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Abstract 
 
TCP performance in contention-based multi-hop 

wireless networks is shaped by two main factors, 
which are unlike the wired network case. First, the 
maximum throughput for a given topology and flow 
pattern is reached at an optimal congestion window. 
We provide an improved analysis of this effect. 
Second, the control traffic uses higher proportion of 
the channel bandwidth than in the wired case. Our 
results show that the much smaller TCP ACK packets 
consume channel resource comparable to the much 
longer data packets, over high-speed connections. 
Motivated by this understanding, we reformulate and 
enhance an existing idea for improving TCP 
performance by further lowering the number of 
control packets. Extensive simulations show that our 
strategy increases the TCP throughput up to 205% 
compared to the regular TCP, in long-hop wireless 
networks and 35% in a complex network. 

 
1. Introduction 

 
The TCP (Transport Control Protocol) suffers 

significant performance deterioration in multi-hop 
wireless network where the key reason for packet loss 
is different from that in a wired network. The first one 
is the link-layer contention [6]. In a contention-based 
wireless network, a transmitting node prevents its 
neighbors from transmitting/receiving. Moreover, the 
well-known hidden/exposed problem causes collisions 
and degrades the channel utilization. To alleviate this 
problem, 802.11 adopts RTS/CTS and virtual carrier 
sense mechanism which solves the hidden/exposed 
problem when all nodes can hear each other, but not 
when some nodes are out of the hearing range. This is 
because the interference range is much larger than the 
actual transmission range. Note that even without 
collision and channel errors, packets can still be 
dropped if the MAC layer retries exceed a given limit. 
In such a contention-based network, Fu et al. [6] found 
that there is an optimal value of the congestion 
window (cwnd) which gives the maximum throughput. 
They showed that the optimal cwnd is n/4, where n is 
the total number of hops. Unlike this, our analysis 

shows that the optimal cwnd size should be between 
n/3 and n/2, after considering the capture effect. 

The second factor is the much higher overhead 
introduced by lower layers. In this paper, our analysis 
and simulations show that for high-speed connections, 
the much smaller TCP ACK packets use channel 
resource comparable to the much longer data packets, 
which inspires us to reduce maximally the excessive 
control packets. Based on this, we propose a new 
delay ACK algorithm, which can enhance TCP 
performance significantly, up to 205% improvement 
over regular TCP in long-hop wireless networks. 

We use TCP RenoNew [5] as the regular TCP. In 
TCP, after receiving a data packet, the receiver replies 
with an ACK packet which introduced minor overhead 
in wired network. The regular TCP also provides a 
delayed ACK option (TCP-DA) which generates a 
cumulative ACK for every two in-order packets that 
arrive within a given period [10]. If the receiver does 
not receive the second packet in this period, denoted as 
ACK-delay timeout, it sends an ACK without waiting 
longer. In our proposed approach, the receiver always 
waits until this timeout event occurs to generate an 
ACK, no matter how many in-order packets it receives 
during the timeout period, assuming other conditions 
introduced in Section 5 are not satisfied. 

Similar as in [8], we define delay window as the 
number of data packets that generate one ACK packet. 
We also define delay window limit as the maximum 
delay window. 

We do not address the mobility-related issues in 
this paper, but this is part of our ongoing project. 
Besides, we expect the long-hop wireless network to 
be more likely deployed in static sensor networks. 

 
2. Related work 

 
Fu et al. [6] show that the main factor affecting 

the TCP performance in multi-hop wireless networks 
is the link-layer contention, rather than buffer 
overflow, and there exists an optimal cwnd size. K. 
Chen et al. [3] use the number of hops to determine the 
optimal cwnd window. 

Altman et al. [1] found that using different delay-
ACK strategies results in TCP performance gains. 
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Yuki et al. [11] proposed to combine TCP DATA and 
ACK packets into a single packet. Singh et al. [2] 
proposed a dynamical method to reduce the number of 
ACKs. Oliveira and Braun [4] proposed TCP-DAA to 
combine the idea of restricting cwnd to its optimal 
value while reducing the number of ACK packets. 
They set the delay window limit as ≤ 4. Chen et al. [8] 
proposed a method called TCP-DCA to select different 
delay window limit based on the number of hops. 

