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Abstract — Linear time-series analysis of session 
throughput in wireless/mobile local area networks shows 
that the dynamics of wireless link bandwidth in such 
networks can be predicted to a useful degree from past 
values by using Autoregressive and Windowed-Mean 
models. These lightweight models are suitable for 
adaptive-application deployment on mobile devices. 

 
I. INTRODUCTION 

Wireless/mobile local area networks (LANs) are 
increasingly involved in our daily life with the proliferation 
of mobile communication devices and wireless connectivity. 
Because of the convenient communications and increasing 
bandwidth supported by wireless/mobile LANs, more and 
more multimedia applications are targeting mobile data 
communications. It is generally observed that the throughput 
of a multimedia application streaming data in wireless/mobile 
LANs fluctuates from time to time. This is because that the 
throughput reflects dynamics of wireless links, i.e. changing 
available link bandwidth and link latency. In this paper, 
therefore, we focus on the throughput of a data streaming 
session as the performance index of wireless link dynamics in 
wireless/mobile LANs. It is useful for a multimedia session to 
predict the dynamics of wireless links so that its performance 
can be improved by adapting to the dynamics [1]. 

Modeling for prediction is a widely studied subject, as the 
related work discussed in Section 6. However, most models 
are not computationally lightweight, which is critical to the 
application deployment on mobile devices in wireless/mobile 
LANs. Moreover, to our best knowledge, there is few existing 
research on the feasibility of using lightweight models for 
prediction of wireless link dynamics in wireless/mobile 
LANs. We choose time series analysis here since it is well 
studied for data-based “black-box” prediction and it includes 
several lightweight models. 

In the next section, the experiment scenarios for measuring 
the session throughput for the study of wireless link dynamics 
are presented. Section 3 describes the data collection and 
discusses the relationship between the session throughput and 
wireless link dynamics. In Section 4, we analyze the collected 
data, study the modeling techniques, and choose appropriate 
models for prediction of the wireless link dynamics in 
wireless/mobile LANs. Section 5 evaluates selected models 
based on their prediction performance. Section 6 discusses 
related works and Section 7 presents conclusions. 

II. EXPERIEMENT SCENARIOS 

Experiments have been designed to measure session 
throughput for the study of wireless link dynamics in 
wireless/mobile LANs. Considering the proliferation of audio 
and video applications [2], we study the throughput of data 
streaming sessions across wireless/mobile LANs. 
A. Experimental Networks 

Figure 1 illustrates the abstract layout of our experimental 
wireless/mobile LANs. The LANs are campus networks and 
are used by multiple users simultaneously. They include 
Proxim RangeLAN [3] and Sony WirelessLAN [4]. 
Proxim RangeLAN operates at 2.4 to 2.483 GHz using 
spread spectrum frequency hopping with media access 
protocol OpenAir and delivers data traffic up to 1.6 Mbps. 
Sony WirelessLAN is an IEEE 802.11b [5] wireless network 
operating at 2.4 GHz radio frequency band using direct 
sequence spread spectrum (DSSS) and delivers up to 11 
Mbps which is comparable to wired Ethernet. 
B. Data Streaming Source and Sink 

The data stream source or sender, as shown in Figure 1, is 
a Sun Sparc10 workstation with Solaris 2.6 platform. The 
data stream sinks or receivers include a mobile laptop and a 
wired personal computer, both with Windows NT platform 
installed. The sender sends datagram traffic in a multicast 
fashion so that both receivers can receive the same data 
traffic. A stable traffic generator, which overcomes the 
randomness caused by the scheduling mechanisms of 
operating systems and coarse granularity of timers, is used at 
the source to generate stable and smooth data streams at fixed 
rates. Figure 2(a) shows the wired-receiver-side traces of 
different data traffic rates the traffic generator generates. The 
receivers receive the data stream and record the number of 
bits received every second as the session throughput. 
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Fig. 1. The abstract layout of experimental networks 
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C. Mobility Scenarios of the Mobile Receivers 
The mobile laptop travels with varying velocity around the 

base station (or access point) along the hallway and enters the 
offices and the labs. (If the velocity is zero, the mobile laptop 
is motionless.) The maximum distance between the laptop 
and the base station reaches 100 feet. Generally there is no 
line-of-sight communication between the base station and the 
mobile laptop. 

