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Abstract. Dynamics of link bandwidth of a wireless link, which changes
frequently and abruptly due to the dynamic channel sharing, fading, and
mobility, is of interest to adaptive network applications and communica-
tion protocols. This paper presents a novel approach to estimate wireless
link bandwidth based on radio signal-to-noise ratio (SNR). Unlike tradi-
tional methods that send probe packets, our method is non-intrusive to
the wireless network since in IEEE 802.11 wireless local area networks,
SNR information is provided by the physical layer for the MAC- and
upper layers’ functionality. Theoretical analysis and experimental obser-
vation indicate a nonlinear relationship between SNR and the wireless
bandwidth. Based on this, nonlinear models using neural network and
Bayesian inference methods are proposed and evaluated on data collected
in 802.11b wireless networks. The effectiveness of our method under var-
ious environments and scenarios has been studied.

1 Introduction

Adaptation is widely recognized as key to overcoming the resource constraints
in mobile computing systems [1,9]. Only through effective adaptation can mo-
bile applications overcome mobile resource constraints. A key mobile resource
is wireless link bandwidth, and its measurement is important in order to devise
effective adaptation techniques. Due to dynamic channel sharing, fading, and
user mobility, the bandwidth of a wireless link changes frequently and abruptly.
Since wireless link generally exhibits characteristics such as large transmission
latency, high packet loss rate, and dynamic link bandwidth, it is challenging to
estimate wireless link bandwidth accurately and efficiently.

There exist a number of methods for bandwidth estimation. Most of them
can be categorized into two groups [12]. One group is a variant of pathchar [5, 8]
based on the round-trip times for single packets. The disadvantage of this group
is heavy overhead of the probing traffic. The other is a variant of packet-pair [2,
3,13,16,17] based on the packet-pair model. This group imposes lower overhead



relative to the first one. In [11], a multi-packet model is presented to unify the
one-packet and packet-pair model and a packet-tailgating technique is proposed.

However, these methods are intrusive to the network since they introduce
overhead traffic by sending probe packets during the estimation process. The
overhead is not desirable, especially in wireless communication environments
where network bandwidth and battery energy are scarce and precious. In addi-
tion, due to the dynamics of the wireless link, there is a need for more frequent
bandwidth measurement, thus consuming even more resources than in wired
networks. Therefore, a non-intrusive bandwidth estimation method is required
for wireless networks.

In the existing work on non-intrusive or passive methods, e.g., [11], instead of
sending own probe packets, the traffic of other applications running on the same
host is observed. However, these methods are inaccurate because they cannot
control the size and transmission time of the packets. E.g., [11], estimates the
bandwidth based the time interval between packet pair arrivals, which may be
inaccurate for small packets due to the coarse granularity of the system clock,
thus degrading the estimation performance.

Our objective is to monitor the wireless link as it appears on top of the MAC
layer. Wireless link bandwidth is defined as the effective transmission bandwidth
of a wireless link or saturated throughput that can be achieved at the wireless link.
The techniques reviewed above measure the nominal or “ideal” channel band-
width, since they do not account for high error rate and lengthy retransmission
time in the MAC layer.

In this paper we propose a non-intrusive method that uses RF signal-to-noise-
ratio (SNR) information to dynamically estimate the wireless link bandwidth.
The SNR information is provided by most IEEE 802.11 [7] wireless card drivers
for the MAC layer and upper layers’ functionality. It is updated by each received
frame, which is not necessarily a data frame, but could also be a management or
control frame. Another salient characteristic of our method is that the estimation
accuracy is not influenced by packet sizes, compared to other traditional methods
such as packet-pair techniques.

The radio propagation channel exhibits many different forms of channel im-
pairments [18]. Common ones include distortion due to multipath delay spread,
Doppler spread, RF (intracell and intercell) interference, shadow fading, ambient
noise, etc. It is to be expected that the wireless bandwidth will follow the vari-
ations in the received signal power. Experimental results for an IEEE 802.11b
network shown in Fig. 1(a) corroborate this intuition. The SNR is read from
the network interface card and the actual bandwidth is measured by sending
saturated probe traffic, as explained in Section 3 below. Fig. 1(b) indicates that
the relationship is nonlinear. The high bandwidth variability visible in Fig. 1(a)
is due to the rapid variations in the channel characteristics, which cause packet
loss and retransmission. The high spikes represent the nominal bandwidth, i.e.,
without errors and MAC-layer retransmissions; the low spikes represent the worst
case of errors and retransmissions.
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Fig. 1. (a) Example of measured wireless link bandwidth and SNR data. (b) SNR-
bandwidth relationship for a typical dataset clearly shows nonlinearity.

