
 

  
Abstract—Accurate assessment of the available link 

bandwidths in wireless networks is crucial for applications 
to negotiate, adapt and control quality-of-service 
parameters.  In this paper we focus on new methods for 
estimating/predicting saturated throughputs (link 
bandwidths) in 801.11b wireless local area networks 
(WLANs). We propose the principle component analysis 
(PCA) and clustering approach for the estimation problem 
and the pattern modeling and recognition system (PMRS) 
and method of moment matching (MM) for the prediction 
problem. A trade off between the complexity and accuracy 
of the estimation/prediction algorithms is discussed and 
compared with the Neural Networks (NN) approach.  

I. INTRODUCTION 
802.11b devices have become increasingly popular since 

they offer flexibility and convenience to mobile users in a 
wireless local area. Mobile users can realize the performance 
and speeds comparable to that of wired Ethernets. The most 
crucial issue slowing WLAN demand until now has been 
limited throughput which is primarily because of the time-
varying nature of the wireless channel and multi-access 
communication. There has been significant effort in improving 
the performance of these 802.11 systems over the past few 
years. Adapting to the dynamics of the wireless link bandwidth 
(BW) is a frequently used approach to enhance the 
performance of applications and protocols [2]. BW is defined 
as the saturated throughput that can be achieved at the wireless 
link. Due to protocol and implementation overhead, this is 
slightly lower than the wireless link capacity, which is the 
maximum transmission bandwidth provided by the wireless 
link at the physical layer.  

The 802.11b wireless system uses different modulation 
schemes at the physical layer at different data rates (2-FSK, 4-
FSK at 1Mbps, 2Mbps and CCK at 5.5Mbps and 11Mbps). 
Also the 802.11b uses a RAKE receiver, with DFE (decision 
feedback equalizer). Further the data link layer uses forward 
error control codes and interleaving [3]. To add to the 
complication the wireless channel model is too complicated 
and not accurate. Also for estimating the BW of the 802.11b 

 
 

device at the MAC layer we have to consider queuing delays 
and media access control mechanism (CSMA/CA). To 
overcome these difficulties earlier works use round trip time 
measurements as reliable information for BW estimation with 
unjustified assumptions [1]. A more practical, passive method 
for BW estimation, non-intrusive to the wireless network is 
proposed in [4].  This method infers the maximum possible 
information about the link from statistical models of the data 
obtained from commercially available wireless network 
interface cards (NICs) such as signal level, noise level, and 
packet loss.  NN and Bayesian estimators have been proposed 
for the estimation problem [4].   

Due to dynamic channel sharing, fading and mobility, BW 
changes frequently and abruptly. Also wireless connection 
may experience cell handoff and even blackout due to user 
mobility [3]. For resource reservation in such environments, it 
is crucial to have the knowledge of the dynamics of BW ahead 
of time to perform admission control. A key component of this 
paper is end-to-end BW estimation/prediction for individual 
links. We adopt ideas from statistics viz. PCA and concepts 
from pattern recognition viz. clustering to estimate the BW. 
For predicting BW we apply ideas from pattern recognition 
viz. PMRS and concepts from stochastic processes viz. MM.  

This paper is organized as follows. Section II presents a 
brief measurement setup. Section III describes estimation of 
BW using PCA. Section IV explains estimation of BW using 
the clustering approach. Section V describes error measures 
and gives accuracy vs. complexity trade offs of different 
estimation techniques. Section VI describes multiple 
forecasting of BW using PMRS technique. Section VII 
explains prediction of BW using MM method. Section VIII 
gives accuracy vs. length of prediction tradeoffs of combined 
estimation and prediction techniques. Section IX provides 
some concluding remarks.  

