
Issues and Improvements in TCP Performance
over Multihop Wireless Networks

Beizhong Chen Ivan Marsic Ray Miller

Dept. of Electrical & Computer Eng. and CAIP Center
Rutgers University, Piscataway, NJ 08854

Bell Labs
Murray Hill, NJ 07974

bzchen@caip.rutgers.edu marsic@caip.rutgers.edu rbmiller@alcatel-lucent.com

Abstract

TCP performance in contention-based multi-hop

wireless networks is shaped by two main factors,
which are unlike the wired network case. First, the
maximum throughput for a given topology and flow
pattern is reached at an optimal congestion window.
We provide an improved analysis of this effect.
Second, the control traffic uses higher proportion of
the channel bandwidth than in the wired case. Our
results show that the much smaller TCP ACK packets
consume channel resource comparable to the much
longer data packets, over high-speed connections.
Motivated by this understanding, we reformulate and
enhance an existing idea for improving TCP
performance by further lowering the number of
control packets. Extensive simulations show that our
strategy increases the TCP throughput up to 205%
compared to the regular TCP, in long-hop wireless
networks and 35% in a complex network.

1. Introduction

The TCP (Transport Control Protocol) suffers

significant performance deterioration in multi-hop
wireless network where the key reason for packet loss
is different from that in a wired network. The first one
is the link-layer contention [6]. In a contention-based
wireless network, a transmitting node prevents its
neighbors from transmitting/receiving. Moreover, the
well-known hidden/exposed problem causes collisions
and degrades the channel utilization. To alleviate this
problem, 802.11 adopts RTS/CTS and virtual carrier
sense mechanism which solves the hidden/exposed
problem when all nodes can hear each other, but not
when some nodes are out of the hearing range. This is
because the interference range is much larger than the
actual transmission range. Note that even without
collision and channel errors, packets can still be
dropped if the MAC layer retries exceed a given limit.
In such a contention-based network, Fu et al. [6] found
that there is an optimal value of the congestion
window (cwnd) which gives the maximum throughput.
They showed that the optimal cwnd is n/4, where n is
the total number of hops. Unlike this, our analysis

shows that the optimal cwnd size should be between
n/3 and n/2, after considering the capture effect.

The second factor is the much higher overhead
introduced by lower layers. In this paper, our analysis
and simulations show that for high-speed connections,
the much smaller TCP ACK packets use channel
resource comparable to the much longer data packets,
which inspires us to reduce maximally the excessive
control packets. Based on this, we propose a new
delay ACK algorithm, which can enhance TCP
performance significantly, up to 205% improvement
over regular TCP in long-hop wireless networks.

We use TCP RenoNew [5] as the regular TCP. In
TCP, after receiving a data packet, the receiver replies
with an ACK packet which introduced minor overhead
in wired network. The regular TCP also provides a
delayed ACK option (TCP-DA) which generates a
cumulative ACK for every two in-order packets that
arrive within a given period [10]. If the receiver does
not receive the second packet in this period, denoted as
ACK-delay timeout, it sends an ACK without waiting
longer. In our proposed approach, the receiver always
waits until this timeout event occurs to generate an
ACK, no matter how many in-order packets it receives
during the timeout period, assuming other conditions
introduced in Section 5 are not satisfied.

Similar as in [8], we define delay window as the
number of data packets that generate one ACK packet.
We also define delay window limit as the maximum
delay window.

We do not address the mobility-related issues in
this paper, but this is part of our ongoing project.
Besides, we expect the long-hop wireless network to
be more likely deployed in static sensor networks.

2. Related work

Fu et al. [6] show that the main factor affecting

the TCP performance in multi-hop wireless networks
is the link-layer contention, rather than buffer
overflow, and there exists an optimal cwnd size. K.
Chen et al. [3] use the number of hops to determine the
optimal cwnd window.

Altman et al. [1] found that using different delay-
ACK strategies results in TCP performance gains.

 2

Yuki et al. [11] proposed to combine TCP DATA and
ACK packets into a single packet. Singh et al. [2]
proposed a dynamical method to reduce the number of
ACKs. Oliveira and Braun [4] proposed TCP-DAA to
combine the idea of restricting cwnd to its optimal
value while reducing the number of ACK packets.
They set the delay window limit as ≤ 4. Chen et al. [8]
proposed a method called TCP-DCA to select different
delay window limit based on the number of hops.