 
III. DATA COLLECTION 

Based on the above-described experimental scenarios, we 
categorize the experiments into two groups, namely the 
RangeLAN group and the 802.11b group. For each group, 
several data sets of the throughputs recorded at the mobile 
receivers with various streaming rates have been collected. 
Each data set contains 10,000 values of the throughput, with 
one value recorded every second. We recorded data sets of 
throughputs of different sessions with various session sending 
rates. The time of the experiments for the collection of the 
data sets is randomly distributed over several weeks. In order 
to keep the illustrations clear, not all data sets and sample 
values are plotted in the graphs shown in this paper. We have 
observed that a fraction of all the data sets and sample values 
in each data set well represents the whole data sets in terms of 
statistical characteristics. Figures 2(b) shows typical 
representatives of the general results. 
A. Session Throughput vs. Wireless Link Dynamics 

Comparing Figure 2(a) to Figures 2(b), it shows that the 
data traffic received at the wired host is very different from 
that received at the mobile hosts. The session throughputs 
shown in Figure 2(b) change dynamically in a wide range. 
The difference is solely caused by the dynamics of wireless 
link since the mobile and the wired receivers are in the same 
multicast streaming session and the only difference is the link 
type of the last link to the receivers, i.e., wireless vs. wired. It 
can be concluded that, in our experimental wireless/mobile 
LANs, the correct prediction of session throughput implies 
the correct prediction of wireless link dynamics. 

 
IV. ANALYSIS AND MODELING 

A. Analysis 
We examined autocorrelation function of each data set. 

The autocorrelation quantifies how well a throughput value at 
time t is linearly correlated with its corresponding throughput 
value at time t+∆, which in turn shows how well the value at 
time t predicts the value at time t+∆. The value of 
autocorrelation function ranges between −1 and 1. The closer 
the value to 1, the better linear correlation of the value at time 
t and time t+∆. The time series analysis shows that the past 
throughput value has a strong influence on the future 
throughput value. Figure 3 shows the autocorrelation function 
to a lag of up to 120 seconds (2 minutes) for the data set in 
Figure 2(b). Notice that in both scenarios the values of 
session throughput are strongly correlated. 
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(a) Data streaming traffic received at the wired receiver 
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(b) Data streaming traffic received at the mobile receiver 

Fig. 2. Data streaming traffic received at the receivers 
 

The above statistical properties are presented in all the data 
sets, irrespective of the velocity of the mobile receivers. This 
implies that it is feasible to use linear time series models to 
predict the dynamics of the wireless link, which is reflected 
by the session throughputs. We believe that other 
technologies, e.g., Bluetooth [6] and HyperLan [7], in 
wireless/mobile LANs, should demonstrate similar statistical 
properties to those found in this research. 
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Fig. 3. Autocorrelation function of data sets in Figure 2(b) 
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B. Modeling 
There exist a number of models for linear time series 

analysis, only AR (Autoregressive), MA (Moving Average), 
and ARMA (Autoregressive Moving Average) models [8] are 
studied here considering the lightweight implementation of 
modeling and prediction functionality in mobile devices. 

1. ARMA Models 
If a data set with time series value {Xt} can be fit to an 

ARMA model, then it can be described as follows: 
{Xt} is an ARMA(p,q) process if {Xt} is stationary and if 
for every t 

Xt  − φ1Xt–1 − … − φp Xt–p = Zt  + θ1Zt–1 + … + θq Zt–q  (1) 
where {Zt} is a white noise sequence WN(0,σ2). It is 
convenient to use a concise form as 

φ(B) Xt = θ(B)Zt   (2) 
where φ(⋅) and θ(⋅) are the pth and qth degree polynomials as 

φ(x) = 1 − φ1x − … − φp xp   (3) 
θ(x) = 1 + θ1x + … + θq xq   (4) 

and B is the backward shift operator (BjXt = Xt-j, BjZt = Zt–j, 
j=0,±1,±2…). The time series model is said to be an 
autoregressive model of order p or AR(p) if θ(⋅)≡1 and a 
moving average model of order q or MA(q) if φ(⋅)≡1. 

2. AR Models 
Note that deploying MA and ARMA models is a much 

more difficult proposition for a system designer since fitting 
time series data to them takes a non-deterministic amount of 
time. Instead of a linear system, fitting a MA or ARMA 
model present us with a quadratic system.  Thus AR models 
are highly desirable since they can be fit to data in a 
deterministic amount of time. For example, in an AR model 
with p-order using the Yule-Walker technique [8], the 
autocorrelation function is computed to a maximum lag p and 
then a p-wide Toeplitz system of linear equations is solved. 
Even for relatively large values of p, this can be done almost 
instantaneously. The evaluation results presented below 
demonstrate that AR models are suitable for modeling the 
session throughput of wireless data networks. We also 
compare AR models with simple models such as MEAN and 
WM (Windowed Mean) [9]. 