 
3. Optimal congestion window  

 
In 802.11, interference range is bigger than its 

transmission range. This introduces the hidden node 
problem. For example, in figure 1, the node 4 and 
node 6 cannot hear each other, but if they both send 
packets to node 5 simultaneously, the signals will 
collide. To alleviate this problem, 802.11 introduces 
the RTS/CTS mechanism. In addition, every node 
backs off for an exponentially increasing random 
interval after overhearing other nodes’ transmission. 

Figure 1 shows a typical chain topology in which 
any two adjacent nodes reside 200 meters apart. The 
transmission range is about 250m and the interference 
range is about 550m. Without considering capture 
effect, in a group of 4 subsequent hops, only one can 
be active at a time. Based on this, previous work [6] 
claimed that TCP achieves the optimal throughput for 
cwnd equal n/4, where n is the number of hops. 
However, capture effect also affects the transmission 
range. When a receiver receives signals from two 
different senders, the stronger signal could completely 
suppress the weaker one and therefore can be correctly 
decoded by the receiver, if the difference between 
these two signals exceeds a threshold (typically 10 
dB). In  the two-ray ground reflection model, which 
gives more accurate prediction at a long distance than 
the free space model [7], the received power, Pr, at 
distance d is calculated as 

 
 Pr(d) = PtGtGrht

2hr
2 / d4L  (1) 

 
where Pt is transmit power, Gt and Gt are transmit and 
receive antennas gain, respectively, ht and hr are the 

heights of the transmit and receive antennas, 
respectively. L is constant. Assuming P1 and P2 are the 
signal energies received from two nodes, the following 
formula is used to determine whether the capture 
effect occurs: 

 10 × (lg (P1) −  lg (P2)) > 10  (2) 
We use this formula to calculate the point where the 
difference of signal energy level is 10 dB and have: 

 ((400 – x) / (200 + x))4 = 10  
 x = 15.82 
The above calculation shows that nodes 1 and 2 

can communicate at the same time while nodes 4 and 5 
are communicating. This means that the optimal cwnd 
size is n/3 at least, instead of n/4 as in [4][6]. 

Besides, there is a slight possibility that node 1 
can transmit to node 2 while node 4 is transmitting to 
node 3. For example, nodes 2 and 3 send RTS at the 
same time to nodes 1 and 4, respectively. Because of 
the capture effect, the CTS from node 1 to 2 and from 
node 4 to 3, respectively, can be correctly decoded and 
the transmission can succeed. But in most cases, the 
transmission between nodes 1 and 2 would interfere 
with that between nodes 3 and 4 (for example, when 
node 2 is transmitting, node 3 cannot receive), which 
means that the optimal cwnd must be less than n/2. 

Combined with the analysis above, we conclude 
that the optimal cwnd should be between n/3 and n/2, 
slightly higher than n/3. This accurately explains why 
optimal cwnd is 3 in the 7-hop scenario, as claimed by 
[4][6], instead of 2, and optimal cwnd of 10 hops is 
3~4 [4], rather than 2.5. 

 
4. ACK impact on channel utilization 

 
A typical TCP ACK packet is 40 bytes long. 

(Note that the TCP ACK is different from the MAC 
ACK.) Figure 2 shows the timing diagram for 
transmissions that include RTS/CTS. For simplicity, 
we ignore other overheads, e.g., PHY header, DIFS, 
etc., which would support our conclusion even 
stronger. Assuming the basic rate is 1Mbps (used for 
RTS/CTS/ACKmac) and the transmission rate for data 
is 11 Mbps, the overhead transmission time is 
3SIFS+RTS+CTS+ACKmac = 414µs. After including 
this overhead, the transmission times for 40-byte 
ACKtcp packets and 1040-byte data packets are 443µs 
and 1170µs, respectively. They are on the same order 
of magnitude. Moreover, because of the exponential 
backoff mechanism, the ACKtcp packets have a greater 
impact than proportional to their transmission time. 
When the transmission rate becomes higher, the 
transmission time for data shrinks and therefore the 
overhead brought by RTS/CTS is greater. 