3. Optimal congestion window

In 802.11, interference range is bigger than its

transmission range. This introduces the hidden node
problem. For example, in figure 1, the node 4 and
node 6 cannot hear each other, but if they both send
packets to node 5 simultaneously, the signals will
collide. To alleviate this problem, 802.11 introduces
the RTS/CTS mechanism. In addition, every node
backs off for an exponentially increasing random
interval after overhearing other nodes’ transmission.

Figure 1 shows a typical chain topology in which
any two adjacent nodes reside 200 meters apart. The
transmission range is about 250m and the interference
range is about 550m. Without considering capture
effect, in a group of 4 subsequent hops, only one can
be active at a time. Based on this, previous work [6]
claimed that TCP achieves the optimal throughput for
cwnd equal n/4, where n is the number of hops.
However, capture effect also affects the transmission
range. When a receiver receives signals from two
different senders, the stronger signal could completely
suppress the weaker one and therefore can be correctly
decoded by the receiver, if the difference between
these two signals exceeds a threshold (typically 10
dB). In the two-ray ground reflection model, which
gives more accurate prediction at a long distance than
the free space model [7], the received power, Pr, at
distance d is calculated as

 Pr(d) = PtGtGrht

2hr
2 / d4L (1)

where Pt is transmit power, Gt and Gt are transmit and
receive antennas gain, respectively, ht and hr are the

heights of the transmit and receive antennas,
respectively. L is constant. Assuming P1 and P2 are the
signal energies received from two nodes, the following
formula is used to determine whether the capture
effect occurs:

 10 × (lg (P1) − lg (P2)) > 10 (2)
We use this formula to calculate the point where the
difference of signal energy level is 10 dB and have:

 ((400 – x) / (200 + x))4 = 10
 x = 15.82
The above calculation shows that nodes 1 and 2

can communicate at the same time while nodes 4 and 5
are communicating. This means that the optimal cwnd
size is n/3 at least, instead of n/4 as in [4][6].

Besides, there is a slight possibility that node 1
can transmit to node 2 while node 4 is transmitting to
node 3. For example, nodes 2 and 3 send RTS at the
same time to nodes 1 and 4, respectively. Because of
the capture effect, the CTS from node 1 to 2 and from
node 4 to 3, respectively, can be correctly decoded and
the transmission can succeed. But in most cases, the
transmission between nodes 1 and 2 would interfere
with that between nodes 3 and 4 (for example, when
node 2 is transmitting, node 3 cannot receive), which
means that the optimal cwnd must be less than n/2.

Combined with the analysis above, we conclude
that the optimal cwnd should be between n/3 and n/2,
slightly higher than n/3. This accurately explains why
optimal cwnd is 3 in the 7-hop scenario, as claimed by
[4][6], instead of 2, and optimal cwnd of 10 hops is
3~4 [4], rather than 2.5.

4. ACK impact on channel utilization

A typical TCP ACK packet is 40 bytes long.

(Note that the TCP ACK is different from the MAC
ACK.) Figure 2 shows the timing diagram for
transmissions that include RTS/CTS. For simplicity,
we ignore other overheads, e.g., PHY header, DIFS,
etc., which would support our conclusion even
stronger. Assuming the basic rate is 1Mbps (used for
RTS/CTS/ACKmac) and the transmission rate for data
is 11 Mbps, the overhead transmission time is
3SIFS+RTS+CTS+ACKmac = 414µs. After including
this overhead, the transmission times for 40-byte
ACKtcp packets and 1040-byte data packets are 443µs
and 1170µs, respectively. They are on the same order
of magnitude. Moreover, because of the exponential
backoff mechanism, the ACKtcp packets have a greater
impact than proportional to their transmission time.
When the transmission rate becomes higher, the
transmission time for data shrinks and therefore the
overhead brought by RTS/CTS is greater.

To clarify this conclusion, we compare two cases
where the packet sizes are 1040 bytes and 40 bytes

1 2 3 4 5 6 7 8
L1 L2

x

Figure 1. Chain topology. The solid circle is the valid
transmission range. The dotted circle denotes the
interference range.

 3

Table 1. Maximum achieved number of transmitted packets
vs. packet size, transmission rate 11Mbps

Num of hops 6 8 10 12
Num of 1040 byte pkts 4212 3529 2359 1947
Num of 40 byte pkts 5184 4255 2698 2969
Ratio 1.23 1.21 1.14 1.53

(the size of an ACKtcp). Table 1 shows the simulation
result of actual numbers of transmitted packets in a
chain network (using the regular TCP). Although the
40-byte packet is only 1/26 of the size of a 1040-byte
one, the number of transmitted packets only increases
by 53%. This implicitly verifies that channel capacity
consumed by ACKtcp is similar to that of data packets.