Note that our method provides a single-hop rather than end-to-end band-
width, because SNR only reveals the quality of the immediate wireless link.
Nonetheless, this is sufficient for the following reasons. In infrastructure net-
works, the wireless links are almost always located in the first or last hops. In such
networks, the wireless-hop link is usually the weakest link, and its bandwidth in-
formation is critical for providing QoS and improving end-to-end performance in
such networks [15]. A piecewise mechanism, which considers separately wireless
and wired networks, can also be employed [4]. In mobile ad-hoc networks, know-
ing the bandwidth of individual links is sufficient to determine the best routing
path. Link bandwidth information can be exchanged in link-state packets along
with topology information.

The rest of the paper is organized as follows. Section 2 presents the theoret-
ical model that shows a relationship of the wireless link bandwidth and SNR.
Section 3 describes experiments to collect the data for the empirical bandwidth
estimation models and Section 4 presents two empirical models. The effective-
ness of the models under different scenarios and environments is discussed in
Section 5. Lastly, Section 6 concludes the paper.

2 Theoretical Relationship between SNR and Wireless
Link Bandwidth

Here we first demonstrate analytically the relationship between the SNR and
wireless link bandwidth. The analysis is based on baseband SNR, which is dif-
ferent from what the 802.11 wireless device drivers provide, i.e., SNR of RF
signals. The difference does not invalidate the derived relationship, though.
Signal-to-noise ratio (SNR) in analog and digital communications is a mea-
sure of signal strength relative to the background noise. If the signal strength
in microvolts is Vs, and the noise level, also in microvolts, is V,,, then the SNR,
in decibels, is given as SNR = 20log;,(V;/V,). A corresponding measure in a



wireless communication environment is the received bit-energy-to-noise ratio,
denoted as SNR(t) = a(t)?(E/N), where a(t) is a Rayleigh-distributed random
process in the flat fading channel model [18], E is the average bit energy of the
received signal, and N is the noise power density.

The bit error rate (BER) is the percentage of bits in error relative to the
total number of bits received in a transmission. In the wireless communications,
the relationship between BER and SNR depends on the channel modulation
scheme [10], such that BER(t) = Q[SNR(t)], where @[] is a nonlinear operator.
E.g., in the (7/4)QPSK modulation scheme, Q[-] can be expressed as

Q(p) = 1\/5/;;6_%%
/14

The relationship between packet error rate (PER) and BER depends on the
channel coding scheme. Assume that there is no error-correction coding applied
and the number of bits in a packet is n, then

PER(t) =1 — ﬁ [1 — BER(t;)]

i=1

where t; is the time instant the receiver received the it bit. If the wireless
channel fading variation is very slow compared to the packet transmission time
(true for walking and driving speeds), then PER can be approximated as PER(t)
=1—[1—BER(#)]". Thus PER(t) gives the probability of packet loss at time ¢
on the wireless channel and can be viewed as PER(t) = P[BER(t)], where P[]
is a nonlinear operator.

The relationship between the wireless link bandwidth and PER depends on
MAC layer protocols, such as automatic retransmission (ARQ) scheme. Gener-
ally a packet is kept in the transmitter queue until it is successfully received and
acknowledged by the receiver. According to the ARQ scheme, a new packet will
not be sent to the receiver until either (i) a timer times out, or (i) the previous
packet has been successfully received and acknowledged by the receiver and the
sender received the acknowledgement. Therefore the channel efficiency 7, which
is the percentage of time the channel is used to effectively communicate data
between the transmitter and the receiver, can be derived as follows.