II. MEASUREMENTS IN IEEE 802.11B 
In our experiments, a constant bit rate (CBR) traffic 

generator runs on a wired sender (access point) and it keeps 
sending UDP traffic to the wireless receiver. To measure the 
maximum throughput that reflects the BW, we saturate the link 
by setting the CBR traffic rate to be slightly higher than the 
physical capacity of the wireless link as shown in Fig. 1. 
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Fig.1: Block schematic of the SNR-BW measurement process 
 

The test bed has just one sender and one receiver to measure 
the saturated throughput in the absence of other contending 
users. This model however captures the effect of the unknown 
interference from other sources like a microwave oven located 
in an office space in the vicinity of the measurement set up or 
an adjacent cell user operating in the same frequency band. 
Every second, the wireless receiver reads the SNR from the 
wireless card driver. At the same time it calculates the BW of 
the received UDP traffic by multiplying the number of packets 
it has received during the one second period and the packet 
size as illustrated in Fig. 2. This experiment is repeated for 
different user mobility, terrain and weather conditions and 
interfering radio systems and the SNR, BW information 
collected and stored in a training data file. Several training data 
sets were collected. The times of day for the data collection 
were randomly distributed over the period of several weeks. 
All the recordings show similar relationship between SNR, 
BW as shown in Fig. 3.  

 
 

Fig. 2: Measuring SNR and BW 
 

A mobile/wireless handset admitted to the network is 
provided with a copy of the training file. The handset can 
estimate BW in real-time by running its estimation algorithm 
using the reduced data file and SNR measured on the fly and 
monitor it for its adaptive applications. Ideally we would like 
to have N-step prediction of BW. Since in reality we can only 
observe SNR, we first predict N samples of SNR from already 
buffered past K SNR samples. We constrain N and K for 
different prediction algorithms in Section VI and Section VII. 
Using the N predicted SNR samples and the training file we 
estimate future N samples of BW using BW estimation 
algorithms. We need to have extremely accurate SNR 

prediction and BW estimation from predicted SNR since error 
propagation degrades performance. We use the clustering, 
Gaussian approximation (GA) BW estimation algorithm 
described in Section IV to estimate future BW samples.         

 
Fig. 3:  BW (effective throughput) vs. SNR (signal –to-noise ratio) 

III. PCA AND BANDWIDTH ESTIMATION 
PCA is one of the useful techniques of multivariate 

statistics, being commonly used for the reduction of the 
dimensionality of datasets. The starting point of PCA is the 
spectral decomposition of a covariance matrix, with the 
objective of identifying only a few but most informative and 
mutually uncorrelated variables [5].  

A. PCA on (SNR, BW) Training Data Set 

 Let { })()(
1

)(
0

)(
1 ,.......,, t

L
ttt snrsnrsnrv =  be the vector of 

measured SNR and { })()(
1

)(
0

)(
2 ,.......,, t

L
ttt bwbwbwv =  be the 

vector of measured BW using the training data set. The super 
script t  denotes training data. The sample mean has been 

removed from these vectors.  Form the matrix V= ( ) ( )
1 2,t tv v   . 

Matrix V has rank r =2 and its “economy” singular value 
decomposition (SVD) [5] gives two orthonormal 
eigenvectors 21, ww  and singular values 21 σσ > . The 

percentage variances: ( )2 2 2
1 1 1 2 2 1,  1p p pσ σ σ= + = −  

show that 21 pp >> . The percentage variance is a measure of 
the direction along which points are oriented. Inspecting Fig. 3 
shows that the points are oriented along two prominent 
directions. Hence the training data set can be partitioned into 
two each one representative of the direction of clustering of 
points. The partition has been optimized (minimizing 2p for 
both regions) and the percentage variance for the 
corresponding data set is tabulated in Table 1. 
 

Range of SNR (dBm) 
1p  2p  

[-17,20] 0.9998 0.0002 
[21, 76] 0.9996 0.0004 

       
Table 1: SNR regions and the corresponding percentage variances 
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B. Estimation using PCA 

 The orthonormal eigenvectors )0(
2

)0(
1 , ww  give the 

directions along which the points are clustered for the SNR 

region [-17, 20] (region I). The slope of the eigenvector )0(
1w , 

)0(
1s gives the dominant direction for this region I. Similarly 

the orthonormal eigenvectors )1(
2

)1(
1 , ww  give the directions for 

the SNR region [21, 76] (region II). The slope of the 
eigenvector )1(

1w , )1(
1s give the dominant direction for this 

region II. Suppose if  )(dsnr  be the received SNR, 
where d denotes the data to be estimated and we need to 
estimate the BW corresponding to this SNR. The )(dsnr  is 
first mapped to the SNR region I or II. Let the two regions be 
defined by the indicator variable J. That is J=0 corresponds to 
region I and J=1 corresponds to region II. Let 

( )( )( , ) ( ) ( ) ( ) ( )
1 1 2  and   ( 1)mod(2)  d J J d J Jbw s snr m m u J= − + = +

The estimate of the bandwidth can be compactly written as: 
( ) ( ) )1,()0,()( 1 ddd bwubwubw −+=  where )(

1
Jm  and 

)(
2

Jm  are the sample means of the SNR and BW training 
sequence vectors in region indicated by the indicator J. 