This fact points to a promising direction to
increase the TCP performance over multi-hop network
by lowering the number of transmitted ACKs even
more. Motivated by this finding, we propose a new
algorithm.

5. New way to improve TCP throughput

Two main factors affect the TCP performance in

multi-hop wireless network: the injected traffic load
and the control traffic. Because setting a fixed cwnd
would restrict its applicability, we focus on improving
TCP performance by minimizing the number of ACK
packets. The first strategy is to let the receiver always
waits until the ACK-delay timeout to generate an ACK
if arrived packets are in-order.

Most existing methods use a small delay window
limit. When a delay window limit is small, it will be
generally reached sooner than the ACK-delay timeout,
which means that an ACK is mostly generated before
the timer expires. To reduce further the number of
ACK packets, our first strategy makes the number of
ACK generated by ACK-delay timeout dominates that
by reaching delay window. Therefore, we set up a
large delay window (in this paper it is set at 25). Chen
et al. [8] point out that a higher delay window limit
does not necessarily result in higher throughput.
However, because in our method ACK-delay timeout
generates many more ACKs than reaching the delay
window limit, we can achieve better performance with
large delay window limits. In this paper, we set the
ACK-delay timer at 200 ms, based on extensive
experimentation and some consideration of application
scenarios, e.g. the effect of mobility.

When the congestion window is small, the

receiver waits for ACK-delay timeout to send ACK
even if no packet is arriving. This results in channel
under-utilization. To avoid this problem, we adopt a
solution similar as in [8]. The sender puts the current
value of cwnd into the option field of the TCP header
to inform the receiver of the current cwnd. When the
number of received-but-unacknowledged packets
equals cwnd, the receiver knows that the sender is
waiting for an ACK and sends one immediately. The
difference is that we do not need to count the path
length, as required in [8]. For lost- or gap-filling
packets, we use the same mechanism as in the regular
TCP. That is, when such a packet is detected, the
receiver generates the ACK immediately.

Extensive simulation results show that our simple
strategy improves TCP performance significantly by
reducing more unnecessary ACK packets.

6. Performance evaluation

In our evaluation, we mainly focus on comparing

against TCP-DCA, TCP-DA and the regular TCP. We
do not include TCP-DAA because it is designed for
short chains; also, TCP-DCA is reported to work
better than TCP-DAA [8]. Based on results reported in
[4], we do not select SACK and Vegas. For the sake of
clarity, we name our new algorithm TCP-TDA
because we use the ACK-delay timeout as a trigger in
a different way from the existing work.

6.1. Simulation scenario

We used the ns2 simulator [7] in our evaluations

of two typical topologies where each node resides 200
meters apart from its neighbors. Most of parameters
use the NS2 default value. We have chosen FTP as the
traffic generator, AODV as the routing protocol,
simulation time is 100s, and channel bandwidth is 11
Mbps. The capture effect is also taken into account.
All data points are obtained by averaging the result of
4 or 5 simulations with different random seed.

6.2. Throughput in chain topology

Figure 1 shows the topology. The TCP sender

resides on the first node and the receiver locates on the
last one. Due to the lack of space, we only show
results for cases of 1 and 6 flows.

Figure 3-left shows the throughput for one flow
and hop counts 1 to 3. We can see that TCP-TDA and
TCP-DCA have almost the same performance. This is
expected because these two methods basically have
the same factor, reaching the cwnd, which affects the
ACK generating in such scenarios. Both algorithms
outperform TCP/TCP-DA significantly. The

RTS
20 bytes

CTS
14bytes

DATA

ACK
14bytes

160µs

SIFS
(10 µs)

112 µs 112 µs

SIFS
(10 µs)

SIFS
(10 µs)

Figure 2. Timing diagram for a packet transmission
with RTS/CTS

 4

Table 2. Number of ACKs and data packets for a 13-hop
chain and 1 flow

 Num of
ACKs sent

Num of
packets sent Ratio Throughput

(Kbps)
TCP-TDA 693 5644 0.12 478
TCP-DCA 1509 4321 0.35 368
TCP-DA 1542 2887 0.53 242

improvement is 26%, 24%, 41% over the TCP-DA and
55%, 53%, 72% over the regular TCP, for 1 to 3 hops.
Similar results hold for other number of flows.