Assume that ¢, and ¢, are the times to transmit a packet and to transmit
an ACK, respectively. Furthermore, tpr,. and t,,op are the packet processing
time at the end-hosts and the packet propagation time across the channel, re-
spectively. Let ¢;, and ts denote timeout value of the timer and the minimum
time between successive packet transmissions at the sender in case of no packet
error, respectively. Both t;, and t, are set differently for different ARQ schemes.
Then define ¢t} as the maximum value of ¢; across all ARQ schemes, which is
ty = t, + 2tproc + 2tprop + tg- Define z as the total time taken for a successful
transmission of a packet and its ACK, which is a random variable depending on
the dynamics of the PER. Thus,

E[z] = (1 — PER)t, + PER(t;, + E[z]) = t; + (PER x t1,)/(1 — PER)



The channel efficiency can be expressed as follows:

ot (1 - PER)t,

E[z] ~ (1= PER)t, + PER x (1)

n(ARQ, PER)

For stop-and-wait (S&W), go-back-n (GBn), and selective repeat with infi-
nite buffer (SRP-infinite) schemes, the values of the parameters are set according
to the Table 1.

Table 1. Parameters for channel efficiency.

| ARQ scheme | ts | tio | n |
S&W ts t; (1 — PER) x tp/t:
GBn tp |nxtp,|(1—PER)/(1— PER+n X PER)
SRP-infinity tp tp 1—- PER

The above analysis assumes that the transmitter sends a frame to the receiver
once the communication channel is detected as idle. However, in some protocols,
such as IEEE 802.11, after the transmitter detects the idle wireless channel, it
still has to wait for a random period of time before sending out the frame. Thus
(1) can be generalized as:

- ty (1-PER)t,
" E[z]  to+ (1 —PER)t, + PER x t,

n(ARQ, PER

where tg is the random time before the transmitter sends out the frame during
the idle channel period. Then the wireless link bandwidth can be expressed as:

B(t) = n[ARQ, PER(#)] x C

where C' is the wireless link capacity. The relationship between the wireless
bandwidth and the signal strength can be denoted as (2) and it can be simplified
as (3):

B(t) &% pER(®) £ BER®) £ SNR(#) )
B(t) = f[SNR(t)] 3)

where f[-] = n[P[Q[SNR(%)]]] or f =no P o Q. Therefore, (3) shows that there
is a well-defined relationship between the SNR and the wireless link bandwidth.
Since the equation from RF signal SNR to BER depends on how the wire-
less receiver implements components of synchronization, interference handling,
equalization, and demodulation, it is not possible in practice to build the exact
theoretical model for bandwidth estimation. For this reason, below we consider
empirical methods for bandwidth estimation. Nonetheless, the above analysis is
important to back our intuition about the existence of the relationship.



3 Experiments for Training-Data Collection

Before presenting the empirical bandwidth estimation models, we first describe
the experiments for collecting the data that will be used to train the models
and verify the estimates. Fig. 2 shows the layouts of our experimental IEEE
802.11b wireless/mobile LANs. In the indoors case (Fig. 2(b)), the mobile laptop
travels around the fixed wireless sender along the hallway and enters the offices
and the labs. During each session a dataset of about 500 samples is recorded.
The maximum distance between the receiver and the sender reaches 100 feet.
Generally, there is no line-of-sight (LOS) communication between the sender and
the mobile laptop. In the outdoors case (Fig. 2(c)), the mobile receiver travels
with varying speeds around the sender with a line-of-sight wireless connection.
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Fig. 2. Layouts of the wireless network for experiments. (a) Topology of the wire-
less/mobile LAN. (b) Physical layout of the wireless/mobile LAN (Indoors case). (c)
Physical layout of the wireless/mobile LAN (Outdoors case).

The experiments were performed in the peer-to-peer (ad-hoc) mode for 802.11
wireless LAN. About 20 datasets of SNR and corresponding wireless link band-
width recorded at the mobile receivers have been collected. Various IEEE 802.11b
wireless cards are used in the experiments, such as Sony VAIO, Orinoco Gold,
and Compaq WL 110 cards. The times of day for the data collection are ran-
domly chosen over the period of experiments. To avoid other traffic influencing
the recordings, our testbed is isolated and has only one sender and one receiver



operating on a fixed channel. The recordings here are based on one single trans-
mission rate that has been set manually to 1Mbps. In reality, the raw bit rate is
automatically set to a level of 1 Mbps, 2 Mbps, 5.5 Mbps or 11Mbps according
to current signal quality. The transmission rate is changed by switching among
different modulation schemes. We briefly comment upon this in Section 5 below.

Most of the 802.11b wireless cards provide signal strength and noise power
independently. The noise power is measured as silence level, i.e. the power mea-
sured from the receiver’s antenna at the time when there is no packet coming in.
The SNR value we use is calculated by subtracting noise power from the signal
power.