PCA essentially fits a linear model to a non-linear SNR-BW 
relation and is a simple and fast technique. All we need to store 
are the SNR ranges and the slopes of the dominant direction of 
clustering of data points. A linear averaging M- filter is used to 
smoothen out the transitions. Fig. 4 shows the measured and 
estimated BW plot using PCA.  

 
Fig. 4: Estimation of BW using PCA 

IV. CLUSTER FORMATION AND BANDWIDTH ESTIMATION 

A. The K-means Algorithm 
The k -means algorithm for clustering in N dimensions 

produces k  mean vectors that represent k  classes of data. 
The algorithm relies on a distortion measure ( )yxd ,  between 
vectors in N dimensional real space, which could be a variety 
of norms like ∞LLL ,, 21  or others specific to the problem [6].  

We use the 2L norm (Euclidean distance) as the distortion 
measure. 

   Let the set of training data be X ={ }1 2, ,....., Lx x x . Given 

the cluster centroids 
i

y  , the set of points in X that is closer 

under the distortion measure d to 
i

y than to any other 

centroid is called the Voronoi region of 
i

y denoted as: 

( ) ( ){ }jiyxdyxdXx
jii ≠<∈=Ω ,,,: . The number of 

vectors in a Voronoi region is denoted as iΩ . The centroid of 

vectors in a Voronoi region is given by ∑
Ω∈Ω

=
ixi

i
xy 1

. The 

centroid of the Voronoi region is used as the representative of 
all the data in the region. The algorithm can be stated as 
follows: 

1. Choose an initial set of centroids { }
k

yy ,.......,
1

 

randomly. 
2. Determine the Voronoi region for each

i
y . 

3. Compute the centroid of each Voronoi region. 
4. If the algorithm has not converged, go to step 2. 

Otherwise stop. 

B. Clustering on (SNR, BW) Training Data Set 
The k-mean clustering algorithm is applied to SNR and BW 

training data sets. Using the vector of measured SNR and 

BW ( ) ( )
1 2,t tv v  as described in Section III, (A) form N-

dimensional vectors as: ( ) ( ) ( ) ( )
2, ,...,

Tt t t t
i i i i Nx bw snr snr− − =    

(0 i≤ ≤ L-N-2).  Let C be the number of clusters to be formed. 
Iterate the k -means algorithms on the set of vectors 
X={ }0 1 2, ,......., L Nx x x − −  to generate C clusters.  

C. Estimation using Clustering Approach 

Suppose )(d
nsnr  be the thn  value of the received SNR. 

Form the following N-1 dimensional vector of SNR, 
( ) ( ) ( ) ( )

1 1, ,...,
Td d d d

n n n n Nx snr snr snr− − − =   . The past N-2 values 

of received SNR must be buffered. Generate N-dimensional 

vectors: ( ) ( ) ( ) ( )
1 1, ,...,

Tt t t t
i i i Ni

y y y y− − − =   by deleting the first 

component of the thi  centroid )(t

i
y . Find to which Voronoi 

region the vector )(d
nx  belongs. That is i

d
nx Ω∈)(  if 

2
)()(2)()( ~~ t

j

d
n

t

i

d
n yxyx −<−   ji ≠∀ .  After determining 

to which Voronoi region the received SNR belongs we use the 
GA method to estimate BW as described in the following 
paragraph. 
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Consider the set of all vectors that belong to the Voronoi 

region jΩ . Let ( )
( )

( )1
t

ii

kk t
i i

i x

bwµ
∈Ω

=
Ω ∑ , where )(t

ibw is the 

first component of the vector, )(t
ix . Generate a Gaussian 

random variable r with mean 1
iµ  and variance ( )22 1

i iµ µ− . 