Figure 3-center shows the throughputs for the hop
counts from 4 to 29. The performance gain of TCP-
TDA over TCP-DCA is in the range of 12% ~ 80%, on
average 35%. In most cases, the performance gain is
more than 60% over TCP-DA, up to 110%, on average
68%, and 100% over TCP, up to 205%, on average
139%. We notice that the performance gain is higher
for most cases in larger hop counts. One reason for
this is that the TCP sender emits a burst of packets
after receiving a cumulative and incurs heavy
contention in the first few hops. When the chain is
longer and the packets spread out the chain, this burst
effect is alleviated. After considering capture effect,
the burst effect does not impair performance greatly as
expected earlier [8].

For other numbers of flows, the performance
gains are also significant. In the 2-flow case, the
average gains are 36%, 77%, 87% over TCP-DCA,
TCP-DA, TCP, respectively. In 6-flows case, the gain
is 11%, 38%, 76%, respectively. But we noticed that
with the increasing of number of flows, although the
performance gain over TCP-DA/TCP is still
significant, that over TCP-DCA decreased
significantly. In the 6-flow case, TCP-TDA works
only slightly better (Figure 3-right). In a few cases, the
TCP-TDA works even worse than TCP-DCA. The
explanation is given below. The fact that all four
algorithms work worse for larger number of flows
suggests that the number of flows should be kept low,
especially with large number of hops. This sheds light
on application design for such scenarios.

Table 2 shows a typical example of number of
ACKs and data packets sent. TCP-TDA generates
much less ACKs than other algorithms. In the 6-flow
case, we observed that, in many scenarios, the ratio for
TCP-TDA increases to more than 0.3 and accordingly,
the ratio for TCP-DCA increases to more than 0.4,
which means the number of generated ACK increases
significantly and therefore the performance gain
deteriorates. This confirms that reduction in the
number of ACKs does help improve the performance.
Because other factors also affect the TCP behavior,
throughput does not increase linearly with the number
of reduced ACKs. Moreover, in the 6-flow case, we
observed in some scenarios that although TCP-TDA
sends 10% fewer ACKs than TCP-DCA, the
performance gain is small, or even worse. This implies
that our algorithm can be improved further.

TCP-TDA significantly reduces excessive ACK
packets but it may result in TCP-sender timeout if
numerous ACK packets lost due to channel error. To
solve this problem, we modify the TCP-TDA to setup
another timer to resend the last ACK packet if receiver
does not receive new packets in a given time after an
ACK is sent. Moreover, receiver can be set to send
ACK a little sooner than the number of arrived packets
reaches the cwnd. We are currently investigating
further improvements for these strategies and their
performance in complex scenarios. The results will be
reported in the future.

We can also see an interesting phenomenon in
Figure 3. The throughput does not decrease
monotonously with the increasing hop count, for all
four algorithms. The reason is that errors generate
duplicate ACKs, which results in cwnd shrinking
sooner. This, in turn, brings the injected traffic closer
to the optimal value and improves the throughput.

6.3. Cross topology

We also evaluate the performance in a more

complicated grid topology shown in Figure 5. The
filled circles depict the sending nodes, the triangles
indicate the receivers, and the arrow lines point the

500
1000
1500
2000
2500
3000
3500
4000

1 2 3
num of hops (one flow)

Th
ro

ug
hp

ut
 (K

bp
s)

TCP-TDA
TCP-DCA
TCP-DA
TCP

100
200
300
400
500

600
700
800
900

4 6 8 10 12 14 16 18 20 22 24 26 28
num of hops (one flow)

Th
ro

ug
hp

ut
 (K

bp
s)

TCP-TDA
TCP-DCA
TCP-DA
TCP

100

200

300

400

500

600

700

800

4 6 8 10 12 14 16 18 20 22 24 26 28
num of hops (six flows)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
Kb

ps
) TCP-TDA

TCP-DCA
TCP-DA
TCP

 Figure 3. Throughput for the chain topology

 5

Flow 4 Flow 5 Flow 6
Flow 1

Flow 2

Flow 3

Aggregate Throughput for grid topology

0
200

400
600
800

1000

1200
1400

1600
1800

Algorithm

A
gg

re
ga

te
 T

hr
ou

gh
pu

t(K
bp

s) TCP-TDA
TCP-DCA
TCP-DA
TCP

Figure 5. Throughput for the grid topology

transmission direction. Due to the lack of space, we
only report the results for 6 cross flows, averaged over
5 runs with different seeds. In this critical scenario, the
interference and contention has greater impact than in
the chain topology. Therefore, the performance gain of
our algorithm is degraded significantly, and shows
approximately 8%, 25%, 35% improvement over the
TCP-DCA, TCP-DA and the regular TCP,
respectively. We believe TCP-TDA will be further
improved if combined with other techniques.

