, and delay operations. 
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