The estimated BW is given by ( )d
nbw r= . Fig. 5 shows the 

measured and estimated plot using this GA method 
 

 
Fig. 5: Estimation of BW using GA Method 

 
Estimation using the clustering approach shows interesting 

results. Fixing the number of clusters C, the number of 
dimensions of the vectors was increased from N=2 to N=20. It 
is observed in Fig. 6 that the mean relative error (described in 
next section) first drops, achieves a global minimum at N=8 
and then increases. The increase in error with increasing N is 
because of negative correlation introduced by the past samples 
larger than N=8. Hence only past seven values of the SNR 
need to be considered in the BW estimation. 

 

 
Fig. 6: Mean relative error vs. N for different clusters C for GA method          

V. ACCURACY VS COMPLEXITY OF ESTIMATION METHODS 

A. Error Measures 

The accuracy of estimation can be quantified by a set of five 
error measures described below. There are two cases in 
estimation: either we estimate high or we estimate low. The 
estimation is scaled on the basis of the similarity of the match 
found. It is important to quantify the structural rather than the 

absolute differences between the two since we are primarily 
interested in studying the system behavior rather than 
minimizing a difference measure [7].  

• Direction Error (positive) +e : The total number of 
estimated series change in the positive direction 
(when ii yy ~~

1 >+ ) is given as '
+µ . The total number of 

actual series changes in the positive direction 
(when ii yy >+1 ) is given as +µ  ( Nin ≤≤+1 ). The 

direction error (positive) is given as 
++

++
+ +

−
=

µµ
µµ

'

' ||e . 

• Direction Error (negative) −e : The total number of 
estimated series change in the negative direction (when 

ii yy ~~
1 >+  ) is given as '

−µ . The total number of actual 

series changes in the positive direction (when ii yy >+1  ) 

is given as −µ  ( Nin ≤≤+1 ). The direction error 

(positive) is given as 
−−

−−
− +

−
=

µµ
µµ

'

' ||e  

• Average Proportional Error (APE) re :  ∑
+=









=

N

ni i

i
r y

y
N

e
1

~1
 

• Synchronization Error se :  





 −=

N
aes 1  where a is the 

total number of times the following conditions is satisfied:  

ii yy ~~
1 >+  and ii yy >+1  or ii yy ~~

1 <+  and ii yy <+1   

( Nin ≤≤+1 ). 

• Mean Relative Error 
∑

∑ −
=

i
i

i
ii

mr y

yy
e

~
 is an average measure 

of estimation error 
The first two measures of error +e  and  −e  are self 

explanatory. Ideally, these two measures should be as close to 
zero as possible. The measure of average proportional error 

re records the average distance ratio between the estimated 
and actual value and ideally this should be as close to one as 
possible. Positive or negative divergence from one is equally 
bad. The measure of synchronization error se  quantifies the 
synchronization between the estimated and actual behavior, 
that is do these profiles rise and decay in harmony. In practice, 
this measurement should be less than 50% representing that 
less than half of the time the two behaviors are out of 
synchronization (ideally the measure should have a zero 
value). The mean relative error is an average measure of the 
estimation error and should be close to zero.  

The comparative study of the performance of the different 
estimation techniques viz. PCA, clustering and NN against 
these five different error measures is tabulated in Table 2 and 
Table 3 for a set of two randomly chosen test files. 
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Observation of the results shows that clustering, GA method 
gives the best accuracy. There is an improvement of about 1%-
7% in the mean relative error over the NN method being 
currently used. This is because we have used past seven values 
to estimate the current BW in the clustering, GA method. The 
past history gives more information hence better accuracy in 
the results. It is also observed that the PCA method is 
comparable to the NN in terms of accuracy. This is because 
NN fits an optimal curve through the BW-SNR clutter plot and 
PCA optimally segments the clutter plot into two regions and 
fits a line to each region optimizing the total mean square error 
in each region.  