During the data collection process, wireless link bandwidth is measured by an
intrusive method, which sends probe packets. Since our objective is to monitor
the bandwidth of the wireless link, the methods for wired bandwidth measure-
ment reviewed in the introduction would not work here, since they measure the
nominal bandwidth. To be as close as possible to the MAC layer, the probe traf-
fic must be user datagram protocol (UDP) packets. We use a constant bit rate
(CBR) traffic generator [14] that runs on a fixed wireless sender and keeps send-
ing probe traffic to the wireless receiver. To measure the maximum throughput
that reflects the wireless link bandwidth, we saturate the link by setting the CBR
traffic rate a slightly higher rate than the physical capacity of the wireless link.
Every second, the wireless receiver reads SNR from the wireless card driver. At
the same time, it calculates the saturated throughput by multiplying the number
of packets it has received during the 1 sec period with the sum of the sizes of
IP and UDP headers and the UDP payload. This is recorded as the actual link
bandwidth for a given SNR. An example measurement is shown in Fig. 1(a). A
1-second sampling period is chosen only for computational convenience. While
doing estimation, the sampling rate can be higher than once per second depend-
ing on the requirements of the application and it can increase up to the rate of
updating the SNR information, i.e., the frame arrival rate. The recorded SNR
and bandwidth data are used to perform model identification.

4 Empirical Nonlinear Models

System identification is about modeling the relationship between inputs and
outputs. When building a model for recorded datasets, we try to build a model
such that the relationship of its output (estimated bandwidth) to its input (SNR)
matches what is exhibited by most of the points in the datasets. When the model
is used in estimation, real-time measured SNRs are fed into the model and the
generated outputs are estimates of bandwidth. In order to evaluate the accuracy
of the model, the estimated values are compared to the actual bandwidth, which
is again measured by sending probe packets as in Section 3 above.

We use absolute mean error and average relative error as indices for perfor-
mance evaluation. The average relative error is defined as (3 |vi — 9il) / 2. vis
where y; and g; are the desired and estimated outputs at ith point, respectively.
Since both the empirical data (Fig. 1(b)) and the analytical model (Eq. (3)) indi-



cate that the relationship is nonlinear, we employ nonlinear estimation methods.
Two methods, neural networks and statistical inference, are described below.

4.1 Back-Propagation Neural Network (BPNN)

Back-propagation neural network (BPNN) has been applied successfully to solve
some difficult problems of input-output nonlinear mapping, curve fitting, etc. [6].
For BPNN, the nonlinear function f(u) consists of a series of units combining
linear operations (weights and bias) and nonlinear operations (sigmoidal func-
tions). These units are called perceptrons and organized layer by layer. The
network is trained in a supervised manner with an algorithm known as the error
back-propagation algorithm based on error-correction learning rule. The train-
ing process is illustrated in Fig. 3, where f(u) is given as an initial model. A set
of input values and corresponding desired output values are used as a training
dataset. The difference between desired output values and the output of f(u) is
considered an error and propagated back to the model. Based on the errors, the
learning algorithm adjusts the parameters in function f(u) and finally minimizes
the sum of square errors of all training points, i.e., > (y; — 9:)>.

Desired
output

Estimated
output

Input

Error

Fig. 3. Error-correction learning model for neural networks.

The reason we choose BPNN for nonlinear modeling is that the relationship
of measured bandwidth vs. SNR, shown in Fig. 4, resembles a sigmoidal function.
Therefore, with a simple structure, i.e., small number of perceptrons and layers,
and a short training time, the BPNN can learn to represent the relationship.
Moreover, the computation complexity of the estimation is also low. We may
notice in Fig. 4 that the SNR-to-bandwidth mapping is not one-to-one, i.e.,
there could be different bandwidth values corresponding to a single SNR value.
Given a set of training points, a BPNN learns a one-to-one sigmoidal mapping
that minimizes the sum of square errors.