3. Simple Models 
The MEAN model has Xt =µ, so the future values of the 

time sequence are predicted to be the mean. The WM model 
simply predicts the next sequence value to be the average of 
the previous w values, a simple windowed mean. Note that 
WM subsumes an even simpler model: LAST model as 
“predict the next value be the same as the last one”, i.e., w=1. 

 
V. EVALUATION 

We collect additional data sets other than those collected in 
Section 2 and use all of them for evaluating different models. 
One-step-ahead and multi-step-ahead predictions are used to 
evaluate the correctness of different models, such as AR(p), 

MEAN, WM(w) models. In the case of sampling frequency 
equal to 1 second, m-step-prediction means predicting the 
throughput value at time instance that is m seconds ahead of 
current time instance. The comparison index is the mean 
square fit (MSF), which is expressed as follows. 

Suppose X is the vector of the observed values, and the 
Xpred is the vector of the predicted values. Then MSF is: 

║X – Xpred║ / sqrt(length(X)) 
where ║⋅ ║is the norm operator. 
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(a) MSF of different models (1-second prediction) 
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(b) MSF of different models (15-second prediction) 
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(c) MSF of different models (30-second prediction) 

Fig. 4. MSF of different models in multi-step prediction 
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In this research, the norm of a vector is the square root of 
the sum of the squares of individual elements in the vector, 
and the vector length equals 10,000. 

Figure 4(a) shows the mean square fits of AR(p) models 
with different orders of p and WM(w) models with different 
window size w, when predicting one-second-ahead session 
throughput in the 50 Kbps case of RangeLAN. The mean 
square fit of the MEAN model in this case is 4.7979. Note 
that unlike the WM model, the MEAN model has to use an 
infinite buffer to store history data as the time increases, 
which is infeasible in practical modeling and prediction. 

Using the same evaluation methods described above, we 
studied the prediction performance of AR models and WM 
models in the other group of data sets, i.e., the cases of 
802.11b networks. The results show that the prediction errors 
by all models decrease as the order of the models increases. 
Moreover, when the models’ order is high enough, e.g., 10, 
different models show similar prediction accuracy and the 
nominal prediction errors are in the range of 10%. 

Figures 4(b) and 4(c) show the performance of AR models 
and WM models in multi-step-prediction cases for the 50 
Kbps session in RangeLAN. The figures show the 15 seconds 
prediction and the 30 seconds prediction, respectively. We 
observe that performances of the AR models and WM models 
are almost the same when their orders are high enough, e.g., 
5. This result remains true in all experimental scenarios. 

 
VI. RELATED WORK 

There is research in predicting computing resources, 
including host and network parameters [9][10] in wired 
networks. Parameters that have been monitored and predicted 
include: usage of computer resources (CPU, memory), 
throughput or available throughput of a communication path, 
latency of a data link, etc. There also exists research on wired 
networks using statistical models to study the data traffic 
behavior in both wide-area networks [11] and local-area 
networks [12]. Linear time series models are used in 
predicting both long-term and short-term Internet conditions 
and traffic behaviors. The results are used to predict network 
performance in support of real-time services and applications. 

There is little existing research on modeling and predicting 
network parameters in wireless/mobile data networks. Noble 
et al. [13] studied the agility and stability of exponentially 
weighted moving average (EWMA) methods for estimation 
of available bandwidth in the context of mobile networking. 
Variations of exponential model have been used and studied 
in [9][13] for the estimation/prediction of network parameters 
as well as in TCP for round-trip time estimation [14]. It can 
be expressed as follows: 

xp
t = αxt−1 + (1−α)xp

t−1   (5) 
where xp

t is the predicted value of x at time instance t, and xt−1 
is the actual value at time instance t−1. This is a special form 
of AR model for prediction. From Eq. (5), 

xp
t−1 = αxt−2 + (1−α)xp

t−2   (6) 

Substitute Eq. (6) to Eq. (5): 
xp

t = αxt−1 + α(1−α) xt−2 + (1−α)2xp
t−2 (7) 

Perform similar substitutions recursively, then:  
xp

t = αxt−1 + … + α(1−α)j−1xt−j + (1−α)j+1xp
t−j−1  (8) 

We can ignore the last item once j becomes large enough, 
say, N, since  α<1. Therefore: 

xp
t = αxt−1 + … + α(1−α)N−1xt−N  (9) 

 
VII. CONCLUSIONS 

Our research is, to our best knowledge, the first study to 
demonstrate that wireless link dynamics in wireless/mobile 
LANs is predictable to a useful degree from past behavior by 
using linear time series techniques, such as AR and WM 
models. They are computationally lightweight to be deployed 
in mobile devices with limited computing capabilities. 
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