 
Method e+  e−  re  se  mre  

GA 0.0424 0.0402 1.0725 0.5165 0.1394 
NN 0.0201 0.0168 1.3472 0.5619 0.1482 

PCA 0.1378 0.0953 1.2257 0.6851 0.2464 
         

 Table 2: Test file: InOrinFF1224_001.txt.mat 
 

Method e+  e−  re  se  mre  

GA 0.0320 0.0281 1.3998 0.5272 0.2610 
NN 0.0998 0.0692 2.4071 0.5903 0.3358 

PCA 0.1049 0.0724 1.4296 0.6422 0.3383 
 

Table 3: Test File: indoorC7Ar001.txt.mat 

B. Complexity Measure 
In this section we compare the computational complexity of 

the different estimation techniques in the estimation period. 
The training period can be usually carried offline and hence is 
not of much importance in assessing the computational needs 
of the different methods. Hence we focus on the estimation 
period. For the clustering approach given C clusters and past 
N-1values of SNR the number of multiplications is given by 
Nm=C(N-1) and number of additions Na=C(2N-3). The 
optimal value of (C, N) is found to be (15, 8). For the PCA 
method Nm=2 and for an FIR filter of length M, Na=M-1. The 
optimum M varies for each test file (usually 105 ≤≤ M ). For 
a 3 layer Neural Network Nm=8 and Na=6. The results are 
tabulated in Table 4 for (C, N) = (15, 8) and M=10.  

 
 Clustering Neural Networks PCA 

Multiplications 105 8 2 

Additions 195 6 9 
 

Table 4: Comparison of complexity of different estimation techniques 

VI. PMRS AND BANDWIDTH FORECASTING 

A. Multiple Forecasting 
Multiple forecasting refers to the process of making more 

than one prediction into the future. It should be noted that N-
step multiple forecasting is different from N-step prediction. In 
N-step prediction, the system is trained to predict N steps on 
selected past actual values [7]-[11]. In multiple forecasting, 
past predictions generate future predictions. In such a process, 

the  thn  future prediction ny~ is based on the ( )thn 1−  future 

prediction 1
~

−ny  rather than the ( )thn 1−  actual value 1−ny  
since we do not have information about the actual value. We 
use the PMRS [7]-[8] method for N-step multiple forecasting 
of the SNR and use this to estimate N future BW samples. 

B. Local Approximations using PMRS for the SNR Data 
PMRS is based on matching neighborhoods in a time series 

data. The size of the neighborhoods matched is a parameter 
that is optimized empirically. Previous studies with PMRS [7]-
[8] show that for single forecasts, it provides highly accurate 
predictions. We extend this algorithm to multiple forecasting.  
    If we represent the SNR time 

series { }( ) ( ) ( )
1 ,...,t t t

ny snr snr= which corresponds to the test 

data, then the current state of size one of the time-series is 
represented by its current value )(d

nsnr . In order to illustrate 
the matching process for series prediction, consider the SNR 
time series measured till time sample n . Form the segment 

defined as a difference vector ( )( ) ( ) ( )
1 1,...,d d d

nδ δ δ −= , 

where ( ) ( ) ( )
1

d d d
i i isnr snrδ += −   1 i≤ ≤ n-1. In order to define 

any segment mathematically, we choose to tag the time series 
of SNR with a vector of change in direction. For this purpose, 
a value )(d

isnr  is tagged with a ‘0’ if )()(
1

d
i

d
i snrsnr <+  and as 

a ‘1’ if )()(
1

d
i

d
i snrsnr ≥+ .   Formally, the segment is now 

represented as a pattern of ‘1’s and ‘0’s given by the vector 

( )( ) ( ) ( )
1 1,...,d d d

nb bρ −= where b is a binary value. Similarly 

form the string of ‘1’s and ‘0’s for the training data 

( )( ) ( ) ( )
1 1,...,t t t

Kb bρ −=  where K >> n. The algorithm for 

finding a match and predicting N step is described below:  
 

1. Set nmatch = and 1=i  
2. Compute 

( )( )( ))(
2

)()( ,......,,_ t
ni

t
i

d bbXORsummatchnew −+= ρ  

3. If  matchmatchnew <_   then  
matchnewmatch _=   

4. If 0=match  then niposition += , stop; else 
1+= ii  and go to step 2 

5. Compute the following sequences:  
{ }12 )( −= t

jbsign   and  { })( t
jdelta δ=  ; 

1−+≤≤ Npositionjposition  

6. Compute ∑
= −

−











=

N

i
t

iposition

d
in

N
beta

1
)(

)(1
δ

δ
 

7. Set  )(d
nsnrtemp =  and  1=j  

8. ( )( )( )jjjn deltasignbetatempy +=+
~  
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9. If  j N=  then stop; else 1+= jj ,  jnytemp += ~  
and repeat step 8 

10. As new samples become available form )(dρ  from 
the most recent past n SNR values and repeat step 1. 
If data gets exhausted, stop. 