In this paper, a 1-4-1 BPNN is used for modeling, i.e., one input, 4 hidden
nodes, and 1 output. The model is first trained on a certain dataset and then it is
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used to generate estimates by feeding other datasets of recorded SNRs. The es-
timates on each dataset are compared with the corresponding actual measured
link bandwidth, and errors are presented in the form of relative and absolute
mean value. This is shown in Fig. 5. The relative error between the estimated
bandwidth and the actual measured bandwidth in Fig. 5(a) is 14.81%. Fig. 5(b)
shows the distribution of estimates in different relative error ranges. We may no-
tice that for about 50% of estimates relative error is less than 10%. For very low
bandwidths, even a small absolute error means a large relative error. Therefore,
Fig. 5(c) shows the mean absolute errors for different values of actual band-
width. The largest mean absolute error is around 200 Kbps and it is located
in the bandwidth range from 320 Kbps to 600 Kbps, which means bandwidths
in that region are more difficult to track by SNRs. Lastly, Fig. 5(d), shows the
model performance as a 2-D histogram. Each bar counts the number of different
estimates for a given actual bandwidth. The bars close the diagonal (estimated
= actual) are the tallest, indicating that the model works well for this dataset.

We repeated testing the BPNN model by training it on 5 datasets and applied
it to do estimation on 5 different datasets. The average relative error obtained
is 24.94% and the standard deviation of error is 13.57%.

4.2 Statistical Model: Bayesian Inference

Considering the collected SNR data as observations and the corresponding mea-
sured link bandwidth as output states, we can build a Bayesian inference model.
Firstly, we divide the ranges of input data and output data into small regions,
and represent them by a finite state space s1, 2, ---, S, and an observation space
01,02, ...,0m,. Then, based on the historical data, a Bayesian inference model is
built by calculating the priority distribution: P"(Oi|5j)i:1,2,...,m;j:1,2,...,n- This
gives the probability of a certain SNR value at region o; observed in the condition
that real or measured bandwidth is at state s;, based on collected data.

To perform the estimation, we use the following Bayes rule to update the
probabilities, which represent the new level of belief in all possible outcome
states after an observation:

Pr(s;)Pr(o*|s;)
iy Pr(si)Pr(o*|s;)

where o* is the current observation; Pr(s;) is the prior probability and it is
initialized by assuming the each state has the same probability in the beginning.

The output of the Bayesian inference model provides information of the prob-
ability distribution of all possible states of estimated bandwidth. We calculate
the expected value of the probability distribution and take it as the estimated
bandwidth. Similar to the BPNN model, one dataset with both measured SNR
and measured bandwidth is used to train the model, i.e., to build the prior-
ity distribution. Then, the estimations are made on other datasets and result
compared with the measured actual bandwidth. The training and estimation
datasets used to obtain Fig. 6 are the same as the ones used with the neural
network model. Here, the relative error is 15.70%.

Pr(sjlo*)j=1,2,.n =
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We repeated testing the Bayesian model by training it with 5 datasets and
applying it to do estimation on 5 other datasets. The average relative error
obtained is 26.07% and standard deviation of error is 15.43%. This is close to
what we obtained with the BPNN model. Fig. 7 explains the similarity, since the
mapping curve obtained by the Bayesian model resembles the least-square-error
curve obtained by the BPNN in Fig. 4.

The performances of these two models are compared in Table 2. In the
columns list the training datasets and the rows list the estimation datasets.
Relative errors caused by BPNN model and Bayesian model corresponding to
different datasets are shown respectively in the upper line and lower line of each
cell. The table shows their performances parallel each other.

Table 2. Performance comparison of neural network and Bayesian inference models.
Shown are the error rates for each. The performance on some of the datasets is sig-
nificantly worse than on others, e.g., Test data III. This is since the datasets are not
balanced, so some datasets contain more points in the “bad” region (SNR < 15 dBm).

BPNN |Test data|Test data|Test data|Test data|Test data
Bayes I 11 111 v \%

Training|15.32% 15.98% 44.69% 22.74% 22.46%
data I 16.08% 17.80% 56.22% 24.06% 21.03%
Training|15.91% 15.48% 45.31% 24.09% 23.66%
data II 15.96% 16.18% 49.97% 21.83% 20.62%
Training|15.48% 15.82% 46.85% 23.62% 23.77%
data III 15.70% 16.18% 49.97% 21.83% 20.62%
Training|14.69% 16.00% 52.28% 19.39% 20.54%
data IV 15.87% 19.77% 60.05% 18.78% 18.98%
Training|15.15% 16.10% 61.71% 17.20% 19.20%
data V 15.78% 20.91% 62.02% 17.84% 17.82%

The performance of both models is particularly weak at the steep part of
the SNR-bandwidth curve, for SNRs lower than 15 dBm, Figs. 4 and 7, where
the mapping is obviously not one-to-one. We tried to improve this performance
by designing the models with multiple input variables. One possibility is to use
the signal and noise strengths as two independent inputs, rather than a single
SNR input. Another possibility is to use past values of SNR or bandwidth some
of their statistical properties as additional input variables for the model. So far
these efforts only resulted in minor performance improvements. However, we still
believe that the model performance at this part of the curve can be improved
only through additional input data and this is a topic of our current research.