To clarify this conclusion, we compare two cases 
where the packet sizes are 1040 bytes and 40 bytes 

1 2 3 4 5 6 7 8
L1 L2

x

 
Figure 1. Chain topology. The solid circle is the valid 
transmission range. The dotted circle denotes the 
interference range. 
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Table 1. Maximum achieved number of transmitted packets 
vs. packet size, transmission rate 11Mbps 

Num of hops 6 8 10 12 
Num of 1040 byte pkts 4212 3529 2359 1947 
Num of 40 byte pkts 5184 4255 2698 2969 
Ratio 1.23 1.21 1.14 1.53 

(the size of an ACKtcp). Table 1 shows the simulation 
result of actual numbers of transmitted packets in a 
chain network (using the regular TCP). Although the 
40-byte packet is only 1/26 of the size of a 1040-byte 
one, the number of transmitted packets only increases 
by 53%. This implicitly verifies that channel capacity 
consumed by ACKtcp is similar to that of data packets. 

This fact points to a promising direction to 
increase the TCP performance over multi-hop network 
by lowering the number of transmitted ACKs even 
more. Motivated by this finding, we propose a new 
algorithm. 

 
5. New way to improve TCP throughput 

 
Two main factors affect the TCP performance in 

multi-hop wireless network: the injected traffic load 
and the control traffic. Because setting a fixed cwnd 
would restrict its applicability, we focus on improving 
TCP performance by minimizing the number of ACK 
packets. The first strategy is to let the receiver always 
waits until the ACK-delay timeout to generate an ACK 
if arrived packets are in-order. 

Most existing methods use a small delay window 
limit. When a delay window limit is small, it will be 
generally reached sooner than the ACK-delay timeout, 
which means that an ACK is mostly generated before 
the timer expires. To reduce further the number of 
ACK packets, our first strategy makes the number of 
ACK generated by ACK-delay timeout dominates that 
by reaching delay window. Therefore, we set up a 
large delay window (in this paper it is set at 25). Chen 
et al. [8] point out that a higher delay window limit 
does not necessarily result in higher throughput. 
However, because in our method ACK-delay timeout 
generates many more ACKs than reaching the delay 
window limit, we can achieve better performance with 
large delay window limits. In this paper, we set the 
ACK-delay timer at 200 ms, based on extensive 
experimentation and some consideration of application 
scenarios, e.g. the effect of mobility. 

When the congestion window is small, the 

receiver waits for ACK-delay timeout to send ACK 
even if no packet is arriving. This results in channel 
under-utilization. To avoid this problem, we adopt a 
solution similar as in [8]. The sender puts the current 
value of cwnd into the option field of the TCP header 
to inform the receiver of the current cwnd. When the 
number of received-but-unacknowledged packets 
equals cwnd, the receiver knows that the sender is 
waiting for an ACK and sends one immediately. The 
difference is that we do not need to count the path 
length, as required in [8]. For lost- or gap-filling 
packets, we use the same mechanism as in the regular 
TCP. That is, when such a packet is detected, the 
receiver generates the ACK immediately. 

Extensive simulation results show that our simple 
strategy improves TCP performance significantly by 
reducing more unnecessary ACK packets. 

 
6. Performance evaluation 

 
In our evaluation, we mainly focus on comparing 

against TCP-DCA, TCP-DA and the regular TCP. We 
do not include TCP-DAA because it is designed for 
short chains; also, TCP-DCA is reported to work 
better than TCP-DAA [8]. Based on results reported in 
[4], we do not select SACK and Vegas. For the sake of 
clarity, we name our new algorithm TCP-TDA 
because we use the ACK-delay timeout as a trigger in 
a different way from the existing work. 