7. Discussion and future work

Our method is motivated by the fact that a short

ACK packet consumes channel capacity comparable to
the much longer data packet, over high-speed
connections. For higher transmission rates, lower layer
overhead would be greater and the ACK packets will
consume more channel capacity. This means that our
method would perform even better. Because RTS/CTS
introduces significant overhead, it would be interesting
to investigate how to alleviate this negative effect.

Our algorithm can work with methods that use
ELFN-like technique [9], which could be used to
inform the sender to lower its packet injection rate,
e.g. by reducing the cwnd, rather than keeping the
cwnd from shrinking. Modifying existing ELFN-like
techniques to work with our algorithm is part of our
future work.

The performance of all existing algorithms
deteriorates for increasing numbers of flows. We are
currently investigating new methods to improve
performance in this case.

Long-hop wireless network is present in scenarios
such as sensor networks. Different sensor network
implementation may use different contention-based
MAC design. But our idea still holds and could be
applied with different implementations.

8. Conclusion

In multi-hop wireless networks, unlike previous

work, we showed that the optimal congestion window
size is between n/3 and n/2, instead of n/4, where n is
the total number of hops. This conclusion matches the

simulation results more accurately than the prior work.
We also showed that the small ACK packets consume
comparable channel capacity as the much longer data
packets, in high-speed network. Motivated by this, we
proposed an improved delay-ACK algorithm.
Extensive simulations show that our method lowers
the excessive ACKs significantly and therefore
improves TCP performance significantly, achieving up
to 205% gain in long-hop networks and 35% gain in a
complex grid network, compared to the regular TCP.
Unlike existing work, which usually focuses on short-
hop networks, our evaluation includes long-hop
networks, which is particularly valuable for large
sensor networks. We also provide some possible
improvements to the proposed TCP-TDA algorithm.
Our method could be improved further by combining
it with complementary methods.

9. Acknowledgements

The authors are thankful to Dr. Zhibin Wu, from

Qualcomm, Inc., for valuable discussion and help.

10. References

[1] E. Altman and T. Jimenez, “Novel delayed ACK
techniques for improving TCP performance in multihop
wireless networks,” IEEE Pers Wireless Comms, Sep 2003.
[2] A. K. Singh and K. Kankipati, “TCP-ada: TCP with
adaptive delayed acknowledgement for mobile ad hoc
networks,” Proc. IEEE WCNC, 2004.
[3] K. Chen, Y. Xue, and K. Nahrstedt, “On setting TCP’s
congestion window limit in mobile ad hoc networks,” Proc.
IEEE ICC, 2003.
[4] R. de Oliveira and T. Braun, “A dynamic adaptive
acknowledgment strategy for TCP over multihop wireless
networks,” Proc. IEEE INFOCOM '05, 2005.
[5] S. Floyd and T. Henderson, RFC 2582,
http://www.ietf.org/rfc/rfc2582.txt
[6] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M.
Gerla, “The impact of multihop wireless channel on TCP
throughput and loss,” Proc. IEEE INFOCOM '03, Mar 2003.
[7] NS2 network simulator, http://www.isi.edu/nsnam/ns/
[8] J. Chen, Y. Z. Lee, M. Gerla, and M. Y. Sanadidi,
“TCP with delayed ACK for wireless networks,” Proc. IEEE
BROADNETS, 2006.
[9] G. Holland and N. H. Vaidya, “Analysis of TCP
performance over mobile ad hoc networks,” Proc. ACM
MobiCom '99, Seattle, WA, Aug 1999.
[10] R. Braden. “Requirements for internet hosts –
communication layers”, RFC-1122, IETF Network Working
Group, Oct 1989.
[11] T. Yuki, T. Yamamoto, M. Sugano, M. Murata, H.
Miyahara, and T. Hatauchi, “Performance improvement of
TCP over an ad hoc network by combining of data and ACK
packets,” IEICE Transactions on Communications, 2004.