It may be argued that these models are suitable only to the extent that
they estimate a “break point” between a good and bad link. However, although
accurate bandwidth estimation for low SNRs is hard to achieve, having at least
average bandwidth estimate is useful for many applications. In addition, for the
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case of automatic rate selection (11 Mbps, 5.5 Mbps, 2 Mbps, and 1 Mbps), the
“break point” is not as easy to identify since the performance deteriorates rather
gradually. Even if it could be located, it would not provide sufficient information
for link characterization for bandwith-sensitive applications.

5 Model Effectiveness Under Different Scenarios

Since both BPNN and Bayesian models are built or trained offline on previ-
ously collected data and there is no actual bandwidth information available at
runtime when doing estimation, it is important to know whether the environ-
mental changes could cause a performance deterioration. The first experiment
was in training the models on data measured in one building and using them for
estimation in a different building. The average relative error is 17.6%.

Fig. 8 shows the input-output curves for the models trained on all indoor
collected data and all outdoor collected data. Obviously, there is a slight differ-
ence and this difference contributes to the performance degradation when using
a model trained on one environment for estimation in another one:

Estimation —
Training |

Indoor 24.94% | 33.04%

Outdoor 32.98% | 31.97%

Indoor | Outdoor

A possible solution is to employ a dual-model mechanism. When mobile
nodes are located outdoors, the system employs the model trained on outdoors
data and vice versa for indoors. In this case, it is important to automatically
recognize the environment change and switch to a proper model and this is a
possible future research topic.

Experiments similar to those reported above for peer-to-peer (ad-hoc) mode
were also performed for the infrastructure (access point) mode. The results re-
main virtually the same if one of the endpoints is connected to the access point
over a wire. If both endpoints communicate wirelessly over the access point, the
performance changes due to channel sharing and different spatial relationships
to the access point. This case needs to be investigated further.

In addition the original 802.11-DS standard, 802.11HR offers additional 5.5
Mbps and 11 Mbps for high rate transmission [7], where a different modulation
(CCK) is adopted. To extend our models to a multi-rate situation, we repeated
the experiments with non-fixed transmission rates. Experiment results show that
the method performs well in multi-rate case and the average relative error in our
tested cases is 18.58%. Future research includes extending the method to other
wireless LAN standards, such as 802.11g.

Since our method estimates the link bandwidth at the MAC layer, it can be
used with different network or transport protocols, including TCP. However, in
such a case, the estimated bandwidth does not necessarily predict the through-
put that will be achieved by the transport protocol. We evaluated the estimation
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Fig. 8. The least sum of square errors fittings for indoors and outdoors datasets.

models developed here with TCP traffic. The measured TCP throughput sharply
falls off for low estimated bandwidth because of the congestion control mecha-
nisms reacting to highly increased packet loss under a low link bandwidth. This
relationship needs to be further investigated.

6 Conclusions

The dynamics of the wireless link bandwidth is of interest to adaptive applica-
tions and protocols in wireless communication environments. This paper presents
a novel approach to estimate wireless link bandwidth based on radio signal-to-
noise ratio. Its salient feature is that it provides a passive, non-intrusive method
for wireless link bandwidth estimation, which avoids the use of probe packets as
in traditional methods. The method is evaluated in IEEE 802.11b wireless local
area networks under different environmental conditions. Two nonlinear mod-
els, BP neural network and a statistical model, are used and their performance
is studied and compared. Both BPNN and Bayesian inference models achieve
similar accuracy in bandwidth estimation. Future work includes improving the
accuracy of the estimation method under different scenarios and employing it in
real-world applications to provide quality-of-service. Another interesting param-
eter related to signal strength is the link latency, which we also plan to estimate.
Also, the scenarios with multiple senders and receivers will be studied.
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