 
6.1. Simulation scenario 

 
We used the ns2 simulator [7] in our evaluations 

of two typical topologies where each node resides 200 
meters apart from its neighbors. Most of parameters 
use the NS2 default value. We have chosen FTP as the 
traffic generator, AODV as the routing protocol, 
simulation time is 100s, and channel bandwidth is 11 
Mbps. The capture effect is also taken into account. 
All data points are obtained by averaging the result of 
4 or 5 simulations with different random seed. 

 
6.2. Throughput in chain topology 

 
Figure 1 shows the topology. The TCP sender 

resides on the first node and the receiver locates on the 
last one. Due to the lack of space, we only show 
results for cases of 1 and 6 flows. 

Figure 3-left shows the throughput for one flow 
and hop counts 1 to 3. We can see that TCP-TDA and 
TCP-DCA have almost the same performance. This is 
expected because these two methods basically have 
the same factor, reaching the cwnd, which affects the 
ACK generating in such scenarios. Both algorithms 
outperform TCP/TCP-DA significantly. The 

RTS
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ACK
14bytes

160µs

SIFS
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112 µs 112 µs

SIFS
(10 µs)

SIFS
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Figure 2. Timing diagram for a packet transmission 
with RTS/CTS 
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Table 2. Number of ACKs and data packets for a 13-hop 
chain and 1 flow 

 Num of 
ACKs sent 

Num of 
packets sent Ratio Throughput

(Kbps) 
TCP-TDA 693 5644 0.12 478 
TCP-DCA 1509 4321 0.35 368 
TCP-DA 1542 2887 0.53 242 

 
improvement is 26%, 24%, 41% over the TCP-DA and 
55%, 53%, 72% over the regular TCP, for 1 to 3 hops. 
Similar results hold for other number of flows. 

Figure 3-center shows the throughputs for the hop 
counts from 4 to 29. The performance gain of TCP-
TDA over TCP-DCA is in the range of 12% ~ 80%, on 
average 35%. In most cases, the performance gain is 
more than 60% over TCP-DA, up to 110%, on average 
68%, and 100% over TCP, up to 205%, on average 
139%. We notice that the performance gain is higher 
for most cases in larger hop counts. One reason for 
this is that the TCP sender emits a burst of packets 
after receiving a cumulative and incurs heavy 
contention in the first few hops. When the chain is 
longer and the packets spread out the chain, this burst 
effect is alleviated. After considering capture effect, 
the burst effect does not impair performance greatly as 
expected earlier [8].  

For other numbers of flows, the performance 
gains are also significant. In the 2-flow case, the 
average gains are 36%, 77%, 87% over TCP-DCA, 
TCP-DA, TCP, respectively. In 6-flows case, the gain 
is 11%, 38%, 76%, respectively. But we noticed that 
with the increasing of number of flows, although the 
performance gain over TCP-DA/TCP is still 
significant, that over TCP-DCA decreased 
significantly. In the 6-flow case, TCP-TDA works 
only slightly better (Figure 3-right). In a few cases, the 
TCP-TDA works even worse than TCP-DCA. The 
explanation is given below. The fact that all four 
algorithms work worse for larger number of flows 
suggests that the number of flows should be kept low, 
especially with large number of hops. This sheds light 
on application design for such scenarios. 

Table 2 shows a typical example of number of 
ACKs and data packets sent. TCP-TDA generates 
much less ACKs than other algorithms. In the 6-flow 
case, we observed that, in many scenarios, the ratio for 
TCP-TDA increases to more than 0.3 and accordingly, 
the ratio for TCP-DCA increases to more than 0.4, 
which means the number of generated ACK increases 
significantly and therefore the performance gain 
deteriorates. This confirms that reduction in the 
number of ACKs does help improve the performance. 
Because other factors also affect the TCP behavior, 
throughput does not increase linearly with the number 
of reduced ACKs. Moreover, in the 6-flow case, we 
observed in some scenarios that although TCP-TDA 
sends 10% fewer ACKs than TCP-DCA, the 
performance gain is small, or even worse. This implies 
that our algorithm can be improved further. 