 
The error performance for BW prediction using the 

clustering GA approach for the PMRS method is tabulated in 
Table 5. The results show that PMRS can predict BW up to 
N=7 step ahead with acceptable error performance using an 
optimal pattern size of K=15 determined by simulations. 
    

e+  e−  re  se  mre  (K,N) 

0.0644 0.0594 1.1519 0.5111 0.2638 (2, 1) 
0.0702 0.0660 1.2727 0.5512 0.2972 (15,7) 

 
Table 5: Error performance for the predicted BW using PMRS method 

VII. MOMENT MATCHING AND BANDWIDTH PREDICTION 

A. Prediction of SNR using Moment Matching 
A non-stationary sequence (SNR) can be approximated as a 

stationary sequence to a first order by taking differences of 
adjacent samples of the sequence [6]. Suppose we need to 
predict N samples of SNR and have observed K=N+1 samples 
of SNR. Form the difference sequence { }1,..., Nδ δ δ=  

where iii snrsnr −= +1δ  for 1 i≤ ≤ N+1. The δ  sequence 
can be approximated as a stationary sequence. Let  

{ }1,... Nδ δ δ=  be the SNR samples to be predicted. Since 

the δ sequence is stationary the N sample moments of δ  

sequence must equal the N sample moments ofδ  
i.e. ( ) ( )1 1... ...i i i i

N N iN N sδ δ δ δ+ + = + + = , 1 i≤ ≤ N. 

We obtain a set of N power sum equations in N unknowns and 
adopt the Newton’s identities [11], to solve for the unknowns.  
First form the polynomial ( ) 1

1 . . .N N
Nf p pλ λ λ −= − − −  

where ( )1

1

1 k
k k i k ii

p s p s
k

−
−=

= −∑  and { }iδ are the roots 

of ( )f λ =0.  The predicted SNR samples are given as 

follows: 112
~~ δ+= ++ NN snrs  and 11

~~~
−−++ += iiNiN ss δ ; 

1 i≤ ≤ N+1.  
 
N e+  e−  re  se  mre  

2 0.0571 0.0528 1.6114 0.5148 0.2838 
5 0.0498 0.0592 1.7721 0.5411 0.3211 
10 0.0601 0.0594 3.1148 0.5662 0.3642 
 
Table 6: Error performance for the predicted BW using MM method 

 
 

The error performance for the MM method is tabulated in 
Table 6. It is observed that we can predict up to N=10 step in 
MM method with acceptable error performance. 

VIII. CONCLUSION  
In this paper we have given new methods to enhance the 

performance of BW estimation with respect to the accuracy of 
the estimation such as the clustering and PCA approach and 
also considered prediction models for BW such as PMRS and 
MM methods. The past values of the observed SNR give more 
information and optimally utilizing these give better estimation 
of BW. The clustering, GA approach is better and PCA is 
comparable to NN for most test data files. In respect to the 
computational complexity PCA is the simplest and clustering 
method more complex than the rest. For the prediction 
problem we first predict SNR samples and then use the 
predicted SNR to estimate future BW samples since SNR is 
the only observable.  We can predict N=7 step using the PMRS 
and N=10 step using MM method with acceptable error 
performance. PMRS is attractive for simple hardware 
implementation using digital logic circuitry since it searches 
for a matching pattern in a sequence of ‘1’s and ‘0’s. The 
primary disadvantage in PMRS is that error propagation is 
severe. Efficient routines exist for implementing MM method. 
If the sequence of first differences of SNR were strictly 
stationary we could have theoretically predicted N= ∞ step. 
The sequence of first differences is stationary only over a few 
time samples since the SNR is a strictly time-varying signal.  
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