TCP-TDA significantly reduces excessive ACK 
packets but it may result in TCP-sender timeout if 
numerous ACK packets lost due to channel error. To 
solve this problem, we modify the TCP-TDA to setup 
another timer to resend the last ACK packet if receiver 
does not receive new packets in a given time after an 
ACK is sent. Moreover, receiver can be set to send 
ACK a little sooner than the number of arrived packets 
reaches the cwnd. We are currently investigating 
further improvements for these strategies and their 
performance in complex scenarios. The results will be 
reported in the future. 

We can also see an interesting phenomenon in 
Figure 3. The throughput does not decrease 
monotonously with the increasing hop count, for all 
four algorithms. The reason is that errors generate 
duplicate ACKs, which results in cwnd shrinking 
sooner. This, in turn, brings the injected traffic closer 
to the optimal value and improves the throughput. 

 
6.3. Cross topology 

 
We also evaluate the performance in a more 

complicated grid topology shown in Figure 5. The 
filled circles depict the sending nodes, the triangles 
indicate the receivers, and the arrow lines point the 
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  Figure 3. Throughput for the chain topology 
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Figure 5. Throughput for the grid topology  

transmission direction. Due to the lack of space, we 
only report the results for 6 cross flows, averaged over 
5 runs with different seeds. In this critical scenario, the 
interference and contention has greater impact than in 
the chain topology. Therefore, the performance gain of 
our algorithm is degraded significantly, and shows 
approximately 8%, 25%, 35% improvement over the 
TCP-DCA, TCP-DA and the regular TCP, 
respectively. We believe TCP-TDA will be further 
improved if combined with other techniques. 

 
7. Discussion and future work 

 
Our method is motivated by the fact that a short 

ACK packet consumes channel capacity comparable to 
the much longer data packet, over high-speed 
connections. For higher transmission rates, lower layer 
overhead would be greater and the ACK packets will 
consume more channel capacity. This means that our 
method would perform even better. Because RTS/CTS 
introduces significant overhead, it would be interesting 
to investigate how to alleviate this negative effect. 

Our algorithm can work with methods that use 
ELFN-like technique [9], which could be used to 
inform the sender to lower its packet injection rate, 
e.g. by reducing the cwnd, rather than keeping the 
cwnd from shrinking. Modifying existing ELFN-like 
techniques to work with our algorithm is part of our 
future work. 

The performance of all existing algorithms 
deteriorates for increasing numbers of flows. We are 
currently investigating new methods to improve 
performance in this case. 

Long-hop wireless network is present in scenarios 
such as sensor networks. Different sensor network 
implementation may use different contention-based 
MAC design. But our idea still holds and could be 
applied with different implementations. 

 
8. Conclusion 

 
In multi-hop wireless networks, unlike previous 

work, we showed that the optimal congestion window 
size is between n/3 and n/2, instead of n/4, where n is 
the total number of hops. This conclusion matches the 

simulation results more accurately than the prior work. 
We also showed that the small ACK packets consume 
comparable channel capacity as the much longer data 
packets, in high-speed network. Motivated by this, we 
proposed an improved delay-ACK algorithm. 
Extensive simulations show that our method lowers 
the excessive ACKs significantly and therefore 
improves TCP performance significantly, achieving up 
to 205% gain in long-hop networks and 35% gain in a 
complex grid network, compared to the regular TCP. 
Unlike existing work, which usually focuses on short-
hop networks, our evaluation includes long-hop 
networks, which is particularly valuable for large 
sensor networks. We also provide some possible 
improvements to the proposed TCP-TDA algorithm. 
Our method could be improved further by combining 
it with complementary methods. 
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